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1 Introduction
The orbital environment of the Earth is very populated. As of mid-2023, there are around 27 500 space-
craft in orbit around the Earth [Spa]. Among these, around 11 000 are active satellites, 2 300 are rocket
bodies (that is, the propulsion units used to deploy satellites into orbit), 13 700 are inactive satellites
(debris), and the rest are unclassified objects. And, as years go by, the probability of collision between
two spacecraft is continuously increasing. Some serious collisions have already taken place, for instance
the high-speed collision between the Iridium 33 and the Kosmos-2251 satellites in 2009 [Wikc].

Orbital dynamics around the Earth are very complex. The Keplerian approximation provides accurate
results just for a few hours. Important perturbations of the Keplerian approximation are: the actual
gravity field of the Earth (non-Keplerian because the Earth is not a point mass nor a sphere with
constant density), atmospheric drag, third-body effects (such as the gravitational pull from the Moon
and the Sun) and solar radiation pressure. The most accurate models (see [VC08]) include all these
perturbations, and are able to make reasonably accurate predictions for a few days. This makes possible
to keep a catalog of orbiting objects (both active and inactive) through a heterogeneous global network
of observing stations, that can be e.g. optical (telescopes) or radar-based [Spa; Cel]. Keeping this catalog
requires continuous observation.

The goal of this work is to give quantitative insight in the effect that these perturbations have individually.
For that, the necessary models will be mathematically developed. We will construct a reference frame
where the Newton’s laws of motion are valid. But since we will have to know the position of the satellites
relative to a “fixed” Earth at each step of the integration process, we will have to construct transformations
from the former inertial frame to this latter non-inertial frame. In order to do so, we will have to account
for the variations on the Earth’s axis of rotation as a function of time.

At the end, we will show the results of the simulations for three types of orbits: LEO (Low Earth Orbit),
MEO (Medium Earth Orbit) and GEO (Geostationary Earth Orbit).

In this work we have used the software from O. Montenbruck and E. Gill [MG05] for the computation
of the geopotential model and most of the transformations between the reference frames explained in
Section 3.2.3. Additionally, J. M. Mondelo facilitated me the code for the RK7(8) numerical integrator.
Finally, the code for the highly-accurate model that we will use to compare our results, the SGP4 model,
was obtained from [Val+]1.

1All the code used in this project can be found at https://github.com/victorballester7/final-bachelor-thesis
(accessed on June 25, 2023).
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2 Conics in a nutshell
In this section we will revise some basic properties of conics, that will be used in the next sections for
the study of the motion of two bodies under the influence of gravity.

2.1 General conics
Definition 1. A conic is the curve obtained as the intersection of a plane with the surface of a double
cone (a cone with two nappes).

In Fig. 1 we show the 3 types of conics: the ellipse, the parabola, and the hyperbola, which differ on their
eccentricity, as we will see later on. Note that the circle is a special case of the ellipse. The following

circle
ellipse
parabola

hyperbola

parallel

Figure 1: The black boundaries of the colored regions
are conic sections. The other half of the hyperbola,
which is not shown, is in the other nappe of the double
cone. Source: [Mat12].
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D

ν
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y

Figure 2: Reference frame centered at the focus of
the conic and whose axes are such that the y-axis is
parallel to the directrix and the x-axis is perpendicular
to the directrix. The directions of the axes are chosen
arbitrarily, subject to the constraint that a right-handed
system (x, y) is obtained.

proposition gives a characterization of the conics.

Proposition 2. A conic is the set of all points P such that the distance from P to a fixed point F is a
multiple of the distance from P to a fixed line D. Mathematically, this is expressed as:

d(P, F ) = ed(P,D) (1)

where d is the Euclidean distance. The point F is called focus; the line D, directrix, and the constant of
proportionality e, eccentricity.

An important type of conic section is the case e = 0, but this definition is not valid in this case, as it
reduces to a single point. In this case, the conic obtained, a circle, is defined as the set of all points P
such that the distance from P to a fixed point F is constant. It can be thought as a limit case of Eq. (1)
by letting the line D approach to infinity at a specific rate.

Note that using the polar coordinates (r, ν) centered at F (as in Fig. 2), we can rewrite Eq. (1) as:

r = e(ℓ− r cos ν) =⇒ r = eℓ

1 + e cos ν =: p

1 + e cos ν (2)

where we have defined p := eℓ.

Definition 3. Let C be a conic and e be its eccentricity. We say that C is

• an ellipse if 0 ≤ e < 1.

• a parabola if e = 1.

3



• a hyperbola if e > 1.

If e = 0, the conic is called circle.

2.2 Ellipse
From now on we will focus on the study of the ellipse. From Eq. (2), since e < 1, it follows that r(ν) is
continuous, 2π-periodic and satisfies r(0) = r(2π). Therefore, the ellipse is a bounded and closed curve,
and it is the only conic section satisfying these two properties.

Let’s now study the extrema of r(ν). An easy check shows that the minimum is attained at ν = 0 and
the maximum at ν = π and these values are given by:

rmin = p

1 + e
and rmax = p

1 − e
(3)

When considering orbits of celestial bodies these points are called periapsis and apoapsis, respectively2.
The line connecting both points is called line of apsides. Let’s seek now the extrema of x = r cos ν and
y = r sin ν. Differentiating with respect to ν yields:

x′ = − p sin ν
(1 + e cos ν)2 y′ = p(e+ cos ν)

(1 + e cos ν)2 (4)

On the one hand, x′ vanishes at ν = 0, π. Therefore, the extrema of x coincide with the periapsis and
apoapsis points and at these points the y coordinate is equal to 0. This means that the line of apsides goes
through the focus of the ellipse. On the other hand, y′ vanishes at cos ν = −e. That is, at ν = arccos(−e)
and ν = 2π− arccos(−e). Therefore, using that sin(arccosx) =

√
1 − x2, the values of y at these extrema

are:

ymin = p

1 − e2 sin(2π − arccos(−e)) = − p√
1 − e2

ymax = p

1 − e2 sin(arccos(−e)) = p√
1 − e2

(5)

Note that the x coordinate at these two points is the same: − pe

1 − e2 .

Definition 4. Consider the reference frame of Fig. 3 centered at one focus. We define the semi-major
axis a as half the segment that connects the two extrema of the x coordinate. The semi-minor axis b
is defined as half the segment that connects the two extrema of the y coordinate. The length of those
segments are also denoted by a and b, respectively. Thus, these are given by the following expressions:

a := xmax − xmin

2 = rmax + rmin

2 = p

1 − e2 b := ymax − ymin

2 = p√
1 − e2

(6)

FO

a

a
b

c

ℓ

x

y

Figure 3: Ellipse

2Other names are used in the literature when the central body and the orbiter are particular ones. For example for the
system Sun-Earth, the words perihelion and aphelion are used, whereas for the system Earth-Moon, the words perigee and
apogee are used instead.

4



From here note that we can express b in terms of a and e as:

b = a
√

1 − e2 (7)

Definition 5. We define the center of the ellipse O as the intersection of the semi-major axis and semi-
minor axis. The linear eccentricity c is defined as the distance between the center O and the focus
F .

We have just found a relation between a and b. Now, we would like to find a similar relation between a
and c. To do so, let’s calculate the distance from the focus F to one of the extrema of the y coordinate.

d

(
F,

(
− pe

1 − e2 ,±
p√

1 − e2

))
= p√

1 − e2

√
e2

1 − e2 + 1 = p

1 − e2 = a (8)

Hence, the value of c can be simplified to (see Fig. 3):

c2 = a2 − b2 = a2 − a2(1 − e2) = a2e2 =⇒ c = ae (9)

Finally, one more property of the ellipse will be needed: its area.

Proposition 6. The area enclosed in an ellipse of semi-major axis a and semi-minor axis b is πab.

Proof. Consider the ellipse E centered at the origin and oriented as in Fig. 4.

Figure 4: Reference frame centered at the center of the ellipse. Source: [Ag217].

From Fig. 4 one can check that it can be parametrized by (x, y) = (a cos t, b sin t) with t ∈ [0, 2π). This
parametrization satisfies:

x2

a2 + y2

b2 = 1 (10)

Hence, the area enclosed in the ellipse can be parametrized by (x, y) = (ar cos t, br sin t), with r ∈ [0, 1]
and t ∈ [0, 2π). The Jacobian of the transformation (r, t) → (x, y) is abr. Therefore, from the change of
variable theorem we have that:

Area(E) =
¨

E

dxdy =
2πˆ

0

1ˆ

0

abr dr dt = πab (11)

5
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3 Introduction to astrodynamics and satellite tracking

3.1 The two body problem

3.1.1 Trajectory equation

We are interested in understanding the dynamics of a spacecraft in orbit around the Earth. These
dynamics are governed by Newton’s second law of motion, which assuming that both the Earth and the
spacecraft are point masses (see Section 4 for a more realistic model), this can be written as

r̈ = −GM⊕
r2 er (12)

where the mass of the satellite has been canceled out on both sides of the equation. Here, r is the
position vector (also called radius vector) of the spacecraft with respect to the center of the Earth,
r := ∥r∥, er = r

r is the unit vector in the direction of r, M⊕ ≃ 5.972 × 1024 kg is the mass of the Earth,
and G ≃ 6.674 × 10−11 m3/(kg · s2) is the universal gravitational constant. Note that the minus sign
is due to the fact that the gravitational force is attractive, i.e. pointing towards the Earth. Here and
throughout the document the dot notation r̈ means that the derivatives are taken with respect to time.
Cross-multiplying Eq. (12) by r, we obtain

d(r × ṙ)
dt = ṙ × ṙ + r × r̈ = −GM⊕

r3 (r × r) = 0 (13)

Hence h := r × ṙ is constant. The physical consequence is that the motion of the spacecraft around the
Earth is confined to a plane, called the orbital plane, because the position r and velocity ṙ are always
perpendicular to h.

We are interested now in what kind of curves may be described by a spacecraft orbiting the Earth, when
considered both objects as point masses. That is, we want to somehow isolate r (or r) from Eq. (12). It
is standard in Astrodynamics to denote µ := GM⊕.

Proposition 7 (Kepler’s first law). Consider two point-mass bodies. The motion of one body orbiting
the other can be described by a conic section. Hence, it can be expressed in the form:

r(t) = p

1 + e cos(ν(t)) = h2/µ

1 + (B/µ) cos(ν(t)) (14)

for some parameters p = h2/µ, e = B/µ and B.

Proof. Cross-multiplying Eq. (12) by h we obtain

d(ṙ × h)
dt = r̈ × h = − µ

r3 r × h = − µ

r3 r × (r × ṙ) = µ

r3 [(r · r)ṙ − (r · ṙ)r] (15)

where in the last equality we have used the vector equality u × (v × w) = (u · w)v − (u · v)w for
u,v,w ∈ R3. Now note that:

d
dt

(r
r

)
= ṙ
r

− ṙ

r2 r = 1
r3 [(r · r)ṙ − (r · ṙ)r] (16)

because3 2rṙ = d(r2)
dt = d(r · r)

dt = 2r · ṙ. Thus:

d(ṙ × h)
dt = µ

d
dt

(r
r

)
(17)

Integrating with respect to the time yields

ṙ × h = µ

r
r + B (18)

3Bear in mind that in general ṙ ̸= ∥ṙ∥. Indeed, if β denotes the angle between r and ṙ we have that ṙ = ∥ṙ∥ cos β. In
particular ṙ may be negative.
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where B ∈ R3 is the constant of integration. Observe that since ṙ × h is perpendicular to h, ṙ × h lies on
the orbital plane and so does r. Hence, B lies on the orbital plane too. Now, dot-multiplying this last
equation by r and using that u · (v × w) = (u × v) · w ∀u,v,w ∈ R3 we obtain

h2 = h · h = (r × ṙ) · h = r · (ṙ × h) = µ

r
r · r + r · B = µr + rB cos ν (19)

where h := ∥h∥, B := ∥B∥ and ν denotes the angle between r and B, called true anomaly. Rearranging
the terms we finally obtain the equation of a conic section

r = h2/µ

1 + (B/µ) cos(ν) (20)

with p := h2/µ and e := B/µ.

From here on, let’s assume that B is small enough to satisfy e < 1, as this is our primary case of interest.
We’ve seen in Section 2.2 the range of values that can r take in that case, and we deduced an equation
for the semi-major axis. Note that this latter quantity can also be expressed as:

a = rmax + rmin

2 = p

1 − e2 = h2

µ(1 − e2) (21)

Observe that at rmin, we have ν = 0 and so r ∥ B at this point. Hence, B points towards the periapsis
of the orbit.

Definition 8. Let r(t) be the position of the spacecraft at time t and A(t) be the area swept by the
radius vector r(t) in the time interval [0, t]. We define the areal velocity as dA(t)

dt .

Proposition 9 (Kepler’s second law). The areal velocity remains constant, namely:

dA(t)
dt = h

2 (22)

Proof. Recall that the area of a parallelogram generated by two vectors u,v ∈ R3 is given by ∥u × v∥.
Thus, approximating the difference A(t+ k) −A(t) by half of the area of the parallelogram generated by
r(t) and r(t+ k) (see Fig. 5) we obtain:

dA(t)
dt = lim

k→0

A(t+ k) −A(t)
k

= lim
k→0

∥r(t) × r(t+ k)∥
2k = lim

k→0

∥r(t) × (r(t+ k) − r(t))∥
2k =

= ∥r(t) × ṙ(t)∥
2 = h

2 (23)

where the penultimate equality is due to the continuity and linearity of the cross product.

Figure 5: Graphical representation of the error made (red region) when approximating the area swept by the radius vector
by half the area of the parallelogram generated by r(t) and r(t + k) (green region).

Definition 10. Let T be the orbital period of the satellite. We define the mean motion as n := 2π/T .

8



Proposition 11 (Kepler’s third law). The mean motion is related to the semi-major axis by:

n =
√

µ

a3 (24)

Proof. Integrating Eq. (22) with respect to time between 0 and T (the period) yields:

πab = A(T ) =
T̂

0

A′(t) dt =
T̂

0

h

2 dt = hT

2 =⇒ n = 2π
T

= h

ab
= h

a2
√

1 − e2
=
√

µ

a3 (25)

where we have used Eqs. (7) and (21).

3.1.2 Kepler’s equation

So far we have been able to describe the geometry of motion of a body orbiting another one. However,
we have not been concerned about the specific position of the body as a function of time. That is, how
to obtain ν(t) at each instant of time. In order to do this, we may think the area A as a function of ν,
that measures the area swept by the radio vector from an initial instant ν0. Thus, we know that:

A(ν) =
νˆ

ν0

r(θ)ˆ

0

r dr dθ =
νˆ

ν0

r(θ)2

2 dθ =⇒ dA
dν = r2

2 (26)

Using the chain rule and Eq. (22) we obtain that:

h

2 = dA
dt = dA

dν
dν
dt = r2

2 ν̇ (27)

So from Eqs. (14) and (27), we get the following differential equation that must satisfy ν:

ν̇ = h

r2 = h

p2 (1 + e cos ν)2 (28)

This equation, when integrated with respect to the time, lead us to an elliptic integral which can be very
computationally expensive. Our goal in this section is to find an easier way to compute the exact position
of the satellite at each instant of time [MG05]. This will lead us to the so-called Kepler’s equation. For
this purpose we are forced to introduce a new parameter, E, called eccentric anomaly. It is defined as
the angle between the segment from the origin of the ellipse to the periapsis and the line passing through
the center of the ellipse and the point in a circle (of radius a and same center as the ellipse) which is just
above the position of the satellite (see Fig. 6). Clearly, using the reference frame of Fig. 6, the position

νE

r

a ae

a

x

y

Figure 6: Ellipse orbit of the satellite together with an auxiliary circle of radius a needed to define the eccentric anomaly.

of the satellite is determined by x = r cos ν, y = r sin ν. But we would like to find an expression of x and
y in terms of E rather than ν. To do this, note that a cosE = ae+ x, so:

x = a(cosE − e) (29)

9



We can also get an expression of r in terms of E by solving the equation:

r = p

1 + e cos ν = a(1 − e2)
1 + ex

r

= ra(1 − e2)
r + ae(cosE − e) =⇒ r = a(1 − e cosE) (30)

Finally from Eqs. (29) and (30) we get:

y2 = r2 − x2 = a2(1 − e2)(sinE)2 =⇒ y = a
√

1 − e2 sinE (31)

Expressing now the areal velocity h as a function of E we have:

h = xẏ − yẋ (32)

= a2(cosE − e)
√

1 − e2(cosE)Ė + a2(sinE)2
Ė
√

1 − e2 (33)

= a2
√

1 − e2Ė(1 − e cosE) (34)

From Eq. (21) we know that h =
√
µa(1 − e2). Thus, substituting this into Eq. (34) we deduce that E

must satisfy the following differential equation:

Ė(1 − e cosE) =
√

µ

a3 = n (35)

where the last equality follows from Proposition 11. Integrating this equation with respect to the time
yields the Kepler’s equation:

E(t) − e sinE(t) = n(t− t0) (36)

where t0 is the time at which E vanishes. Using the reference frame of Fig. 6 (also known as the perifocal
frame, see Definition 24) this corresponds to the time at which the satellite is at the perigee. The value
M := n(t − t0) is called mean anomaly. Note that, contrarily to E and ν, the mean anomaly increases
linearly with time.

Kepler’s equation is the key to solve the problem of finding the position of the satellite at each instant of
time. Later on we will discuss techniques to effectively solve this equation for E, given e and M .

3.2 Time and reference systems

3.2.1 Julian day

The measurement of time has undergone significant changes throughout the centuries, and its interpre-
tation continues to vary across different cultures. Astronomy, however, has always needed a universal
time measurement system and easy-to-work with. In view of this, the so-called Julian date is used as the
standard day-counting system in astronomy.

Definition 12 (Julian date). The Julian date (JD) is the number of days, of length 24 · 3 600 = 86 400
seconds, elapsed since the beginning of the Julian period, that is, since January 1, 4713 BC, at 12:00
(noon) in the Julian calendar4. A Julian year is defined as 365.25 days and therefore a Julian century as
36 525 days.

As the unit of second is not constant among the time systems that we will use throughout the document
(UT1, TT, UTC, etc.) (see Section 3.2.2), the actual length of a JD will vary depending on the time
system used. We will distinguish them by adding a subscript to the JD, for instance JDUT1, JDTT
or JDUTC. Later on, we will give formulas that relate these time systems, and usually they will be
expressed as the number of Julian centuries elapsed since January 1, 2000, at 12:00 TT (noon) in the
Julian calendar. This number is given by:

JD − 2 451 545
36 525 (37)

Here 2 451 545 corresponds to the Julian date of January 1, 2000, at 12:00 TT (noon).
4According to [Val13], the convention to start the JD at noon each day benefits astronomers (who often work at night)

because they can make all their observations on a single day.
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3.2.2 Time measurement

As human beings we are naturally interested in how time passes and therefore the correct measure of it
becomes an essential necessity for us. As it is the Sun that governs our daily activity, it is natural to
define time from it. But first we need some preliminary definitions:

Definition 13. We define the equatorial plane as the plane in R3 that contains the Earth equator. We
define the ecliptic plane as the orbital plane in R3 of the Earth around the Sun.

Definition 14. We define the celestial sphere as an abstract sphere of infinite radius centered at the
center of mass of the Earth. All the celestial objects are thus projected naturally on the celestial sphere,
identifying them with two spherical coordinates, known as right ascension and declination, which we
define below. The intersection of the equatorial plane with the celestial sphere is called celestial equator.
The intersection of the ecliptic plane with the celestial sphere is called ecliptic (see Fig. 7 for a better
understanding).

A first important thing to note is that, since the celestial sphere is centered at the Earth, the Sun moves
along the ecliptic. Moreover, note that both the celestial equator and the ecliptic are two different great
circles on the celestial sphere. Hence, they intersect at exactly two points.

Definition 15. Consider the two points of intersection between the celestial equator and the ecliptic.
We define the vernal equinox as the point Υ, from these two, where the Sun crosses the celestial equator
from south to north.

The angle measured along the equator of any object on the celestial sphere from the vernal equinox is
called right ascension, whereas the angle measured along the meridian of the object from the position of
the object to the equator is called declination (see Fig. 7).

An apparent solar day is defined to be the time between two successive transits of the Sun across our
local meridian5. One should note that the Earth has to rotate on itself slightly more than one revolution
in order to complete one apparent solar day (see Fig. 8). In addition, due to the non-circular orbit of
the Earth around the Sun, the length of an apparent solar day is not constant, as the Earth has to
rotate on itself slightly more in the perihelion than in the aphelion, where it goes faster. The apparent
sidereal day is defined as the time it takes for the Earth to complete a rotation on itself (see Fig. 8 for
a better understanding). From the point of view of the celestial sphere, the apparent solar time is the
angle (measured along the celestial equator) between the local meridian and the meridian of the Sun at
that epoch, which is not uniform because the angular velocity of the Earth (both in its orbit around the
Sun and in its rotation around its own axis) is not constant [MG05].

Figure 7: Right ascension and declination of a star in the
celestial sphere

Earth orbit

Figure 8: Graphical representation of the difference be-
tween a solar day (yellow) and a sidereal day (orange).
(not to scale)

5We consider the local meridian as the meridian on the celestial sphere that is projected onto the Earth and moves in
synchronization with it.
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Due to Kepler’s second law, the Earth’s non-circular orbit around the Sun results in some days being
shorter than others. As a result, the actual position of the Sun is not ideal for precise time measurement.
The introduction of a mean Sun is, thus, a necessity.

Definition 16. The mean Sun is a fictitious Sun that moves along the celestial equator at a constant
rate [Val13]. This rate is determined in order to make the real Sun and the mean Sun coincide at the
vernal equinox. We define the mean solar time as the hour angle (along the celestial equator) between
the local meridian and the meridian of the mean Sun.

It is worth noting that unlike the real Sun, the mean Sun moves along the celestial equator, rather than
the ecliptic.

Definition 17. We define the prime meridian or zero meridian as the meridian on the celestial sphere
that passes through the Royal Observatory in Greenwich, England (when projected onto the Earth).

Definition 18. The Greenwich Mean Time (GMT) or Universal Time (UT) is the hour angle of the
mean Sun measured from the prime meridian and counted from midnight. That is, when the prime
meridian and mean Sun meridian coincide (noon), the GMT is 12:00.

The use of two distinct names, namely GMT and UT, to refer to the same time can be attributed to
historical reasons. Initially, GMT was defined as the mean solar time at the prime meridian with 00:00
GMT coinciding with the moment when the mean Sun was at that meridian. On the other hand, UT
was introduced as a 12-hour translation of GMT, intended for civilian purposes. Eventually, GMT was
redefined to align with UT.

In the middle of the 20th century, Ephemeris Time (ET) was introduced to cope with the irregularities
of the Earth’s rotation (see Section 3.2.3). This time was defined from historical observations of planets
in a Newtonian physics framework, isolating the time from the equations, and the origin of time was
chosen coherently with GMT, at January 0, 1900, 12:00 GMT (JD 2 415 020.0). This timescale provided
a uniform time, although it was more difficult to measure than the mean solar time. In the meantime,
atomic clocks were invented and at 1967 atomic time (TAI, from French Temps Athomique International)
was adopted as the SI unit of second. The origin was chosen such that TAI matched UT at the 00:00 UT
of January 1, 1958, and at that time ET was displaced from UT by 32.184 seconds. At the end of the
20th century, Terrestrial Time (TT) was introduced within a relativistic framework in order to replace
ET and provide a smooth and more accurate continuation of it yielding the relation [MG05]:

TT = ET = TAI + 32.184 s (38)

For astronomical calculations, it is convenient to consider a timescale defined directly from Earth’s ro-
tation, known as sidereal time. Namely, Greenwich Mean Sidereal Time (GMST) is defined as the angle
between the prime meridian and the mean vernal equinox of date (see Section 3.2.3). Due to unpredictable
irregular changes on the rotation of the Earth, GMST cannot be computed directly with a formula in
terms of TAI or TT.

Universal Time 1 (UT1) is the presently used form of Universal time, and it is defined in terms of Earth’s
rotation with the following deterministic formula given in [Aok+81]. For each day, 00:00 UT1 is defined
as the time instant in which GMST has the value:

GMST(0h UT1) = 24 110.548 41 + 8 640 184.812 866TUT1,0 + 0.093 104TUT1,0
2 − 6.2 · 10−6TUT1,0

3 (39)

where TUT1,0 = JD(0h UT1)−2 451 545
36 525 denotes the number of Julian centuries that have passed since January

2000, 1.5 UT1 at the beginning of the day. The units of the coefficients are seconds. For any instant of
time during the day, the following formula is used:

GMST(UT1) = 24 110.548 41 + 8 640 184.812 866TUT1 + 1.002 737 909 350 · 240UT1+
+ 0.093 104TUT1

2 − 6.2 · 10−6TUT1
3 (40)

where TUT1 = JD(UT1)−2 451 545
36 525 and UT1 are measured in seconds. The coefficient ω := 1.002 737 909 350

is the Earth’s mean angular velocity in degrees per second and the coefficient 240 = 3 600
15 is the number

of seconds in one degree6. Similarly to GMST, there is no simple conversion between UT1 and TT or
6Recall that 15◦ = 1 h, 60′ = 1◦, 60′′ = 1′, where ′′ are arc seconds and ′ are arc minutes.
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TAI. Instead, IERS7 (International Earth Rotation and Reference Systems Service) provides regularly a
bulletin with the difference ∆T := TT − UT1 at several dates. Interpolating these values we can obtain
UT1 from TT at any epoch.

Finally, our everyday clock is based on Coordinated Universal Time (UTC, from French Temps Universel
Coordonné). It is defined to be as uniform as TAI but always kept closer than 0.9 seconds to UT1 in
order to resemble a mean solar time (see Fig. 9). Scientists achieve this by introducing a leap second (see
Fig. 10), which is an extra second added to UTC at irregular intervals. Fig. 9 summarizes some time
systems introduced in the document.
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Figure 9: Evolution of times TT, UT1 and UTC in
comparison with TAI. [Obsa]

1998 December 31, 23h 59m 59s
1998 December 31, 23h 59m 60s
1999 January 1, 00h 00m 00s
1999 January 1, 00h 00m 01s

Figure 10: Leap second introduced to UTC time at
the end of the December 1998. [RS98b]

We summarize here useful conversions between time systems:

GMST(UT1) = 24 110.548 41 + 8 640 184.812 866TUT1 + 1.002 737 909 350 · 240UT1+
+ 0.093 104TUT1

2 − 6.2 · 10−6TUT1
3

UT1 = TT − ∆T
TT = TAI − 32.184

TAI = UTC + δ

where ∆T is the difference between TT and UT1, and δ is a piecewise constant function that counts
the number of leap seconds introduced since 1972, when they were introduced for the first time. All the
numbers have units of second.

3.2.3 Reference systems

It is well-known that Newton’s second law is only valid when applied to an inertial reference frame, that
is, a frame of reference that is not undergoing any acceleration. In practice, however, almost any frame
of reference is non-inertial. In this chapter we will describe a quasi-inertial frame of reference which will
be used to integrate Newton’s second law. On the other hand, since the Earth is not a body with a
homogeneous density of mass, there are zones with higher mass density than others, and therefore with
higher gravitational pull (see Section 4.2.3). Therefore, we will need the longitude and latitude of the
satellite with respect to a fixed Earth at each time of integration.

Based on our study of satellite motion around the Earth, it is natural to place all the origins of the
reference frames considered throughout the document at the center of mass of the Earth.

The first reference frame we must consider is the celestial one. In the celestial frame, the x-axis is defined
as the line of intersection between the equatorial plane and the ecliptic plane. The positive direction is
chosen to point towards the vernal equinox. The z-axis is chosen to be perpendicular to the equatorial
plane and the y-axis is such that the triplet (x, y, z) is a right-handed system.

However, due to the presence of other solar system planets (and other smaller perturbations), the orbital
plane of the Earth is not fixed in space, but is subjected to a small variation called planetary precession.

7More information on https://www.iers.org (accessed on June 8, 2023).
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Moreover, the gravitational attraction of the Sun and Moon on the Earth’s equator cause Earth’s axis of
rotation to precess similarly to the action of a spinning top with a period of about 26 000 years [MG05].
This motion is called lunisolar precession. On the other hand, smaller perturbations in amplitude and
shorter period (around 18.6 years [Wikb]) superposed with the precessional motion creates a motion
called nutation. When this latter oscillations are averaged out, the vernal equinox and the equator are
referred to mean values, rather than true values.

In addition, the Earth’s axis of rotation undergoes a slight periodic motion around a reference axis of
rotation, that passes through the IRP (IERS Reference Pole). This motion is called polar motion and
is caused by the redistribution of the Earth’s mass due to the seasonal variations of the atmosphere and
the oceans. The polar motion is usually described by the CIP (Celestial Intermediate Pole), which is
the intersection of the Earth’s axis of rotation with the celestial sphere. In Fig. 11 we summarize the
different types of perturbations on the Earth’s axis of rotation.

P
N

R

PM

Figure 11: Graphical explanation of the perturbation by precession (blue), nutation (red) and polar motion (violet) of
the Earth’s axis of rotation (green).

In view of this time-dependent orientation of both the ecliptic and the equator, the standard-reference
frame chosen is based on the mean equator, ecliptic and mean equinox of a fixed time, the beginning of
the year 2000, namely at 12:00 TT on January 1, 2000, the so-called J2000 epoch.

Definition 19 (Earth-centered inertial frame). We define the J2000 reference frame as the reference
frame whose x-axis is the intersection of the mean celestial equator and the ecliptic of the J2000 epoch,
pointing at the mean vernal equinox of the same epoch; the z-axis is perpendicular to the mean equator
of that epoch, and the y-axis is chosen such that the triplet (x, y, z) is a right-handed system. This frame
of reference is also called Earth-centered inertial (ECI) frame.

Let’s introduce now an Earth-fixed reference frame.

Definition 20 (Earth-centered, Earth-fixed frame). We define the Earth-centered, Earth-fixed
frame of reference (ECEF) as the frame of reference whose z-axis is pointing towards the IRP; the
x-axis is contained in the plane perpendicular to the z-axis and pointing to the prime meridian, and the
y-axis is chosen such that the triplet (x, y, z) is a right-handed system.

These two coordinate systems have, as mentioned earlier, the origin at the center of mass of the Earth.
Note that the ECEF frame is non-inertial, since it is rotating with the Earth. Similarly, the ECI frame
is also non-inertial due to the annual motion of the Earth around the Sun. Thus, it is subjected to a
certain acceleration, but it can be thought as inertial over short periods of time.
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3.2.4 Conversion between reference systems

As we noted in the previous section the angle ε between the celestial equator and ecliptic planes is not
constant due to the planetary precession.

Our goal in this section is to transform the position of the satellite from the ECI system to the ECEF
system and vice versa. This rotation transformation is given by a product of 4 rotations matrices:

• the precession matrix P,

• the nutation matrix N,

• the Earth rotation matrix Θ, and

• the polar motion matrix Π.

These matrices are such that:

rECEF(t) = Π(t)Θ(t)N(t)P(t)rECI(t) (41)

where rECEF(t) is the position vector of the satellite in the ECEF frame at time t and rECI(t) is the
position vector of the satellite in the ECI frame at time t. From here on, we will omit the evaluation on
the time t for the sake of simplicity. Let’s now argue why the transformation has this particular form.

The precession matrix is responsible for eliminating all the movement due to the planetary and lunisolar
precession. Thus, P transforms the mean equator and mean equinox at time J2000 to the respective
values at time t. With the help of Fig. 12, one can check that this transformation is given by:

P = Rz(−90 − z)Rx(θ)Rz(90 − ζ) (42)

And with a bit of algebra it can be simplified to:

P = Rz(−z)Ry(θ)Rz(−ζ) (43)

Figure 12: Celestial sphere showing the ecliptic and
the equator of both the epoch J2000 and the current
epoch t. Dark colors represent the ecliptic while light
colors represent the equator. On the other hand, red
colors represents the J2000 epoch and blue colors rep-
resents the current epoch t. Based on [MG05].

Figure 13: True and mean equators, and true and
mean equinoxes (Υ and Υ, respectively) at a given epoch
t together with the ecliptic at that time. Based on
[MG05].

Recall that the fundamental rotation matrices Rx(θ), Ry(θ) and Rz(θ) are with respect to the axis of
the J2000 frame, and they are given by:

Rx(φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 Ry(φ) =

cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 Rz(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (44)
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where we have used the convention of signs given by [GPS02]. The reader may wonder why we have used
the notation 90 − z and 90 − ζ instead of z and ζ (for example) for the angles in question. The reason
is related to the precise definition of these angles from the pole of the celestial sphere rather than from
where we have defined them, but we will not elaborate on this point here. Nonetheless, we have chosen
this notation to maintain consistency with related articles [Lie+77].

The nutation perturbations are ruled out by the nutation matrix N. This matrix transforms the coordi-
nates of the mean equator and equinox at epoch t to those of the true equator and equinox at the same
epoch, respectively. Hence, from figure Fig. 13 we can see that the nutation matrix is given by:

N = Rx(−ε− ∆ε)Rz(−∆ψ)Rx(ε) (45)

In Section 3.2.2 we defined the GMST as the hour angle between the mean vernal equinox and the
prime meridian, measured on the true equator. Similarly, we define the Greenwich Apparent Sidereal
Time (GAST) as the hour angle between the true vernal equinox and the prime meridian, measured on
the true equator too. The difference between these two times is given by the so-called equation of the
equinoxes, which up to first order in the nutation angles is given by (see Fig. 13):

GAST − GMST ≃ ∆ψ cos(ε+ ∆ε) (46)

The Earth rotation matrix Θ is responsible for aligning satellites with their actual meridian at the time
of the observation. This matrix is given by:

Θ = Rz(GAST) (47)

Finally the polar motion movement around the IRP axis is modelled with the matrix Π given by:

Π = Ry(−xp)Rx(−yp) (48)

Figure 14: Three reference frames used to transform
from the ECI frame to the ECEF frame. In green, the
ECI frame once applied the precession and nutation
transformations. In orange, the transformation of the
green system once applied the rotation matrix Θ. Fi-
nally, in blue, the transformation of the orange system
once applied the polar motion matrix Π, that is, the
ECEF frame.
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Figure 15: Graphical representation of evolution of
the CIP with respect to IRP (placed at the origin of the
graphic) due to polar motion. The blue dots indicate the
position of the CIP at the beginning of the respective
years. Data from [Obsb].

In Fig. 14 we can see a graphical representation of these two latter transformation matrices. The param-
eters xp and yp are constantly updated in the IERS bulletins [RS98a]. All the other parameters are given
in [Lie+77], and we provide here a summary of them:

ε = 23.439 291 1◦ − 46.815 0′′T − 0.000 59′′T 2 + 0.001 813′′T 3 (49)
ζ = 2 306.218 1′′ + 0.301 88′′T + 0.017 998′′T 2 (50)
θ = 2 004.310 9′′T − 0.426 65′′T 2 − 0.041 833′′T 3 (51)
z = 2 306.218 1′′ + 1.094 68′′T 2 + 0.018 203′′T 2 (52)
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where T = JDT T −2 451 545
36 525 are the Julian centuries that have elapsed since the J2000 epoch. The values

for the nutations parameters ∆ψ and ∆ε can be expanded into [MG05]:

∆ψ =
106∑
i=1

(∆ψ)i sinϕi ∆ε =
106∑
i=1

(∆ε)i cosϕi (53)

where ϕi = pℓ,iℓ+ pℓ′,iℓ
′ + pF,iF + pD,iD+ pΩ,iΩ; pℓ,i, pℓ′,i, pF,i, pD,i, pΩ,i are integer coefficients and the

other variables are the Moon’s mean anomaly (ℓ), the Sun’s mean anomaly (ℓ′), the mean distance of the
Moon from the ascending node (F ), the difference between the mean longitudes of the Sun and the Moon
(D), and the mean longitude of the ascending node of the Moon (Ω). We will not go into detail about
these variables, there are explicit expressions for them in [MG05] as a function of T = JDT T −2 451 545

36 525 :

ℓ = 134◦57′46.733′′ + 477 198◦52′02.633′′T + 31.310′′T 2 + 0.064′′T 3 (54)
ℓ′ = 357◦31′39.804′′ + 35 999◦03′01.224′′T − 0.577′′T 2 − 0.012′′T 3 (55)
F = 93◦16′18.877′′ + 483 202◦01′03.137′′T − 13.257′′T 2 − 0.011′′T 3 (56)
D = 297◦51′01.307′′ + 445 267◦06′41.328′′T − 6.891′′T 2 + 0.019′′T 3 (57)
Ω = 125◦02′40.280′′ − 1 934◦08′10.539′′T + 7.455′′T 2 + 0.008′′T 3 (58)

Some of these integer coefficients together with the values of the amplitudes (∆ψ)i and (∆ε)i are given
in Table 1.

i pℓ,i pℓ′,i pF,i pD,i pΩ,i (∆ψ)i [0.0001′′] (∆ε)i [0.0001′′]
1 0 0 0 0 1 −171 996 − 174.2T 92 025 + 8.9T
2 0 0 0 0 2 2 062 + 0.2T −895 + 0.5T
3 −2 0 2 0 1 46 −24
4 2 0 −2 0 0 11 0
5 −2 0 2 0 2 −3 1
6 1 −1 0 −1 0 −3 0
7 0 −2 2 −2 1 −2 1
8 2 0 −2 0 1 1 0
9 0 0 2 −2 2 −13 187 − 1.6T 5 736 − 3.1T
...

...
...

...
...

...
...

...

Table 1: First nutation coefficients [MG05]

3.3 Keplerian orbital elements
In this section we will introduce the Keplerian orbital elements, which are a set of variables that com-
pletely determine the orbit of a satellite and, therefore, they are very useful in the storage of the orbital
information of a satellite.

3.3.1 Keplerian orbital elements from position and velocity

We first give some preliminary definitions.

Definition 21. Consider a satellite orbiting the Earth. The orbital plane is the plane that contains
the orbit of the satellite. The line of nodes is the line of intersection between the orbital plane and the
equatorial plane. Finally, the ascending node is the point on the line of nodes and the orbit of the
satellite where the satellite crosses the equatorial plane from south to north.

Definition 22 (Orbital elements). The Keplerian orbital elements of a satellite are five independent
quantities that completely determine its orbit. If moreover the exact position of the satellite on the orbit
is wanted, a sixth quantity is needed. The first five orbital elements are:

1. The semi-major axis a of the orbit.

2. The eccentricity e of the orbit.

3. The inclination i, which is the angle between the equatorial plane and the orbital plane.
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4. The longitude of the ascending node Ω, which is the angle between the vernal equinox and the
ascending node.

5. The argument of perigee ω, which is the angle between the ascending node and the periapsis,
measured along the orbit.

The sixth quantity is the true anomaly ν, which is the angle between the periapsis and the position of
the satellite on the orbit.

Longitude of
ascending node Argument of

periapsis

True 
anomaly

Argument of  
latitude

Inclination

Ascending node

Vernal
equinox

Satellite

Orbit

☊

Figure 16: Orbital elements of a satellite. Based on [Las07].

Fig. 16 shows a schematic representation of these elements. The elements a, e and i are always well-
defined. However, the elements Ω, ω and ν are not always well-defined, namely for e = 0 or i = 0. We
discuss this in more detail below. For the moment assume e ̸= 0 and i ̸= 0. In order to express these
elements in terms of the position and velocity of the satellite, we need to introduce the following vectors.

Definition 23. Let ez = (0, 0, 1) be the unit vector perpendicular to the equatorial plane. We define
the vector n := ez × h and the eccentricity vector e as e := B/µ, whose norm is the eccentricity e.

Note that n ⊥ ez and n ⊥ h which imply that n must lie on the orbital plane and equatorial plane, and
therefore, in the line of nodes pointing towards the ascending node, by the right-hand rule. On the other
hand, since B points towards the periapsis, so does e. From here, let’s obtain the orbital elements in
terms of r and ṙ.

First, we calculate h = r × ṙ. Now, note that the vectors n and B can be computed directly from r, ṙ
and h. Thus, we can get e by taking the norm of e. Then, looking at Fig. 16 one can check that the
angles i, Ω, ω and ν are given by:

i = arccos
(

h · ez

h

)
Ω = arccos

(n · ex

n

)
ω = arccos

(n · e
ne

)
ν = arccos

(e · r
er

)
(59)

Here ex = (1, 0, 0) denotes the basis unit vector that points towards the vernal equinox. By convention
the angles i, Ω, ω are always given in the interval [0, 2π), so in these formulas a small correction is needed
when the angles are negative. The angle ν ∈ R does not need any correction, because we will use it as a
counter of the number of revolutions of the satellite. Finally, we can obtain a from Eq. (21):

a = h2

µ(1 − e2) (60)
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Now we study the singular cases. If e = 0 (and therefore e = 0) and i ̸= 0, the orbit is called circular
inclined [Val13]. In this case the elements ω, ν are not well-defined because there is no periapsis, or in
other words, all the points lie at the same distance from the center of the Earth. To correct this we
replace these variables by the argument of latitude u, which measures the angle between the ascending
node and the position of the satellite on the orbit. The argument of latitude can be computed with the
formula:

u = arccos
(n · r
nr

)
(61)

Note that in the case e ̸= 0 and i ̸= 0, u = ω + ν (see Fig. 16). If i = 0 and e ̸= 0, the orbit lies in the
equatorial plane and it is called elliptical equatorial. Note that in this situation we have n = 0 and the
angles Ω and ω are undefined. By convention, we set Ω = 0 and:

ω = arccos
(e · ex

e

)
(62)

If e = 0 and i = 0, the orbit is called circular equatorial and all these three variables (Ω, ω and ν) are
undefined. In this case Ω is set to 0 and the other two variables are replaced with the true longitude λ,
which is the angle between the vernal equinox and the position of the satellite on the orbit:

λ = arccos
(r · ex

r

)
(63)

3.3.2 TLE sets

The positions of satellites are recorded and stored in a particular way, called Two Line Element sets
(TLEs). TLEs consists of a two-line text with different data that facilitate the computation of position
and velocity of the satellite at that specific instant of time. The following table summarizes all the
information on it:
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Table 2: TLE data set from the NUTSAT satellite. The white (empty) cells designate space characters and the green
and yellow ones are used to distinguish consecutive data blocks. The cells labeled with S or E respresent cells reserved for
the negative sign and the exponent of a number respectively, while the red dots in the middle of two cells denote that an
implicit decimal point is assumed.

Let’s clarify the meaning of some data blocks. The satellite number is a unique identifier assigned by
NORAD (North American Aerospace Defense Command) for each earth-orbiting artificial satellite [Kel].
The classification of the satellite (Class) is divided into three categories: unclassified (U), classified (C),
and secret (S). The international designator is comprised of three parts: the launch year (Year), the
launch number of the year (Launch) and the piece of the launch (Piece). In the epoch block (Epoch),
which indicates the time the Two-Line Elements (TLE) was generated, the first two digits represent the
last two digits of the year, while the remaining portion represents the fractional day of the year, starting
from 1. The model category refers to the orbital model used to generate the data, as specified in [Kel;
Wikd]. The element set number (TLE number) is incremented by one when a new TLE is generated for
this satellite. On the second line, the number of revolutions indicates the number of times the satellite
has orbited the Earth since its launch. Finally, the checksum (modulo 10) is used to verify the integrity
of the data8.

3.3.3 Position and velocity in terms of the TLEs’ orbital elements

We are now interested in proceed the other way around, that is, given the orbital elements from the TLE
data, we want to compute the position and velocity of the satellite. In order to do that, we need to
introduce the basis (P,Q,W) linked to the orbit.

8Taking into account that the negative sign is counted as 1, and all the other cells without a number as 0.
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Definition 24 (Perifocal coordinate system). Consider the orbit of a satellite. We define its associ-
ated perifocal coordinate system (P,Q,W) as follows. The origin is on the Earth’s center of mass. The
unit vectors P and Q lie on the orbital plane and are such that P points towards the periapsis, that is
P := B/B. The unit vector W is defined as W := h/h, that is perpendicular to the orbital plane, and
Q := W × P.

Recall that in Section 3.1.2 we have seen that the position of the satellite in the perifocal frame is given
by:

rPeri = a(cosE − e)P + a
√

1 − e2 sinEQ (64)

Differentiating yields:
ṙPeri = −a(sinE)ĖP + a

√
1 − e2(cosE)ĖQ (65)

where Ė = n
1−e cos E is given by Eq. (35). These two quantities depend on the two unknown variables a

and E, because n and e are given in the TLE data set. The semi-major axis can be easily obtained from
n due to the Kepler’s third law (Proposition 11). For the eccentric anomaly, we need to solve the Kepler
equation:

E − e sinE = M (66)

Lemma 25. Let e ∈ [0, 1) and M ∈ R. Then, the function

f(E) = E − e sinE −M (67)

has a unique solution in the interval [M,M + e].

Proof. We first prove the uniqueness. Clearly f ∈ C1(R) and f ′(E) = 1 − e cosE > 0 for all E ∈ [0, 2π)
because e < 1. Thus, f is strictly increasing and so it has at most one zero. Now, let M := M
mod 2π ∈ [0, 2π). If 0 ≤ M < π, then:

f(M) = −e sinM ≤ 0 and f(M + e) = e(1 − sin(M + e)) ≥ 0 (68)

So by Bolzano’s theorem, f has a solution in [M,M + e]. If π ≤ M < 2π, then:

f(M) = −e sinM ≥ 0 and f(M − e) = −e(1 + sin(M − e)) ≤ 0 (69)

So again by Bolzano’s theorem, f has a solution in [M − e,M ].

We will use the Newton’s method to find the zero of this non-linear equation. For small eccentricities
e, the natural choice for the initial guess is E0 = M . For large eccentricities (e > 0.8) the initial guess
E0 = π should be used in order to avoid convergency problems [MG05]. Alternatively, we can do one
or two steps of the bisection method to get a better initial guess, and then apply the Newton’s method.
Once obtained E, the position and velocity of the satellite in the J2000 frame are given by:

rECI = TrPeri ṙECI = TṙPeri (70)

where T is the rotation matrix that transforms one frame into the other and is given by (look at Fig. 16):

T = Rz(−Ω)Rx(−i)Rz(−ω) (71)
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4 Earth’s gravitational field and other perturbations
So far we have only considered the gravitational force acting between point masses. In reality, the Earth
is not a point mass, neither a spherically symmetric mass distribution. In this section we will delve into
the details of a more realistic model of the Earth’s gravitational field.

4.1 Geopotential model

4.1.1 Continuous distribution of mass

In Section 3.1 we saw that the motion of a body orbiting another one can be described by a conic section.
However, we have not been concerned about the mass distribution of the large body, in our case the
Earth. In this section we will see that the motion of the smaller body, the satellite, is slightly perturbed
by the mass distribution of the Earth as well as the presence of other forces such as atmospheric drag,
solar radiation pressure, or the gravitational pull of the Moon and Sun, which we will discuss later on.
Nevertheless, the perturbations are relatively small and the orbits of the satellites are still approximating
ellipses, but as we will corroborate experimentally in Section 5 these perturbations are essential to obtain
accurate results.

Consider a body confined in a compact region Ω ⊆ R with a continuous density of mass ρ : Ω → R. We
would like to know the gravitational pull on a point mass m located at position r ∈ Ωc from the center
of mass of the body. To do this, consider a covering of Ω in a set of disjoint cubes Qi, i = 1, . . . , N , small
enough to be considered as point masses and let Ri := Qi ∩ Ω. Then,

⊔N
i=1 Ri = Ω. If each Ri has mass

mi, volume Vi, density ρi, and its center is located at si ∈ R3, then the total gravitational acceleration
g exerted on m is the sum of the contributions of all the forces exerted by the N point masses, and it is
given by:

g = −
N∑

i=0

Gmi

∥r − si∥3 (r − si) = −
N∑

i=0

Gρi

∥r − si∥3 (r − si)Vi (72)

Note that Eq. (72) is a Riemann sum and so letting N → ∞ we get:

g = −
ˆ

Ω

Gρ(s)
∥r − s∥3 (r − s)d3s (73)

where d3s := dx′ dy′ dz′, if s = (x′, y′, z′).

Theorem 26. Let Ω be a compact region in R3 with a continuous density of mass ρ : Ω → R. Then, the
gravitational acceleration field g is conservative. That is, there exists a function V : R3 → R such that
g = ∇V . We call V the gravitational potential.

Proof. An easy computation shows that fixed s ∈ R3 we have:

∇
(

1
∥r − s∥

)
= − 1

∥r − s∥3 (r − s) (74)

So we need to justify whether the following exchange between the gradient and the integral is correct:

g = −
ˆ

Ω

Gρ(s)
∥r − s∥3 (r − s)d3s =

ˆ

Ω

Gρ(s)∇
(

1
∥r − s∥

)
d3s = ∇

ˆ

Ω

Gρ(s)
∥r − s∥

d3s (75)

Without loss of generality it suffices to justify that

∂

∂x

ˆ

Ω

ρ(s)
∥r − s∥

d3s =
ˆ

Ω

∂

∂x

(
ρ(s)

∥r − s∥

)
d3s (76)

assuming r = (x, y, z) and s = (x′, y′, z′). In order to apply the theorem of derivation under the integral

sign we need to control ∂

∂x

(
ρ(s)

∥r − s∥

)
= −ρ(s) x− x′

∥r − s∥3 by an integrable function h(s). Using spherical
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coordinates centered at r and writing (r − s)sph = (ρr, θ, ϕ), the integrand to bound becomes (in spherical
coordinates): ∣∣∣∣∣−ρ(s) x− x′

∥r − s∥3 ρr
2 sinϕ

∣∣∣∣∣ = |ρ(s)|
∣∣∣∣ρr cos θ sinϕ

ρr3 ρr
2 sinϕ

∣∣∣∣ ≤ |ρ(s)| ≤ K (77)

where the last inequality follows for certain K ∈ R by Weierstrass theorem (ρ is continuous and Ω
is compact). Thus, since h(s) = K is integrable, because Ω is bounded, the equality of Eq. (76) is
correct.

Physically speaking, the gravitational force F being conservative means that the work W done by the
force along a path C

W =
ˆ

C

F · ds (78)

depends only on the initial and final positions of it.

4.1.2 Laplace’s equation for V

Theorem 27. Consider a distribution of matter of density ρ in a compact region Ω. Then, the gravita-
tional potential V satisfies the Laplace equation

∆V = 0 (79)

for all points outside Ω9.

Proof. Recall that ∆V = div(∇V ). So since g = ∇V it suffices to prove that div(g) = 0. Note that
if r ∈ Ωc, then ∃δ > 0 such that ∥r − s∥ ≥ δ > 0 ∀s ∈ Ω because Ω is closed. As a result, r − s

∥r − s∥3 is

differentiable and:

div
(

r − s
∥r − s∥3

)
= ∂

∂x

(
x− x′

∥r − s∥3

)
+ ∂

∂y

(
y − y′

∥r − s∥3

)
+ ∂

∂z

(
z − z′

∥r − s∥3

)
=

= ∥r − s∥2 − 3(x− x′)2

∥r − s∥5 + ∥r − s∥2 − 3(y − y′)2

∥r − s∥5 + ∥r − s∥2 − 3(z − z′)2

∥r − s∥5 = 0

Hence, as in Theorem 26, we have that:∣∣∣∣∣ρ(s)∥r − s∥2 − 3(x− x′)2

∥r − s∥5

∣∣∣∣∣ ≤ 4|ρ(s)|
∥r − s∥3 ≤ 4|ρ(s)|

δ3 (80)

which is integrable by Weierstrass theorem. Thus, by the theorem of derivation under the integral sign:

div(g) = − div
ˆ

Ω

Gρ(s)
∥r − s∥3 (r − s)d3s = −

ˆ

Ω

Gρ(s) div
(

r − s
∥r − s∥3

)
d3s = 0 (81)

So far we have seen that the gravitational potential V satisfies the Laplace equation. If, moreover, we
choose the origin of potential to be at the infinity, that is, if we impose lim

∥r∥→∞
V = 0, then the gravitational

potential created by a distribution of mass in a compact region Ω is a solution of the following exterior
Dirichlet problem: 

∆V = 0 in Ωc

V = f on ∂ Ω
lim

∥r∥→∞
V = 0

(82)

9It can be seen that V satisfies in fact the Poisson equation ∆V = 4πGρ for any point r ∈ R3, which reduces to Laplace
equation when r ∈ Ωc, because there we have ρ(r) = 0.
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If Ω represents the Earth, then f = f(θ, ϕ) is the boundary condition concerning the gravitational
potential at the surface of the Earth as a function of the longitude θ and colatitude ϕ.

We will see now that Eq. (82) has a unique solution. To do that we invoke the maximum principle, which
we will not prove here (see [Eva10] for more details).

Theorem 28 (Maximum principle). Let U ⊂ Rn be open and bounded and u ∈ C2(U) ∩ C(U).
Suppose that u is harmonic within U , that is, ∆u = 0 in U . Then, maxU u = max∂U u.

Theorem 29. The Dirichlet problem of Eq. (82) has a unique solution.

Proof. Suppose we have two solutions V1, V2 of Eq. (82). Then, W := V1 − V2 is harmonic in Ωc, W = 0
on ∂ Ω and lim

∥r∥→∞
W = 0. So ∀ε > 0, ∃n ∈ N large enough such that Ω ⊆ B(0, n) and |W | ≤ ε on

R3 \B(0, n). Thus, by the maximum principle, |W | ≤ ε on B(0, n)∩Ωc. Since the ε is arbitrary, we must
have W = 0 on Ωc, that is, V1 = V2.

Now that we know that the Dirichlet problem has a unique solution, we can proceed to find it. In the
next section we will construct an explicit solution for the gravitational potential created by the Earth.

4.2 Spherical harmonics
4.2.1 Legendre polynomials, regularity and orthonormality

In this section we aim to introduce a class of functions that will appear later on in the general solution
of the Laplace equation (see Section 4.2.2). To accomplish this, we need first to introduce the Legendre
polynomials. There are several ways to define them, but the most convenient one for our purposes is
from the following differential equation. Consider the following second-order differential equation called
Legendre differential equation:

(1 − x2)y′′ − 2xy′ + λy = 0 (83)

for λ ∈ R. This equation can be rewritten as:

((1 − x2)y′)′ + λy = 0 (84)

Seeking for analytic solutions of this equation using the power series method [Mez], i.e. looking for
solutions of the form y(x) =

∑∞
j=0 ajx

j , we see that:

0 = (1 − x2)
∞∑

j=2
aj(j − 1)jxj−2 − 2x

∞∑
j=1

ajjx
j−1 + λ

∞∑
j=0

ajx
j =

∞∑
j=0

aj+2(j + 1)(j + 2)xj−

−
∞∑

j=0
aj(j − 1)jxj −

∞∑
j=0

2ajjx
j +

∞∑
j=0

λajx
j =

∞∑
j=0

[aj+2(j + 1)(j + 2) − aj(j(j + 1) − λ)]xj (85)

Equating the general term of the series to 0 we obtain this recursion:

aj+2 = j(j + 1) − λ

(j + 1)(j + 2)aj , j = 0, 1, 2, . . . (86)

From here we can obtain two independent solutions by setting the initial conditions a0 and a1 of the
iteration. For example, setting a1 = 0 we obtain a series that has only even powers of x. On the other
hand, setting a0 = 0 we obtain a series that has only odd powers of x. These two series converge on the
interval (−1, 1) by the ratio test (by looking at Eq. (86)) and can be expressed compactly as [Mez]:

ye(x) = a0

∞∑
j=0

[
j−1∏
k=0

(2k(2k + 1) − λ)
]
x2j

(2j)! yo(x) = a1

∞∑
j=0

[
j−1∏
k=0

((2k + 1)(2k + 2) − λ)
]

x2j+1

(2j + 1)! (87)

Here, the empty product (that is, when k ranges from 0 to −1) is defined to be 1. However, for each
λ ∈ R either one of these series or both diverge at x = ±1, as they behave as the harmonic series in a
neighborhood of x = ±1. We are interested, though, in the solutions that remain bounded on the whole
interval [−1, 1]. Looking at the expressions of Eq. (87) one can check that the only possibility to make
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the series converge in [−1, 1] is when λ = n(n + 1), n ∈ N ∪ {0}. In this case, for each n ∈ N ∪ {0}
exactly one of the series is in fact a polynomial of degree n. If, furthermore, we choose a0 or a1 be such
that the polynomial evaluates to 1 at x = 1, these polynomials are called Legendre polynomials, and they
are denoted by Pn(x). The other (divergent) series is usually denoted in the literature by Qn(x) (check
[RHB99; Mez]) and it is independent of Pn(x). Thus, the general solution of Eq. (84) for λ = n(n + 1)
can be expressed as a linear combination of Pn and Qn, because the space of solutions form a vector
space of dimension 2.

n Pn(x)
0 1
1 x
2 1

2 (3x2 − 1)
3 1

2 (5x3 − 3x)
4 1

8 (35x4 − 30x2 + 3)
5 1

8 (63x5 − 70x3 + 15x)
6 1

16 (231x6 − 315x4 + 105x2 − 5)
7 1

16 (429x7 − 693x5 + 315x3 − 35x)

Table 3: First eight Legendre polynomials
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Figure 17: Graphic representation of the first eight Leg-
endre polynomials.

The following proposition will be of our interest in the next section [RHB99].

Proposition 30. Let y(x) be a solution to the Legendre differential equation. Then, ∀m ∈ N ∪ {0} the
function

wm(x) = (1 − x2)m/2 dmy(x)
dxm

(88)

solves the general Legendre differential equation:

(1 − x2)y′′ − 2xy′ +
(
λ− m2

1 − x2

)
y = 0 (89)

In particular if λ = n(n+ 1) for n ∈ N ∪ {0}, then wm(x) is denoted as

Pn,m(x) := (1 − x2)m/2 dmPn

dxm
(90)

and it is called the associated Legendre polynomial of degree n and order m.

Note that although we opted to call the functions Pn,m as polynomials, they are only true polynomials
when m is even. But we have opted to call them in that manner as it is the common practice in the
literature (see [Wei; RHB99; Mez]).

Moreover, from the definition of Pn,m, we can see that Pn,0 = Pn and that Pn,m = 0 if m > n. So we can
restrict the domain of m to the set {0, 1, . . . , n}.

n Pn,1(x) n Pn,2(x)
1

√
1 − x2 2 3(1 − x2)

2 3x
√

1 − x2 3 15x(1 − x2)
3 3

2 (5x2 − 1)
√

1 − x2 4 15
2 (7x2 − 1)(1 − x2)

4 5
2x(7x2 − 3)

√
1 − x2 5 105

2 x(3x2 − 1)(1 − x2)
5 15

8 (21x4 − 14x2 + 1)
√

1 − x2 6 105
8 (33x4 − 18x2 + 1)(1 − x2)

Table 4: First associated Legendre polynomials for m = 1 and m = 2.

Definition 31. Let n ∈ N∪ {0} and m ∈ {0, 1, . . . , n}. We define the real spherical harmonics Y c
n,m and
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Figure 18: Graphic representation of the first associated Legendre polynomials for m = 1 and m = 2.

Y s
n,m as:

Y c
n,m(θ, ϕ) =

√
(2 − δ0,m)(2n+ 1)(n−m)!

(n+m)!Pn,m(cosϕ) cosmθ (91)

Y s
n,m(θ, ϕ) =

√
(2 − δ0,m)(2n+ 1)(n−m)!

(n+m)!Pn,m(cosϕ) sinmθ (92)

Here the coordinates θ ∈ [0, 2π) and ϕ ∈ [0, π] are the spherical coordinates such that any point on
the sphere can be written uniquely as (x, y, z) = (sinϕ cos θ, sinϕ sin θ, cosϕ). The factor Nn,m :=√

(2 − δ0,m)(2n+ 1) (n−m)!
(n+m)! is called the normalization factor of the spherical harmonics and δ0,m is the

Kronecker delta. Its appearance here will become clear in the next section.

n m Y c
n,m(θ, ϕ) n m Y c

n,m(θ, ϕ)
0 0 1 2 2

√
15
2 (sinϕ)2 cos 2θ

1 0
√

3 cosϕ 3 0
√

7
2 cosϕ(5(cosϕ)2 − 3)

1 1
√

3 sinϕ cos θ 3 1
√

42
4 (5(cosϕ)2 − 1) sinϕ cos θ

2 0
√

5
2 (3(cosϕ)2 − 1) 3 2

√
105
2 (sinϕ)2 cosϕ cos 2θ

2 1
√

15 sinϕ cosϕ cos θ 3 3
√

70
4 (sinϕ)3 cos 3θ

Table 5: First cosine spherical harmonics.
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Figure 19: 3D color gradient representation of the spherical harmonics of degree n = 5. The first row correspond to the
cosine spherical harmonics and the second row correspond to the sine spherical harmonics.
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The associated Legendre polynomials satisfy an orthogonality relation:

Lemma 32. Let n1, n2 ∈ N ∪ {0} and m ≤ min{n1, n2}. Then:

1ˆ

0

Pn1,m(x)Pn2,m(x) dx = 2
2n1 + 1

(n1 +m)!
(n1 −m)!δn1,n2 (93)

where δn1,n2 denotes the Kronecker delta.

Similarly, it can be shown that the spherical harmonics from an orthonormal family of functions:

Proposition 33. The family of spherical harmonics {Y c
n,m(θ, ϕ), Y s

n,m(θ, ϕ) : n ∈ N ∪ {0},m ≤ n} is
orthonormal in the following sense:

1
4π

2πˆ

0

π̂

0

Y i
n1,m1

(θ, ϕ)Y j
n2,m2

(θ, ϕ)dΩ = δn1,n2δm1,m2δi,j (94)

where dΩ = sinϕ dϕdθ is the solid angle element, which measures the element of area on a sphere of
radius 1.

Proof. Let Nn1,m1 , Nn2,m2 be the normalization factors of the spherical harmonics Yn1,m1 , Yn2,m2 , re-
spectively. Note that we can separate the variables in the integral of Eq. (94). So if i ̸= j, the integral
over θ becomes

´ 2π

0 cos(m1θ) sin(m2θ) dθ which is equal to 0 regardless of the values of m1 and m2. So
from now on assume that i = j. Due to the symmetry between the cosine and the sine we can suppose
that i = c. Thus:

2πˆ

0

π̂

0

Y i
n1,m1

(θ, ϕ)Y j
n2,m2

(θ, ϕ)dΩ =

= Nn1,m1Nn2,m2

π̂

0

Pn1,m1(cosϕ)Pn2,m2(cosϕ) sinϕdϕ
2πˆ

0

cos(m1θ) cos(m2θ) dθ (95)

An easy check shows that if m1 ̸= m2 then the integral over θ is zero (and the same applies with sines).
So suppose m1 = m2 = m. In that case, if m ̸= 0 we have

´ 2π

0 (cosmθ)2 dθ =
´ 2π

0 (sinmθ)2 dθ = π and
if m = 0, the cosine integral evaluates to 2π whereas the sine integral is 0. We can omit this latter case
because Y s

n,0 is identically zero. Thus:

2π
2 − δ0,m

Nn1,mNn2,m

π̂

0

Pn1,m(cosϕ)Pn2,m(cosϕ) sinϕdϕ = 2π
2 − δ0,m

Nn1,mNn2,m

1ˆ

−1

Pn1,m(x)Pn2,m(x) dx

(96)
By Lemma 32 this latter integral is 2

2n1+1
(n1+m)!
(n1−m)!δn1,n2 . Finally, if n1 = n2 = n, putting all normalization

factors together we get:
2π

2 − δ0,m
Nm

n Nm
n

2
2n+ 1

(n+m)!
(n−m)! = 4π (97)

Moreover, an important result in the Sturm-Liouville Theory of second order differential equations ([Wike;
Wan+09]) says that the family of spherical harmonics {Y c

n,m(θ, ϕ), Y s
n,m(θ, ϕ) : n ∈ N∪ {0},m ≤ n} form

a complete set in the sense that any smooth function defined on the sphere f : S2 → R can be expanded
in a series of spherical harmonics:

f(θ, ϕ) =
∞∑

n=0

n∑
m=0

(cn,mY
c

n,m(θ, ϕ) + sn,mY
s

n,m(θ, ϕ)) (98)

This will be useful in Section 4.2.3 when expanding the gravitational potential created by the Earth at
some arbitrary point in spherical harmonics.
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4.2.2 Laplace’s equation in spherical coordinates

We start first with this proposition that give us the Laplacian of a function in spherical coordinates.

Proposition 34. Let f : R3 → R be a twice-differentiable function. Then:

∆f = 1
r2

∂

∂r

(
r2 ∂f

∂r

)
+ 1
r2 sinϕ

∂

∂ϕ

(
sinϕ∂f

∂ϕ

)
+ 1
r2(sinϕ)2

∂2f

∂θ2 (99)

where r ∈ [0,∞) denotes the radial distance, θ ∈ [−π, π) denotes the longitude, and ϕ ∈ [0, π], the
colatitude:

x = r sinϕ cos θ
y = r sinϕ sin θ
z = r cosϕ

(100)

We are now interested in solving the Laplace equation. Theorem 35 gives the solution of it as a function
of the spherical harmonics.

Theorem 35. The regular solutions in a bounded region Ω ⊆ R3 of the Laplace equation in spherical
coordinates are of the form

f(r, θ, ϕ) =
∞∑

n=0

n∑
m=0

(anr
n + bnr

−n−1)Pn,m(cosϕ)(cn,m cos(mθ) + sn,m sin(mθ)) (101)

=
∞∑

n=0

n∑
m=0

(anr
n + bnr

−n−1)(c̃n,mY
c

n,m(θ, ϕ) + s̃n,mY
s

n,m(θ, ϕ)) (102)

where an, bn, cn,m, sn,m, c̃n,m, s̃n,m ∈ R.

Proof. Let f(r, θ, ϕ) be a solution of the Laplace equation:

∆f = 1
r2

∂

∂r

(
r2 ∂f

∂r

)
+ 1
r2 sinϕ

∂

∂ϕ

(
sinϕ∂f

∂ϕ

)
+ 1
r2(sinϕ)2

∂2f

∂θ2 (103)

Using separation variables f(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) we can write:

ΘΦ
r2 (r2R′)′ + RΘ

r2 sinϕ (sinϕΦ′)′ + RΦ
r2(sinϕ)2 Θ′′ = 0 (104)

Here, we are making and abuse of notation denoting all the derivatives with a prime, but the reader
should have no confusion with it. Isolating R from Θ and Φ yields:

(r2R′)′

R
= − 1

sinϕΦ(sinϕΦ′)′ − 1
(sinϕ)2Θ

Θ′′ (105)

Since the left-hand side depends entirely on r and the right-hand side does not, it follows that both sides
must be constant. Therefore:

(r2R′)′

R
= λ (106)

1
sinϕΦ(sinϕΦ′)′ + 1

(sinϕ)2Θ
Θ′′ = −λ (107)

with λ ∈ R. Similarly, separating variables from Eq. (107) we obtain that the equations

1
ΘΘ′′ = −m2 (108)

sinϕ
Φ (sinϕΦ′)′ + λ(sinϕ)2 = m2 (109)

must be constant with m ∈ C (a priori). The solution to the well-known Eq. (108) is a linear combination
of cos(mθ) and sin(mθ). Note, though, that since Θ must be a 2π-periodic function, that is satisfying
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Θ(θ + 2π) = Θ(θ) ∀θ ∈ R, m must be an integer. On the other hand making the change of variables
x = cosϕ and y = Φ(ϕ) in Eq. (109) and using the chain rule, that equation becomes:

(1 − x2) d2y

dx2 − 2xd2y

dx2 +
(
λ− m2

1 − x2

)
y = 0 (110)

which is the associate Legendre equation. We have argued in Proposition 30 that we need λ = n(n+ 1)
and 0 ≤ m ≤ n in order to obtain regular solutions at x = cosϕ = ±1. Moreover, these solutions are
Pn,m(cosϕ).

Finally, note that equation Eq. (106) is a Cauchy-Euler equation (check [Wika]) and so the general
solution of it is given by

R(r) = c1r
n + c2r

−n−1 (111)

because λ = n(n + 1) (the reader may check that rn and r−n−1 are indeed two independent solutions
of Eq. (106)). So the general solution becomes a linear combination of each solution found varying
n ∈ N ∪ {0} and m ∈ {0, 1, . . . , n}:

f(r, θ, ϕ) =
∞∑

n=0

n∑
m=0

(anr
n + bnr

−n−1)Pn,m(cosϕ)(cn,m cos(mθ) + sn,m sin(mθ)) (112)

We ignore the singularity at r = 0 of Eq. (102) from now. In the next section we will discuss it in more
detail.

4.2.3 Expansion in spherical harmonics

We have just seen that if V satisfies the exterior Dirichlet problem for the Laplace equation, then, by
uniqueness of solutions, it can be expressed as:

V (r, θ, ϕ) =
∞∑

n=0

n∑
m=0

(anr
n + bnr

−n−1)(c̃n,mY
c

n,m(θ, ϕ) + s̃n,mY
s

n,m(θ, ϕ)) (113)

for some an, bn, c̃n,m, s̃n,m ∈ R. If we impose V to satisfy the third condition of Eq. (82), we must have
an = 0. Finally, if we choose R⊕ as a reference radius for a spherical model of the Earth, using the
boundary condition on ∂ Ω

f(θ, ϕ) =
∞∑

n=0

n∑
m=0

bn

R⊕
n+1 (c̃n,mY

c
n,m(θ, ϕ) + s̃n,mY

s
n,m(θ, ϕ)) (114)

and the orthogonality of the spherical harmonics, we can deduce that the coefficients bnc̃n,m and bns̃n,m

are given by:

bnc̃n,m = R⊕
n+1

4π

2πˆ

0

π̂

0

f(θ, ϕ)Y c
n,m(θ, ϕ) sinϕdϕ dθ (115)

bns̃n,m = R⊕
n+1

4π

2πˆ

0

π̂

0

f(θ, ϕ)Y s
n,m(θ, ϕ) sinϕdϕ dθ (116)

Hence, introducing the gravitational constant G and the Earth’s mass M⊕ into the equation, our final
expression for the gravitational potential is

V (r, θ, ϕ) = GM⊕
R⊕

∞∑
n=0

n∑
m=0

(
R⊕
r

)n+1
(C̄n,mY

c
n,m(θ, ϕ) + S̄n,mY

s
n,m(θ, ϕ)) (117)
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where the coefficients C̄n,m, S̄n,m ∈ R are given by the formulas:

C̄n,m = 1
4π

R⊕
GM⊕

2πˆ

0

π̂

0

f(θ, ϕ)Y c
n,m(θ, ϕ) sinϕdϕ dθ (118)

S̄n,m = 1
4π

R⊕
GM⊕

2πˆ

0

π̂

0

f(θ, ϕ)Y s
n,m(θ, ϕ) sinϕdϕ dθ (119)

The coefficients C̄n,m, S̄n,m are called geopotential coefficients, and they describe the dependence on
the Earth’s internal structure. They are obtained from observation of the perturbations seen in the
orbits of other satellites [MG05], because it is not possible to measure the Earth’s density directly. Other
methods for obtaining such data are through surface gravimetry, which provides precise local and regional
information about the gravity field, or through altimeter data, which can be used to provide a model for
the geoid of the Earth (which is the shape that the ocean surface takes under the influence of the gravity
of Earth) which in turn can be used to obtain the geopotential coefficients.

4.3 Numerical computation

4.3.1 Gravitational acceleration

Up to this point, we have only studied the gravitational potential exerted by the non-homogeneous Earth
on a satellite. But, in order to integrate the equations of motion of the satellite, we need to compute
the gravitational acceleration g = ∇V instead. In order to do this efficiently, we will make use of the
following formulas given in [MG05; Cun70]. First, let

Vn,m(θ, ϕ) =
(
R⊕
r

)n+1
Pn,m(cosϕ) cos(mθ) Wn,m(θ, ϕ) =

(
R⊕
r

)n+1
Pn,m(cosϕ) sin(mθ) (120)

Thus, we can write:

V = GM⊕
R⊕

∞∑
n=0

n∑
m=0

(C̄n,mNn,mVn,m + S̄n,mNn,mWn,m) (121)

Let Cn,m := C̄n,mNn,m and Sn,m := S̄n,mNn,m. If g = (ẍ, ÿ, z̈), then:

ẍ =
∞∑

n=0

n∑
m=0

ẍn,m ÿ =
∞∑

n=0

n∑
m=0

ÿn,m z̈ =
∞∑

n=0

n∑
m=0

z̈n,m (122)

where the partial accelerations ẍn,m, ÿn,m, z̈n,m are given by:

ẍn,m =



−GM⊕
R⊕

2 Cn,0Vn+1,1 if m = 0

−GM⊕
R⊕

2 · 1
2

[
Cn,mVn+1,m+1 + Sn,mWn+1,m+1−

− (n−m+ 2)!
(n−m)! (Cn,mVn+1,m−1 + Sn,mWn+1,m−1)

] if m > 0
(123)

ÿn,m =



−GM⊕
R⊕

2 Cn,0Wn+1,1 if m = 0

−GM⊕
R⊕

2 · 1
2

[
Cn,mWn+1,m+1 − Sn,mVn+1,m+1−

− (n−m+ 2)!
(n−m)! (Cn,mWn+1,m−1 − Sn,mVn+1,m−1)

] if m > 0
(124)

z̈n,m = −GM⊕
R⊕

2 (n−m+ 1) (Cn,mVn+1,m + Sn,mWn+1,m) (125)
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and the functions Vn,m, Wn,m are calculated using the following recurrence relations:

Vn,m = 2n− 1
n−m

R⊕
r

cosϕVn−1,m − n+m− 1
n−m

R⊕
2

r2 Vn−2,m

Wn,m = 2n− 1
n−m

R⊕
r

cosϕWn−1,m − n+m− 1
n−m

R⊕
2

r2 Wn−2,m

if 0 ≤ m ≤ n− 2

Vn,n−1 = (2n− 1)R⊕
r

cosϕVn−1,n−1

Wn,n−1 = (2n− 1)R⊕
r

cosϕWn−1,n−1

if m = n− 1

Vn,n = (2m− 1)R⊕
r

sinϕ[cos θVn−1,n−1 − sin θWn−1,n−1]

Wn,n = (2m− 1)R⊕
r

sinϕ[cos θWn−1,n−1 + sin θVn−1,n−1]
if m = n

(126)

starting from the initial quantities V00 = R⊕
r and W00 = 0 and using the scheme of Fig. 20 [MG05].

V0,0, W0,0

V1,0, W1,0

V2,0, W2,0

...

Vnmax,0, Wnmax,0

V1,1, W1,1

V2,1, W2,1

...

Vnmax,1, Wnmax,1

V2,2, W2,2

...

Vnmax,2, Wnmax,2

· · ·

· · · Vnmax,nmax
, Wnmax,nmax

Figure 20: Scheme for the calculation of the coefficients Vn,m and Wn,m for 0 ≤ m ≤ n ≤ nmax. The red arrows indicate
that the coefficients are calculated using the first of the above recursions; the green arrows indicate that they are calculated
using the second recursion; and the blue arrows indicate that they are calculated using the third recursion.

4.4 Other perturbations
So far we have only considered one force acting on the satellite: the gravitational force exerted by the
Earth. However, there are other important forces worth-considering, and they relative importance varies
depending on the satellite’s altitude.

4.4.1 Atmospheric drag

For LEO (Low Earth Orbit) satellites, that is, satellites with an altitude of less than 1 000 km, the most
important perturbation is the atmospheric drag. Indeed, as these satellites travel in the upper layers
of the atmosphere, they are subject to a drag force caused by the interaction with air particles. The
acceleration due to drag can be written as:

aD = −1
2CD

A

m
ρvrelvrel (127)

where A is the cross-sectional area of the satellite, m is its mass, ρ is the atmospheric density, vrel is the
relative velocity between the satellite and the air particles, vrel = ∥vrel∥, and CD is the drag coefficient,
which depends on the shape of the satellite and the properties of the air particles. In order to determine
vrel, we will suppose that the atmospheric particles rotate with the Earth, and thus the relative velocity
is given by:

vrel = ṙ − ω⊕ × r (128)
where ω⊕ is the angular velocity of the Earth.

The complexity of modeling this force arises from the challenge of representing accurately the atmospheric
density as a function of the altitude. We will not delve into this topic, but in the simulation we will use

30



the density model of Harris-Priester, which is valid for altitudes between 100 and 1 000 km (see [MG05]
for more details).

4.4.2 Sun and Moon gravitational perturbations

For MEO (Medium Earth Orbit) satellites, within an altitude between 1 000 and 35 780 km [Val13]; GEO
(Geostationary Earth Orbit or Geosynchronous Earth Orbit) satellites, with an altitude of around 35 780
km; and HEO (High Earth Orbit) satellites, with an altitude of more than 35 780 km, the most important
perturbations are the gravitational perturbations caused by the Moon and the Sun, or even other celestial
bodies.

Adding a third body into the equations requires some carefulness. We will do the general deduction
to make it clear for the reader. Suppose we have N + 2 bodies of masses M , M1, . . . ,MN and m ≪
M,M1, . . . ,MN at positions s, s1, . . . , sN and r, respectively, in an inertial reference frame (we omit the
dependence in time). The dynamics of this system are governed by the following system of differential
equations:

s̈ =
N∑

i=1

GMi

∥si − s∥3 (si − s) + Gm

∥r − s∥3 (r − s)

s̈i = GM

∥s − si∥3 (s − si) +
N∑

j=1
j ̸=i

GMj

∥sj − si∥3 (sj − si) + Gm

∥r − si∥3 (r − si) for i = 1, . . . , N

r̈ = GM

∥s − r∥3 (s − r) +
N∑

i=1

GMi

∥si − r∥3 (si − r)

(129)

Here G is the gravitational constant. Since m ≪ M,M1, . . . ,MN , we can assume that the motion of the
large bodies is not affected by the small body, i.e. we can make m tend to zero and assume:

s̈ =
N∑

i=1

GMi

∥si − s∥3 (si − s)

s̈i = GM

∥s − si∥3 (s − si) +
N∑

j=1
j ̸=i

GMj

∥sj − si∥3 (sj − si) for i = 1, . . . , N

r̈ = GM

∥s − r∥3 (s − r) +
N∑

i=1

GMi

∥si − r∥3 (si − r)

(130)

For our purposes, if the body of mass M is the Earth and the body of mass m is the satellite, we are
interested in the position of the satellite relative to the Earth, that is, R = r − s. The dynamics of R
are governed by the following equation:

R̈ = − GM

∥R∥3 R +
N∑

i=1

GMi

∥si − s − R∥3 (si − s − R) −
N∑

i=1

GMi

∥si − s∥3 (si − s) (131)

Taking the origin of the inertial reference frame at the center of mass of the Earth, i.e. s = 0, the latter
equation finally becomes:

R̈ = − GM

∥R∥3 R +
N∑

i=1

GMi

∥si − R∥3 (si − R) −
N∑

i=1

GMi

∥si∥3 si = − GM

∥R∥3 R +
N∑

i=1
ai (132)

where ai = GMi

∥si − R∥3 (si − R) − GMi

∥si∥3 si is the contribution of the i-th body to the acceleration of the

satellite. In the simulation, we will replace the first term of the right-hand side of the equation by the
expansion of the acceleration in spherical harmonics.

4.4.3 Solar radiation pressure

Satellites in medium and high-altitude orbits may also experience a force that arises from the absortion
or reflection of photons emitted by the Sun [MG05]. We will expose a brief overview on how this solar
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radiation pressure is modeled and how it is included in the equations of motion. The acceleration due to
solar radiation pressure is given by:

aR = −P⊙CR
A⊙
m

s⊙ − r
∥s⊙ − r∥

(133)

Here P⊙ = 4.57 × 10−6 N/m2 is the solar radiation pressure at around the distance of the Earth,
CR = 1 + ε ∈ [0, 2] is the radiation pressure coefficient and ε is the reflectivity coefficient, being CR = 0
for a perfectly translucent body, CR = 1 for a perfectly absorbing body, and CR = 2 for a perfectly
reflecting body. r denotes the position of the satellite relative to the Earth; s⊙, the position of the Sun
relative to the Earth; m, the mass of the satellite, and A⊙, its portion of area exposed to the Sun.

One should note that A⊙ and A (the cross-sectional area of the satellite used to compute the drag force)
are in general not the same. We will see in the next section, though, that due to the difficulties on
determining them, we will assume that they are equal and constant throughout the integration process.

In reality, Eq. (133) does not describe entirely well the perturbation due to the solar radiation. Indeed,
an illumination factor ν ∈ [0, 1] should be added into the equation to account for the fraction of solar
rays that actually reach the satellite. This cause the disctinction of three regions: the illumination zone
(ν = 1), where the satellite is fully exposed to the Sun; the penumbral zone (0 < ν < 1), where the
satellite is partially exposed to the Sun, and the umbral zone (ν = 0), where the satellite receives no solar
radiation due to the Earth obstructing the light. Thus, Eq. (133) should be corrected to:

aR = −νP⊙CR
A⊙
m

s⊙ − r
∥s⊙ − r∥3 (134)

Fig. 21 shows a 2D schematic representation of the penumbral and umbral zones of the Earth. To
determine whether the satellite is or not inside one of these zones, we must compute the dot product
between r and s⊙ and if it is negative, then compare the relative “altitude” of the satellite with respect
to the “altitudes” of the penumbral and umbral zones (ysat, ypen and yumb respectively in the figure).

Satellite
Penumbra

Umbra

Figure 21: Schematic representation of the penumbra and umbral zones. Based on [Val13].

4.4.4 Minor perturbations

In addition to the major perturbations described above, there are other minor perturbations that we
will not consider in this work, but they are worth-considering if accurate results are required. Some of
these perturbations include the perturbations caused by other planets, relativistic effects, the Earth tide
effects, or radiation pressure caused by the sunlight reflected by the Earth (albedo) [MG05].
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5 Simulation

5.1 Introduction
Now, with all the ingredients in place, we can proceed to simulate the propagation of trajectories of some
satellites. Summarizing all the perturbations considered in this project, we have that the position r and
velocity v = ṙ of the satellite will be governed by the following system of differential equations:{

ṙ = v
v̇ = aGP + δDaD + δRaR + δsunasun + δmoonamoon

(135)

where aGP = (ẍ, ÿ, z̈) is the acceleration caused by the geopotential and ẍ, ÿ and z̈ are given in Eq. (122);
aD is the acceleration caused by the atmospheric drag; aR is the acceleration caused by the solar radi-
ation pressure; asun is the acceleration caused by the Sun; and amoon is the acceleration caused by the
Moon. The coefficients δi ∈ {0, 1} are used to enable and disable the different perturbations. The initial
conditions of the initial value problem will be the position and velocity obtained from the TLE. In order
to solve this system of 6 differential equations, we have opted to use the Runge-Kutta-Fehlberg method
of order 7(8) with a relative tolerance of 10−12 and using the SI units for the integration10. For the
computation of the geopotential acceleration we will use the recursions of Eqs. (123) to (125) until n = 8.

There is, however, a significant comment to be made. In reality, the TLE sets are generated using a
Simplified General Perturbations (SGP) model, and the data stored in the TLE does not contain the
instantaneous orbital elements of the satellite, but doubly-averaged mean elements calculated to fit a set
of observations [Kel; Val+06; VC08]. They are created with the SGP4 model11 and, thus, we will use
this software in order to obtain the position and velocity of each TLE.

That being said, we can proceed to show the results. We have chosen to simulate the propagation of the
trajectories of satellites from very different altitudes: LEO satellites, MEO satellites and GEO satellites.
Fig. 22 shows a schematic 2D representation of the different zones of study.

GEO

Geostationary
Earth orbit

Galileo BeiDou
MEO satellitesGPS

GLONASS

Iridium
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MEO

Figure 22: Schematic 2D orbit size comparison of some orbits of satellites used in the simulation. Based on [cmg21].

10As mentioned in the introduction, all the code used in this project can be found at https://github.com/
victorballester7/final-bachelor-thesis (accessed on June 25, 2023).

11The SGP4 model is a mathematical model used to calculate the position of a satellite relative to an Earth-centered
inertial coordinated system, namely the True Equator Mean Equinox (TEME) system, from the TLE data sets. The SGP4
model was developed by Ken Cranford in 1970. This model was obtained by simplification of the more extensive analytical
theory of Lane and Cranford which uses the solution of Brouwer for its gravitational model and a power density function
for its atmospheric model [Mah22].
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Along this section we will compare our model with SGP4, instead of with the TLE positions directly.
This approach has been considered due to the following reason. We can obtain more easily the positions
of the SGP4 propagator model at any instant of time and then compare them with our propagator. Using
TLE sets, we can only predict the position at certain fixed times, and that makes the comparison more
difficult, specially when the TLEs are very distant in time.

5.2 LEO satellites
We start by simulating the propagation of the trajectories of LEO satellites. We have chosen the In-
ternational Space Station (ISS) satellite. Its period is about 90 minutes, so it turns around the Earth
about 16 times a day. That affects the propagation of errors, and as LEO satellites interact with the
atmosphere and atmospheric drag is difficult to predict, they are the most problematic when it comes to
propagating their trajectories. Integrating the system with a duration of 7 days, starting from January
1, 2023, we obtain the following results.
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Figure 23: ISS position error when considering the
Earth as a point mass or as a non-homogeneous spheri-
cal distribution of mass (with the geopotential model).
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Figure 24: Propagation of the ISS satellite when con-
sidering only the geopotential model for the Earth and
the atmospheric drag.

Let’s make the plots clearer. The left-hand side plot has been made in order to emphasise the improve-
ment in the approximation of the orbit obtained when considering the geopotential model (GPM) with
respect to just considering the Earth as a point mass. The right-hand side plot shows two curves, which
represent the errors of the position of the ISS (with respect to the SGP4 model) when considering only
the geopotential model of the Earth or considering also the atmospheric drag.

In these plots, and all that will follow, each error curve will be within a shaded region in a lighter version
of the same color. This shaded region has a vertical width which is equal to twice the linearly interpolated
difference between the SGP4 propagation and the real orbit given by TLEs at specific points in time. Its
goal is to give the maximum variation that our error curve would have if it was the difference between
our propagation and the real orbit, instead of the difference between our propagation and the SGP4 one.

We see that, even not having a precise description of the term CD
A
m in the drag expression, we still

decrease notably the error of the position of the satellite when considering the atmospheric drag. During
the integration we have assumed a constant value of CD = 2.2, which in basis of [MG05], is reasonable for
such conditions, and we have computed the area-to-mass ratio A

m using the average of the B∗ coefficients
(see Table 2) of all the TLEs of the ISS and the formula:

A

m
= 2B∗

ρ0CD
(136)

In this formula, ρ0 = 0.157 kg/(m2 · R⊕) is the reference air density, and R⊕ = 6 378.136 3 km is the
reference Earth radius. The units of B∗ in the TLE sets are 1/R⊕.

As the ISS, and other LEO satellites, are far from the Moon and the Sun, their influence is negligible
for our purposes, and we have not graphically represented them, as their respective error curves would
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overlap the purple curve.

5.3 MEO satellites
As the Harris-Priester model for the density of the atmosphere is not valid for altitudes higher than 1000
km, in MEO satellites, we have not considered it. Instead, the gravitational pull of the Moon and the
Sun is considerably high there, namely perturbing the acceleration of the satellite by a factor of 10−6 (in
SI units), large enough to be considered. The solar radiation pressure is also considered, but we will see
that the results are not as good as expected, probably due to the inaccuracy of the model used for it.

This time we have chosen the satellite Sirius-3 and one satellite from the Galileo constellation, namely
Galileo-20. The results are shown in Figs. 25 and 26.

0 5 10 15 20 25 30
0

20

40

60

80

Time [days]

E
rr
or

in
p
os
it
io
n
[k
m
]

GPM GPM + Moon
GPM + Moon + Sun GPM + Moon + Sun + Solar Rad.

Figure 25: Propagation of the Sirius-3 satellite con-
sidering the perturbations from the Moon, the Sun and
the solar radiation pressure.

0 5 10 15 20 25 30
0

10

20

30

40

50

Time [days]

E
rr
or

in
p
os
it
io
n
[k
m
]

GPM GPM + Moon
GPM + Moon + Sun GPM + Moon + Sun + Solar Rad.

Figure 26: Propagation of the Galileo-20 satellite con-
sidering the perturbations from the Moon, the Sun and
the solar radiation pressure.

Let’s comment the results. First note the change in duration of the integration with respect to the LEO
satellites and also the decrease in magnitude of the error. These satellites travel at significantly lower
speeds, completing approximately two orbits per day. As a result, the integration time can be much
longer and the errors obtained are still comparable. The color codes are the same as the ones in the
previous plots.

We observe two very distinct results. On the one hand, errors on the Sirius-3 satellite seem to decrease
when adding the Sun and Moon into the equations during the first days, although from the beginning of
the 12-th day onwards, the blue curve is below the other three, but increasing its oscillations with time.

On the other hand, the situation of the Galileo-20 satellite is very different. The oscillations of the GPM
become larger in time and adding the Moon decreases the magnitude of the error but maintains the high
oscillation rate. Nevertheless, when enabling the Sun parameter in the equation, the oscillations decrease
notably, although the errors in magnitude increase slightly. This could be caused by the fact that the
position of the Sun, determined by a deterministic formula given in [MG05], is not accurate enough.

Note that, in both cases, the solar radiation pressure increases the oscillations. Similarly to the atmo-
spheric drag case, we have assumed a constant value of CR = 1.55 (recommended in [MG05]) and a
constant ratio A⊙

m for all the satellites, due to the difficulty on obtaining this data. These imperfections
of our model could be having an effect on the simulations.

As a final remark, note that if we consider the point mass approximation for the Earth for MEO spacecraft,
the errors obtained are still high, as shown in Fig. 27.

5.4 GEO satellites
Finally, we study the GEO satellite TDRS-3. The results are shown in Fig. 28.
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Figure 27: Galileo-20 position error when considering
the Earth as a point mass or as a non-homogeneous
spherical distribution of mass (with the geopotential
model).

0 2 4 6 8 10 12 14 16
0

50

100

150

200

Time [days]

E
rr
or

in
p
o
si
ti
o
n
[k
m
]

GPM GPM + Moon
GPM + Moon + Sun GPM + Moon + Sun + Solar Rad.

Figure 28: Propagation of the TDRS-3 satellite con-
sidering the perturbations from the Moon, the Sun and
the solar radiation pressure.

This time, adding the Moon improves only about 10 km of error when comparing it to only using the
geopotential model. But adding the Sun really improves the results. In particular, during the first 5 days
of integration, the errors with respect to the SPG4 model remain surprisingly small.

It is known (see [MG05]) that geosynchronous satellites require a maneuver approximately each 15 days
in order to stay over a specific point above the equator with a tolerance of 0.1 degree in latitude and
longitude. The fact that the width of the shaded regions decreases at around the 13th day is compatible
with performing a maneuver designed in order to match with its SPG4 propagation. We have no way to
check this, but it is reasonable to consider it given that the SPG4 propagator is commonly employed in
automatic processing to maintain a database of orbiting objects around the Earth.

5.5 General conclusions
On the whole, we have seen how different perturbations affect spacecraft dynamics. In particular, we have
observed that the Moon and Sun gravitational attraction become noticeable in MEO an GEO satellites,
whereas the atmospheric drag is only important in LEO satellites. In all the cases studied, solar radiation
pressure has increased the oscillations of the errors, and therefore, for an extension of this work, it would
be interesting to consider more accurate models for solar radiation pressure. The model considered for
atmospheric drag is also very simple; considering a more realistic one could also improve the results of
this work.

We have not considered the gravitational interaction of other planets, namely Venus, Mars and Jupiter,
with the satellites in our simulations. This is because, for our purposes, the influence of other planets
on the satellites is negligible due to their large distances from Earth (see [MG05]). In particular, for the
date January 1, 2023, which is approximately the initial time of all our integrations, Jupiter was located
at an approximate distance of 5 AU from Earth. This distance is five times greater than the distance
between the Earth and the Sun, and Jupiter’s mass is also much smaller compared to the Sun. Because
of that, the gravitational effect of Jupiter is not significant in our simulations, and the same applies to
the other planets. In fact, the contribution of all these three planets was of the order of 10−11 m/s2 for
MEO satellites, which is negligible when comparing it with the order of magnitude of the perturbations
of the Moon and the Sun (∼ 10−6 m/s2).
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