

Flow transition over surface gaps in 2D incompressible laminar boundary layers

<u>Víctor Ballester Ribó</u>¹, Jeffrey Crouch², Yongyun Hwang¹, Spencer Sherwin¹

 1 Department of Aeronautics, Imperial College London, UK 2 The Boeing Company, USA

2 July 2025

IMPERIAL

Motivation

Figure: Wing of a Boeing 737-800

Setup

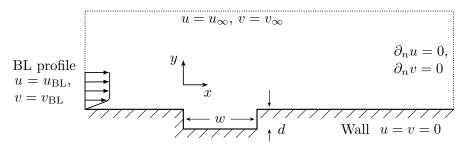


Figure: Domain setup for the steady-state finder

- Aim: Study the stability of the system as a function of the depth d
 and width w of the gap.
- 2D incompressible NS
- $Re_{\delta^*} = 1000 \implies Re_x = 3.38 \times 10^5$

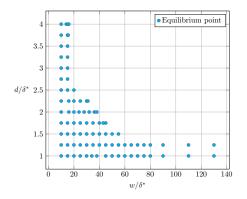


Figure: Classification of the stability of points downstream of the gap.

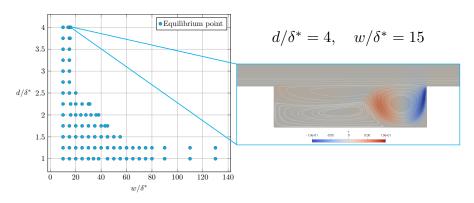


Figure: Classification of the stability of points downstream of the gap.

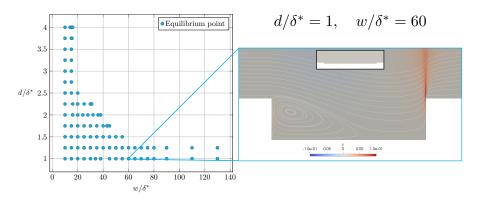


Figure: Classification of the stability of points downstream of the gap.

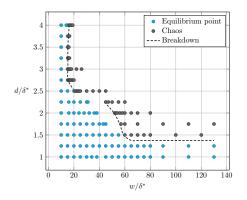


Figure: Classification of the stability of points downstream of the gap.

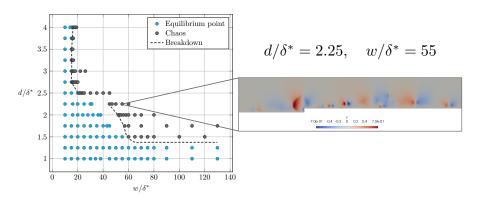


Figure: Classification of the stability of points downstream of the gap.

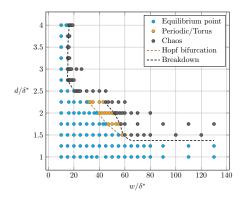


Figure: Classification of the stability of points downstream of the gap.

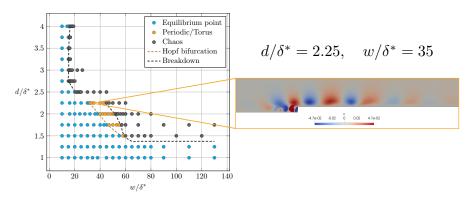


Figure: Classification of the stability of points downstream of the gap.

• We linearize the flow around a steady baseflow:

$$\mathbf{u}(x, y, t) = \mathbf{U}(x, y) + \tilde{\mathbf{u}}(x, y, t)$$

• We linearize the flow around a steady baseflow:

$$\mathbf{u}(x, y, t) = \mathbf{U}(x, y) + \tilde{\mathbf{u}}(x, y, t)$$

• From LST we can obtain disturbances of the form:

$$\tilde{\mathbf{u}} = \boldsymbol{\phi}(y) \mathrm{e}^{-\alpha_i x} \mathrm{e}^{\mathrm{i}(\alpha_r x - \omega t)}$$

• We linearize the flow around a steady baseflow:

$$\mathbf{u}(x, y, t) = \mathbf{U}(x, y) + \tilde{\mathbf{u}}(x, y, t)$$

• From LST we can obtain disturbances of the form:

$$\tilde{\mathbf{u}} = \boldsymbol{\phi}(y) \mathrm{e}^{-\alpha_i x} \mathrm{e}^{\mathrm{i}(\alpha_r x - \omega t)}$$

• But this is a local representation! To account for streamwise growth in the BL we use the e^N -method. Fixing $\omega \in \mathbb{R}$:

$$n(x,\omega) = -\int_{x_0}^x \alpha_i(s,\omega) \, ds = \log\left(\frac{|\tilde{\mathbf{u}}(x,\omega)|}{|\tilde{\mathbf{u}}_0|}\right)$$
$$N(x) = \sup_{\omega} n(x,\omega)$$

• We linearize the flow around a steady baseflow:

$$\mathbf{u}(x, y, t) = \mathbf{U}(x, y) + \tilde{\mathbf{u}}(x, y, t)$$

• From LST we can obtain disturbances of the form:

$$\tilde{\mathbf{u}} = \boldsymbol{\phi}(y) \mathrm{e}^{-\alpha_i x} \mathrm{e}^{\mathrm{i}(\alpha_r x - \omega t)}$$

• But this is a local representation! To account for streamwise growth in the BL we use the e^N -method. Fixing $\omega \in \mathbb{R}$:

$$n(x,\omega) = -\int_{x_0}^x \alpha_i(s,\omega) \, ds = \log\left(\frac{|\tilde{\mathbf{u}}(x,\omega)|}{|\tilde{\mathbf{u}}_0|}\right)$$
$$N(x) = \sup_{\omega} n(x,\omega)$$

 \implies Disturbances of amplitude A_0 satisfy $A(x) \leq A_0 e^{N(x)}$.

Previous Work

Characterizing surface-gap effects on boundary-layer transition dominated by Tollmien-Schlichting instability

J. D. Crouch¹ . * ¹, V. S. Kosorygin², M. I. Sutanto¹ and G. D. Miller¹

¹The Boeing Company, P.O. Box 3707, Seattle, WA 98124-2207, USA ²Institute of Theoretical and Applied Mechanics, Novosibirsk 630090, Russia

*Corresponding author. E-mail: jeffrey.d.crouch@boeing.com

Received: 7 July 2021: Revised: 24 January 2022: Accepted: 24 January 2022

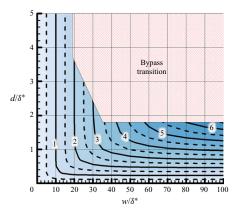


Figure: $\Delta N = N - N_{\rm ref}$ for different gap dimensions

Crouch JD, Kosorygin VS, Sutanto MI, Miller GD. Characterizing surface-gap effects on boundary-layer transition dominated by Tollmien–Schlichting instability. Flow. 2022;2:E8.

Perturbed system setup

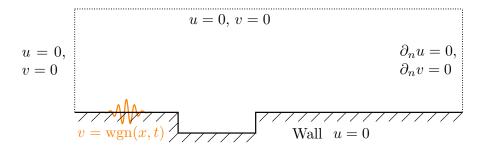


Figure: Domain setup for the perturbed system

e^N -method results

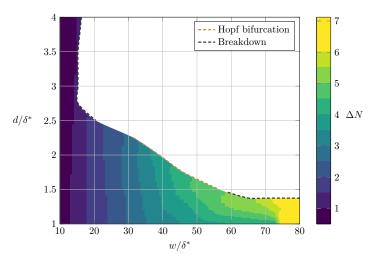


Figure: Interpolated $\Delta N = N - N_{\text{ref}}$ in the globally-stable region.

e^N -method results

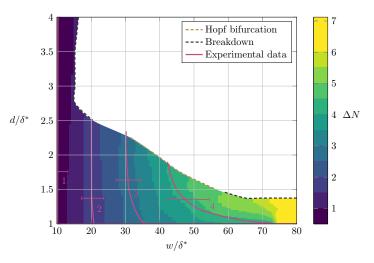


Figure: Interpolated $\Delta N = N - N_{\rm ref}$ in the equilibra region. Magenta lines indicate the contour levels of the experimental data.

Future Work

• Go to higher Ma (compressible regime).

Future Work

- Go to higher Ma (compressible regime).
- Account for spanwise effects (quasi-3d simulations).