Structure of matter and thermodynamics

1. | Structure of the matter

Kinetic theory of gases

Definition 1. A gas is constituted by large amount of par-
ticles moving at higher velocities and satisfying Newton’s
laws. Hence, we may consider the following assumptions:

o We can underestimate the gravity acting on the par-
ticles.

e The collisions between particles and between a par-
ticle and a wall of the container (perfectly rigid and
with infinite mass) are completely elastic.

e The particles are point-particles.

e There is no interaction between particles (a part
from the momentum of a collision).

e There is no preferred position and direction for the
particles.

Proposition 2 (Molecular pressure). Consider a con-
tainer of volume V that contains N molecules, each of
mass m, of a gas. Then, the pressure P of the gas is:
N
pP= Vm(vf}
where (v,2) is the mean of the squares of the z-components
of the velocities of all particles.

Proposition 3 (Molecular kinetic energy). Consider
a gas at a temperature 7. The average kinetic energy of
a particle associated with z-axis movement of it is:

1
(K;) = ékBT

where kp is the Boltzmann constant. Since, by one
of the initial hypothesis, (v;?) = (v,?) = (v,?), then
(v?) = 3(v,?) and therefore the mean kinetic energy (K)
of a molecule is:

(K) = ngT

Proposition 4 (Molecular velocities). Consider a gas
of molar mass M constituted by molecules of mass m at a
temperature T. Then, the mean-square speed of the par-

ticles is:
_ 3kpT _ 3RT

<U2> m M

The root-mean-square speed is defined as vy =

(v?)

Proposition 5 (Boltzmann distribution). Consider a
system at a temperature 7" in thermodynamic equilibrium.
Then, the probability P(FE) to find a particle with energy
E is proportional to Boltzmann factor. That is:

P(FE) x e FBT

11n liquids and solids we have Cp~=Cy =C.

Proposition 6 (Maxwell-Boltzmann distribution).
The number of molecules (from a total of N) of mass m
in a gas moving at velocities between v and v + dv and at
a temperature T’ is:

dN = Nf(v)dv

where f(v) is:

4 m \*?,
[ J— [ 2kgT
1) =7 (2kBT> ve s

Proposition 7 (Distribution of molecular
ties). Consider a gas constituted of molecules of mass
m moving at a velocity v at a temperature T. If vyax,
(v) and Vs are the maximum speed, mean speed and
root-mean-square speed respectively, then:

veloci-

df(?)) —0 — o _ 2/€BT

dv m
oo

(v) = /vf(v) dv = \/m
0

0

Specific heat and equipartition theorem

Definition 8. When we heat up a substance, we transfer
energy to it resulting in an increase of its internal energy
U. The amount of heat ) necessary to increase the tem-
perature of a substance is proportional to the variation of
the temperature and its mass m. That is:

Q = CAT = emAT

Definition 9. Heat capacity C is defined as the amount
of heat to be supplied to an object to increase its temper-
ature by one degree.

Definition 10. Specific heat c is defined as the heat ca-
pacity per unit of mass:

c=—
m

where m is the mass of the object to heat.

Definition 11. Molar heat capacity cy, is defined as the
heat capacity per unit of mole:

where n is the number of moles of the object to heat, m
its mass and M its molar mass.



Definition 12. The adiabatic index -y is defined as:

— CP

IY_CT/

where Cp is the heat capacity at constant pressure and
Cly is the heat capacity at constant volume!.

Definition 13 (Internal energy). The internal energy
U of an ideal gas constituted of monoatomic particles is:

§nRT

U= N<Ktrans> = D)

where IV is the number of particles in the gas on it; n, the
number of moles, and T, its the temperature.

Proposition 14 (Mayer’s relation). Consider a sub-
stance constituted by n moles of an ideal gas. Then:

Cp=Cy +nR

Proposition 15 (Heat capacities in gases). Consider
a substance constituted by n moles of an ideal gas. Since
Cy = g—g, we have:

3 b)
CV = inR CP = §TLR

Therefore, v = g

Theorem 16 (Equipartition theorem). Consider a
substance at a temperature 7' in thermodynamic equilib-
rium. Then, the energy behave equally in each quadratic
degree of freedom associated at each component of the
kinetic or potential energy. Thus, there exists an average
energy of %k BT per molecule or an average energy of %RT
per mole associated with each degree of freedom?.

Corollary 17 (Equipartition theorem on diatomic
molecules). Consider a diatomic molecule of mass m ro-
tating around x and y axis. Then, its energy will be of the
form:

1 1 1
E=-m (vmz + vy2 + vzz) + S Lw.? + fIywyz
2 2 2
Since we have 5 quadratic degrees of freedom, the total
energy F will be £ = %kBT. If a gas in constituted by N

diatomic molecules, then:

5 5 )
U=NE = §NkBT = EnNAk:BT = EnRT

where N, is the Avogadro constant and n is the number
of moles of the gas. Therefore, we will have Cy = gnR,

Cp = %nR and v = %

Corollary 18 (Dulong-Petit law). Consider a solid and
suppose its atoms are connected with springs with effec-
tive constant k.g. Then:

1 1
E = om (v:2 4+ v,* +v.2%) + ikcﬁ‘ (2? +y* + 27)
Since we have 6 quadratic degrees of freedom, the total
energy F will be E = ngT. If a gas in constituted by NV
atoms, then:

6
U=NE= §NkBT = 3nNakpT = 3nRT

where n is the number of moles of the solid. Therefore,
we will have C' = 3nR.

Black-body radiation

Definition 19 (Thermal radiation). Thermal radia-
tion is the electromagnetic radiation emitted by a body
as a consequence of its temperature. All bodies emit this
radiation and absorb the one emitted by its surroundings.
In thermal equilibrium the emission and absorption are
equal.

Proposition 20 (Black body). A black body is an ob-
ject that absorbs all electromagnetic radiation incident on
it.

Proposition 21 (Stefan-Boltzmann law). The energy
radiated by a black body at a temperature T per unit of
area and time (called radiance) is:

I=oT?
where o is the Stefan-Boltzmann constant.

Proposition 22 (Wien’s displacement law). The ra-
diance does not distribute uniformly along all wavelengths
(spectral radiance I(X)). The maximum of this function is

taken when
b
>\max ==
T

where b is the Wien’s displacement constant and T is the
temperature of the body.

Proposition 23 (Rayleigh-Jeans law). Rayleigh-Jeans
law is an approximation to the spectral radiance of electro-
magnetic radiation of a black body at a given temperature
T as a function of the wavelength through classical argu-
ments:

o 27TC]€BT 3

10 = "5

2The equipartition theorem fails when temperatures are very high or very low due to the discretization of the energy postulated by

quantum physics.

3The Rayleigh-Jeans law agrees with experimental results at large wavelengths (low frequencies) but strongly disagrees at short wave-
lengths (high frequencies). This inconsistency between observations and the predictions of classical physics is commonly known as the

ultraviolet catastrophe.

4Note that from here we can deduced Stefan-Boltzmann and Wien’s displacement laws as follows:

oo
2k gt
I=[INd\= ——T*=:0T*
/ ) 15¢2h3
0




Proposition 24 (Planck’s law). To solve the ultravio-
let catastrophe, Planck deduced the following formula for
the spectral radiance:

2mhc?
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Figure 1: Graphical illustration of the ultraviolet catas-
trophe

Photoelectric effect

Definition 25 (Photoelectric effect). The photoelec-
tric effect consists in the emission of electrons when elec-
tromagnetic radiation hits a material. Electrons emitted
in this manner are called photoelectrons. Moreover we have
the following properties:

o Photoelectric effect only occurs when the incident
light is of frequency greater than or equal to a thresh-
old frequency vy.

o Kinetic energy of the electrons increase proportion-
ally to the frequency of the incident light.

o Increasing the intensity of the incident light does not
increase the energy of photoelectrons, but the num-
ber of photoelectrons.

Proposition 26 (Stopping potential). Let ¢ be the
energy required to remove an electron from the surface of
a material. If we hit this surface with photons of frequency

v, then:

1
§mevmax2 = hv — (b

Moreover, if we connect a potential difference V' contrary
to the movement of the electrons, then:

eV=hv—2¢

The electrons with lower energy than ¢ = hry won’t have
enough energy to remove an electron of the material.

Proposition 27 (Planck-Einstein relation). Relating
the energy FE of a photon of frequency v and wavelength
A we have:

E=hy =€
YT

Proposition 28 (De Broglie relation). The momen-
tum p of photons of energy E and wavelength A is:

Light

Definition 29 (Light). We can think the light as a par-
ticle or as a wave. In particular, when it propagates, it
behave like an electromagnetic wave and travels at a ve-
locity

1

VEOHO

where g¢ is the vacuum permittivity and py vacuum per-
meability. Moreover the oscillating directions of the elec-
tric and magnetic field are perpendicular to each other and
to the direction of propagation.

C =

Definition 30 (Compton scattering). The compton
scattering occurs when a photon of wavelength A; collides
with an electron and as a consequence the collision pro-
duces another photon of wavelength A2 > A; (with less
energy than the pervious one) deflected an angle 6 from
the original trajectory of the photon. Moreover, we have:

Ao — Ay =

(1 — cosf)®

€

where m, is the mass of the electron.

Matter wave

Proposition 31 (Bohr’s complementary principle).
There are experiments in which bodies behave like parti-
cles and other ones in which they behave like waves.

Definition 32 (Wavelenth of a particle). Consider a
particle of mass m, kinetic energy K and momentum p.
Then its wavelength is:

h hc
N oo
p  2mctK

As a consequence, all elementary particles propagate like
waves an exchange energy like particles.

Proposition 33 (Heisenberg’s uncertainty princi-
ple). Let AY be the uncertainty of the magnitude Y of
a particle. Then, for all particles we have:

AxAp > g AEAt >

N | St

5This is deduced taking into account the conservation of energy and momentum.



Wave function

Definition 34 (Schrodinger equation). Given that we
cannot know the position and velocity of a particle with
unlimited precision, a particle of mass m is described with
a wave function ¥(z,t)% which is a solution to Schrddinger
equation:

—h? 0%V (x,t) oY (z,t)
Ox? ot
where U(xz,t) is the potential energy that the particle is

subject to. More generally, the Schrodinger equation in
three dimensions is:

—h? ., 0V(r,t)
%A\I/(I‘,t) + U(I‘,t)\I/(I‘,t) = lhT

5 +U(z,t)¥(z,t) =1k

where r = zi + yj + zk.

Proposition 35 (Properties of Schriodinger equa-
tion). Consider a particle whose wave function is ¥(z,t).
Then:

e The probability to find the particle between x and
r +dz is:
| U (z,t)|* dz

e Probability density:

P(x,t) = |U(x,t)]* = U(z, t)T*(2,t)

o Normalization condition:
/ |U(z,t)[>dz =1

e FExpectation value of x:

o0

/ 2 (z, ) 0¥ (z,t)de =1

— 00

() =

Here ¥*(z,t) denotes the complex conjugate of ¥(z,t).

Definition 36 (Time-independent Schrédinger
equation). Consider a stationary solution of the Schro-
dinger equation of the form:

—iEt

U(z,t) = d(x)e™n

Then, if the potential energy U(z,t) to which the particle
is subject does not depend on time, that is U(z,t) = U(x),
we get the time-independent Schridinger equation:

12 20(x)
e (1)
2m  dz

Proposition 37 (Particle in a box-1D). Consider a

particle of mass m confined in a 1-dimensional box of
length L. We can think that it is subjected to a potential

+U(z)®(x) = E®(x)

oo ifx<0
Ulx)=40 if0<z<L
oo ifx>L

61t is important that the function ¥(x,t) must be continuous.

Since the particle cannot leave the region (0, L), we have
that ®(x) = 0 for < 0 and © > L. Therefore, by Eq. (1):

—h? d2®(x,t)

— T 2 = F® f <z<L

5 (x) or 0 <z <
If we define k2 = QZZE , we have

d2®(z,t

%Jrkzé(x):O for0<z <L

which is the equation of a simple harmonic oscillator with
solution ®(x) = Asin(kx) + Bcos(kz). Taking into ac-
count boundary conditions, we have that:

where the number n € N is called quantum number. In

particular, k = k,, = “F and therefore:

Rk, [ h? )
En= 5 =n (w):”E

And we observe that the energy is discretized in different
levels.

Proposition 38 (Particle in a box-3D). If the particle
of mass m is now confined to a three-dimensional box of
edges a, b and ¢, we get:

8 = ) .
Py nyn. (r) = \/ he sin (%JI) sin (%m) sin (%x)

where ng, n, and n, are independent quantum numbers”.
Moreover:

h? h? h?
En nyn, — IQ ) 2 — 22 )
snyns = 1 <8ma2) + iy <8mb2) tn 8mc?

Definition 39. An energy level is degenerate if it cor-
responds to two or more different measurable states of a
quantum system. For example, if a particle is contained
in a cube, then:

Ei12 = Eyo1 = Ey11 = 68,

where F; is the ground-state energy of the particle con-
tained in a 1-dimensional box.

Proposition 40 (Bohr’s correspondence principle).
In the limit of very large quantum numbers, the classical
calculation and the quantum calculation must yield the
same results.

7"This is obtained from the fact that the solutions Pngynyn;(r) of the Schrédinger equation in three dimensions are of the form:

Dngnyn. (r) = P, (x)‘I’ny (Y)Pn_ (2)



Atoms

Definition 41 (Bohr model). The Bohr model® of an
atom can be sum up with three postulates:

1. The electrons can move only in certain non-radiating
circular orbits called stationary states.

2. If E; and Ey are the initial and final energies of the
atom, the frequency of the emitted radiation during
a transition is given by

3. The angular momentum is quantized:

MeUpTn = Nh neN
where v,, and r, are the speed of the electron and
the radius of the orbit respectively in the state n.

Proposition 42 (Radii of Bohr orbits). The radius
r, of the n-th Bohr orbit of a monoelectronic atom with
atomic number Z is:

K2 a
2 . 2%
"mkzer "Nz

Tn =

where k is the Coulomb constant. ag = 0.0529 nm is called
first Bohr radius.

Proposition 43 (Energy levels). The total energy E,
of the n-th orbit of a monoelectronic atom with atomic
number Z is is:
2 Eo
E,=—-Z7

n2

(2)

7nﬁk284
2h?

where Ey = = 13.6 eV.

Proposition 44 (Rydberg-Ritz law). An electron that
goes from an energy level n; to a lower one ny < n; emits
a photon whose wavelength is:

1 k*mee! 1 1 1 1
=M pr( S =) o Rpz?— - —
A dweh? (nf2 nﬁ) n (nf2 nﬂ)

where Ry is the Rydberg constant.

Quantum theory of atoms

Definition 45 (Quantum numbers in spherical coor-
dinates). Consider an atom with a single electron. Then,
the potential energy for the electron depends only on the
radial component and so we can make a change of variable
to spherical coordinates (7,6, ¢)?. Hence, the independent
quantum numbers n,, n, and n, obtained from Cartesian
coordinates will become the quantum numbers n (associ-
ated with r), ¢ (associated with #) and m,'° (associated
with ¢), which in this case, are not independent. More
precisely we have:

e Principal quantum number: n =1,2,3,...

The energy, as seen in Fq. (2), is given by:

13.
B, = 72 3 62eV
n
e Orbital quantum number: £ =0,1,2,...,n—1

Moreover the magnitude ||L|| of the orbital angu-
lar momentum L is related to the orbital quantum
number ¢ by:

IL|l = Ve(£+ 1)k

e Magnetic quantum number: my = 0,+1,£2,... ££
Moreover the z component L, of the orbital angular
momentum L is given by the quantum condition

Lz = mgh

Therefore are n? degenerate states for the energy E,,. In
terms of wave function we can write

\Ijnfmg (I‘) - Rnf(r)nﬂw (I‘)

Definition 46 (Spin). An electron has a intrinsic orbital
angular momentum or simply spin S such that:

S|l = v/s(s + Dh

where s = i% is another quantum number to be consid-
ered in the wave function and it is called spin quantum
number. This fact result in 2n? possible states for the

energy FE, of an electron.

S, = sh

n £ Type of orbital my,

1 0 S 0

2 0 S 0

2 1 D -1,0,1

3 0 s 0

3 1 D -1,0,1

3 2 d -2,-1,0,1,2

4 0 s 0

4 1 D -1,0,1

4 2 d -2,-1,0,1,2

4 3 f -3,-2,-1,0,1,2,3
5 0 S 0

5 1 P -1,0,1

5 2 d -2,-1,0,1,2

5 3 f -3,-2,-1,0,1,2,3
5 4 g -4, -3, -2,-1,0,1,2,3,4

Table 1: Atomic orbitals in terms of quantum numbers 7,
£ and my. Moreover for each configuration we have two
possible values for the spin: —3 and 3.

8Bohr model only works for monoelectronic atoms, that is, atoms with only one electron.

9Here ¢ denotes the azimuthal angle.
10Sometimes for simplicity the subindex ¢ is omitted.



Polyelectronic atoms

Proposition 47 (Schrédinger equation). Consider an
atom with NV electrons. The Schréodinger equation be-
comes:

N N N
—h Ze? €2
=Y V=) +
21 ~ ~ Amegr; ] 4megri;

i>j
- ®(ry,...,ry) = E®(r1,...,rNn)

Mpuctn .

where p = " is the reduced mass of the elec-
mnuc + me

tron (me) and the nucleus (Mmpue), ri = x;i + yij + z:k
82 82 2

and V,;2 = — ——. This equation cannot be

solved exactly but we can find approximations to it if we
suppose:

o We neglect the interactions between electrons.

o We consider that the particles are identic and we
cannot distinguish them.

Definition 48 (Fermions). A fermion is a particle that
follows Fermi-Dirac statistics and has half integer spin.

Definition 49 (Boson). A boson is a particle that fol-
lows Bose-Einstein statistics and has integer spin.

Proposition 50 (Pauli exclusion principle). Two or
more identical fermions cannot occupy simultaneously the
same quantum state.

Proposition 51 (Symmetry of the wave function).
Consider two non-interacting identical particles. The
probability density of the two particles with wave func-
tion ¥(ry,rz) must be identical to that with wave function
U(rg,ry). Therefore,

[T(r1,r2)* = |[W(re,r1)]?

and hence ¥ has to be necessary symmetric (¥(ry,re) =
U(ry,ry)) or antisymmetric (U(ry,ro) = —U(ry,r)).
Moreover we have:

1. ® is symmetric if and only if the particles are bosons.
2. ® is antisymmetric if and only if the particles are
fermions.

Nuclear physics

Definition 52 (Atom). An atom X formed by Z protons
and N neutrons is denoted as %X where A := Z + N1
The number Z is called atomic number and the number
A, mass number.

Definition 53. Two nuclides are

o isotopes if they have the same Z but different NV and
A.

o isobars if they have the same N but different Z and
A.

o isotones if they have the same A but different Z and
N.

e isomers if they have the same Z, N and A. They
differ in the grouping structure.

Proposition 54 (Radii of nucleus). The stable nucleus
has approximately constant density and therefore the nu-
clear radius R can be approximated by the following for-
mula:

R = RyA'?

where Ry ~ 1.2 fm.

Proposition 55 (Nucleus mass). The mass of a nu-
cleus My,.(Z, A) of atomic number Z and mass number
A satisfies:

Mo (Z, A)® = Zmyc® + (A — Z)muc® — By(Z, A)

where Ey(Z, A) is the binding energy, that is, the energy
required to break up the nucleus into Z protons and A—Z
neutrons. If we take into account the mass of the electrons
on the atomic mass M,y (Z, A) we get:

Mot (2, A)c2 = My (Z, A)c2 + Zmec® — E.(Ze) =
~ ZMa(1H)E? + (A — Z)mnc® — By (Z, A)

where E.(Ze) is the electron binding energy and E.(Ze) <
Ew(Z, A) so it can be neglected, and M, (1H) is the mass
of hydrogen atom %H From this, we can define the mass
defect Am:

Am = My (Z,A) — A

where M, (Z, A) is expressed in u'2.

1fyH?

Average binding energy per nucleon (MeV)
N

Hl
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Figure 2: Binding energy curve

Proposition 56 (Semi-empirical mass formula). For
a nucleus of atomic number Z and mass number A, we
have:

Z(Z - 1)
Al/3
(27 — A)?
A

Eb(Z, A) = ClA — 62A2/3 — C3

— C4 +(5(Z7A)

1 Sometimes if the atom %X is well-known, we simply refer to it as 4X.

12Unified atomic mass unit.



where

—c5A™Y2 if N, Z are odd
§3(Z,A)=<0 if Ais odd
+c5A~Y2 if N, Z are even

empirically, it can be seen that ¢; ~ 15.56 MeV, ¢y
17.23 MeV, c3 =~ 0.697 MeV, ¢4 =~ 23.285 MeV and c¢;
12.00 MeV.

~
~
~
~

Definition 57 (Q value). The @ wvalue for a reaction is
defined as:

Q=(m; — mf)c2

where m; is the sum of the reactant masses and my is the
sum of the product masses. The decay will be spontaneous
if @ > 0 and in this case, the decay will have a net release
of energy.

Definition 58 (a-decay). An « particle is a nucleus of
‘QLHe7 which has a short range. The decay is:

IX = 47+«
In this case:

Q= {Mnuc (éX) — Moe (g‘:gy) — Myue (;‘He)] 2=

where M (‘QX) is the mass of the atom §X7 M e (‘gX)

is the mass of its nucleus (and the same for the atom Y),
Ky is the kinetic energy of the particle Y and K, is the
kinetic energy of the a particle. Moreover we have:

4 A—-4
Ky ~ — Ky~ ——
Y AQ A @
Definition 59 (8-decay).

1. 87 decay: n > p+e 41,
The decay:

72X = ;A +e + 7
Q factor'?:
Q = [Mat (éX) — Mat <Z+?Y>:| C2
2. BT decay: p>n+et +uv,
The decay:
X =, Y tet 40,
Q factor:

Q = [Ma (X) = Mt (z1Y) — 2mc] 2

13Since neutrino’s mass is around 2 eV, we can neglect it.

3. Electron capture: p+e~ = n+ 1,

The decay:
éX +e — Z??Y + 7,

Q factor:

Q= |:Mat (éX) — My (Z,’?Y)} ? - B,

where B, is the ionization energy at the shell n
where the electron is captured.

Definition 60 (y-decay). A « particle is a photon which
has long range. The decay is produced when the nucleus
goes from an excited state to a less excited state. The
decay is:

IX* = 9X 4y

Definition 61 (Radioactive activity). The radioactive
activity of a substance is defined as the number of de-
cays it has per unit of time. Its unit in the SI is the Bq
([Bq] = [s7]). The probability for a radionuclide to decay
per unit of time is constant and unique for each radionu-
clide. This constant A is called decay constant. Moreover
if N(t) is the number of radionuclide to decay at time ¢
and A(t) is the activity of the substance at time ¢, we have:

dN(t)
Alt) =AN({) = —
()= AN() = -3
And therefore:
N(t) = N()ei/\t A(t) = Aoei)\t

where Ny is the initial number of radionuclides and Ay =
ANy is the initial activity of the substance.

Definition 62 (Half-time). We define the half-time t, /5
as the time in which the number of radionuclide has re-
duced by half.
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Figure 3: Decay chain of Thorium or Thorium series cor-
responding to nuclei with A =4n, n € N.

Proposition 63 (Decay chain). Consider the decay
chain:

where the third nucleus is stable. Let N;(¢) be the number
of radionuclides of the substance i at time ¢, 4;(¢t) be the
activity of the substance i at time ¢ and \; be the decay

constance of the substance 4, all of this for ¢ = 1,2. Then,
if N1(0) = Ny and No(0) = N5(0) = 0, we have:

Nl(t) = Noeixlt Ng(t) = NOL (ef)‘lt — eiAzt)
A2 — M
Al(t) = N())\lei)\lt Ag(t) = Noﬂ (eiAlt — ef)""t)
A2 — A\

We may have three possible situations:

1. Secular equilibrium: A1 < Ag. This implies that

over short time (compared to the half-life time of

the substance 1),
e”‘lt ~1l = Ag(t) ~ No/\1(1 — e*)‘”)

2. Transient equilibrium: A1 < As.

As(t) A2 —(Aa—A)t
— 1— 2—A1
A A —N ( ¢ )

3. If Ay > Aq, there is no equilibrium.

Definition 64 (Nuclear reactions). A nuclear reaction
is a reaction of the form:

a+X—=>Y+b

It is sometimes abbreviated as X(a,b)Y. The @ value of
the reaction may behave in two ways:

1. Exothermic reaction (Q > 0): kinetic energy may be
released during the course of a reaction.

2. Endothermic reaction (Q < 0): kinetic energy may
have to be supplied for the reaction to take place.

Definition 65 (Nuclear fission). Nuclear fission is a
reaction in which the nucleus of an atom splits into two or
more smaller nuclei. Nuclear fissions are usually initialized
hitting a stable atom with a neutron, turning the atom ex-
cited. In fact, nuclear fissions involve a few neutrons which
play an important role. The reproduction factor k is the
number of neutrons produced from a nuclear fission.

e If k < 1, the reaction will stop itself.
e If £ =1, the reaction is self-sustained.
o If k> 1, the reaction can be uncontrolled.

Definition 66 (Nuclear reactors). There are mainly
two types of nuclear reactors:

1. BWR (Boiling Water Reactor):

Containment Structure

Containment Structure

14Because of that, in nuclear reactors there are control roads of some metal that absorbs neutrons. Therefore, if at any time k > 1, the

control rods are introduced causing a decrease of the value of k.



Definition 67 (Nuclear fusion). Nuclear fusion is a re-
action in which two or more atomic nuclei are combined
to form one or more different atomic nuclei and subatomic
particles (neutrons or protons)!®. The most interesting fu-
sion reactions are:

’H 4 *H — n + *He (Q = 3.3 MeV)
H+°H - p+°H (Q = 4.0 MeV)
H + 'H — 3He + v (Q = 5.49 MeV)
*H 4 *H — n + *He (Q =17.6 MeV)

Elementary particles

Definition 68 (Elementary particles). All the matter
is composed by 12 fermions (6 quarks and 6 leptons) and
all of these have an associated antiparticle. Quarks and
Leptons can interact with each other by exchanging Gauge
bosons which are carriers of the 4 fundamental forces.

Definition 69 (Antimatter). Each elementary particle
has an associated antiparticle which has the same proper-
ties as the initial particle but has different sign on all the
charges.

Definition 70 (Quark). A quark is a fermion with frac-
tional electric charge by 1/3. There are 6 types of quarks,
known as flavors: up u and down d (first generation);
charm c and strange s (second generation), and top t and
bottom b (third generation)6.

Definition 71 (Lepton). A lepton is a fermion which
does not undergo strong interaction. There are 6 types of
leptons, known as flavors: electron e~ and electron neu-
trino v, (first generation); muon p~ and muon neutrino
v, (second generation), and tau 7~ and tau neutrino v,
(third generation).

Definition 72 (Lepton number). Lepton number L is
a quantum number that is conserved in all interactions. It
is defined as:

L= Ny —nyg
where where n, is the number of leptons and n; is the
number of antileptons in a reaction. In addition to lepton

number, lepton family numbers are defined as:

e FElectron number L.: for the electron and electron
neutrino.

e Muon number L,: for the muon and muon neutrino.
o Tau number L,: for the tau and tau neutrino.

These numbers are also preserved during collisions.

L. L, L,
e +1 0 0
Ve +1 0 0
et -1 0 0
ve —1 0 0
w0 +1 0
Vy 0 +1 0
ut 0 -1 0
vy 0o -1 0
T 0 0 +1
vV 0 0 +1
T 0 0 -1
7 0 0 -1

Table 2: Lepton family numbers

Definition 73 (Hadron). A hadron is a subatomic par-
ticle made of two or three quarks held together by the
strong force. There are two types of hadrons:

e Baryons: made of three quarks.

e Mesons: made of two quarks.

Definition 74 (Color charge). The color chargel” is
a property of quarks and gluons (see Theorem 75) that
is related to the particles’ strong interactions. There are
three types of colors (red, green and blue) and three types
of anticolors (antired, antigreen and antiblue). This two
families of colors mixed together, or one color with its an-
ticolor, produces the color white or, equivalently, has a net
color charge of zero.

Definition 75 (Fundamental interactions). Funda-
mental interactions are characterized by the exchange of
bosons. The 4 fundamental interactions are:

o Electromagnetic interaction: Based on emission and
absorption of photons. The particles with which
it interacts have nonzero electric charge. This in-
teraction is described by quantum electrodynamics

(QED).

e Strong interaction: It is transported by gluons. The
particles with which it interacts have nonzero color
charge. This interaction is described by quantum
chromodynamics (QCD)!8.

o Weak interaction: It is transported by bosons W,
W~ and Z°. It modifies the flavour of a particle.

e Gravity: Te particles wit which it interacts have
nonzero mass. The carrier particle of this forces is
the graviton, which hasn’t been observed yet.

15Even that nuclear fusion is still being the energetic promise of the future, its production is very costly. Indeed, we have to put together
the nuclei in the way that the strong interaction overcome the electrostatic force, that is, put the nuclei together at a distance of ~ 10715 m.

16 An important fact of quarks is that they cannot be isolated due to the color confinement property (see definition Theorem 74).

17The color charge of quarks and gluons is completely unrelated to the everyday meaning of color.

18In particular, strong interaction is the responsible of maintaining the atomic nucleus unified: since protons have charge +e, they
experience an electric force that tends to push them apart, but at short range (~ 107'® m) the attractive nuclear force is strong enough

to overcome the electromagnetic force.



Interaction Relative intensity Boson
Strong 1 Gluon g
Electromagnetic 1072 Photon ~
Weak 1077 wt w- z°
Gravitational 10739 Graviton G

Table 3: Relative intensity of fundamental forces

Definition 76 (Grand Unified Theory). Electromag-
netic and weak forces join together in a unique electroweak
theory for energies > 100 GeV. This one join with strong
force in the Grand Unified Theory for energies ~ 10'° GeV.
And finally, the 4 interaction join together at energies
> 10%° GeV or distances ~ 10734 m.

Solids

Definition 77. A solid is crystalline if atoms form a reg-
ular and structured patron. A solid is amorphous if the
arrangement of atoms is not regular.

Proposition 78 (Classical interpretation of resistiv-
ity). Consider a metal of resistivity p with n. electrons
per unit of volume moving at an average speed of vgy.

Then:
mE vav

p= nee2\

where A = v,,7 is the mean free path of electrons between
collisions with the lattice ions and 7 is the average time
between these collisions'®

Proposition 79 (Quantum interpretation of resis-
tivity). Free electrons do not interact neither with ions
nor with themselves. Indeed they behave as a particles in
a gas (fermi gas). Moreover by Pauli exclusion principle,
there can only be two electrons in each energy state. At
T = 0 K the energy Ep of the last filled (or half-filled)
energy state is called Fermi energy:

(v)

where N is the number of free electrons and V is the vol-

3N
n%

h2
Er =

T 8me.

ume they occupy. That is, % is the density of free elec-
trons. The average energy E,, at T =0 K is:
3
E. = gEF

Definition 80. The Fermi factor f(FE) is defined as the
probability of a state being occupied. At T = 0 K we

have:
f(E):{ if £ < Ep

it B> FEp

If T # 0 K some electrons gain enough energy to level
up and therefore we should redefine Er in the following
way: energy in which the probability of its corresponding
state being occupied is 1/2. Therefore the Fermi factor
becomes:

J(E)

—T=0K
—T#0K

Er

E

Proposition 81 (Band Theory of Solids). When
many atoms are brought together to form a solid, the in-
dividual energy levels are split into bands of allowed en-
ergies. The splitting depends on the type of bonding and
the lattice separation. The highest energy band that con-
tains electrons is called the valence band (VB). The lowest
energy band that is not filled with electrons is called the
conduction band (CB).

g(f

Figure 4: Band of levels on a conductor, insulator and
semiconductor. In red there are the levels occupied by
electrons and in green the levels empty.

States of cB

energy

cB
CB

Band

Conductor Insulator Semiconductor

Conductor

In a conductor, the valence band is only partially
filled, so there are many available empty energy
states for excited electrons which can move freely
through these states.

In an insulator, the valence band is completely filled
and there is a large energy gap between it and the
next allowed band, the conduction band. Therefore,
the electrons can barely move.

In a semi-conductor, the energy gap between the
filled valence band and the empty conduction band
is small; so, at ordinary temperatures, an apprecia-
ble number of electrons are thermally excited into
the conduction band.

19We know that p o vay x VT but empirically it is observed that p oc T. The classical model is, therefore, inconsistent.
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Standard Model of Elementary Particles

Fermions

1st generation 2nd generation 3rd generation

Bosons

Gauge bosons Tensor bosons

mass | 2.2 MeV/c? 1.28 GeV/c* 173.1 GeV/c? 124.97 GeV/c? 0
charge 12/3 2/3 2/3 0 0
spin [11/2 ‘ 1/2 ‘ 1/2 ‘ o (g 2 .
up charm top higgs graviton*
) |47 MeVv/c? 96 MeV/c? 4.18 GeV/c? 0
X B-1/3 -1/3 -1/3 0
e N2 . 1/2 . 1/2 . 1
<
8 down strange bottom gluon
2.2 MeV/c? 1.28 GeV/c? 173.1 GeV/¢? 0
2/3 2/3 2/3 0
12 (o 2 12 fr 1
electron muon tau photon
4.7 MeV/c? 96 MeV/c? 4.18 GeV/c? 80.39 MeV/c? 91.19 GeV/c?
-1/3 —-1/3 ~1/3 +1 0
1/2 1/2 1/2
2 (v 2 (v R ' ‘ ' ‘
electron muon tau
. : . W boson Z boson
neutrino neutrino neutrino *hypothetical

2. | Heat transfer

Definition 82 (Heat). The heat is the transport of ther-
mal energy due to the temperature difference. The funda-
mental modes of heat transfer are: conduction, convection
and radiation.

Conduction

Definition 83 (Conduction). Thermal conduction is
the heat transfer produced by the contact of two object
at different temperatures in the absence of matter trans-
fer. Microscopically, energy is transferred throughout the
material due to collisions of particles and the movement
of electrons within the body.

Law 84 (Fourier’s law). The law of heat conduction
states that

Ve, = —AVT

where ®, is the heat flux density (energy transferred per
unit of surface and time) and A is the material’s thermal
conductivity (A = W-m~1 . K™1).

Proposition 85 (Heat equation). For a medium at a
temperature T'(r,t) we have:

or

A
= —AT =: aAT
ot @

pCs

where p is the density of the material; c;, its specific heat
capacity; A, its thermal conductivity, and « its thermal
diffusivity.

Law 86 (Fick’s law). The solute in a solvent at rest will
move from a region of high concentration to a region of low
concentration across a concentration gradient. Mathemat-
ically, if J is the diffusion flux; D, the diffusion coefficient,
and c¢, the concentration, then:

J=-DVc
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Proposition 87 (Diffusion equation). The diffusion
equation is:
dc

E:DAC

Proposition 88. Suppose that inside a material there is
a source of heat which generates an amount of heat ¢ per
unit of volume and time. Then:

= AAT +g
5 A +4q

pCs

where p is the density of the material; ¢y, its specific heat
capacity, and A, its thermal conductivity. For the case
of creating matter instead of energy and measuring the
solute ¢ of the solvent we have:

dc

g DAc+ f(c,t)

where D is the diffusion coefficient and f(c,t) is the func-
tion that measures the net solute created and destructed
per unit of volume and time.

Convection

Definition 89 (Convection). Thermal convection is the
heat transfer from one place to another due to the move-
ment of fluid.

Proposition 90 (Newton’s law of cooling). A body
subjected to a forced convection exchanges heat with its
surroundings as:

dgq
— = hA(T — T,

dt ( o)

where h is the heat transfer coefficient; A, the heat trans-
fer surface area; T, the temperature of the body on its
surface, and Tp, the temperature of the environment.



Radiation

Definition 91 (Radiation). Thermal radiation is the
emission of electromagnetic waves from all matter that
has a temperature greater than absolute zero. Moreover,
the power radiated from an object in a vacuum is:

P =coT*

where 0 < € < 1 is the emissivity of the object;o, the
Stefan-Boltzmann constant, and 7', the temperature of the
object.

3. | Thermodynamics

Basic definitions

Definition 92 (Thermodynamic system). A thermo-
dynamic system is a region of the universe confined by
walls. There are three types of systems:

e Open system: can exchange energy and matter with
its surroundings (made of permeable and diathermic
walls).

Closed system: can exchange energy with its sur-
roundings but not matter (made of impermeable and
diathermic walls).

Isolated system: can exchange neither energy nor
matter with its surroundings (made of impermeable
and adiabatic walls).

Definition 93. Variables which measure the macroscopic
measurable properties of the state of a system are called
state variables and can be of two types:

1. Extensive: are additive and scale the size of the sys-
tem. Examples of such variables are: mass, volume,
energy...

Intensive: do not depend on the system size or the
amount of material in the system. Examples of such
variables are: temperature, density, pressure...

Moreover, specific variables are those created from an ex-
tensive variable and divided by the volume, number of
moles, mass... Examples of such variables are: specific
volume, density, specific heat capacity...

Definition 94. A system is in

1. mechanical equilibrium if the net force acting on the
system is zero.

. thermal equilibrium if there is no net flow of thermal
energy inside it or between it and its surroundings.

chemical equilibrium if there are no chemical reac-
tions on the system.

. thermodynamical equilibrium if it is in mechanical,
thermal and chemical equilibrium simultaneously.

Definition 95. There are different types of equilibrium:

o Stable: after a slight disturbance, the system returns
to the equilibrium.
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Unstable: after a slight disturbance, the system get
away from the equilibrium.

Metastable: after a slight disturbance, the system
returns to the equilibrium but if the disturbance is
strong enough the system may get away from the
equilibrium.

Neutral: a slight disturbance does not displace the
system from the equilibrium.

[ ]
g

Stable Unstable Metastable Neutral
Definition 96 (Thermodynamic process). A thermo-
dynamic process is the passage between two states of equi-

librium. We distinguish the following types of processes:

e Quasi-static process: the system passes through
states infinitely close to the equilibrium.

— Reversible process: the system can be inverted
in each infinitesimally step by changing the sign
of the external parameters.

— Irreversible process: the system cannot be in-
verted in each infinitesimally step by changing
the sign of the external parameters.

e Non-quasi-static process: the system passes through
non-equilibrium states.

Zeroth law of thermodynamics

Definition 97. We say that two systems are in thermal
contact if they are separated by a diathermic wall.

Law 98 (Zeroth law of thermodynamics). If two sys-
tems are both in thermal equilibrium with a third system,
then they are in thermal equilibrium with each other.

Corollary 99. Being in thermal equilibrium is an equiv-
alence relation.

Definition 100. The empirical temperature is a common
state variable between the systems that are in thermal
equilibrium.

Proposition 101. The conversions between Celsius,

Fahrenheit and Kelvin scales are:

5
9

T(°C) = 2(T(°F) —32)  T(°C) = T(°K) — 273.15

Proposition 102. Let z = z(x, y) be a function. Then:

B g @60

9z
dy

1
Oy

z

0z
ox

0z

92\ (y
dy

or

-

Yy



Definition 103 (Thermal expansion). The volumetric
coefficient of thermal expansion is given by

e L(OV
VT v \or
P
where the subscript p indicates that the pressure is held

constant during the process.

Definition 104 (Compressibility). Isothermal com-
pressibility is defined as
(5).

where the subscript T indicates that the temperature is
held constant during the process.

1

Vv

o
dp

KT

Definition 105 (Thermal pressure). The thermal
pressure coefficient is defined as:

(3

aT
where the subscript V' indicates that the volume is held
constant during the process.

(67

v KT

‘Work

Definition 106. The work done by a hydrostatic system

18:
Vi

dW = —pdV — W:—/pdV
Vi

where V; and V; are the initial and final volumes of the
system, respectively.

Lemma 107 (Sign convention of work). Given a sys-
tem we have:

e W > 0, if the surroundings of the system do work
on the system.

e W <0, if the system do work on its surroundings.

Proposition 108. Depending on the type of process, we
get different values for the total work done on the process:

o Isochoric process (V = const.):

dV=0 = W =0

o Isobaric process (p = const.):
W = —pAV

where p is the pressure of the system and AV is
the difference of volume between the initial and fi-
nal states.

Isothermal process (T' = const.):

Vi

W=-nRIlIn|—
()
where n is the number of moles of present gas, R is
the ideal gas constant, T' is the temperature of the
system and V; and V; are the initial and final volumes

of the system, respectively.

13

First law of thermodynamics

Law 109 (First law of thermodynamics in isolated
systems). In an isolated system, the work done by a pro-
cess between two arbitrary states is independent of that
process and depends only on the initial and final states.

Corollary 110. We define the internal energy Ug of the
state B as:

ad

U = UAJFW;L;CLB = AU = WA—>B

where U, is the internal energy of the state A, and W34, 5
is the work done to go form A to B through an adiabatic
process.

Law 111 (First law of thermodynamics in closed
systems). In a closed system, the work done to go from
an initial state to a final state does depend on the process
followed and not only on the initial and final states.

Corollary 112. In a closed system, we define the heat
supplied to the system @) in a process between two states
A and B as:

QA—)B =AU — Wasn

Or in differential form:
0Q =dU — oW
where § is not exactly the differential of a function.

Lemma 113 (Sign convention of heat). Given a sys-
tem we have:

e () > 0, if the heat is added to the system.
e @ <0, if the heat is rejected from the system.

Definition 114. Relating the heat capacity of a sub-
stance we have:
dQx

Cx =7

where the subscript X indicates that the variable X is
held constant during the expansion.

Definition 115. Latent heat is the amount of heat re-
quired to completely change the phase of a kilogram of a
substance.

Definition 116 (Enthalpy). We define the enthalpy H
of a system as:
H=U+pV

where U is the internal energy, p is the pressure and V is
the volume.

Proposition 117. Relating the heat capacities Cy and
C) holding constant the volume and the pressure, respec-

R
), 1(%),

U
T

o
oT

p =

And in general:

ov

dv

CPZCV+|:( ar



Proposition 118 (Reversible adiabatic equation for
an ideal gas). The equation for an ideal gas undergoing
a reversible adiabatic process is:

T
AU + pdV =0 — ney dT + %dV:O

pV™ = const.
V7T = const.

p! =T = const.

=

Second law of thermodynamics

Law 119 (Second law of thermodynamics). No sys-
tem can absorb heat from a single reservoir and convert
it entirely into work without additional net changes in the
system or its surroundings.

Definition 120. A heat engine is a cyclic device whose
purpose is to convert as much heat into work as possi-
ble. Heat engines contain a working substance (water in
a steam engine) that absorbs a quantity of heat Qy, (hot)
from a high temperature reservoir, does work W on its
surroundings, and releases heat Q. (cool) as it returns to
its initial state. Its efficiency 7 is given by:

W, Qe
Qu Qn

Definition 121. A refrigerator engine absorbs heat Q.
(cold) from the interior of a refrigerator and releases heat
Q@1 (hot) to the surroundings. This process requires work
W to be done on the refrigerator. Its efficiency 7 is given

by:
_ Qe
w

Definition 122. A heat pump is a refrigerator with a dif-
ferent objective. It absorbs heat Q. from the outside (cold
reservoir) and releases heat @y, into the object or region
of interest. This process requires work W to be done on
the heat pump. Its efficiency 7 is given by:

_ @
W
L
@n
~
€g9_)w égg(_w
L

Qe Qe
~
(o] [t |

Figure 6: Heat pump

w
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]
Qn

Figure 5: Heat engine

Definition 123 (Carnot cylce). Carnot cycle is a re-
versible thermodynamic process that consists of the fol-
lowing steps:

. Isothermal expansion
. Adiabatic expansion
. Isothermal compression

4. Adiabatic compression

The efficiency n¢ of Carnot cycle is:

1c

:1—
Tic T

where T}, and T, are the temperatures at the isothermal
processes (see 77). Moreover it is satisfied that:

Qe _ T.
Qn Ty

Adiabatic

. Isothermal
compression

expansion

Isotherm
S~<_ T

Adiabatic

expansion

Isotherm
Tsothermal

compression

Figure 7: Carnot cycle

Theorem 124 (Carnot’s theorem). All heat engines
between two heat reservoirs are less or equally efficient
than a Carnot heat engine operating between the same
reservoirs.

Corollary 125. All reversible machines working between
two heat reservoirs has the same efficiency.

Proposition 126. Consider a machine that realizes a
Carnot cycle. Let T7 and Ty be the temperatures of the
two reservoirs and 71y, and 75y, the temperatures of the
machine when it is in touch with reservoirs of tempera-
tures 77 and T5, respectively. Then, the power of this
cycle? is:

(Tl — Tl,w)(TQ,W - T2)(T1,w - TQ,W)
T1 (T1 — Tl,w) + TQ(TQ,W - T2)

P=A\

where A is the material’s conductivity. The efficiency when
the power is maximum is:

7721—\/§<770
Ty

20In a reversible cycle the efficiency is maximum but because of it is extremely slow the power is null.
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Entropy

Theorem 127 (Clausius theorem). For a thermody-
namic system exchanging heat with external reservoirs and
undergoing a thermodynamic cycle we have:

P

where d(Q) is the heat exchange with a reservoir at a tem-
perature T'. Moreover if the cycle is reversible, we have:

yg 5%@

Definition 128 (Entropy). There exists a new state
function, called entropy S, such that:

<0

=0

B
S(B)—S(A):/(SQ% or dszm%
A

Law 129 (Second law of thermodynamics in terms
of entropy). In an isolated system, the entropy cannot
decrease: AS > 0. Moreover:

ASumiverse = ASsystem + ASsurroundings > 0
Proposition 130. Entropy in different processes:

e Cyclic process:
AS =0

e Reversible adiabatic process:

AS =0

e Reversible isothermal process at temperature 7'

_Q
AS_T

where () is the heat exchanged on the process.

e Thermal contact between two reservoirs at temper-
atures T and T5:

1 1
AS = — - —
S=e (Tz T1>
where (@) is the heat exchanged on the process.

e Change on temperature at constant volume:

where T} is the initial temperature and T5 the final
temperature.
e Change on temperature at constant pressure:
T
AS=C,ln —
p Tl

where T} is the initial temperature and 75 the final
temperature.

o Free adiabatic expansion of an ideal gas:

AS = nRTln%

where V7 is the initial volume and V5 the final vol-
ume.

e Arbitrary process of an ideal gas:

Va b
AS = nRTan1 + ncp In ﬁ

Definition 131. We define the Helmholtz free energy F
as:

F=U-TS
At equilibrium, Helmholtz free energy is minimized.
Definition 132. We define the Gibbs free energy G as:
G=H-TS

Proposition 133. 2nd law of thermodynamics applied to
non-isolated systems:

AG = AU + pAV — TAS <0

Proposition 134. For a non-isolated system, we have
different criteria to know whether or not a the system is
spontaneous.

e If T p = const., then AG < 0.

e If T,V = const., then AF < 0.

e If S, p=const., then AH < 0.

e If S,V = const., then AU < 0.

e If U,V = const., then AS > 0.
Proposition 135. The maximum amount of work that
the system can perform in a thermodynamic process in

which temperature is held constant is |AF.

Proposition 136 (Gibbs equation). For a closed sys-
tem we have:

dU =TdS — pdV
For an open system we have:
dU =TdS —pdV + pdN

where p is the chemical potential and N is the number of
particles in the system.
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