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Abstract
The aim of this report is to provide both qualitative and quantitative insights into the chaotic

behaviour of the 2D Kuramoto-Sivashinsky equation. While the 1D version of this equation is more
commonly known, this report aims to complement the numerical study conducted in [KKP15] by
extending the bibliography on the 2D version of the equation. Kuramoto-Sivashinsky equations are
encountered in various physical phenomena, such as flame propagation or reaction-diffusion systems
[Kur78; Siv77]. We will see that the 2D KS equation exhibits chaotic behaviour as the spatial domain
size increases.

1 Introduction
The well-known 1D Kuramoto-Sivashinsky (KS) equation can be written as

ut + 1
2ux

2 + uxx + uxxxx = 0 (1)

It is usually equipped with periodic boundary conditions u(t, x + L) = u(t, x) for some L > 0, which
defines the domain of definition of the PDE, and an initial condition u(0, x) = u0(x) [CDS10]. The
natural extension in the 2D case is the following Dirichlet problem with periodic boundary conditions:

ut + 1
2 |∇u|2 + ∆u + ∆2u = 0 in (0, ∞) × [0, Lx) × [0, Ly)

u(t, x, y) = u(t, x + Lx, y) in [0, ∞) × R × [0, Ly)
u(t, x, y) = u(t, x, y + Ly) in [0, ∞) × [0, Lx) × R
u(0, x, y) = u0(x, y) for all x ∈ [0, Lx), y ∈ [0, Ly)

(2)

with Lx, Ly > 0. For the sake of simplicity, we will rescale the variables in order to obtain a fixed square
domain of definition, namely:

xnew = 2π

Lx
x ynew = 2π

Ly
y tnew =

(
Lx

2π

)2
t (3)

Using these new variables (and dropping the subscript new for simplicity), the equation becomes:
ut + 1

2 |∇νu|2 + ∆νu + ν1∆ν
2u = 0 in (0, ∞) × [0, 2π) × [0, 2π)

u(t, x, y) = u(t, x + 2π, y) in [0, ∞) × R × [0, 2π)
u(t, x, y) = u(t, x, y + 2π) in [0, ∞) × [0, 2π) × R
u(0, x, y) = u0(x, y) for all x ∈ [0, 2π), y ∈ [0, 2π)

(4)

where we used the notation from [KKP15]:

∇ν :=
(

∂x,

√
ν2

ν1
∂y

)
divν := ∂x +

√
ν1

ν2
∂y (5)

∆ν := divν(∇ν) = ∂xx + ν2

ν1
∂yy ∆ν

2 = ∆ν(∆ν) := ∂x
4 + 2ν2

ν1
∂x

2∂y
2 + ν2

2

ν12 ∂y
4 (6)
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and ν1 :=
(

2π
Lx

)2
, ν2 :=

(
2π
Ly

)2
. Note that the new equation is invariant under the transformation

(t, x, y, ν1, ν2) 7→
(

ν2
ν1

t, y, x, ν2, ν1

)
if and only if the initial condition is symmetric in x and y. In that

case, if u(t, x, y) is a solution of the equation with parameters (ν1, ν2), then u
(

ν2
ν1

t, y, x
)

is a solution of
the equation with parameters (ν2, ν1).

First, let’s study the linear stability of the different modes (kx, ky) of the equation for kx, ky ∈ N ∪ {0}.
Setting v = δ(eλt+i(kxx+kyy)+c.c.), with δ ≪ 1 and c.c. denoting the complex conjugate, as a perturbation
of the trivial state u = 0, we obtain the following equality once we impose that v is a solution of the
linear part of Eq. (4):

λ =
(

kx
2 + ν2

ν1
ky

2
) (

1 − ν1kx
2 − ν2ky

2)
(7)

We see that, for example, if ν1, ν2 ≥ 1, then there is no pair (kx, ky) that makes λ > 0 and therefore all
the nodes are stable. But as soon as we decrease ν1 or ν2 below 1, unstable nodes start to appear in an
increasing1 order. For example, for ν1 = ν2 = 1/6 the nodes (0, 1), (1, 0), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2)
are unstable and all the others are stable.

In order to contribute to the bibliography on the 2D KS equation, we will study the equation with an
initial condition different from the one used in [KKP15], which was u0(x, y) = sin(x)+sin(y)+sin(x + y).
Instead, we will use the following initial condition:

u0(x, y) = sin(x) + sin(y) + cos(x + y) + sin(4x + 4y) + cos(7x) + cos(7y) (8)

which is still symmetric in x and y. Note that we are adding the modes (4, 4), (7, 0) and (0, 7) to the
initial condition used in [KKP15] and so a richer behaviour is expected. We will see, though, that for
large values of ν1 and ν2 in the interval [0, 1], the behaviour of the equation is still similar to the one
observed in [KKP15] (see Section 3.2).

In order to distinguish and classify the different kinds of behaviour that the equation exhibits, we will
monitor the L2-norm, or energy, of the solution:

E(t) := ∥u(t)∥2
L2 =

2πˆ

0

2πˆ

0

u(t, x, y)2 dx dy (9)

It will be of interest to study also its time derivative Ė(t) and the phase space (E(t), Ė(t)) (see Section 3.1
for more details). Furthermore, in order to detect quasi-periodic behaviour the return map En = E(tn),
where tn is the n-th zero of Ė(t), will also be of interest.

Finally, we can easily note that the mean of the solution is decreasing in time. Indeed:

4π2 du

dt
=

2πˆ

0

2πˆ

0

ut dx dy = −
2πˆ

0

2πˆ

0

(
1
2 |∇νu|2 + ∆νu + ∆ν

2u

)
dx dy =

= −1
2

2πˆ

0

2πˆ

0

(
ux

2 + ν2

ν1
uy

2
)

dx dy ≤ 0 (10)

where we used the fact that the solution is periodic in x and y. If we forget about the trivial state u = 0
or any other stationary state, this later inequality is strict. This implies that the mean of the solution is
strictly decreasing in time. In order to avoid this, we will subtract the mean of the solution at each step
of integration, or equivalently, we will solve the equation

ut + 1
2

|∇νu|2 − 1
4π2

2πˆ

0

2πˆ

0

|∇νu|2 dx dy

 + ∆νu + ∆ν
2u = 0 (11)

which follows from the change of variables u 7→ u − u, with the same initial condition as before, because
we have chosen an initial condition with zero mean. The reader may have noticed that here we have used
the same notation to denote the initial solution and u − u, but it should be clear from the context which
one we are referring to.

1Increasing in the sense the node (kx + 1, ky) will become unstable once the node (kx, ky) had become unstable and not
before. The same applies for the y-direction.
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2 Numerical methods
There are several numerical methods to integrate these kinds of nonlinear equations. In this report we
will use a pseudo-spectral method. The idea is to divide the spatial grid [0, 2π] × [0, 2π] in Nx × Ny cells
and to approximate the solution u(t, x, y) by a truncated Fourier series in each cell:

ũ(t, xi, yj) =
Nx/2−1∑

kx=−Nx/2

Ny/2−1∑
ky=−Ny/2

û(t, kx, ky)ei(kxxi+kyyj) (12)

for i = 0, . . . , Nx −1 and j = 0, . . . , Ny −1. The coefficients û(t, kx, ky) are the discrete Fourier coefficients
of the solution, and they are given by:

û(t, kx, ky) = 1
NxNy

Nx−1∑
i=0

Ny−1∑
j=0

u(t, xi, yj)e−i(kxxi+kyyj) (13)

To efficiently compute the discrete Fourier transform, we will use the Fast Fourier Transform (FFT)
algorithm, which reduces the complexity of the computation from O(Nx

2Ny
2) to O(NxNy log(NxNy))

operations and attains its maximum performance when Nx and Ny are powers of 2, due to the construction
of the algorithm [CT65].

To integrate the PDE in time, we discretize the time domain [0, T ] in Nt points separated by a time step
h. We will use a family of schemes that treat the linear part implicitly and the nonlinear part explicitly,
the so called IMEX schemes [Akr+15]. The general theory of IMEX schemes was introduced in [AC04],
in which they consider schemes of the form

ut + Lu = N (u) (14)

where L is a linear operator and N is a nonlinear operator. In order for the scheme to be stable and
convergent, we need to check the conditions given in [AC04]. These require L being self-adjoint and
positive definite, and N being locally Lipschitz continuous. In our problem, L = ∆ν + ∆ν

2 but in this
case it can be seen that the operator is not positive definite (see [Kal14] for explicit details). However,
adding a large enough constant c to both sides of the equation solves the problem. We will not reproduce
the proof of N u = − 1

2 |∇νu|2 + cu being locally Lipschitz continuous, as it is not the main interest of
this report, and it can be found in [Akr+15]. A constant c that makes the scheme stable and convergent
is, for example, c = 1 + 1

ν1
[Kal14].

That being said, we will use the 2nd order backward differentiation formula (BDF2) as the scheme to
integrate our equation in the Fourier space. We have chosen BDF2 schemes because backward differenti-
ation of order 1 (implicit Euler scheme) produced inconsistencies for small values of ν1 and ν2, and higher
orders of backward differentiation require much more time to compute. In the Fourier space, Eq. (14)
becomes, using matrix notation:

ũt + Lũ = N(ũ) (15)

The IMEX-BDF2 scheme for Eq. (14) is given by:

3
2 ũn+2 + hLũn+2 = 2ũn+1 − 1

2 ũn + 2hN(ũn+1) − hN(ũn) (16)

from which we can iteratively find ũn+2 using the initial condition as a zero step and a IMEX-BDF1
scheme as a first step:

ũn+1 + hLũn+1 = ũn + hN(ũn) (17)

Recall that in practice Eq. (13) has to be approximated with ũ(tk, xi, yj) instead of using the unknown
quantity u(tk, xi, yj), where tk is the k-th time step.

For most of the simulations, we have used Nx = Ny = 64, which corresponds to a spatial resolution of
dx = dy = 2π/64 ≈ 0.098. The time step used was h = 0.005, although for some computations, specially
those more chaotic, we have decrease it to h = 0.001. All the code used in this report was written in
C++, using the FFTW library [FJ] to compute the FFT, and it can be found in this GitHub repository.
The reader may also wish to visit the provided link to view some of the animations we have produced.
This can aid in better understanding the various types of behaviour described in the next section.
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3 Results

3.1 Types of solutions
We will start by presenting the different types of solutions that we can find for the 2D KS equation and
how we can detect them.

The most simple solutions are the stationary states. These can be characterized by observing a constant
evolution in time of all the parameters used to monitor all the other solutions. Since they are not much
attractive, we will not delve into them further.

There exist several types of periodic solutions. We start with the travelling waves, which are solu-
tions of the form u(t, x, y) = f(x − ct, y − dt), where c, d ∈ R are the speeds of the wave in the
x and y directions respectively. They are characterized by periodic oscillations of the position of a
point on the grid, say for convention u(t, π, π), and a constant value of the energy, due to the pe-
riodicity in space that exhibit. These solutions can also be identified by observing a line pattern in
the plot (arg maxx u(t, x, y), arg maxy u(t, x, y)), which will give the direction of the front of the wave.
This last characterization will be of special interest for easily distinguishing between travelling waves
and time-periodic waves. These latter ones also exhibit a periodic variation of u(t, π, π) but the plot
(arg maxx u(t, x, y), arg maxy u(t, x, y)) does not show any line pattern. In this case the energy of the
solution exhibits a periodic behaviour which can be confirmed with a periodic orbit in the phase space
(E(t), Ė(t)). Finally, we have periodic bursts. These can be characterized by a piecewise constant or
quasi-constant energy together with periodic abrupt and rapid changes on it (bursts) that cause the
energy to transition from one state to another. We want to emphasize that when encountering only one
state on the energy, which may correspond to several physical states, we will refer to it as a periodic
homoclinic burst. However, if we encounter more than one state in the energy, and consequently more
than one physical state, we will call it a periodic heteroclinic burst. In both cases, the energy will be
quasi-constant between bursts (see Section 3.5 for visual examples).

Finally, we have chaotic and quasi-chaotic solutions. The one closest to the group above are the quasi-
periodic solutions, which can be easily recognized by looking at the return diagrams (En, En+1), where
En is the energy at time tn, the n-th intersection of the orbit in the phase space (E(t), Ė(t)) with the
transversal section Ė(t) = 0. That is, tn is the n-th zero of Ė(t). In these plots we observe a dense set of
points that form a continuous curve, differently from the periodic solutions where we observe only a few
isolated points. We should make a note on how did we manage to find the zeros of Ė. As suggested in
[KKP15], we employed a 2nd order linear interpolating polynomial using 3 consecutive points of Ė and
then approximating the zero of Ė by the zero of the interpolating polynomial.

Two other kinds of chaotic solutions are the chaotic homoclinic and heteroclinic burst, which resemble
their analogous periodic solutions but with a disrupted anomaly periodicity just before each burst (see
Section 3.6 for visual examples).

3.2 General results
As done in [KKP15] we will also perform a general computation to understand the behaviours for all the
values of ν1 and ν2 in the interval [0, 1] with a discretization of 0.05. The results are shown in Fig. 1.

First we note that both plots are symmetric with respect to the line ν1 = ν2 due to the comment that
we have done in Section 1 regarding the symmetry of the solutions. We can observe some similarities
in the right part of the plots and also in the bottom left corner which correspond to small values of ν1
and ν2. This should not be a surprise for the reader, as we saw in Eq. (7) that for large values of ν1
and ν2 within [0, 1], most of the modes decay rapidly to the trivial state u = 0. As a result, for these
large values of the parameters, the addition of the modes (4, 4), (7, 0) and (0, 7) does not seem to have a
significant impact on the behaviour of the equation. However, as we decrease the parameters, we begin to
observe significant changes, either due to the destabilization of more modes or the increased importance
of nonlinear contributions. As we will observe in the frequency spectrum at the very end of this report
(see Fig. 12), we think that the latter is the main reason for the changes in the behaviour of the equation.

As many of the bifurcations may appear at slightly different values of ν1 and ν2, many of them are hidden
by the big discretization step that we have used. For example, we can see that in the left diagram, there
is a line of black dots when ν2 = 0.2 and 0.7 ≤ ν1 ≤ 1 that we do not observe on the right diagram. This
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Steady states Periodic homoclinic bursts Chaotic homoclinic bursts
Traveling waves Periodic heteroclinic bursts Chaotic heteroclinic bursts
Time-periodic waves Quasi-periodic solutions Chaotic solutions

Figure 1: Classification of the different types of solutions for all the values of ν1 and ν2 in the interval [0, 1] with a
discretization of 0.05. The figure on the left is obtained with the initial condition u0(x, y) = sin(x) + sin(y) + sin(x + y),
and it is taken from [KKP15]. The figure on the right is obtained with the initial condition Eq. (8).

does not mean that it should appear in the right diagram, but just that it may be due to the discretization
step. Because of this, we have performed a more detailed study of the behaviour of the equation in the
case ν := ν1 = ν2 with a discretization of 0.01. The results are shown in Fig. 2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50
ν

Steady states Periodic homoclinic bursts Chaotic homoclinic bursts

Traveling waves Periodic heteroclinic bursts Chaotic heteroclinic bursts

Time-periodic waves Quasi-periodic solutions Chaotic solutions

Figure 2: Classification of the different types of solutions for all the values of ν in the interval [0, 0.5] with a discretization
of 0.01.

Recall that we have omitted the range ν ∈ (0.5, 1] because of the monotonous stationary-state behaviour
of the equation. It is wroth noting that for the smallest values of ν ∈ (0, 0.1] we had to decrease the time
step to h = 0.001 and increase the resolution of the grid to 128 × 128. As an illustration, for ν = 0.01,
the length of the domain of the initial PDE of Eq. (2) would be Lx = Ly = 2π√

ν
≈ 62.83. If we divide this

length by 128 we get a discretization step of dx = dy ≈ 0.49, which is still not small enough but sufficient
to observe the behaviour of the equation.

In the following sections we will delve into the properties of some solutions shown in those diagrams.

3.3 Travelling waves
We start studying travelling waves. Observing the right diagram in Fig. 1, we can see that there is an
apparently continuous set of solutions around ν2 = 0.3 and 0.65 ≤ ν1 ≤ 1 containing travelling waves.
In the Table 1 we represent the periods of the travelling waves in this interval of ν1 for fixed ν2 = 0.3.
Note that the period is inversely proportional to the speed of the wave. Thus, the shorter the period, the
faster the travelling wave propagates.

The reader may observe a decrease on the period as ν1 decreases. In Fig. 3 we show three equally spaced
sections of the travelling wave corresponding to ν1 = 0.85 and ν2 = 0.3, which as deduced from the plots,
travels in the x direction.
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ν1 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Period 39.673 42.725 45.777 48.830 51.882 54.934 57.986 61.037

Table 1: Periods of the travelling waves for fixed ν2 = 0.3 and different values of ν1.
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Figure 3: Sections of the travelling wave with ν1 = 0.85 and ν2 = 0.3 at different times.

The quasi-periodic travelling wave solution that we observe in Fig. 1 at ν1 = 0.6 and ν2 = 0.3 is a sign
of approaching a bifurcation point between travelling waves and periodic bursts, and maybe other types
of solutions. We do not have an analytical proof of this, but only numerical experiments. In Fig. 4 we
show the evolution of a particle situated at (π, π) for two particular values of ν1, 0.6 and 0.59013, and
fixed ν2 = 0.3.

0 200 400 600 800 1000 1200 1400
t

−4

−2

0

2

4

6

u
(π
,π

)

ν1 = 0.60000

ν1 = 0.59013

Figure 4: Evolution of u(π, π) as a function of time for ν1 = 0.65 and ν2 = 0.3.

We let the reader extract their own conclusions when comparing the initial evolution of the energy in
this figure and Fig. 6c.

3.4 Time-periodic waves
We now move on to the time-periodic waves. We can do a similar experiment as in Section 3.3 and
present the periods of the periodic waves for fixed ν2 = 0.2 and 0.45 ≤ ν1 ≤ 0.95, as shown in Fig. 1.
The results are exposed in Table 2.

ν1 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Period 5.364 5.081 5.134 5.328 5.588 5.889 6.221 6.580 6.967 7.379 7.789

Table 2: Periods of the time-periodic waves for fixed ν2 = 0.2 and different values of ν1.

Again, the periods are decreasing as ν1 decreases except in the last value of ν1 = 0.45, where we observe
a sudden increase in the period. We may suspect that this reason has to do with the proximity of a
bifurcation point between time-periodic waves and bursts. As a matter of pure curiosity, we note that
these periods are much smaller than the periods of the travelling waves in Table 1.
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(c) Evolution of u(π, π).
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Figure 5: Time-periodic wave with ν1 = 0.35 and ν2 = 0.3. On the top we show the energy of the solution as a function
of time, its phase space (E(t), Ė(t)) and the evolution of u(t, π, π) as a function of time. On the bottom we display the
solution at each of the four different extrema of the energy in one period.

We now display in Fig. 5 some sections of the time-periodic wave corresponding to ν1 = 0.35 and ν2 = 0.3,
as well as the evolution of the energy of the solution, its phase space (E(t), Ė(t)) and the evolution of
u(t, π, π) as a function of time.

We should clarify the self-intersection in the phase space (E(t), Ė(t)) of Fig. 5b, which may seem to
be a contradiction with the unicity of solution. Recall that the differential system (E(t), Ė(t)) is not
autonomous, and so self-intersections are allowed, because the phase space is the projection onto the
plane t = 0 of the orbits in the 3D space (t, E(t), Ė(t)).

3.5 Periodic bursts
The last type of periodic solutions that remains to be studied are the periodic bursts. In Fig. 6 we
present two different kinds of burst that we may encounter in the 2D-KS equation: homoclinic bursts
and heteroclinic bursts.
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(a) Evolution of the energy of the homoclinic bursts
corresponding to parameters ν1 = ν2 = 0.45.
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(b) Phase space (E(t), Ė(t)) of the homoclinic
bursts corresponding to parameters ν1 = ν2 = 0.45.
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(c) Evolution of the energy of the heteroclinic bursts
corresponding to parameters ν1 = ν2 = 0.4.
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(d) Phase space (E(t), Ė(t)) of the heteroclinic
bursts corresponding to parameters ν1 = ν2 = 0.4.

Figure 6: Types of bursts.
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The reader may observe the particular rapid growth of the energy during a burst. Furthermore, we note
that in the phase space (E(t), Ė(t)) the majority of time is employed when Ė is near zero, as can be
deduced from the energy evolution diagram. See Fig. 8 for a quantitative comparison of the relative
change of the solution in the vicinity of a burst.

As we noted in the introductory section, even though the energy of a homoclinic burst remains constant
or quasi-constant between bursts, or in the heteroclinic case, jumps between two or more states, the
physical solution may change drastically. In Fig. 7 we show some sections of the solution corresponding
to the heteroclinic burst in Fig. 6c.
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Figure 7: Different states of the solution with parameters ν1 = ν2 = 0.4 containing heteroclinic bursts. On the top,
there are the two short-lasting transition states between the two bursts, and as the numerical experiments suggest, they
continually alternate one after the other. Both states have the same energy. On the bottom, there are a few of the different
physical states that we can find in the solution. All of them of the same energy.

It is intriguing that, despite extensive numerical computations, no pattern has emerged regarding the
long-lasting energy states. We conducted computations until T = 2000, and the only regular pattern
easily observable was the alternation between the two states depicted in Figs. 7a and 7b for the short-
lasting and slightly higher energy states. However, we should note that this is not a proof that there is
no pattern in the physical states, but only that we have not been able to find it.

Before proceeding to the final section of the study, we have concerned about how rapidly these burst
solutions appear. In Fig. 8 we show the maximum relative change of the solution in the vicinity of a
burst, that is, we show

max
x,y∈[0,2π]

|u(t, x, y) − u(t − h, x, y)|
|u(t, x, y)| (18)

as a function of time for both homoclinic and heteroclinic bursts. Here, h denotes the time step used in
the computation. As regions that vanish or almost vanish in a region of the square [0, 2π] × [0, 2π] may
produce inconsistencies on the computations, we have set a threshold of 10−5 to filter out all unwanted
values. Choosing a threshold is not an arbitrary task, as we have to balance between filtering out the
undesired values and not removing the desired ones. From a few numerical tries we found that 10−5 was
a suitable value for the threshold.

From figures, we can clearly localize the peak of the bursts. For the sake of simplicity, all the integration
was done with a fixed mesh size of Nx = Ny = 64, but as the spatial gradients are much more intense
in the middle of the bursts than in the rest of the solution, we may suspect that a finer mesh size would
be more appropriate for the computation of the bursts. However, we have not conducted any numerical
experiment to confirm this hypothesis. It would be an interesting test to conduct for an extension of this
work.
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(a) Homoclinic burst corresponding to parameters
ν1 = ν2 = 0.45.
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(b) Heteroclinic burst corresponding to parameters
ν1 = ν2 = 0.4.

Figure 8: Plots showing the relative change maxx,y∈[0,2π]
|u(t,x,y)−u(t−h,x,y)|

|u(t,x,y)| of the physical solution in the vicinity of a
burst as a function of time for both homoclinic and heteroclinic bursts.

3.6 Quasi-periodicity and chaotic behaviour
Last but not least, we will now expose some of the chaotic behaviours that we have found. It is worth
noting that in order to compute with the same accuracy as before the chaotic solutions that appear for
small ν1 and ν2, we had to decrease the time step to h = 0.001 and increase the spatial resolution to
Nx = Ny = 128.

We start with the quasi-periodic solutions. In Fig. 9 we present the phase space (E(t), Ė(t)) and the
return map (En, En+1) for the solution with parameters ν1 = 0.25 and ν2 = 0.2.
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(a) Phase space (E(t), Ė(t))
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(b) Return map (En, En+1)

Figure 9: Quasi-periodic solution corresponding to parameters ν1 = 0.25 and ν2 = 0.2.

From the images we can clearly observe the quasi periodicity of the solution as the orbit in the phase
space (E(t), Ė(t)) does not exactly close into itself once it has completed a period. We now can confirm
the behaviour of the return maps that was described in the introduction, as a dense set of points that form
a continuous curve. Moreover, from the experiments we can also conclude that quasi-periodic solutions
come, among other cases, between bursts and travelling waves. Thus, some of them still exhibit the
property of having constant or quasi-constant energy.
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(a) Energy evolution of the chaotic homoclinic bursts cor-
responding to the solution with parameters ν1 = 0.75 and
ν2 = 0.1.
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(b) Energy evolution of the chaotic heteroclinic bursts cor-
responding to the solution with parameters ν1 = 0.75 and
ν2 = 0.15.

Figure 10: Chaotic bursts
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Fig. 10 shows chaotic bursts. We will not dive into the details of properties of these solutions, as they are
relatively similar to the ones studied in Section 3.5, but with more complex behaviour at the beginning
of each burst whose accuracy is numerically difficult to control. We can easily observe the roughness
of the peaks of the burst in Fig. 10, which is a sign that more accuracy should have been used in a
neighbourhood of each burst, as discussed above.

We will finish this section and this report displaying some completely chaotic solutions.
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(a) Physical solution at T = 5
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(b) Return map (En, En+1) of the chaotic solution when
integrating the equation in the range t ∈ [0, 20].

Figure 11: Chaotic solution corresponding to parameters ν1 = ν2 = 0.008

Even though from the Fig. 11a one may think that there are many large unstable Fourier modes active in
the solution, the reality is that all the frequencies (kx, ky) are less than 12, that is, kx, ky ∈ {0, . . . , 11}.
This can be deduced from Eq. (7), but Eq. (7) only gives an estimation of the stability modes in the
linear regime. To properly understand the contribution of the different modes, we have computed the
amplitude kx

2 + ky
2 of the Fourier modes, and we have represented them in Fig. 12.
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Figure 12: Normalized amplitude of the Fourier modes at T = 5 for the chaotic solution corresponding to parameters
ν1 = ν2 = 0.008.

Therefore, we confirm that modes does not go beyond 12 at time T = 5. We also want to mention the
random look of the return map (En, En+1) in Fig. 11b.

4 Conclusions
In this report we conducted a numerical study of the 2D Kuramoto-Sivashinsky equation, inspired by the
works [KKP15; Kal14]. We have reproduced some results of [KKP15] (see Fig. 1), and we have extended
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them for another initial condition. As we saw at the very end, linear stability gives a good approximation
of the stability of the modes of the solution, at least when the nonlinear contribution 1

2 |∇νu|2 is small
enough. This explains why the two diagrams in Fig. 1 are so similar in the top right corner. But as soon
as we decrease the value of the parameters, we observe different behaviours for the same parameters ν1
and ν2. Note that, from the definitions of these parameters in Eq. (4), we may notice that decreasing ν1
and ν2 is equivalent to increasing the domain of definition of the actual PDE, and thus, keeping the same
mesh size is not appropriate for the computation, because doing this it increases the spatial steps and
decreases the accuracy of the computation. This has been the only concern about having to increase the
mesh size. Contrary to what we initially thought, for our range of study, the Fourier modes are relatively
small in frequency and thus, the computation could have been done with a smaller mesh size, if that was
the only problem. But as we just said, for small values of the parameters, we refrained from doing so to
prevent loss of accuracy. Instead, we had to increase the mesh size for small values of the parameters.

Regarding the periodic solutions, we observed that generally the period of the time-periodic waves is
smaller than the period of the travelling waves, which, in turn, is smaller than the period of the periodic
bursts. Moreover, at the neighbourhood of a bifurcation between travelling waves and periodic burst,
we have found quasi-periodic solutions emerging from the travelling waves and whose starting point of
oscillation seemed to increase as we approached the bifurcation point.

Finally, we have not studied in depth the chaotic homoclinic and heteroclinic bursts, but we anticipate
a similar behaviour to the non-chaotic versions concerning the abrupt relative change of the physical
solution.
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