Mechanics and special relativity

1. | Mechanics

Kinematics

Definition 1. The equation of movement of any particle
is of the form:

r(t) = z(t)es +y(t)e, + z(t)e:

where z(t), y(t), z(t) are the movements equations of the
particle along x-, y- and z-axis, respectively.

Definition 2. Consider a particle with movement equa-
tion r(t). Then, the average velocity over any time interval
At = tg — tl is:

v _ Ar(t) _ I‘(tz) — I‘(?fl)
e At to —t;

If we take the limit when At — 0 (or t2 — 1), we get the
instantaneous velocity at time tq:

vit) = lim X0

Am T = f‘(tl) = a'c(tl)ez + y(tl)ey + Z(t1>ez

Definition 3. The speed of a particle moving at a velocity

v(t) is:
o(t) = v

Definition 4. Consider a particle moving at a velocity
v(t). Then the average acceleration over any time interval
At = t2 - tl is:

A Av(t) _ v(ta) — v(t1)
ave At ta —t

If we take the limit when At — 0 (or t2 — 1), we get the

instantaneous acceleration at time t1:

Av(t)
At

a(tl) = lim

= I‘(tl) = i(tl)ex + gj(tl)ey + é(tl)ez
At—0

Proposition 5 (Uniform linear motion). Consider a
particle moving at a constant speed v along a straight line.
If at time ¢ = 0 it is in the position zg, then:

x(t) = xp + vt

Proposition 6 (Accelerated linear motion). Con-
sider a particle moving at a constant acceleration a along
a straight line. If at time ¢t = 0 it is in the position xy with
velocity vg, then:

. L

(t) = v + at z(t) = xo + vot + iat
Definition 7. Suppose a particle is at Cartesian coordi-

nates (z,y) and at polar coordinates (r, ). Then, polar
unit vectors are defined as:

e, = Ccos pe, + sin pe,

€, = —sln e, + Cos pe,

Definition 8. The equations of the circular movement
are the following:

i(t) =ro(t)e, F(t) =rg(t)e, — ro(t)’e,

where we have supposed that r is constant. We define
the angular velocity w(t) as w(t) := ¢(t) and the angu-
lar acceleration «(t) as a(t) := ¢(t). The first term of
() is called tangential acceleration and its magnitude is
a; := ra. The second term is called normal acceleration

and its magnitude is a,, := rw?.

r(t) =re,

Definition 9. Consider a particle moving along the tra-
jectory r(t). We define Frenet vectors as:

r(t)
=@l
_ &t
e (@]
Note that the first vector is tangent to the trajectory at
each point and the second one is normal to the trajectory

at each point.
From this definition we have:

1. First Frenet vector: e;(t) =

2. Second Frenet vector: eq(t)

r(t) =v(t)er F(t) = ar(t)er + an(t)ea(t)

We also define the curvature x(t) and radius of curvature
R(t) as:
()]l
—— = R(t) := —
# () lex (@)l

Finally, the normal acceleration is:

v(t)?
R(t)

1
t

an(t) =

Proposition 10 (Curvature). Consider a particle mov-
ing along a two-dimensional trajectory and let Ay be the
angle the trajectory has curved when traveling a distance
As. Then the average curvature along As is:

Ay
s = R
If we take the limit when As — 0 we have:
Ap _dy

k= lim =
As—0 As ds

Proposition 11 (Arc length). The total distance trav-
eled by a particle moving along a curve r(t) between the
instants t; and ¢ is:

/ TOIE

Proposition 12 (Projectile motion). The equations of
a projectile motion like the one in Fig. 1 are:

1
z(t) = xog + vo cos Ot y(t) = yo + vosin Ot — 59152

vy () = vg cos b vy (t) = vosinb — gt



Figure 1

Dynamics

Law 13 (Newton’s laws).

1. An object at rest will stay at rest and an object in
motion will stay in motion unless acted on by a net
external force. That is:

dv

ZF:O = 5 =0

2. The rate of change of momentum of a body over time
is directly proportional to the force applied, and oc-
curs in the same direction as the applied force. That
is:

P dp
dt

3. If one object A exerts a force F 4 on a second ob-
ject B, then B simultaneously exerts a force Fp on
A and the two forces are equal in magnitude and
opposite in direction:

Fo=-Fp

Proposition 14 (Gravity force). Any two object with
mass my and meq exerts an attracting force called gravity:

mims

Fy = -G ris

r1af’

where Fo; is the force applied on object 2 exerted by ob-
ject 1, rio is the vector distance from object 1 to object
2.

Proposition 15 (Elastic force). Consider an object at-
tached to a string of natural length zy as shown in the
Fig. 2.
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Figure 2

If we displace the object a distance of z from its equilib-
rium position, the resulting elastic force is:

F=—-kx

where k is the spring constant. Moreover, ignoring the
friction, the mass starts to oscillate and this oscillation
have the following equations:

x(t) = Acos(wt + ¢)
&(t) = —wAsin(wt + ¢)
i(t) = —w?Acos(wt + ¢) = —w?a(t)
k 2m 1

= —_ Tzi
w m w T

where A is the amplitude, ¢ is the initial phase, w is the
angular frequency, T is the period and v is the frequency.

Proposition 16. Consider an object on a surface that un-
dergo a normal force Fy and it is pulled by a net force of
magnitude F'. Then the magnitude of the frictional force

is:
F
Fy=
e EN

where p is the static coefficient of friction and py, is the
kinetic coefficient of friction.
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ifF>MSFN

Proposition 17 (Inertial forces). Consider two gen-
eral reference frames R and R’ (separated by R(t)) and
suppose that we observe a particle of mass m at position
r(t) from R and at position r'(¢) from R’, as shown in the
figure:

Figure 3

Then for a general R(t) we have r'(t) = r(t) — R(t) and
therefore #(t) = ¢(t) — R(t). If we assume that R is iner-
tial, then

F(t) — mR(t) = mi/(t)

If R’ is not inertial, Newton’s second law is not satisfied.
In this case, we denote the term —mR(t) as an inertial
force or fictitious force: Finer(t) := —mR(t)!.

Proposition 18 (Galilean transformation). Consider
two reference frames R and R’. Using the previous nota-
tion, suppose R(t) = Vte,. Then:

/ !/

r=x-Vt Vy =V —V

’ /

Yy =y vy = Uy

2=z vl =,
t'=t

INote that if R’ is inertial, Newton’s second law is still satisfied because R(t) = Vt and therefore —mR(t) = 0.



Statics

Definition 19 (Linear momentum of a particle).
Consider a particle of mass m moving at a velocity of v.
We define its linear momentum as:

p=mv

Proposition 20 (Linear momentum of a system of
particles). Consider a system of N particles which inter-
act with themselves (internal forces) and also with exter-
nal forces. The linear momentum of the system is:

N

P:Zpa

a=1
Moreover if the net external force is Fo¢ we have:

dpP

v :Fex
dt !

Proposition 21 (Center of masses). The center of
masses (CM) of a system of N particles is:

1 N
R=— m;r;
&

N

where M = Zmi. Differentiating the last equality we
i=1

get

MR=P MR=P="F

If the mass distribution is continuous with the density p(r)
within a solid €2, the center of mass is:

R = %/p(r)rdv
Q

where M = /p(r) dv.
Q

Proposition 22 (Angular momentum). Consider a
particle with linear momentum p situated at position r
with respect to the origin O. We define its angular mo-
mentum as:

L=rXxp

The angular momentum of a system of N particles is:

N
Lsys = Z Lz
=1

Proposition 23 (Torque). Consider a particle at posi-
tion r with respect to the origin O and let F be a force
acting on the particle. We define the torque as:

T=r X F

The torque of a system of N particles is:

N
Text = § T
=1

Proposition 24. Relating the torque and angular mo-
mentum of a particle and a system of particles we have:

L=r1 Lsys = Text

Therefore, if Text = 0, then Lg,s = const.

Definition 25 (Mechanical equilibrium). The condi-
tions of mechanical equilibrium are:

Fort =0 and 7ot =0

Work and energy

Definition 26 (Work). The work of a constant force
F acting on a particle that moves throughout a straight

distance Ar is:
W =F-Ar

If the force is not necessary constant and the particle
moves along a curve ¢, we have:

Wz/F-dr

Definition 27 (Power). The power is defined as
dw
P=—
dt

If AW is the amount of work performed during a period
of time of duration At, the average power is:

AW
P’At

From the first definition we can deduce the following gen-
eral formula:

P=F-v

Definition 28 (Kinetic energy). The kinetic energy of
a particle of mass m moving at a speed v is:

K = -mv?
2m11

Theorem 29. The total work done on a particle is:
W =AK

Definition 30 (Conservative forces). A force is con-
servative if for any path ¢ connecting points A and B, the
work necessary to move a particle from A to B does not
depend on c.

Proposition 31. The work done by a conservative force
can be expressed as a variation of a function called poten-
tial energy.

Proposition 32 (Potential energy). If a force F is con-
servative, we define the potential energy as:

r

U(r):—/F~dr

Tro

where rg is a reference point and can be chosen arbitrarily.
It can be easily seen that:

W =-AU



Proposition 33 (Mechanical energy). The mechani-
cal energy of a particle (with kinetic energy K) subjected
to a conservative force of potential energy U is:

E=K+U

Theorem 34 (Conservation of mechanical energy).
For a particle subjected to a conservative force we have:

AE =0

That is, E is constant. If there are non-conservative forces
acting on the particle we have:

AE =Wy
where W), is the work done by non-conservative forces.

Proposition 35 (Examples of potential energies).

1. Elastic potential energy of a spring:

1
U= 5]{71’2

where z is the distance the spring has been stretched.
2. Gravitational potential energy of a solid of mass m:

_ GMTm

r

U:

where Mr is the Earth mass, r is the distance form
the center of the earth to the position of the solid
and G is the gravitational constant. Note that if
r:RT—l—h,h>0andRiTzl—l—RLT%l,then:

U = mgh
where Ryp is the radius of earth and g is the surface
gravity.
Rotation

Definition 36. Consider a system of N particles that spin
around a reference axis at an angular velocity w. The mo-
ment of inertia I with respect to the axis is:

N
I = E mimQ
i=1

where m; is the mass of the i-th particle and r; is the
distance between that particle and the axis. Moreover we
have:

Leys = Iw

Proposition 37. For a rigid body of moment of inertia I
that spins around a reference axis at an angular velocity
w we have:

Text = lw =l

Proposition 38. Consider a system of particles whose
CM is at a distance R(t) from a fixed point O. If P is the
linear momentum of the CM, we have:

Lo=Lcvu+R X P

where Lo is the angular momentum of the system with re-
spect to the point O and Lgy is the angular momentum
of the system with respect to the CM. Moreover if Foy; is
the total external force applied onto the system, T ext is
the torque done by the forces with respect to the point O
and TcwMm,ext 1 the torque done by the forces with respect
to the CM, we have:

TO,ext = TCM,ext + R X Fext
Finally, we deduce:
Loy = Tomext

Proposition 39. Consider a system of particles with to-
tal mass M. Suppose the moment of inertia of the system
with respect to the CM is Icy and that the speed of the
CM is V. If the angular velocity of the system around the
CM is w, the kinetic energy of rotation will be:

K = 1Mv2 + 1ICMWZ
2 2
Theorem 40 (Parallel axis theorem). Consider a
body of mass m that is rotating around an axis that passes
through the body’s center of mass. Let Icy be the mo-
ment of inertia with respect of that axis. Suppose there
is another axis parallel to the previous one and separated
each other a distance of d. Then, the moment of inertia
of the body with respect to this latter axis I will be:

I =1Icm + md?

2. | Special relativity

Definition 41. A inertial frame of reference is a frame of
reference in which a particle remains at rest or in uniform
linear motion.

Principle 42 (First postulate). The laws of physics
take the same form in all inertial frames of reference.

Principle 43 (Second postulate). The speed of light,
¢, is a constant, independent of the relative motion of the
source.

Definition 44 (Lorentz factor). For an object moving
at speed v, Lorentz factor is defined as:

1
=
where 8 =v/ec.

Proposition 45 (Time dilation). Consider two frames
of reference in uniform relative motion with velocity v such
that one of them has a clock. If Aty is the time interval
between two events made in the same location and mea-
sured in the frame in which the clock is at rest (proper
time), then the time measured by the other frame is:

At = ’)/Ato



Proposition 46 (Length contraction). Consider two
frames of reference in uniform relative motion with veloc-
ity v such that one of them has an object. If Lg is length
of the object measured instantaneously in the frame in
which the object is at rest (proper length), then the length
measured by the other frame is:

_Lo
2

L

Proposition 47 (Lorentz transformations). Consider
coordinates (z,y,z,t) and (2/,y’,2',t') of a single arbi-
trary event measured in two coordinate systems S and
S’, in uniform relative motion (S’ is moving at velocity
v = (v,0,0) with respect to S) in their common x and z’
directions and with their spatial origins coinciding at time
t =t =0. Then:

x' = ~y(x — Bet) x = (2" + Bet’)
y' =y y=1v
2=z z=2

ct’ = v(ct — Bx) ct =y(ct’ + Bx’)

Proposition 48 (Lorentz transformations of veloc-
ities). In a situation similar to the previous one, if an
object is moving at a velocity u = (ug,uy,u;) in S and
u’ = (ul,ul,u.) in S, we have:

Y
, Uy — ul, +v
Uy = 2 Uz = o/ c2
1—wuzv/e 1+ulv/c
!/
U = Uy u, = Uy
O T F 0] @)
ul, = e u, = U

2 (1 —ugv/c?) v (1+ uzv/c?)

Proposition 49 (Matrix form of Lorentz transfor-
mations). We can write the Lorentz transformations as:

()= ) ()

(7 B aA-lo (Y P
A.-(/ny Py),the A —(57 7)

and we obtain the inverse transformations.

If

Proposition 50 (Lorentz invariant). The factor s,
defined as follows, is invariant in any inertial frame of ref-
erence.

2

2 =22 — 22

22

Proposition 51 (Types of events). There are three
types of events: timelike, lightlike and spacelike.

e 52>0 = timelike
o s2=0 = lightlike
e 52 <0 = spacelike

Timelike and lightlike events are in causal relation with
the origin (that is, it is possible to send a light signal from
the origin to the point or vice versa), while spacelike events
are not.

Figure 4: Minkowski diagram

Proposition 52 (Relativistic Doppler effect). Sup-
pose a frame of reference where the receiver is at rest and
the source is moving at speed § forming an angle ¢ with
the light direction (measured in receiver frame). Then:

== Beosd) @
Ar =YAs(1 — B cosd) (2)

where vg is the frequency measured by the source and vg
is the frequency measured by the receiver, and analogously
with wavelengths Ag and A\g.

Relation between the angles ¢ and ¢’, where ¢’ is the an-
gle between the velocity and the light direction measured
in source frame:

Vs
VR

Figure 5: General case of Doppler effect

Corollary 53. There are three important cases to con-
sider:

e The source moves away, that is making ¢ = w in
FEq. (1) (Redshift):

VR = UVs

o The source gets close, that is making ¢ = 0in Eq. (1)
(Blueshift):



e The source moves transversely, that is making ¢ =
m/2 in Eq. (1):
VR =vg/y

Proposition 54 (Relativistic mass). If mg is the mass
of an object at rest, then the mass of an object at a velocity
B is:

m = yMmo
The mass my is invariant.

Proposition 55 (Relativistic momentum). The rela-
tivistic momentum for a particle with mass at rest mg and
moving at a velocity of v is given by:

P = 7MooV

Proposition 56 (Relativistic energy). The relativistic
energy of a particle is:

2 — ymc?

E=mc
On the other hand, E = K +mgc?, where K is the kinetic
energy of a particle and mgc? its rest energy. Moreover
we can express the energy of a particle in terms of its

momentum:
2 /22 2.4
E =mc”™ = 4/p*c? + mge

Proposition 57 (Photon energy and momentum).
For a photon of frequency v, energy E and linear momen-
tum p, we have:

Proposition 58 (Lorentz transformations of energy
and momentum). Consider a particle that have energy
E and momentum p = (ps, py,p.) in a frame of reference
S and have energy £’ and momentum p’ = (p,, py, p) in
frame of reference S’. These frames are in uniform relative
motion (S’ is moving at velocity v = (v, 0,0) with respect
to S) and their spatial origins coincide at time ¢t = ¢ = 0.
Then:

E =~(E + Bepl,)
cpz = y(cpl, + BE")
Py =1y

p. =7

E'=(E — Beps)
cpl, = v(cpe — BE)
Py = Dy
Pl = D=

Proposition 59 (Compton scattering). Consider a
photon with wavelength X\ colliding with a particle at rest
of mass mg (usually an electron). As a result of the col-
lision, the photon energy decrease and therefore its wave-
length increase (let’s say the scattered photon has wave-
length \'). If the scattered photon is moving at an angle
0 with respect to initial direction, we have:

h
N —X=—(1-cosb)
mopcC

Figure 6: Compton scattering

3. | Fluids

Definition 60. A fluid is a substance that continually
flows under an applied external force.

Definition 61. The wviscosity of a fluid is a measure of its
resistance to deformation at a given rate. We say a fluid
is ideal if we don’t consider viscosity.

Proposition 62 (Density). The density of a fluid of
mass m that occupies a volume V is:

p= Vv
The density depends on temperature and pressure?.
Definition 63. A fluid is said to be incompressible if its
density doesn’t varies with the pressure.

Proposition 64 (Pressure). Consider a point  and a
small sphere centered at x. Then, the pressure p(z) at

point z is:
_ XN

where > Fi is the sum of normal forces and S is the
surface which the forces are applied to. The SI unit of
pressure is the Pascal: 1 Pa=1N/m?.

Proposition 65 (Hydrostatic pressure). Consider a
static fluid with constant density p and let pg be the pres-
sure on its surface. Then, the pressure p on a depth h
is

P = po + pgh

Proposition 66 (Pascal’s principle). Any pressure ap-
plied to the surface of a fluid is transmitted uniformly
throughout the fluid in all directions, in such a way that
initial variations in pressure are not changed.

Fy Fy
b1 = G — D2

Proposition 67 (Archimedes’ principle). Any object
(of mass m), totally or partially immersed in a fluid of
density p, is buoyed up by a force equal to the weight of
the fluid displaced by the object, that is:

Fp := pgVais

where Fg is called the buoyancy and Vyjs is the volume of
the liquid displaced?®.

2This variation is typically small for solids and liquids but much greater for gases.
3Note that if Fg —mg > 0, the object rises to the surface of the liquid; if Fg — mg < 0, the object sinks, and if Fg —mg = 0, the
object is neutrally buoyant, that is, it remains in place without either rising or sinking.



Definition 68. We define the discharge of a fluid as:
Q= Sv

where S is the cross-sectional area of the portion of the
channel occupied by the flow and v is the average flow
velocity. If the velocity is not constant, then:

Q:S/v-dS

Proposition 69 (Continuity equation). Consider an
incompressible fluid moving throughout a channel. Then,
the volume per unit of time is conserved, that is, the dis-
charge is conserved. Mathematically:

Q1 = S1v1 = Savx = Q2

Definition 70. Laminar flow is a fluid motion that oc-
curs when a fluid flows in parallel layers, with no disrup-
tion between those layers. Turbulent flow is a fluid motion
characterized by chaotic changes in pressure and flow ve-
locity.

Laminar flow

Turbulent flow

Figure 7

Proposition 71 (Bernolli’s principle). Consider an in-
compressible and ideal fluid of density p with steady lam-
inar flow. Then:

1
p+ pgh + §p1)2 = const.

where p is the pressure at a point on a streamline; h, the
elevation of the point from a reference frame, and v, the
fluid flow speed at the chosen point.

Proposition 72 (Lift force). If the air has density p and
an object of cross-sectional area S is moving at a velocity
of v relative to the air, then the lift force is:

1
Fr = §C'Lp,5'v2

where C', is the lift coefficient. From that we deduce that
the minimum velocity for lifting is:

2mg
CL[)S

FL:mg = Umin =

Proposition 73 (Viscosity). Consider a fluid trapped
between two plates of area S, one fixed and the other one
in parallel motion at constant speed v. If we suppose a
laminar flow, each layer of fluid moves faster than the one
just below it and so this creates a friction force resisting

their relative motion. An external force F' is therefore re-
quired in order to keep the top plate moving at constant
speed. This force is given by:

vS

where z is the separation between the plates and 7 is the
viscosity of the fluid ([n] = Pa - s).

S
[ .

Figure 8

Proposition 74 (Velocity of a fluid in a channel).
Consider a fluid with viscosity n in laminar flow so that
the layer in contact with the wall of the channel (of ra-
dius 7) is at rest. Let p; be the pressure at one point
of the channel and p; be the pressure at another point
separated a distance L along the z-axis from the previous
point. Then, the speed of each layer of fluid at a distance
x from the center of the channel is:

_P1—P2, 2 o
ww—jﬂfv y)

The average speed and maximal speed of the fluid are:
P1 — P2 P1— P2

Vavg = 8nL r? Umax = AL r? (3)

Proposition 75 (Poiseuille’s law). In conditions of

Eq. (3), we have:

T pL—DP2 4 8n L
= ave — —— A L —
Q = SVavg S L r* = Ap - 7"4Q

8n L

If we denote Ry := — — the hydrodynamic resistance,

we can write Poiseuille’s law as follows:

Ap = RsQ
which is an analogy of Ohm’s law".

Proposition 76 (Resistance in fluids). Consider n
channels each of resistance R;. The total resistance will
be:

o Connected in series:

e Connected in parallel:

n

1

1 p—
Br = R
Proposition 77 (Dissipated power). Consider a fluid
that passes throughout a channel of resistance Ry. If the
discharge of the fluid is @) in a section where the pressure
difference is Ap, the dissipated power will be:

P = ApQ = R;Q?

4In that case, R ¢ would play the role of electric resistance; @, the role of intensity of the current, and Ap, the role of electric potential

difference.



Proposition 78 (Drag forces). An object moving at a
velocity v in a fluid of density p and viscosity 7 creates
drag forces:

o For low speeds and high viscosity, viscous forces pre-

dominate:

F = knor
where k = 67 if the object is a sphere and r is its
radius.

e For high speeds and low viscosity, inertial forces pre-
dominate:

F= %C’ap&ﬂ

where C, is the aerodynamic coefficient and S the
cross-sectional area.

Proposition 79 (Terminal velocity). An object falling
(by gravity) inside a fluid attains a maximum velocity (ter-
minal velocity) when its weight equals the drag force. We
have two cases to consider:

o For viscous forces:

mg
Vg = —

~ knr

o, — 2mg
FTV CupS
Proposition 80 (Reynolds number). The Reynolds

number helps to predict flow patterns in different fluid
flow situations.

o For inertial forces:

_ va ~ Enertial

Re
n Fviscous

where v is the flow speed and D is the diameter of the
object.

Re < 2000 = laminar flow
Re > 3000 = turbulent flow
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