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1 Introduction
In the study of fluid dynamic systems, the von Kármán vortex street phenomenon
stands a classical example of pattern formation in flows behind bodies. The pat-
tern is characterized by alternating vortices, and it is not just an example of the
complexity of fluid dynamics, but also of great importance in various research fields
influencing the design of objects in fluid or aerodynamic systems. For example, the
performance of a wing heavily depends on the specific flow, and therefore emergence
of vortices can have an impact on the efficiency of the plane and its flight capa-
bilities in various situations. The potential optimization of shape and coatings to
achieve desired flight performances led alone in the field of aircraft engineering to
a multitude of studies and research activities. Another very interesting occurrence
of the phenomenon is shown in Fig. 1, where the interplay of a mountain and wind
leads to pattern formation in the clouds and forms alternating vortices.

Figure 1: View of a von Kármán vortex street in the atmosphere, showcasing the pattern of
swirling vortices caused by airflow around a mountain [Wik].

This project aims to numerically simulate this phenomenon in a two-dimensional
flow field. By leveraging the Chorin projection method to decouple the velocity and
pressure fields and using a Semi-Langrangian solver for the advective term in the
underlying equations, we aim to simplify the computational complexity inherent in
fluid dynamics problems and to ensure stability and accuracy in the representation
of vortex shedding and evolution over time. Therefore, the plan for the following
report is as follows.

First, we introduce the underlying equations as well as the boundary conditions in
Section 2.1 that we deal with, and present and motivate the solver in Section 2.2.
In Section 3, we numerically simulate the system and investigate the flow patterns
for various setups and different shapes.

2 Methods

2.1 Posing the problem

To simplify our approach we look at a two-dimensional incompressible fluid. In this
section we want to pose the problem by introducing the underlying mathematical
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equations and discuss the boundary conditions.

Underlying equations

In our approach we simplify the problem to a two-dimensional incompressible viscous
fluid in a rectangular domain box flowing from one side of the box to the other,
encountering an obstacle in its path. The motion of the fluid is described by the
incompressible Navier-Stokes equation

ρ

(
∂u
∂t

+ u · ∇u
)
− µ∆u +∇p = 0 (1)

∇ · u = 0

where ρ is the mass density (assumed constant), u = (u, v) is the fluid velocity
with horizontal component u and vertical component v, µ is the dynamic viscosity
of the fluid and p is the pressure. The first equation encapsulates the momentum
balance within the fluid, incorporating the effects of advection (u · ∇u, velocity
interaction and movement), diffusion (µ∆u, velocity spreading due to viscosity),
and the pressure gradient’s influence on the fluid motion (∇p), whereas the second
equation, often termed the continuity equation, asserts the incompressibility of the
fluid by ensuring the volume conservation within the flow. The equations can be
adimensionalized with the following change of variables

ũ =
u
U
, p̃ =

p

ρU2
, x̃ =

x
L
, t̃ =

U

L
t (2)

where the characteristic velocity U and characteristic length L are used. These
quantities represent the typical velocity of the fluid and typical lengthscale. In
practice, they are taken to be the inflow velocity and the length of the obstacle in
the transverse direction to the flow, respectively. Applying these change of variables
to Eq. (1), we get (dropping the tilde for readability):

∂u
∂t

+ u · ∇u − 1

Re
∆u +∇p = 0 (3)

∇ · u = 0

where the Reynolds number Re := ρUL
µ

is a dimensionless parameter that measures
the ratio between the inertia of the flow and the viscosity of it.

Boundary conditions

The domain Ω is the rectangular box without the obstacle. We call the horizontal
direction x-direction and the vertical direction y-direction. In our study, on the left
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side a laminar flow is coming into the domain. At the beginning the fluid inside
the box is at rest and pressure is null within the domain. At the horizontal walls a
slip condition is imposed and a free flow on the right side is assumed. Therefore we
obtain as boundary conditions for the walls:

• At time t = 0, the fluid is at rest, and both velocity and pressure are zero.

• On the left side, the flow is incoming with a velocity equal to Uex, and the
pressure satisfies the conditions ∂p

∂x
= 0.

• On the right side of the domain, the flow is free so that ∂u
∂x

= ∂v
∂x

= 0 and
p = 0.

• On the horizontal sides, the walls are impenetrable, so that v = 0. A slip
condition is imposed so that ∂u

∂y
= 0 and ∂p

∂y
= 0.

In order to accurately implement these boundary conditions, we make use of the
ghost cell method. This technique involves the addition of a layer of cells outside
the domain (see Fig. 2), called ghost cells. These cells are used to approximate
at second order the values of the velocity and pressure at the boundary for both
Dirichlet and Neumann boundary conditions.

Figure 2: The ghost cell method. The domain Ω is represented in red and the dots represent the
grid cells, the black ones being the inner cells and the blue ones, the ghost cells.

As an example, if u0,j denotes the horizontal component of u at the left boundary
and height j (counting from 0), then it is approximated by 2U − u1,j, where u1,j is
the horizontal component of u at the first cell inside the domain and the same height
j. A straightforward Taylor expansion around the boundary point (say u1/2,j) shows
us that indeed this approximation is of second order. Similarly, we obtain values for
v0,j and p0,j as

v0,j = −v1,j, p0,j = p1,j

The other boundaries are treated in the same way, but exchanging the role between i
and j and taking into account the different boundary conditions. It should be noted
that when computing discrete derivatives, which involve the use of neighbouring
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cells, the computations are carried out only on the inner cells, which in turn use
ghost cells. But the derivatives themselves at ghost cells are never computed.

We discuss now the treatment of the boundary conditions on the object. In general
dealing with the object is not an easy task. For simplicity, we model the presence
of a solid body within a fluid by enforcing the fluid velocity to be zero inside the
object, which correspond to imposing a no-slip condition at the boundary. We can
think of it as a direct forcing method, which is a common approach in the literature,
and it is based on the idea of adding a forcing term to the Navier-Stokes equations
to account for the presence of the object (see [Fad+00] for more details). It is very
worth-mentioning that the way we integrate the body has an influence on the flow.
Especially to study the impacts of coatings or surface structure, our method, is
not capable of including these effects, but in our approach we only want to observe
the effect, and therefore prioritize simplicity for understanding over complexity for
small details in the effect. If the reader is interested in delving deeper into the fluid-
structure interactions, including the effects of surface modifications, we recommend
consulting works in the field, such as those by Peskin [Pes77] or Schlichting and
Gersten [SG00].

2.2 Difference Scheme

In this section we discuss our numerical solver to integrate Eq. (3) together with
the boundary conditions presented in above section. To simplify the equations, we
use Chorin’s projection method. It was originally introduced by Alexandre Chorin
in 1967 [Cho67] as an efficient means of solving the incompressible Navier-Stokes
equations.

The idea of the method is to first predict the velocities for the next time step by
solving the advection and the diffusion term. With the intermediate velocity field
we solve the Poisson equation with a finite difference method (described below).
Finally, the projection step is preformed, and the velocity field is updated with the
new pressure field.

This method is based on the Helmholtz-Hodge decomposition of a vector field F,
which states that any vector field can be decomposed into a sum of a solenoidal
(divergence-free) and an irrotational (curl-free) part. In our of fluid dynamics, this
means that the velocity field u∗ can be decomposed into a sum of a solenoidal part
un+1 and an irrotational part ∇pn+1, where pn+1 is the pressure field at time tn+1.
The projection step is then used to enforce the incompressibility of the velocity field,
and to update the velocity field with the new pressure field.

To ensure that the boundary conditions are met, we impose the conditions for the
velocity right before solving the Poisson equation and at the end of each iteration.
The boundary conditions for the pressure are imposed after solving the Poisson
equation and before correcting the velocities in the projection step.

Next, we provide a summary of the steps in our method. Assuming we know the
velocity field at time tn, un, we want to compute the velocity field at time tn+1,
un+1.
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1. Solve for ua in
ua − un

∆t
+ un · ∇un = 0 using a semi-Lagrangian method.

2. Solve for u∗ in
u∗ − ua

∆t
=

1

Re
∆un.

3. Set the boundary conditions for the intermediate velocity field u∗ and impose
the velocity field u∗ inside the object to be zero (forcing term).

4. Solve the Poisson equation for the pressure, ∆pn+1 =
1

∆t
∇ · u∗.

5. Set the boundary conditions for the pressure pn+1.

6. Project the pressure to the intermediate velocity to obtain the new velocity at
time tn+1, un+1 = u∗ −∆t∇pn+1.

7. Set the boundary conditions for the velocity field un+1.

From these equations, one can easily check that we have:

un+1 − un

∆t
+ un · ∇un − 1

Re
∆un +∇pn+1 = 0

∇ · un+1 = 0

In the following sections we deepen in how do we compute each of the above steps
in our method.

Semi-Lagrangian method

The Semi-Lagrangian (SL) method represents a powerful approach to solving fluid
dynamics problems, particularly in the context of advection. Unlike Eulerian meth-
ods, which compute changes at fixed points in space, the SL method tracks the
motion of fluid parcels. SL methods slightly differ from Lagrangian methods, as
the word suggests. The second ones are rarely used in numerical methods because
the particle trajectories become chaotic and wildly mixed in a short period of time.
However, SL algorithms avoid this problem by reinitializing the Lagrangian coordi-
nate system after each time step [Boy01]. There are several ways to implement a
SL method, and we describe here the one we used in our method. Our goal in this
subsection is on solving:

Du

Dt
=

∂u

∂t
+ u · ∇u = 0

The idea is to somehow discretize the material derivative. To do that, if we call un

the current velocity field and ua the velocity field after the advection step, we can
write a difference formula as:

ua − un

∆t
+ un · ∇un = 0

The following discretization for the material derivative is used:
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u(xi,j, t
n+1)− u(xi,j − u(xi,j, t

n)∆t, tn)

∆t
= 0

Here we are approximating the solution along a characteristic line, which generally
differs from the actual characteristic associated to the solution at that point, with a
constant velocity of u(xi,j, t

n) at each grid point xi,j. The reader may rapidly notice
that the point xi,j − u(xi,j, t

n)∆t is not in general in the grid, and thus, we don’t
have the respective value of the velocity field. To solve this problem, we make use of
bilinear interpolation between the four (in 2D) surrounding grid points to the point
xi,j −u(xi,j, t

n)∆t. This gives us an approximation of the velocity field at the point
xi,j − u(xi,j, t

n)∆t, which in turn provides us with the advected velocity field ua.

Furthermore, to improve the accuracy of the method we use the back-and-forth
method [DL07]. This method first advects the velocity field using the method de-
scribed above, and then advects back with opposite velocity u → −u. With this, we
can have an estimate of the error we are comitting when comparing the last result
with the initial position. Using this information we can correct the initial velocity
field and obtain a more accurate result. The steps are reproduced below. In order
to make things more clear, we consider the general case:

Dψ

Dt
=

∂ψ

∂t
+ u · ∇ψ = 0

1. Advect the field ψn with velocity u to obtain ψ̃
a
.

2. Advect the field ψ̃
a

with velocity −u to obtain ψ̄a.

3. Advect the field ψn + 1
2
(ψn − ψ̄a

) with velocity u to obtain ψa.

In our case, the field ψ exactly corresponds to the same velocity field u. This
approach has been proved to be stable and improving considerably the accuracy of
the method [DL07].

Diffusion term

As a second step we add diffusion using a second order central differences. The
diffusion term is given by:

u∗ − ua

∆t
=

1

Re
∆un

Once discretized we get for each i, j in the grid:

u∗
i,j = ua

i,j +
∆t

Re

(
un
i+1,j − 2un

i,j + un
i−1,j

(∆x)2
+

un
i,j+1 − 2un

i,j + un
i,j−1

(∆y)2

)
We write concisely the discretization in vector form, but in practice we do it for
each component of the velocity field separately.
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Solving for the Poisson equation

There are several efficient ways to compute the solution of the general Poisson equa-
tion ∆p = f . In our case, we have to equip this equation with the boundary
conditions ∂np = 0 on the left, top and bottom boundaries, and p = 0 on the right
boundary. We use a finite difference method to solve this equation with a 5-point
stencil to approximate the Laplacian operator. The 5-point stencil is given by:

∆pi,j =
pi+1,j − 2pi,j + pi−1,j

(∆x)2
+

pi,j+1 − 2pi,j + pi,j−1

(∆y)2

If we set p := (p1,1, p1,2, . . . , p1,ny , p2,1, p2,2, . . . , p2,ny , . . . , pnx,1, pnx,2, . . . pnx,ny), we
can write our problem in matrix form as Ap = f , where f contains the discrete
values at the grid points of the right-hand side of the Poisson equation in the same
order as p, and A is a matrix that contains the coefficients of the discrete Laplacian.
To describe how we can build the matrix A, let A = X+Y, where X and Y denote
the matrices that contain the coefficients of the Laplacian operator in the x and y
directions, respectively. We can write X and Y as:

X =



−Iny Iny 0 · · · · · · 0

Iny −2Iny Iny

. . . ...

0 Iny −2Iny Iny

. . . ...
... . . . . . . . . . . . . 0
... . . . Iny −2Iny Iny

0 · · · · · · 0 Iny −3Iny


Y =


B 0 · · · 0

0 B
. . . ...

... . . . . . . 0
0 · · · 0 B



with

B =


−1 1 0 · · · 0

1 −2 1
. . . ...

0
. . . . . . . . . 0

... . . . 1 −2 1
0 · · · 0 1 −1

 ∈ Mny(R)

Both X and Y are block matrices, composed of nx matrices in each row and column
of size ny × ny each, which results in a matrix of size nxny × nxny. The boundary
conditions (using ghost cells) on the pressure are applied at both the first and last
block rows of X and the first and last rows of B.

In order to solve the resulting system, we use the Cholesky decomposition, which
requires the matrix to be symmetric and positive definite. The matrix A is symmet-
ric, but it is not positive definite. In fact, it can be seen that it is negative definite.
Thus, in our case, we solve the equivalent system −Ap = −f .
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Updating velocities

As a final step, we compute the gradient of the pressure field and update the velocity
field. The gradient of the pressure field is computed using a 2nd order central
differences scheme. The update of the velocity field is given by:

un+1
i,j = u∗

i,j −∆t

(
pni+1,j − pni,j

∆x
,
pni,j+1 − pni,j

∆y

)

2.3 Adaptive time step

The advantage of a semi-Lagrangian method for the advection term is that it is
unconditionally stable, which allows for larger time steps without the risk of compu-
tational instability commonly encountered in other numerical schemes. However, one
of the primary limitations associated with the semi-Lagrangian method is its poor
conservation of physical quantities such as mass and momentum.This is found to be
mostly caused by numerical errors associated with interpolation schemes as stated
in [MW19]. To leverage the full potential of the Semi-Lagrangian time scheme, we
refer the interested reader to extend studies as in [Bak17] or in [MW19], but in this
approach we choose the time step ∆t similar to a Courant-Friedrichs-Lewy (CFL)
condition.

|u|max
∆t

∆x
+ |v|max

∆t

∆y
≤ 1

Although this way we are not using the full potential of the semi-Langrangian, we
achieve an adaptive time step and assure the the physical correctness.

3 Results
The method was implemented in C++ using the Eigen library for linear algebra
operations [Eig], particularly for the creation of the sparse matrix A described above
and the resolution of the resulting linear system using the Cholesky decomposition.
We opted not to employ parallelization for the sake of simplicity. However, readers
may observe that for achieving more accurate results, such as using a denser grid
around the boundary of the object and thereby expanding the size of the discrete
domain, parallelization becomes essential1

Implementing the numerical scheme outlined in Section 2.2 we have the opportunity
to explore the dynamics of fluid flow around various objects. First, we want to
illustrate the emergence of the phenomenon before delving in different factors on
the flow as differences in Reynolds numbers or in the shape of the object.

1For further details on the implementation, we shared our code in the Github repository
https://github.com/victorballester7/von-karman. There the reader will also find animations of
the flow dynamics around different objects to better understand the phenomenon.
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3.1 Observing von Kármán vortex street

To investigate how the phenomenon emerge, we look at an exemplary showcase of
a fluid with a Reynolds number Re = 500. We simulate the fluid in a domain of
the width W = 1 and the length L = 5. For most of the simulations we use a
homogeneous grid with 500 grid points in the x direction and 100 grid points in the
y direction. The time step is taken in an adaptative way, in order to ensure the CFL
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(b) Vorticity ω.

Figure 3: Flow dynamics around a circular obstacle in a fluid with Reynolds number Re = 500
at time t = 25. The top image displays the magnitude of the velocity

√
u2 + v2, and the bottom

image focuses on the vorticity ω.

condition discussed in Section 2.2. On the right side of the domain we place a circle
with radius r = 0.125 as an object and at the start of the simulation the fluid inside
the domain is at rest. Imposing the boundary conditions as presented in Section 2.1,
the fluid starts to move from the left side to the right side of the domain. As the
simulation progresses, the flow dynamics evolve to reveal the organized structure
known as a von Kármán vortex street. In Fig. 3, we present the outcomes of this
prolonged simulation, showcasing the magnitude of the velocity field and the vortic-
ity ω = ∇×u = ∂v

∂x
− ∂u

∂y
, to visualize the vortices. The vorticity measures the local

rotation of the velocity field. In the figure we can observe the characteristic period-
icity between red (counterclockwise rotating vortices) and blue (clockwise rotating
vortices) vortices. In front of the body the flow seems to be laminar with an income
velocity of approximately u = 1 (after normalization), which is consistent with our
boundary conditions.

3.2 Influence of Reynolds number

The Reynolds number plays an important role in determining the flow characteristics
around bodies in a fluid. It serves as a crucial indicator for the flow regime around
bodies immersed in a fluid, significantly influencing the resulting flow patterns. In
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this section, we look at the same setup as before and vary the Reynolds number.
The impact can be categorized in different regimes. In Fig. 4 we plot the vorticity
of the flow for different Reynolds numbers.
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(b) Vorticity ω for Re = 175
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(c) Vorticity ω for Re = 190
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(d) Vorticity ω for Re = 230

Figure 4: Flow dynamics around a circular obstacle for fluid with different Reynolds numbers at
time t = 30.

The impact of the Reynolds number is evident. For low Reynolds numbers (Re ≤
150) the flow stays laminar, and pattern formation is not observed. For Re ≈ 175
the flow starts to be more complex. We don’t observe vortices, but behind the body
the vertical velocity periodically changes. Increasing the Reynolds number further
we observe that the periodic perturbation become stronger (Re = 190), until finally
vortices emerge (Re ≥ 230).
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3.3 Influence of the object

We this section we aim to demonstrate the impact of object geometry on the flow
characteristics. To show that the geometry of objects immersed in a fluid signif-
icantly influences the flow patterns that develop around them, we look at a more
advanced shape: an airfoil. This shape is not just designed to create lift for a plane,
but also to ensure that the flow patterns are stable and manageable. This stability
is essential for effective maneuverability during flight.
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(a) Vorticity ω for Re = 500
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(b) Vorticity ω for Re = 3500
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(c) Vorticity ω for Re = 5500

Figure 5: Flow dynamics around an airfoil in a fluid with different Reynolds numbers at time
t = 30.

In Fig. 5a, we present our findings for the airfoil subjected to a Reynolds number
Re = 500. In contrast with the observations made in Fig. 3a for the circle, the flow
surrounding the airfoil is remarkably devoid of vortices or significant flow perturba-
tions. The elongated shape reduces the region in which the side eddies can interact
and delays the onset of mixing to a position much farther behind the object. This
difference demonstrates the influence of object geometry on flow dynamics. The
streamlined shape of the airfoil leads to smoother flow, reducing the tendency for
vortex formation.

It is important to note that comparing flows around bodies of dissimilar shapes at
equivalent Reynolds numbers is inherently challenging. This challenge arises due to
the variability in characteristic lengths and velocities, which fundamentally alters
the flow’s nature around each object. But even increasing the Reynolds number to
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Re = 3500, does not lead to turbulences in the flow. As we can see in Fig. 5b the flow
around the airfoil maintains a predominantly laminar characteristic, a testament to
its aerodynamically efficient design.

Only when we further increase the Reynolds number to Re = 5500, the flow around
the airfoil begins to exhibit clear signs of turbulence, marked by the formation of
vortices. In Fig. 5c we plot the results and we can clearly see vortices arising behind
the foil. The circle, with its inherent propensity to induce turbulence, resulted
in flow conditions too chaotic for our solver to accurately simulate over extended
durations.

In the case of the airfoil we see that the influence of the shape on flow dynamics
is very important. This underscores the significance of the complexity in designing
aircraft that must operate effectively across a broad range of speeds. As a result, the
design of wings is not only highly optimized but, in certain cases, incorporates the
ability to change shape dynamically to adapt optimally to the aircraft’s velocity.

4 Conclusion
In this report we numerically analysed the von Kármán vortex street. We success-
fully built a solver which leverages Chorin’s method to simplify the integration step
and breaks it down in smaller steps, which are easier to solve. The method then
simplified to treating the advection with a second order Semi-Lagrangian scheme,
the diffusion with a second order central difference scheme and the Poisson equation
for the pressure with a 5-point stencil method. To achieve great flexibility for the
possible shapes inside the domain, we impose the fluid at rest in the form of the
shape. Basically, this corresponds to imposing a no-slip condition at the boundary
of the shape.

In the second part of our approach we numerically investigated the emergent flow
patterns around different objects. First, we exemplary showed the emergence of the
von Kármán vortex street in case of a circle placed on the left side of the domain for
fluid with intermediate Reynolds numbers. As expected we observe the alternating
vortices behind the body. We identified a critical Reynolds number which indicates
the dynamics of the flow. For smaller Reynolds numbers the flow is laminar and
no vortices emerge. For higher numbers periodic formations emerge, which finally
lead to mixing and vortices shredding. Finally, we demonstrated the impact of
the shape on the flow. By looking at an airfoil we showed that with intelligent
design of the shape the dynamics of the flow can be greatly influenced. With this
new shape only with much higher Reynolds numbers we observed vortex shredding
and thereby showcased the importance of fluid- and aero-dynamic favorable design.
Especially for planes, ships or turbines the shape has a great impact on performance
and efficiency, among other essential performance metrics.
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