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1 Introduction

Turbulence in fluids is an ubiquitous phenomenon in our daily lives, manifesting in everything from the
flow of water in a kitchen sink to the swirling smoke of a cigarette. These examples naturally occur in a
three-dimensional (3D) space, as it is the intrinsic dimension of our world. However, this thesis focuses on
the study of certain aspects of two-dimensional (2D) turbulence, which might initially seem less realistic.
Despite this, 2D turbulence holds significant importance in the field of fluid dynamics. For instance,
as explained in Boffetta and Ecke 2012, many large-scale atmospheric and oceanic phenomena exhibit
properties closely related to those observed in 2D turbulence, making such phenomena well-approximated
at first order by simplified 2D models.

Theoretically, 2D turbulence behaves quite differently from its 3D counterpart, contrary to natural in-
tuition. While in 3D turbulence, energy cascades from large scales to small scales, in 2D turbulence,
energy transfers from small scales to large scales. This fundamental difference is directly related to the
primary motivation of this work: understanding the flows in the atmosphere. Although the atmosphere
is a 3D domain, it is relatively thin in height, allowing for the observation of phenomena typical of 2D
turbulence.

This thesis investigates the behavior of 2D turbulence under the influence of a localized inhomogeneous
forcing continuously applied to the system. This forcing is responsible for the continuous generation of
vortices in the domain. Several questions arise initially: Will the vortices reach the domain boundaries,
or will they dissipate as they spread? How does the energy distribution evolve with distance from the
forcing region? These questions are thoroughly addressed in this study. Similar questions were explored
in Alexakis 2023. In that study the author considered a long periodic 3D box and found that energy
does not reach the domain boundaries if the boundaries are sufficiently large, regardless of the Reynolds
number. This work tries to extend that study to the 2D case.

In the present study, a doubly periodic 2D box is analyzed with a localized zero-mean forcing applied
to the system. The zero-mean nature of the forcing ensures that no net momentum is injected into the
system. Additionally, a point vortex model is examined to compare its results with those obtained from
the 2D Navier-Stokes equations.

The structure of this thesis is organized as follows: Section 2 details the theoretical framework of our
problem and defines all the relevant quantities. Section 3 describes the numerical setup and presents the
results obtained during the study. Finally, Section 4 provides conclusions and discusses the implications
of our simulations.
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2 Theoretical background

The primary focus of this work is the integration of the incompressible Navier-Stokes equations with a
random forcing term:

∂tu+ (u ·∇)u = −∇p+ ν∆u+ f (2.1)
∇·u = 0 (2.2)

where u is the velocity field, p is the pressure, ν is the kinematic viscosity, and f is a random forcing
term satisfying ∇·f = 0. The second equation is called incompressibility condition and translates the
fact that the fluid cannot be compressed. The forcing term is chosen to be random and delta-correlated
in time with Gaussian distribution of amplitudes, for the vorticity formulation, which is detailed below.
Throughout the project the density of the fluid is assumed to be constant and equal to 1.

2.1. Stream function formulation
In Batchelor 2000, a new variable is introduced in order to simplify the integration of the 2D incompress-
ible Navier-Stokes equations. This quantity, called stream function and denoted by ψ, is defined as the
flow rate across a given line. More accurately, if C is a curve joining two points O (fixed) and P = (x, y),
the stream function as a function of the coordinates of the point P is then

ψ(x, y)− ψ0 =
ˆ

C

u⊥ · ds =
P̂

O

−v dx+ udy (2.3)

where u = (u, v) is the velocity field, ds = (dx ,dy) is the tangent vector to the curve, and ψ0 is a
reference value. In differential form, it can be written as

dψ = −v dx+ udy = ∂ψ

∂x
dx+ ∂ψ

∂y
dy (2.4)

where the last equality follows from the exact differential property. Thus, one obtains the following useful
relations:

u = ∂ψ

∂y
and v = −∂ψ

∂x
(2.5)

Note the arbitrary choice of sign of u⊥ in the definition of the stream function. In the present work, the
choice is made to be u⊥ = (−v, u), in order to keep the same sign convention as in similar works (Boffetta
and Ecke 2012; Alexakis and Biferale 2018). The formulation with the alternative stream function
ψ′ := −ψ is sometimes used in other fields of fluid dynamics, mostly in meteorology and oceanography.

Note that using this definition, the incompressible condition ∇·u = 0 is automatically satisfied. Finally,
introducing the scalar vorticity ω := ∇×u = ∂v

∂x −
∂u
∂y = −∆ψ, one can rewrite the Navier-Stokes

equations in terms of the this latter variable:

∂tω + (u ·∇)ω = ν∆ω + fω (2.6)
∇·ω = 0 (2.7)

where the rotational has been taken to both sides of Eqs. (2.1) and (2.2) and basic vector identities have
been used. The main objects of interest in the vorticity formulation are the vortices (see Fig. 2), which
according to Saffman 1993 are the local regions on the plane with non vanishing vorticity and surrounded
with an irrotational flow.

Now, using the relation between the stream function and the vorticity one obtains:

∂tψ + ∆−1(u ·∇)∆ψ = ν∆ψ + fψ (2.8)

The reader may quickly observe that this equation appears to be more complicated than the first one.
However, when transforming the equation to Fourier space, it becomes much more simpler (see Eq. (2.13)),
with the advantage of having a scalar function as the main unknown variable (as opposed to the velocity
formulation) and removing the incompressible condition (as opposed to the vorticity formulation), which
is implicit in the definition of the stream function.
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The forcing term is assumed to be random, in particular it is taken of the form:

fω(x, y) = f0

10∑
i=1

Ai exp
Å
−k

2
ℓ

2
î
(x− xi,1)2 + (y − yi,1)2óã−Ai exp

Å
−k

2
ℓ

2
î
(x− xi,2)2 + (y − yi,2)2óã

(2.9)
The quantities Ai follow a uniform distribution between 0 and 1; f0 represents the amplitude factor of the
forcing; kℓ quantifies the size of the vortices (thought in Fourier space) so that the vortices injected have
size ∼ 1/kℓ, and the coordinates xi,j , yi,j , for j = 1, 2 are random variables that position the vortices
inside a small disk of radius kr centered at the origin in a way such that the density of vortices is (almost)
constant in the disk. To be more clear, if one expresses the coordinates of the vortices in polar coordinates
as x = r cos θ and y = r sin θ, the angular variable is uniformly distributed between 0 and 2π and the
radial variable follows a distribution

√
U(0, π/kr) where U(a, b) is the uniform distribution between a

and b. Indeed, one can easily check that the probability of finding a vortex inside a thin annulus of with
∆r within the perturbation region does not depend on the radius of the annulus r:

P
(
r −∆r <

»
U(0, π/kr) ≤ r

)
=

r2ˆ

(r−∆r)2

1
π/kr

ds ≃ Cr∆r +O(∆r2) (2.10)

Thus, since the area of the annulus {(x, y) ∈ R2 : r−∆r <
√
x2 + y2 ≤ r} is proportional to r∆r at first

order, the density of vortices is constant, up to a small error of order ∆r, throughout the perturbation
region.

With this forcing the aim is to introduce pairs of vortices with opposite vorticity in a inhomogeneous
way which a priori may seem to introduce a non-zero momentum to the system. To correct that, the first
Fourier coefficient is set to zero once transformed the forcing term to Fourier space. This implies that
the actual force differs up to a constant factor from the one given above, which from now on it will be
assumed that this factor is implicit in fω, that is, E(fω) = 0.

The amplitude of the forcing is controlled by the parameter f0, which is chosen such that injection rate
of energy remains constant and equal to 1. Because of that it has an implicit dependence on time, as
explained below.

Forward-transforming fω to Fourier space, from the relation ω = −∆ψ, one can easily get f̂ψ by dividing
by k2 each mode of f̂ω, being k the norm value of the wave vector.

2.2. Fourier space
The Fourier transform (FT) of a function f : R2 → R is defined as

f̂(ξ) =
ˆ

R2

f(x)e−iξ·x dx (2.11)

for all ξ ∈ R2 and its discrete version (DFT) for a square domain with N points in each direction is

f̂(k) =
∑

n∈N

fne−ik·n/N (2.12)

where N = {0, 1, . . . , N − 1}2 is the set of points in the Fourier grid, fn is the value of the function in
the physical space at point n, and k = (kx, ky) is the wave vector.

Taking the Fourier transform on both sides of Eq. (2.8) and using the well-known properties of the Fourier
transform, one obtains:

d
dt ψ̂ − k

−2⁄�(u ·∇)∆ψ = −νk2ψ̂ + f̂ψ (2.13)

where k := ∥k∥. Note that the non-linear term in the above equation has not been simplified. This is
because in the simulation that term is backward-transformed to the physical space, computed, and then
transformed back to the Fourier space, as it is less expensive and simpler than computing the non-linear
term in Fourier space.
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2.3. Reynolds number
The Reynolds number is a dimensionless quantity that characterizes the ratio of inertial forces to viscous
forces in a fluid. It is usually defined as Re := UL/ν, where U is a characteristic velocity of the flow,
L is the characteristic length scale associated to it and ν is the kinematic viscosity. In the cases where
there is no control on the injection velocity, but instead one can control the rate of energy injection ϵ,
this equation is not useful anymore. To derive an alternative equation, the scaling theory of Kolmogorov
is used (Frisch 1995). Let ϵℓ ∼ u2

ℓ/τℓ be the rate of change of energy at the scale ℓ, where uℓ is the typical
velocity at that scale and τℓ is the characteristic time at that scale. Using that τℓ ∼ ℓ/uℓ, one obtains
ϵℓ ∼ u3

ℓ/ℓ. Assuming that the energy transferred from the scale ℓ to smaller scales is the same as the
energy received by the scale ℓ from larger scales (that is, the flux of energy across scales is constant),
one obtains that the value ϵ does not depend on ℓ and moreover ϵ ∼ U3/L, i.e. U ∼ (ϵL)1/3. Thus, one
obtains a new formula for the Reynolds number:

Re = ϵ1/3L4/3

ν
(2.14)

In the present work, the length scale L is determined by the size of the vortices injected in the disk, which
in this case is L = 1/kℓ. The injection rate of energy is determined by the forcing term, as follows. The
amplitude f0 is time dependent and is chosen in such a way that f2

0 is the rate at which energy is injected
per unit of area in the domain. More precisely, the amplitude of the forcing is taken as f0/

√
∆t/2, where

∆t is the time step of the simulation, a priori varying with time.

To check that indeed this is the case, let f = f0√
∆t/2

(fu, fv) be the forcing term for the velocity equation
in the physical space. Recall that since E(fω) = 0 and fω = ∇×f , using the inversion formula for the
curl (see Eq. (2.26)) and Fubini’s theorem one obtains that E(fu) = E(fv) = 0. Thus, at time t = T and
time step ∆t one has, taking into account only the forcing term:

u(x, T + ∆t) = u(x, T ) + ∆t f0√
∆t/2

fu(x) + · · · (2.15)

Squaring both sides of the equation one obtains:

u(x, T + ∆t)2 = u(x, T )2 + 2
√

2∆t f0fu(x)u(x, T ) + 2∆t f2
0 fu(x)2 +O(∆t3/2) (2.16)

Taking expectation on both sides one concludes that:

u(x, T + ∆t)2 − u(x, T )2

∆t = 2f2
0 E(fu(x)2) (2.17)

where the second term on Eq. (2.16) vanishes because of the zero-mean property of the forcing term.
Doing a similar computation for the v component, summing both equations and taking the limit ∆t→ 0,
one obtains the rate of energy injected in the domain.

∂E

∂t
= 1

2
∂

∂t
(u2 + v2) = f2

0 E(f2
u + f2

v ) (2.18)

The implicit assumption that ρ = 1 in the equation ensures that it precisely represents the rate of energy
injected per unit of area in the domain. In the simulations at each step the amplitude of the forcing term
is adjusted so that its variance is equal to 1, making the rate of energy injection become f2

0 . Since the
interest is, not on the injection rate of energy per unit of area, but on the injection rate of energy per
unit of area in the forcing region, the following formula for ϵ is used:

ϵ = f2
0

4π2

π(π/kr)2 (2.19)

because the area of the whole domain considered [−π, π]× [−π, π] is 4π2 and the area of the forcing region
is π(π/kr)2. Consequently the Reynolds number becomes:

Re =

(
f2

0
4k2

r

π

)1/3
k

−4/3
ℓ

ν
(2.20)
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2.4. Point vortex model
The study has been complemented by another simulation, far from the Navier-Stokes equations, but
aiming to obtain qualitatively and quantitatively similar results. This simulation is based on the point
vortex model, which is a simplified version of the dynamics of a set of vortices.

More precisely, in the point vortex model that follows, the viscous term is neglected. Thus, this problem
aims to mimic in some way the dynamics of the Navier-Stokes equations as ν → 0 (or equivalently
Re → ∞, see Eq. (2.20)). Moreover, vortices are considered as point-like objects, that is to say, being
the vorticity singular at the position of the vortices. Because of that, the vortices are characterized by
their circulation

Γ = lim
diam(C)→0

ˆ

C

u · ds (2.21)

where C is a curve surrounding the vortex. In those conditions and in absence of external forces, the
vorticity field ω is only advected and its evolution in time is described by the following transport equation:

∂tω + (u ·∇)ω = 0 (2.22)

together with the incompressible condition ∇·u = 0 (Ceci and Seis 2022). Here u is the velocity
field generated by the vortices. An interesting interpretation of the vortices involves the Dirac’s delta
distribution. Specifically, the vorticity field generated by a point vortex located at y can be represented
as a distribution of the form:

ω(x, t) = Γδ(x− y) (2.23)

where Γ is the circulation of the vortex (Saffman 1993). The dynamics of N point vortices in the R2

plane are described in the following theorem:

Theorem 1. Consider N vortices at positions z1, . . . ,zN ∈ R2 with circulations Γ1, . . . ,ΓN . Then, their
evolution in time is described by the following system of ordinary differential equations (Aref 2007):

ẋi = −
∑
j ̸=i

Γj
2π

yi − yj
(xi − xj)2 + (yi − yj)2 (2.24)

ẏi =
∑
j ̸=i

Γj
2π

xi − xj
(xi − xj)2 + (yi − yj)2 (2.25)

for i = 1, . . . , N , where zi = (xi, yi).

Proof. Since there is no viscosity in the equations, each vortex is advected with the velocity field generated
by all the other vortices. Now, given f ∈ C1(R2,R2) such that ∇·f = 0 and g := ∇× f , by Biot-Savart
law one can invert the curl operator using the Biot-Savart kernel (see Griffiths 2023):

f(x) = (K ∗ g)(x) =
ˆ

R2

K(x− y)g(y) dy (2.26)

where K(x) = 1
2π

(−x2, x1)
∥x∥2 is the Biot-Savart kernel and x = (x1, x2). In our case, g is the vorticity

field which is a sum of δ’s. Thus, taking into consideration Eq. (2.23), the velocity field generated by a
vortex at zj with circulation Γj is:

uj(x) = K(x− zj)Γj (2.27)

The proof concludes using the superposition principle.

The reader should not confuse the notation N here, which denotes the number of vortices, with the
notation N in the Navier-Stokes equations, which denotes the number of points in the physical space.

Another aspect worth-mentioning is the numerical addition of a softening parameter ε to Eqs. (2.24)
and (2.25) in order to prevent the positions of the vortices from blowing up when two vortices get too

5



close to each other. The equations then take the following form:

ẋi = −
∑
j ̸=i

Γj
2π

yi − yj
(xi − xj)2 + (yi − yj)2 + ε2

(2.28)

ẏi =
∑
j ̸=i

Γj
2π

xi − xj
(xi − xj)2 + (yi − yj)2 + ε2

(2.29)

This adjustment avoids the singularities of the system. These singularities occur when two vortices get
too close to each other, which in Section 3.2 is shown to be the common behavior of the system. The
softening parameter is chosen to be ε = 0.001, being this value small enough not to affect the dynamics
of the system but large enough to prevent a numerical blow-up.

In order to narrow the gap between the point vortex model and the Navier-Stokes equations while keeping
the simplicity of the former, a set of vortices is added regularly in time to simulate the action of a forcing
term in the equations. The point vortices are added in a similar way as in the Navier-Stokes, but this
time making the addition completely symmetric to cancel out any non-zero momentum that could be
introduced in the system.

2.5. Monitored quantities
In order to keep track of the evolution of the system, several variables are monitored during the simulation.

For the Navier-Stokes equations, the main quantity of interest is the total energy and vorticity in the
system. Since the work environment is the Fourier space (see Section 3.1), the energy is computed as

E =
∑
k∈K

∥û(k)∥2 =
∑
k∈K

k2|ψ̂(k)|
2

(2.30)

which by the Parseval identity is equivalent to the total energy in the physical space. Here K =
{0, 1, . . . ,K − 1}2 is the set of points in the Fourier grid, and K = N/3 is the maximum wave num-
ber chosen in order to control the aliasing effects. Another important quantity worth-considering is
enstrophy, which is analogous to energy but uses vorticity instead of velocity as the primary variable. It
is defined as

Ω =
∑
k∈K

|ω̂(k)|2 =
∑
k∈K

k4|ψ̂(k)|
2

(2.31)

where the second equality follows from the relation ω = −∆ψ.

As the title suggests, the main purpose of this work is to study how turbulence is spread across the
domain. Thus, quantities relating the energy and enstrophy contained in annuli as a function of the
radius of the annuli are also taken into account. These variables are respectively denoted by Er and Ωr,
and they are given by the following expressions:

Er =
∑

r−∆r<∥x∥≤r

∥u(x)∥2 (2.32)

Ωr =
∑

r−∆r<∥x∥≤r

|ω(x)|2 (2.33)

where r ∈ (∆r, π). The quantities Er and Ωr are then plotted as a function of r in order to study the
energy and enstrophy distribution across the domain (see Section 3.2).

Related to these variables are the mean energy radius and mean enstrophy radius, which denote a weighted
average of the radius, intuitively representing where the majority of energy and enstrophy reside. They
are defined as:

R2
E =

∑
∆r<r≤π r

2Er∑
∆r<r≤π Er

and R2
Ω =

∑
∆r<r≤π r

2Ωr∑
∆r<r≤π Ωr

(2.34)

Note that since the domain is square, the sums
∑

∆r<r≤π Er and
∑

∆r<r≤π Ωr are slightly less than the
total energy E and enstrophy Ω respectively, since they account for the contributions from the different
annuli in the domain until their radii reach the radius of the incircle of the square.
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Regarding the point vortex model, the system is integrable and the following function H

H =
N∑
i=1

Hi, Hi = − 1
4π

∑
j ̸=i

Γj log ∥zi − zj∥2 (2.35)

is a first integral of the system. Moreover the system is Hamiltonian, that is, it can written as:

ẋi = ∂H

∂yi
(2.36)

ẏi = −∂H
∂xi

(2.37)

At first sight, the reader may notice that the function H is singular when two vortices get too close to
each other. Although one could try to create an auxiliary function f(H) that is regular in the whole
domain and has a shape according the physical intuition while keeping the properties of a first integral,
an alternative approach was chosen in this work to mimic the energy and enstrophy profiles for the
Navier-Stokes equation.

The idea explored here involves counting the number of point vortices in annuli and comparing the density
distribution ρr with the corresponding functions Er and Ωr. Specifically, the density of vortices ρr is
defined as the density of vortices in the ring of radius r, that is:

ρr = lim
∆r→0

Nr
2πr∆r (2.38)

where Nr = Nr(∆r) is the number of vortices in the annulus of radius r and width ∆r.

Additionally, an equivalent mean radius is defined, which gives an insight on the average location of the
vortices within the domain. Its expression is given by:

R2
N =

∑
∆r<r≤π r

2Nr∑
∆r<r≤π Nr

(2.39)

3 Simulation

3.1. Numerical setup
The 2D incompressible Navier-Stokes equations are forced in a periodic domain of size 2π × 2π with a
forcing term that is located in a disk of radius π/kr centered at the origin. The range of values for the
parameter kr is taken to be {8, 16, 32, 64} and in all the cases the size of the vortices, which is controlled
by kℓ, is set to kℓ = 4kr. The parameter kr being one of those values in the previous set represents how
smaller the perturbation region is (in diameter) compared to the domain size (2π). The other parameter
kℓ accounts for the size of the vortices, as 1/kℓ gives a typical length scale of the vortices. Fig. 1 shows a
graphical representation of the forcing term for two different values of kr.

The Reynolds number is the other parameter that plays an important role in the whole simulation. This
project has simulated fluid flows for Reynolds numbers within the set {0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128},
each of those requiring different resolution as the Reynolds number is increased in order to capture the
smallest scales where energy gets dissipated by viscosity.

A pseudo-spectral method is used to solve the Navier-Stokes equations, based on the Fourier basis and
then using an improved 2nd-order low-storage Runge-Kutta method to integrate the resulting ordinary
differential equation. As explained in Brachet et al. 2008, this method differs from the conventional
Runge-Kutta methods by reducing the amount of storage needed for each iteration at the expense of
roughly doubling the time needed for evaluating the temporal derivatives at the same order as the usual
Runge-Kutta methods. Specifically, if “ψn is the vector containing all the coordinates at the n-th step of
the integration, the scheme follows the subsequent steps:

1. Copy “ψn into “ψ∗.

2. For i = s, . . . , 1, s being the number of stages of the Runge-Kutta method, update “ψ∗ as follows:“ψ∗ ← “ψn + ∆tF (“ψ∗)
i

(3.1)
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(a) kr = 8
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(b) kr = 64

Figure 1: Vorticity forcing term for different values of kr. Red colors and blue colors mean different direction of rotation
for each vortex. The reader may notice that indeed in the first plot the diameter of the forcing region is about 8 times
smaller than the total size of the domain. In the second plot, this property is less noticeable, but it is still true, this case
being 64 times smaller.

where F represents the field that defines the differential equation for ψ̂.

3. Set “ψn+1 := “ψ∗.

In the second step, the evaluation of F is done in an explicit-exact manner. This means that the non-linear
term is treated explicitly in time, while the linear terms are solved exactly using their exponential solution.
For more information about the scheme, the reader is encouraged to read the article from Brachet et al.
2008 or check the source codes in the link provided below. In this work, s = 4 is used for all simulations.
While this produces a formal order of accuracy of 2, the errors are generally smaller compared to those
of a standard second-order Runge-Kutta method.

The codes are run in two supercomputer centers, IDRIS1 and MESOPSL2, using 40 to 80 cores, depend-
ing on the simulation. Two different kinds of simulations are performed: (fully) parallel simulations and
embarrassingly parallel simulations. In the parallel simulations, the Fourier domain is divided among all
the processors, allowing them to work simultaneously on different parts of the problem. In the embar-
rassingly parallel simulations, each simulation runs independently on a single core. Multiple simulations
are executed concurrently, one on each available core, and the results are averaged afterwards to obtain
more accurate conclusions. This project uses MPI compilers to do the parallelism. Details about the
parallelization of the code will not be delved into, but the main idea will be explained.

They key piece of the parallelization of any pseudo-spectral method is the efficient computation of the
multidimensional Fourier transform. As a starting point, one of the dimensions of the physical domain,
of size N × N , is split, creating several subdomains of sizes Ñ × N , where Ñ ≃ N/Ncores and Ncores
is the number of cores used. Each core is responsible for computing Ñ 1D real-to-complex Fourier
transforms using the standard Fast Fourier Transform (FFT) algorithm which reduces the operations
from O(N2), using the naive approach, to O(N logN). Since the initial data is real-valued, the complex-
valued transformed data is then stored in an array Ñ × (N/2 + 1), which is enough to store all the
necessary information. Next, MPI communication is carried out in order to gather all the data, transpose
it, and then split it again to produce slices of size N̄ × N , where N̄ ≃ (N/2 + 1)/Ncores. Each core is,
similarly as before, responsible for computing N̄ 1D complex-to-complex Fourier transforms. Finally, all
the data is gathered again to produce the desired FFT resulting in a memory block of size (N/2 + 1)×N
consisting of complex-valued numbers. If the reader is interested in the details, the article from Mininni
et al. 2011 is highly recommended.

1For more information about the resources they provide, check their website: http://www.idris.fr/ (accessed on June
30, 2024).

2For more information about the resources they provide, check their website: https://wwwmesopsl-new.obspm.fr/
(accessed on June 30, 2024).
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For the parallel code, a variable time step is used throughout the whole simulations in order to take into
account the advection stability condition. For the embarrassingly parallel code, a fixed time step is used,
for the purpose of better comparing the results between the different runs from the same simulation. The
time step is chosen by eye after studying the evolution of the time steps during the variable-time-step
fully parallel simulations. Table 1 shows the different simulations performed during the project as well as
the resolution in physical space used in each case.

kr
Re 0.25 0.5 1 2 4 8 16 32 64 128

8 ✓512 ✓512 ✓512 ✓✓512 ✓✓1024 ✓✓1024 ✓✓1024 ✓✓2048 ✓2048 ✓4096

16 ✓1024 ✓2048 ✓✓2048 ✓✓2048 ✓✓2048 ✓4096 ✓4096

32 ✓2048 ✓4096 ✓✓4096 ✓✓4096 ✓✓4096 ✓8192 ✓8192

64 ✓8192 ✓8192 ✓8192

Table 1: Simulations carried out during the study varying the Reynolds number and the forcing parameter kr. In all cases
kℓ is taken as kℓ = 4kr. The green checkmark symbols indicate the simulations executed in parallel, splitting the domain
between different cores. The blue checkmark symbols indicate the simulations conducted in an embarrassingly parallel
manner, where each simulation runs independently across multiple cores simultaneously to generate statistical results. In
each cell, the number indicates the resolution in each dimension employed, which have been proved (a posteriori) to be
enough to well-resolve the system.

The reader may observe that the resolution increases as both the Reynolds number and the forcing
parameter kr increase. For the former, the resolution is increased to resolve the smaller scales that
appear in the system, which play an essential role in dissipating energy through viscosity. Thus, as Re
increases, ν decreases, and the predicted Kolmogorov wave number, where dissipation occurs, becomes
larger. For the latter, the resolution is increased as the wave numbers of the forcing region rise, thereby
shifting the energy injection to higher frequencies. It is worth-noting that the resolution in Fourier space
is not the same as the one in physical space. Specifically, as mentioned before, the Fourier resolution
is one third of the physical resolution in each dimension. This adjustment is made to avoid common
aliasing errors that may arise when computing non-linear terms in Fourier space. Concerning the total
time of integration, the simulations were stopped when enough vortices had reached the boundaries of
the domain, which was determined by eye.

The system of differential equations modeling the point vortex dynamics (see Eqs. (2.28) and (2.29)) is
integrated using a Runge-Kutta (7)8 method with adaptive time-stepping based on the Fehlberg error
estimate. Briefly, these adaptative Runge-Kutta methods are based on the idea of using two different
approximations of the solution at each step, in this case, one of order 7 and another of order 8. Then, the
difference between both approximations is used to estimate the error between one of the approximations
and the real solution. If the error is below a certain threshold, the time step is increased, and if it
is above it, the time step is decreased. The simulations for the point vortex model are conducted, as
opposed to the integration of the Navier-Stokes equations, in a personal computer and in a single core.
In this latter simulation there is only one parameter to control, which is the radius of the perturbation
region, kr. As the simulation is less computationally expensive, the range of values for kr is increased to
{8, 16, 32, 64, 128, 256} compared to the Navier-Stokes simulations.

All the codes and data used for the simulations as well as animations of the dynamics of both problems are
available in the following repository: https://github.com/victorballester7/final-master-thesis
(accessed on June 26, 2024). The pseudo-spectral codes on that repository are based on previous works
from Pablo Mininni‡ and Alexandros Alexakis. The repository of Pablo Mininni is available at https:
//github.com/pmininni/GHOST (accessed on June 25, 2024).

3.2. Results
The results of the simulations are presented in this section. The first part is devoted to the results
of the Navier-Stokes simulations, while the second part is dedicated to the results of the point vortex
simulations.

‡Professor in the Department of Physics at the University of Buenos Aires. Webpage: http://wp.df.uba.ar/mininni/
(accessed on June 25, 2024).
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We start showing how the vortices spread across the domain in a visual manner.
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(b) kr = 16, Re = 128

Figure 2: Vorticity plots for different values of kr and Re. The left-hand side figure is integrated with a resolution of
8192 × 8192 and the right figure is integrated with a resolution of 4096 × 4096.

Fig. 2 shows the vorticity plot at two different time slices for the driven Navier-Stokes equation. The
most notable feature is that the vortices appear more intense in the plot on the right compared to the
plot on the left. This can be attributed to two main reasons. Firstly, the Reynolds number is smaller
in the left-hand-side plot, causing dissipation by viscosity to have a more significant impact, leading to
a quicker decay of the intensity of the vortices. Secondly, the initial size of the vortices in the plot on
the left is four times smaller than in the plot on the right, which restricts their growth in size as time
progresses.

With this glimpse into the dynamics of the system, we now proceed to analyze the energy and enstrophy
distributions. The following set of plots in Fig. 3 show the energy and enstrophy evolution as a function
of the distance to the center of the forcing disk in three different categories: firstly, a Reynolds number
and a parameter kr are picked and the distributions of energy and enstrophy are plotted for different
times; secondly, plots varying kr at fixed time t = 1.66 and for Re = 32 are shown, and finally, the energy
and enstrophy profiles for different Reynolds numbers at fixed time t = 1.75 and kr = 16 are displayed.
All the data is obtained by averaging the results of 48 simulations, each one with a different random seed,
using embarrassingly parallel simulations.

The first feature that the reader may extract from all the plots is that generally the power laws that
the quantities appear to follow are more clear and consistent in the vorticity plots, rather than in the
energy ones. This, together with the fact that the vorticity plots are more spiky and the energy plots
smoother, may be attributed to the fact that vorticity is a quantity more localized than energy, taking
only high values where the vortices are located (see Fig. 2). On the other hand, the energy is more widely
distributed across the domain because it is proportional to the square of the velocity, unlike vorticity,
which depends on the rotation of the fluid. In a sense, this implies that there is more data available for
averaging the energy than for the enstrophy, hence the smoother profiles in the energy plots.

On the top two plots of Fig. 3, an increase of energy to outer rings of the domain is observed as time
increases, which starts answering one of the initial questions posed in the introduction about whether
the energy would remain localized around the perturbation region. In the analogous vorticity plot at
larger rings, more variance is observed in the curves for t = 0.4 and t = 0.8, compared to the curves for
t = 1.3 and t = 1.79. This is attributed to the fact that in some simulations, only a few vortices manage
to reach those outer layers of the domain at early times, unlike at later times when most simulations
already contain many vortices in those outer layers.

The middle plots show the same evolution of the profiles of energy and enstrophy as a function of the
radius of the annuli inside the domain. The most noticeable characteristic on the vorticity plot is that
the supposed power law extends to smaller radii as kr increases. This is expected, as a larger kr is
equivalent to decreasing the size of the forcing region, thereby shifting the observed features associated
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Figure 3: Energy and enstrophy profiles for different values of time, kr and Re. The left-hand side figures show the
respective plots for the energy while in the right-hand side, the enstrophy profiles are displayed. The top plots show the
profiles for different slices of time for a fixed kr = 16 and Re = 16. The units of time are those determined from the
Reynolds number, that is k

−4/3
ℓ

/ϵ1/3, where ϵ is given in Eq. (2.19). The middle plots show the profiles for several radius
of the perturbation region at fixed time t = 1.66 and fixed Re = 32. The bottom plots show the profiles for different
Reynolds numbers at fixed time t = 1.75 and fixed kr = 16. In all the plots the dashed line represents a function of the
form f(r) = A/r2 with A being a constant.

with smaller kr to different spatial locations, earlier in space. Moreover, before the power law is reached,
the vorticity profiles show a roughly constant profile, which indicates the presence of a region where the
vortices are equally distributed, i.e. the perturbation region. Indeed, the reader may observe that this
roughly constant part of each curve finishes for kr = 8 at ≃ π/8, for kr = 16 at ≃ π/16 and for kr = 32
at ≃ π/32. With the energy profiles, a similar but less pronounced behavior is observed, which aligns
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with the previous argument regarding the smoothness of the energy profiles.

Finally, the bottom plots show, at fixed kr and fixed time, energy and enstrophy profiles for several
Reynolds numbers. The remarkable feature here is that an increase in magnitude of both quantities is
seen as the Reynolds number increases. This is expected, as viscosity in lower Reynolds numbers plays
a more important role in dissipating energy, thereby stabilizing the dynamics of the system. The reader
may also observe the constant behavior of the profiles for the range of r ∈ [0, π/16] in the vorticity plots,
which is consistent with the previous observations.

Next, the quantities RE and RΩ are computed for the Navier-Stokes simulations and their evolution in
time is plotted in Fig. 4 for several values of the Reynolds number and fixing the size of the perturbation
region to kr = 16.
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Figure 4: Mean energy radius and mean enstrophy radius for several runs varying the Reynolds number at fixed kr = 16.

In all cases it is observed an increasing tendency, although the rate changes in time and also in the
Reynolds number. Specifically in the enstrophy plot a separation between the different plots can be
clearly seen, but the range of RΩ is smaller than the one of RE , likely due to the localizing nature of the
vorticity. Based on this data, it is plausible to conclude that no matter how small the forcing region is,
energy spreads throughout the entire domain given enough time, provided that viscosity is sufficiently low
to allow vortices to persist without dissipating. It is understood that in order to properly and securely
claim this statement, the simulations should have been run for longer times and higher Reynolds numbers.

The second part of this section is reserved to the results of the point vortex simulations. Here vortices
are input at a constant rate in the center of the domain and they are removed whenever they reach the
boundary of the box. Vortices are defined in terms of their circulation which is assumed to follow a
standard normal distribution for all vortices. Fig. 5 shows two different simulations changing the radius
of the perturbation region. The plot on the right shows a higher density of vortices than the plot on
the left, but as Fig. 6 indicates, the density distribution is similar in both cases. In the first case, the
stationary state is reached with a total number of around 400 vortices inside the domain, while in the
case for kr = 128 the total number of vortices is roughly 3300.

We conclude this section by analyzing certain properties of the point vortex model to compare them with
the Navier-Stokes simulations. First, Fig. 6 represents the density profile of the number of vortices as
a function of the distance to the center of the box. This density is a linear density, by means that it is
defined as the number of vortices in a thin annulus inside the domain divided by the radius of the annulus.
The curves for different sizes of the forcing region are shown in that plot. The reader may observe that
all the curves follow a similar behavior. A note should be done at this point. Unlike the other curves,
the curve corresponding to the region with kr = 256 is slightly below the others. This discrepancy arises
because the stationary state for that simulation had not yet been reached by the end of the run. Despite
this, the curve remains consistent with the others. The reader may also observe a interesting power law
∝ 1/r which fits reasonably well in the middle region of the range of r. This in turn implies a constant
flux of vortices in that subregion.

Fig. 7 shows a mean radius weighted with the number of vortices as a function of time, according to
its definition in Eq. (2.39). This simulation differs from the others in the point vortex problem in that
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Figure 5: Evolution of the point vortex simulation for different sizes of the perturbation region. Red colors and blue colors
mean different direction of rotation for each vortex.

no vortices are removed at any time, making the integration domain the entire R2. This is done to
avoid the appearance of a stationary state in the system. As a first observation, the reader observes a
growing behavior which resembles, in the middle stages, to the behavior of the enstrophy mean radius
in the Navier-Stokes simulations (see Fig. 4b). It has been proved that the curve is well fitted with the
law A

√
t, except for the very early times. As time increases and vortices evolve to the outer regions of

the domain, the curve starts to differ from the ones observe in the Navier-Stokes simulations. This may
be attributed to the effect of the boundary conditions. In the Navier-Stokes simulations, the boundary
conditions are periodic, thus allowing the vortices to travel backwards towards the center of the domain.
In the point vortex simulations, the domain is open and the tendency of pairs of vortices to travel in an
almost straight line, due to its similar magnitude of circulation, is not blocked.
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Figure 6: Density profile of the number of vortices as
a function of the distance to the center of the perturba-
tion region. The curves are averaged once a stationary
state is reached and then they are normalized by their
maximum value which is attained near the forcing re-
gion.
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4 Conclusions

This article has demonstrated that locally injected turbulence in a 2D space spreads to the boundaries
of the domain, provided the Reynolds number is sufficiently high. This is in contrast to previous works
in 3D domains, where the energy is shown to be confined to the region of the forcing. The results of
the Navier-Stokes simulations show that the enstrophy density distribution is consistent with the point
vortex simulations, where the vortices spreads across the domain and reaches the boundaries. This is
observed for different values of the size of the forcing region kr and the Reynolds number. Moreover, the
profile of the energy and enstrophy density distributions as a function of the radius from the center of
the domain has been claimed to follow a power law of A/r2, for some constant A. Particularly in the
case of enstrophy, the results show remarkable consistency, suggesting that as kr → 0 and sufficient time
elapses, the power law for the enstrophy density distribution is expected to cover the entire range of r.

Regarding the point vortex simulations, the findings indicate that the power law A/r provides a good
approximation for the density distribution of vortices per unit length ρr This contrasts with the results
from Navier-Stokes simulations, where the enstrophy density distribution is better described by a power
law A/r2. This discrepancy implies, as illustrated in the figures above, a faster decay of enstrophy in
Navier-Stokes simulations compared to the point-vortex model. This suggests the need to identify a more
accurate metric for comparing both models.

For an extension of this work, it would be interesting to run the simulations for a longer time and
higher values of kr and Re for the embarrassingly parallel code. This would allow for a more accurate
determination of the accordance of the plots for the evolution of the mean radii in both the Navier-Stokes
and the point vortex simulations. Finally, these results could be replicated with the addition of a drag
force −αu to the Navier-Stokes equations, where α is a constant. This would allow us to investigate
whether the energy still spreads as far as the domain allows, even in the presence of the drag force.
To account that in the point vortex model, an extra equation is suggested to be added to the pair of
equations for xi and yi. This equation would concentrate the drag effect on the intensity of circulation
of the point vortex, formulated as

Γ̇i = −βΓi (4.1)

for some constant β.
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