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Yongyun Hwang1, Spencer Sherwin1

1Department of Aeronautics, Imperial College London, UK
2The Boeing Company, USA

2 July 2025



Motivation

Figure: Wing of a Boeing 737-800
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Figure: Domain setup for the steady-state finder

• Aim: Study the stability of the system as a function of the depth d
and width w of the gap.

• 2D incompressible NS

• Reδ∗ = 1000 =⇒ Rex = 3.38× 105



Stability results
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Figure: Classification of the stability of points downstream of the gap.
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Figure: Classification of the stability of points downstream of the gap.
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Figure: Classification of the stability of points downstream of the gap.
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Figure: Classification of the stability of points downstream of the gap.
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Figure: Classification of the stability of points downstream of the gap.
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Figure: Classification of the stability of points downstream of the gap.
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Figure: Classification of the stability of points downstream of the gap.



Framework for the LST (TS-wave transition)

• We linearize the flow around a steady baseflow:

u(x, y, t) = U(x, y) + ũ(x, y, t)

• From LST we can obtain disturbances of the form:

ũ = ϕ(y)e−αixei(αrx−ωt)

• But this is a local representation! To account for streamwise growth
in the BL we use the eN -method. Fixing ω ∈ R:

n(x, ω) = −
∫ x

x0

αi(s, ω) ds = log

(
|ũ(x, ω)|

|ũ0|

)
N(x) = sup

ω
n(x, ω)

=⇒ Disturbances of amplitude A0 satisfy A(x) ≤ A0e
N(x).
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|ũ0|

)
N(x) = sup

ω
n(x, ω)

=⇒ Disturbances of amplitude A0 satisfy A(x) ≤ A0e
N(x).



Previous Work

Flow (2022), 2 E8
doi:10.1017/flo.2022.1

Characterizing surface-gap effects on boundary-layer
transition dominated by Tollmien–Schlichting instability
J. D. Crouch1 ,* , V. S. Kosorygin2, M. I. Sutanto1 and G. D. Miller1

1The Boeing Company, P.O. Box 3707, Seattle, WA 98124-2207, USA
2Institute of Theoretical and Applied Mechanics, Novosibirsk 630090, Russia
*Corresponding author. E-mail: jeffrey.d.crouch@boeing.com

Received: 7 July 2021; Revised: 24 January 2022; Accepted: 24 January 2022

Keywords: Instability, transition to turbulence, drag reduction; laminar flow control (LFC)

Abstract
Effects of gaps (rectangular surface cavities) on boundary-layer transition are investigated using a combination
of linear stability theory and experiments, for boundary layers where the smooth-surface transition results from
Tollmien–Schlichting (TS) instability. Results are presented for a wide range of gap characteristics, with the
associated transition locations ranging from the smooth-surface location all the way forward to the gap location.
The transition movement is well described by a variable N-factor, which links the gap characteristics to the level
of instability amplification eN leading to transition. The gap effects on TS-wave transition are characterized by two
limiting behaviours. For shallow gaps d/w < 0.017, the reduction in N-factor is a function of the gap depth d and
is independent of the gap width w. For deep gaps d/w > 0.028, the reduction in N-factor is a function of the gap
width and is independent of the gap depth. When both the gap width and depth are sufficiently large relative to
the displacement thickness 𝛿∗, the TS-wave transition is bypassed, resulting in transition at the gap location. These
behaviours are mapped out in terms of (w/𝛿∗, d/𝛿∗), providing a predictive model for gap effects on transition.

Impact Statement
Laminar-flow control seeks to reduce the drag on aircraft by delaying the laminar-to-turbulent transition in the
viscous boundary-layer flow on aerodynamic surfaces. This reduction in drag translates directly to a reduction
in fuel burn and CO2 emissions.
To achieve extended laminar flow, the aerodynamic surfaces are designed to suppress the growth of naturally
occurring flow instabilities that trigger transition. These instabilities are also sensitive to surface imperfections
(such as steps and gaps), which can result from the manufacturing of the aircraft. Since the minimization
or avoidance of surface imperfections can result in costly constraints on the manufacturing process, high-
fidelity models are needed to predict the impact of these imperfections. This paper provides qualitative
and quantitative descriptions for the underlying mechanisms that can lead to a loss in laminar flow due to
surface gaps. This systematic characterization of gap effects can help facilitate the trades necessary to support
commercial applications.

1. Introduction
The transition location on air vehicles can have a significant impact on the overall vehicle performance.
An extended region of laminar flow results in lower friction drag, and can also influence other contribu-
tors to drag such as wave drag and spanloading. Under quiet-flow conditions characteristic of flight, the
onset of transition is linked to the growth and nonlinear breakdown of naturally occurring instabilities.
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Figure 9. Variation of ΔN with gap depth for different values of gap width for both (a) xG = 450 mm
and (b) xG = 127 mm. Model predictions from (5.2), thick dash; model predictions from (5.3), thin dash;
and experimental results, symbols.
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Figure 10. The TS-wave ΔN contours and bypass-transition region as a function of the gap width w/𝛿∗
and depth d/𝛿∗ based on low Mach number data (M < 0.1) for nominally two-dimensional boundary
layers.
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Figure: ∆N = N −Nref for different
gap dimensions
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Perturbed system setup
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Figure: Domain setup for the perturbed system



eN -method results
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Figure: Interpolated ∆N = N −Nref in the globally-stable region.
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Figure: Interpolated ∆N = N −Nref in the equilibra region. Magenta lines
indicate the contour levels of the experimental data.



Future Work

• Go to higher Ma (compressible regime).

• Account for spanwise effects (quasi-3d simulations).



Future Work

• Go to higher Ma (compressible regime).

• Account for spanwise effects (quasi-3d simulations).


