
Mechanics and special relativity

1. | Mechanics
Kinematics
Definition 1. The equation of movement of any particle
is of the form:

r(t) = x(t)ex + y(t)ey + z(t)ez

where x(t), y(t), z(t) are the movements equations of the
particle along x-, y- and z-axis, respectively.

Definition 2. Consider a particle with movement equa-
tion r(t). Then, the average velocity over any time interval
∆t = t2 − t1 is:

vavg = ∆r(t)
∆t

= r(t2) − r(t1)
t2 − t1

If we take the limit when ∆t → 0 (or t2 → t1), we get the
instantaneous velocity at time t1:

v(t1) = lim
∆t→0

∆r(t)
∆t

= ṙ(t1) = ẋ(t1)ex + ẏ(t1)ey + ż(t1)ez

Definition 3. The speed of a particle moving at a velocity
v(t) is:

v(t) = ∥v(t)∥

Definition 4. Consider a particle moving at a velocity
v(t). Then the average acceleration over any time interval
∆t = t2 − t1 is:

aavg = ∆v(t)
∆t

= v(t2) − v(t1)
t2 − t1

If we take the limit when ∆t → 0 (or t2 → t1), we get the
instantaneous acceleration at time t1:

a(t1) = lim
∆t→0

∆v(t)
∆t

= r̈(t1) = ẍ(t1)ex + ÿ(t1)ey + z̈(t1)ez

Proposition 5 (Uniform linear motion). Consider a
particle moving at a constant speed v along a straight line.
If at time t = 0 it is in the position x0, then:

x(t) = x0 + vt

Proposition 6 (Accelerated linear motion). Con-
sider a particle moving at a constant acceleration a along
a straight line. If at time t = 0 it is in the position x0 with
velocity v0, then:

ẋ(t) = v0 + at x(t) = x0 + v0t + 1
2at2

Definition 7. Suppose a particle is at Cartesian coordi-
nates (x, y) and at polar coordinates (r, φ). Then, polar
unit vectors are defined as:

er = cos φex + sin φey

eφ = − sin φex + cos φey

Definition 8. The equations of the circular movement
are the following:

r(t) = rer ṙ(t) = rφ̇(t)eφ r̈(t) = rφ̈(t)eφ − rφ̇(t)2er

where we have supposed that r is constant. We define
the angular velocity ω(t) as ω(t) := φ̇(t) and the angu-
lar acceleration α(t) as α(t) := φ̈(t). The first term of
r̈(t) is called tangential acceleration and its magnitude is
at := rα. The second term is called normal acceleration
and its magnitude is an := rω2.

Definition 9. Consider a particle moving along the tra-
jectory r(t). We define Frenet vectors as:

1. First Frenet vector: e1(t) = ṙ(t)
∥ṙ(t)∥

2. Second Frenet vector: e2(t) = ė1(t)
∥ė1(t)∥

Note that the first vector is tangent to the trajectory at
each point and the second one is normal to the trajectory
at each point.
From this definition we have:

ṙ(t) = v(t)e1 r̈(t) = at(t)e1 + an(t)e2(t)

We also define the curvature κ(t) and radius of curvature
R(t) as:

1
κ(t) = R(t) := ∥ṙ(t)∥

∥ė1(t)∥
Finally, the normal acceleration is:

an(t) = v(t)2

R(t)

Proposition 10 (Curvature). Consider a particle mov-
ing along a two-dimensional trajectory and let ∆φ be the
angle the trajectory has curved when traveling a distance
∆s. Then the average curvature along ∆s is:

κavg = ∆φ

∆s

If we take the limit when ∆s → 0 we have:

κ = lim
∆s→0

∆φ

∆s
= dφ

ds

Proposition 11 (Arc length). The total distance trav-
eled by a particle moving along a curve r(t) between the
instants t1 and t2 is:

t2ˆ

t1

∥ṙ(t)∥ dt

Proposition 12 (Projectile motion). The equations of
a projectile motion like the one in Fig. 1 are:

x(t) = x0 + v0 cos θt y(t) = y0 + v0 sin θt − 1
2gt2

vx(t) = v0 cos θ vy(t) = v0 sin θ − gt
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Figure 1

Dynamics

Law 13 (Newton’s laws).

1. An object at rest will stay at rest and an object in
motion will stay in motion unless acted on by a net
external force. That is:∑

F = 0 ⇐⇒ dv
dt

= 0

2. The rate of change of momentum of a body over time
is directly proportional to the force applied, and oc-
curs in the same direction as the applied force. That
is:

F = dp
dt

3. If one object A exerts a force FA on a second ob-
ject B, then B simultaneously exerts a force FB on
A and the two forces are equal in magnitude and
opposite in direction:

FA = −FB

Proposition 14 (Gravity force). Any two object with
mass m1 and m2 exerts an attracting force called gravity:

F21 = −G
m1m2

|r12|3
r12

where F21 is the force applied on object 2 exerted by ob-
ject 1, r12 is the vector distance from object 1 to object
2.

Proposition 15 (Elastic force). Consider an object at-
tached to a string of natural length x0 as shown in the
Fig. 2.

x0x

F

Figure 2

If we displace the object a distance of x from its equilib-
rium position, the resulting elastic force is:

F = −kx

where k is the spring constant. Moreover, ignoring the
friction, the mass starts to oscillate and this oscillation
have the following equations:

x(t) = A cos(ωt + ϕ)
ẋ(t) = −ωA sin(ωt + ϕ)

ẍ(t) = −ω2A cos(ωt + ϕ) = −ω2x(t)

ω =
√

k

m
T = 2π

ω
ν = 1

T

where A is the amplitude, ϕ is the initial phase, ω is the
angular frequency, T is the period and ν is the frequency.

Proposition 16. Consider an object on a surface that un-
dergo a normal force FN and it is pulled by a net force of
magnitude F . Then the magnitude of the frictional force
is:

Ff =
{

F if F ≤ µsFN

µkFN if F > µsFN

where µs is the static coefficient of friction and µk is the
kinetic coefficient of friction.

Proposition 17 (Inertial forces). Consider two gen-
eral reference frames R and R′ (separated by R(t)) and
suppose that we observe a particle of mass m at position
r(t) from R and at position r′(t) from R′, as shown in the
figure:

R

R′

x

y

z

x′

y′

z′

R(t)

r(t)
r′(t)

Figure 3

Then for a general R(t) we have r′(t) = r(t) − R(t) and
therefore r̈′(t) = r̈(t) − R̈(t). If we assume that R is iner-
tial, then

F(t) − mR̈(t) = mr̈′(t)

If R′ is not inertial, Newton’s second law is not satisfied.
In this case, we denote the term −mR̈(t) as an inertial
force or fictitious force: Finer(t) := −mR̈(t)1.

Proposition 18 (Galilean transformation). Consider
two reference frames R and R′. Using the previous nota-
tion, suppose R(t) = V tex. Then:

x′ = x − V t v′
x = vx − V

y′ = y v′
y = vy

z′ = z v′
z = vz

t′ = t

1Note that if R′ is inertial, Newton’s second law is still satisfied because R(t) = Vt and therefore −mR̈(t) = 0.
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Statics

Definition 19 (Linear momentum of a particle).
Consider a particle of mass m moving at a velocity of v.
We define its linear momentum as:

p = mv

Proposition 20 (Linear momentum of a system of
particles). Consider a system of N particles which inter-
act with themselves (internal forces) and also with exter-
nal forces. The linear momentum of the system is:

P =
N∑

a=1
pa

Moreover if the net external force is Fext we have:

dP
dt

= Fext

Proposition 21 (Center of masses). The center of
masses (CM) of a system of N particles is:

R = 1
M

N∑
i=1

miri

where M =
N∑

i=1
mi. Differentiating the last equality we

get
MṘ = P MR̈ = Ṗ = Fext

If the mass distribution is continuous with the density ρ(r)
within a solid Ω, the center of mass is:

R = 1
M

ˆ

Ω

ρ(r)r dV

where M =
ˆ

Ω

ρ(r) dV .

Proposition 22 (Angular momentum). Consider a
particle with linear momentum p situated at position r
with respect to the origin O. We define its angular mo-
mentum as:

L = r × p

The angular momentum of a system of N particles is:

Lsys =
N∑

i=1
Li

Proposition 23 (Torque). Consider a particle at posi-
tion r with respect to the origin O and let F be a force
acting on the particle. We define the torque as:

τ = r × F

The torque of a system of N particles is:

τ ext =
N∑

i=1
τ i

Proposition 24. Relating the torque and angular mo-
mentum of a particle and a system of particles we have:

L̇ = τ L̇sys = τ ext

Therefore, if τ ext = 0, then Lsys = const.

Definition 25 (Mechanical equilibrium). The condi-
tions of mechanical equilibrium are:

Fext = 0 and τ ext = 0

Work and energy
Definition 26 (Work). The work of a constant force
F acting on a particle that moves throughout a straight
distance ∆r is:

W = F · ∆r
If the force is not necessary constant and the particle
moves along a curve c, we have:

W =
ˆ

c

F · dr

Definition 27 (Power). The power is defined as

P = dW

dt

If ∆W is the amount of work performed during a period
of time of duration ∆t, the average power is:

P = ∆W

∆t

From the first definition we can deduce the following gen-
eral formula:

P = F · v

Definition 28 (Kinetic energy). The kinetic energy of
a particle of mass m moving at a speed v is:

K = 1
2mv2

Theorem 29. The total work done on a particle is:

W = ∆K

Definition 30 (Conservative forces). A force is con-
servative if for any path c connecting points A and B, the
work necessary to move a particle from A to B does not
depend on c.

Proposition 31. The work done by a conservative force
can be expressed as a variation of a function called poten-
tial energy.

Proposition 32 (Potential energy). If a force F is con-
servative, we define the potential energy as:

U(r) = −
rˆ

r0

F · dr

where r0 is a reference point and can be chosen arbitrarily.
It can be easily seen that:

W = −∆U
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Proposition 33 (Mechanical energy). The mechani-
cal energy of a particle (with kinetic energy K) subjected
to a conservative force of potential energy U is:

E = K + U

Theorem 34 (Conservation of mechanical energy).
For a particle subjected to a conservative force we have:

∆E = 0

That is, E is constant. If there are non-conservative forces
acting on the particle we have:

∆E = Wnc

where Wnc is the work done by non-conservative forces.

Proposition 35 (Examples of potential energies).

1. Elastic potential energy of a spring:

U = 1
2kx2

where x is the distance the spring has been stretched.

2. Gravitational potential energy of a solid of mass m:

U = −GMT m

r

where MT is the Earth mass, r is the distance form
the center of the earth to the position of the solid
and G is the gravitational constant. Note that if
r = RT + h, h > 0 and r

RT
= 1 + h

RT
≈ 1, then:

U = mgh

where RT is the radius of earth and g is the surface
gravity.

Rotation
Definition 36. Consider a system of N particles that spin
around a reference axis at an angular velocity ω. The mo-
ment of inertia I with respect to the axis is:

I =
N∑

i=1
miri

2

where mi is the mass of the i-th particle and ri is the
distance between that particle and the axis. Moreover we
have:

Lsys = Iω

Proposition 37. For a rigid body of moment of inertia I
that spins around a reference axis at an angular velocity
ω we have:

τ ext = Iω̇ = Iα

Proposition 38. Consider a system of particles whose
CM is at a distance R(t) from a fixed point O. If P is the
linear momentum of the CM, we have:

LO = LCM + R × P

where LO is the angular momentum of the system with re-
spect to the point O and LCM is the angular momentum
of the system with respect to the CM. Moreover if Fext is
the total external force applied onto the system, τ O,ext is
the torque done by the forces with respect to the point O
and τ CM,ext is the torque done by the forces with respect
to the CM, we have:

τ O,ext = τ CM,ext + R × Fext

Finally, we deduce:

L̇CM = τ CM,ext

Proposition 39. Consider a system of particles with to-
tal mass M . Suppose the moment of inertia of the system
with respect to the CM is ICM and that the speed of the
CM is V . If the angular velocity of the system around the
CM is ω, the kinetic energy of rotation will be:

K = 1
2MV 2 + 1

2ICMω2

Theorem 40 (Parallel axis theorem). Consider a
body of mass m that is rotating around an axis that passes
through the body’s center of mass. Let ICM be the mo-
ment of inertia with respect of that axis. Suppose there
is another axis parallel to the previous one and separated
each other a distance of d. Then, the moment of inertia
of the body with respect to this latter axis I will be:

I = ICM + md2

2. | Special relativity
Definition 41. A inertial frame of reference is a frame of
reference in which a particle remains at rest or in uniform
linear motion.

Principle 42 (First postulate). The laws of physics
take the same form in all inertial frames of reference.

Principle 43 (Second postulate). The speed of light,
c, is a constant, independent of the relative motion of the
source.

Definition 44 (Lorentz factor). For an object moving
at speed v, Lorentz factor is defined as:

γ = 1√
1 − β2

where β = v/c.

Proposition 45 (Time dilation). Consider two frames
of reference in uniform relative motion with velocity v such
that one of them has a clock. If ∆t0 is the time interval
between two events made in the same location and mea-
sured in the frame in which the clock is at rest (proper
time), then the time measured by the other frame is:

∆t = γ∆t0
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Proposition 46 (Length contraction). Consider two
frames of reference in uniform relative motion with veloc-
ity v such that one of them has an object. If L0 is length
of the object measured instantaneously in the frame in
which the object is at rest (proper length), then the length
measured by the other frame is:

L = L0

γ

Proposition 47 (Lorentz transformations). Consider
coordinates (x, y, z, t) and (x′, y′, z′, t′) of a single arbi-
trary event measured in two coordinate systems S and
S′, in uniform relative motion (S′ is moving at velocity
v = (v, 0, 0) with respect to S) in their common x and x′

directions and with their spatial origins coinciding at time
t = t′ = 0. Then:

x′ = γ(x − βct) x = γ(x′ + βct′)
y′ = y y = y′

z′ = z z = z′

ct′ = γ(ct − βx) ct = γ(ct′ + βx′)

Proposition 48 (Lorentz transformations of veloc-
ities). In a situation similar to the previous one, if an
object is moving at a velocity u = (ux, uy, uz) in S and
u′ = (u′

x, u′
y, u′

z) in S′, we have:

u′
x = ux − v

1 − uxv/c2 ux = u′
x + v

1 + u′
xv/c2

u′
y = uy

γ (1 − uxv/c2) uy =
u′

y

γ (1 + uxv/c2)

u′
z = uz

γ (1 − uxv/c2) uz = u′
z

γ (1 + uxv/c2)

Proposition 49 (Matrix form of Lorentz transfor-
mations). We can write the Lorentz transformations as:(

x′

ct′

)
=

(
γ −βγ

−βγ γ

) (
x
ct

)
If

Λ :=
(

γ −βγ
−βγ γ

)
, then Λ−1 =

(
γ βγ

βγ γ

)
and we obtain the inverse transformations.

Proposition 50 (Lorentz invariant). The factor s2,
defined as follows, is invariant in any inertial frame of ref-
erence.

s2 = c2t2 − x2 − y2 − z2

Proposition 51 (Types of events). There are three
types of events: timelike, lightlike and spacelike.

• s2 > 0 =⇒ timelike

• s2 = 0 =⇒ lightlike

• s2 < 0 =⇒ spacelike

Timelike and lightlike events are in causal relation with
the origin (that is, it is possible to send a light signal from
the origin to the point or vice versa), while spacelike events
are not.

x

y

ct

Timelike region

Timelike region

Lightlike region

Spacelike region

Past

Present

Future

Figure 4: Minkowski diagram

Proposition 52 (Relativistic Doppler effect). Sup-
pose a frame of reference where the receiver is at rest and
the source is moving at speed β forming an angle ϕ with
the light direction (measured in receiver frame). Then:

νR = νS

γ(1 − β cos ϕ) (1)

λR = γλS(1 − β cos ϕ) (2)

where νS is the frequency measured by the source and νR

is the frequency measured by the receiver, and analogously
with wavelengths λS and λR.
Relation between the angles ϕ and ϕ′, where ϕ′ is the an-
gle between the velocity and the light direction measured
in source frame:

tan ϕ′

2 =

√
1 + β

1 − β
tan ϕ

2

R

S

β
θ

ϕ

x

y

Figure 5: General case of Doppler effect

Corollary 53. There are three important cases to con-
sider:

• The source moves away, that is making ϕ = π in
Eq. (1) (Redshift):

νR = νS

√
1 − β

1 + β

• The source gets close, that is making ϕ = 0 in Eq. (1)
(Blueshift):

νR = νS

√
1 + β

1 − β
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• The source moves transversely, that is making ϕ =
π/2 in Eq. (1):

νR = νS/γ

Proposition 54 (Relativistic mass). If m0 is the mass
of an object at rest, then the mass of an object at a velocity
β is:

m = γm0

The mass m0 is invariant.

Proposition 55 (Relativistic momentum). The rela-
tivistic momentum for a particle with mass at rest m0 and
moving at a velocity of v is given by:

p = γm0v

Proposition 56 (Relativistic energy). The relativistic
energy of a particle is:

E = mc2 = γm0c2

On the other hand, E = K +m0c2, where K is the kinetic
energy of a particle and m0c2 its rest energy. Moreover
we can express the energy of a particle in terms of its
momentum:

E = mc2 =
√

p2c2 + m2
0c4

Proposition 57 (Photon energy and momentum).
For a photon of frequency ν, energy E and linear momen-
tum p, we have:

E = hν p = hν

c

Proposition 58 (Lorentz transformations of energy
and momentum). Consider a particle that have energy
E and momentum p = (px, py, pz) in a frame of reference
S and have energy E′ and momentum p′ = (p′

x, p′
y, p′

z) in
frame of reference S′. These frames are in uniform relative
motion (S′ is moving at velocity v = (v, 0, 0) with respect
to S) and their spatial origins coincide at time t = t′ = 0.
Then:

E′ = γ(E − βcpx) E = γ(E′ + βcp′
x)

cp′
x = γ(cpx − βE) cpx = γ(cp′

x + βE′)
p′

y = py py = p′
y

p′
z = pz pz = p′

z

Proposition 59 (Compton scattering). Consider a
photon with wavelength λ colliding with a particle at rest
of mass m0 (usually an electron). As a result of the col-
lision, the photon energy decrease and therefore its wave-
length increase (let’s say the scattered photon has wave-
length λ′). If the scattered photon is moving at an angle
θ with respect to initial direction, we have:

λ′ − λ = h

m0c
(1 − cos θ)

λ

λ′

m0

θ

Figure 6: Compton scattering

3. | Fluids
Definition 60. A fluid is a substance that continually
flows under an applied external force.

Definition 61. The viscosity of a fluid is a measure of its
resistance to deformation at a given rate. We say a fluid
is ideal if we don’t consider viscosity.

Proposition 62 (Density). The density of a fluid of
mass m that occupies a volume V is:

ρ = m

V

The density depends on temperature and pressure2.

Definition 63. A fluid is said to be incompressible if its
density doesn’t varies with the pressure.

Proposition 64 (Pressure). Consider a point x and a
small sphere centered at x. Then, the pressure p(x) at
point x is:

p(x) =
∑

FN

S

where
∑

FN is the sum of normal forces and S is the
surface which the forces are applied to. The SI unit of
pressure is the Pascal: 1 Pa = 1 N/m2.

Proposition 65 (Hydrostatic pressure). Consider a
static fluid with constant density ρ and let p0 be the pres-
sure on its surface. Then, the pressure p on a depth h
is

p = p0 + ρgh

Proposition 66 (Pascal’s principle). Any pressure ap-
plied to the surface of a fluid is transmitted uniformly
throughout the fluid in all directions, in such a way that
initial variations in pressure are not changed.

p1 = F1

S1
= F2

S2
= p2

Proposition 67 (Archimedes’ principle). Any object
(of mass m), totally or partially immersed in a fluid of
density ρ, is buoyed up by a force equal to the weight of
the fluid displaced by the object, that is:

FB := ρgVdis

where FE is called the buoyancy and Vdis is the volume of
the liquid displaced3.

2This variation is typically small for solids and liquids but much greater for gases.
3Note that if FB − mg > 0, the object rises to the surface of the liquid; if FB − mg < 0, the object sinks, and if FB − mg = 0, the

object is neutrally buoyant, that is, it remains in place without either rising or sinking.
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Definition 68. We define the discharge of a fluid as:

Q = Sv

where S is the cross-sectional area of the portion of the
channel occupied by the flow and v is the average flow
velocity. If the velocity is not constant, then:

Q =
ˆ

S

v · dS

Proposition 69 (Continuity equation). Consider an
incompressible fluid moving throughout a channel. Then,
the volume per unit of time is conserved, that is, the dis-
charge is conserved. Mathematically:

Q1 = S1v1 = S2v2 = Q2

Definition 70. Laminar flow is a fluid motion that oc-
curs when a fluid flows in parallel layers, with no disrup-
tion between those layers. Turbulent flow is a fluid motion
characterized by chaotic changes in pressure and flow ve-
locity.

Laminar flow Turbulent flow

Figure 7

Proposition 71 (Bernolli’s principle). Consider an in-
compressible and ideal fluid of density ρ with steady lam-
inar flow. Then:

p + ρgh + 1
2ρv2 = const.

where p is the pressure at a point on a streamline; h, the
elevation of the point from a reference frame, and v, the
fluid flow speed at the chosen point.

Proposition 72 (Lift force). If the air has density ρ and
an object of cross-sectional area S is moving at a velocity
of v relative to the air, then the lift force is:

FL = 1
2CLρSv2

where CL is the lift coefficient. From that we deduce that
the minimum velocity for lifting is:

FL = mg =⇒ vmin =
√

2mg

CLρS

Proposition 73 (Viscosity). Consider a fluid trapped
between two plates of area S, one fixed and the other one
in parallel motion at constant speed v. If we suppose a
laminar flow, each layer of fluid moves faster than the one
just below it and so this creates a friction force resisting

their relative motion. An external force F is therefore re-
quired in order to keep the top plate moving at constant
speed. This force is given by:

F = η
vS

z

where z is the separation between the plates and η is the
viscosity of the fluid ([η] = Pa · s).

v F

S

z

Figure 8
Proposition 74 (Velocity of a fluid in a channel).
Consider a fluid with viscosity η in laminar flow so that
the layer in contact with the wall of the channel (of ra-
dius r) is at rest. Let p1 be the pressure at one point
of the channel and p2 be the pressure at another point
separated a distance L along the x-axis from the previous
point. Then, the speed of each layer of fluid at a distance
x from the center of the channel is:

v(y) = p1 − p2

4ηL
(r2 − y2)

The average speed and maximal speed of the fluid are:

vavg = p1 − p2

8ηL
r2 vmax = p1 − p2

4ηL
r2 (3)

Proposition 75 (Poiseuille’s law). In conditions of
Eq. (3), we have:

Q = Svavg = π

8η

p1 − p2

L
r4 =⇒ ∆p = 8η

π

L

r4 Q

If we denote Rf := 8η

π

L

r4 the hydrodynamic resistance,
we can write Poiseuille’s law as follows:

∆p = Rf Q

which is an analogy of Ohm’s law4.
Proposition 76 (Resistance in fluids). Consider n
channels each of resistance Ri. The total resistance will
be:

• Connected in series:

RT =
n∑

i=1
Ri

• Connected in parallel:

1
RT

=
n∑

i=1

1
Ri

Proposition 77 (Dissipated power). Consider a fluid
that passes throughout a channel of resistance Rf . If the
discharge of the fluid is Q in a section where the pressure
difference is ∆p, the dissipated power will be:

P = ∆pQ = Rf Q2

4In that case, Rf would play the role of electric resistance; Q, the role of intensity of the current, and ∆p, the role of electric potential
difference.

7



Proposition 78 (Drag forces). An object moving at a
velocity v in a fluid of density ρ and viscosity η creates
drag forces:

• For low speeds and high viscosity, viscous forces pre-
dominate:

F = kηvr

where k = 6π if the object is a sphere and r is its
radius.

• For high speeds and low viscosity, inertial forces pre-
dominate:

F = 1
2CaρSv2

where Ca is the aerodynamic coefficient and S the
cross-sectional area.

Proposition 79 (Terminal velocity). An object falling
(by gravity) inside a fluid attains a maximum velocity (ter-
minal velocity) when its weight equals the drag force. We
have two cases to consider:

• For viscous forces:

vt = mg

kηr

• For inertial forces:

vt =
√

2mg

CaρS

Proposition 80 (Reynolds number). The Reynolds
number helps to predict flow patterns in different fluid
flow situations.

Re = ρvD

η
≈ Finertial

Fviscous

where v is the flow speed and D is the diameter of the
object.

Re < 2000 =⇒ laminar flow
Re > 3000 =⇒ turbulent flow
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