
Electricity and magnetism
1. | Vector calculus

Formula (in Cartesian coordinates)
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Laplacian ∆f := ∇ · ∇f = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2

2. | Electrostatics
Electric force
Proposition 1. The charge of any object is a multiple of
the elementary charge e.

Law 2 (Charge conservation). The total electric
charge in an isolated system never changes.

Law 3 (Coulomb’s law). The force applied by a point
charge q1 over another point charge q2 along a straight
line is:

F1 = K
q1q2

∥r12∥2 r̂12

where r12 is the vectorial distance between the charges,
r̂12 = r12

∥r12∥ is the unit vector pointing from q2 to q1 and
K is the Coulomb constant.

Principle 4 (Superposition principle). Consider a set
of N point charges qi which are at a distance ri from an-
other point charge Q. Then, the net force exerted by the
N point charges to the charge Q is:

FQ =
N∑

i=1
K

qiQ

∥ri∥2 r̂i

where r̂i is the unit vector pointing from qi to Q.

Electric field
Definition 5. Given a point charge Q, the electric field
created by this charge at a distance r from it is given by:

E = K
Q

∥r∥2 r̂

Principle 6 (Superposition principle). Consider a set
of N point charges qi which are at a distance ri from a
point A. Then, the net electric field created by the N
point charges at point A is:

EA =
N∑

i=1
K

qi

∥ri∥2 r̂i

where r̂i is the unit vector pointing from qi to A. In the
case of a continuous distribution of charge we will have:

E =
ˆ

dE =
ˆ

K
dq

r2 r̂

Note that dq = λ dℓ, dq = σ dS or dq = ρ dV depending
on whether the distribution of charge is linear, superficial
or volumetric. In each respective case, λ, σ and ρ represent
the charge densities.

Electric flux and Gauß’ law
Definition 7. Let A be a vectorial field and dS be a small
surface area. The flux dΦ of A through dS is:

dΦ = A · dS

And the flux through a surface S will be:

Φ =
ˆ

S

dΦ =
ˆ

S

A · dS

Corollary 8. The electric flux of a field E through a sur-
face S is:

ΦE =
ˆ

S

E · dS

Law 9 (Gauß’ law). The net electric flux through a
closed surface S is equal to 1

ε0
times the net electric charge

Qint within that closed surface.

ΦE =
‹

S

E · dS = Qint

ε0

Electric potential
Proposition 10. The variation of the electrostatic poten-
tial energy that undergoes a point charge q when moving
a distance dℓ is:

dU = −F · dℓ = −qE · dℓ

Therefore:

∆U = U(b) − U(a) =
bˆ

a

dU = −
bˆ

a

qE · dℓ

Proposition 11. The work done by the electric field on
a particle between two points a and b is −∆U = Ua − Ub,
while the work done by the external forces on that particle
in that interval is ∆U = Ub − Ua.
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Definition 12. The potential difference between two
points a and b over a point charge q when an electric field
E is applied to it is:

dV := dU

q
= −E · dℓ =⇒ ∆V = ∆U

q
= −

bˆ

a

E · dℓ

Definition 13. If we choose the infinite as an origin of
potential (that is, V = 0 when r = ∞), we can define the
electric potential at a distance r from a point charge q as:

V = K
q

r

Principle 14 (Superposition principle). Consider a
set of N point charges qi which are at a distance ri from a
point A. Then, the total electric potential exerted by the
N point charges on the point A is:

VA =
N∑

i=1
K

qi

∥ri∥

In the case of a continuous distribution of charge we have:

∆V = V (b) − V (a) = −
bˆ

a

E · dℓ

Electrostatic energy
Definition 15. The electrostatic energy between two
charges q1 and q2 separated a distance r is:

U = K
q1q2

r
= q2V1 = q1V2

where Vi is the electric potential created by the charge qi

at a distance r.

Proposition 16. Consider a set of N point charges qi.
Let rij be the distance between the charge qi and qj . Then,
the total electrostatic energy of the set will be:

U =
N∑

i=1

N∑
j=i+1

K
qiqj

rij
= 1

2

N∑
i,j=1
i̸=j

K
qiqj

rij

Conductors
Proposition 17. In a conductor, charges can move freely.
In particular, if an external electric field is acting on a con-
ductor, the charges move until they reach an electrostatic
equilibrium.

Proposition 18. When a conductor is in electrostatic
equilibrium:

• All the charges are in the surface and the total elec-
tric field inside the conductor is zero.

• The electric field just outside is perpendicular to the
surface of the conductor and equal to σ/ε0, where σ
is the surface charge density.

• The volume enclosed in the conductor is an equipo-
tential volume and its surface is an equipotential sur-
face.

Capacitance and capacitors

Definition 19 (Capacitance). Consider a conductor
with an electric charge Q. Then, if its potential is V ,
the capacitance of the conductor is defined as:

C := Q

V

The SI unit of the capacitance is the Farad (1 F = C·V−1).

Definition 20 (Capacitor). A capacitor is a device that
stores electric charge and electrical energy. It consists in
two conductors close to each other and with equal and
opposite charge.

Proposition 21. Consider a capacitor whose conductors
are parallel plates of surface area S and are separated a
distance d. If Q is the charge stored in one plate and
the potential difference between the plates is ∆V , we have
that the capacitance of the capacitor is:

C = Q

∆V
= ε0

S

d

Definition 22. Consider two opposite point charges of
charge q separated a distance d (electric dipole). We de-
fine the electric dipole moment as:

p = qd

Proposition 23. Consider an electric dipole of moment p
that is immersed in an electric field E. Then, the electric
force creates a torque τ on the dipole given by:

τ = p × E

This torque tends to line up the dipole with the magnetic
field B, so that it takes its lowest energy configuration.
The potential energy associated with the electric dipole
moment is:

U = −µ · E

E

++q

− −q

d

F1

F2

p

Figure 1: Electric dipole

Proposition 24. Consider a dielectric material with per-
mittivity ε = κε0 with κ > 1. Then, the capacitance of
the capacitor with this material between their plates is:

C = κC0

where C0 is the capacitance of the capacitor with no di-
electric material (that is, in the vacuum).
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Proposition 25. Consider a capacitor of capacitance C,
charge Q and potential difference ∆V . Then, the potential
energy stored in the capacitor is:

U = 1
2

Q2

C
= 1

2CV 2 = 1
2QV

Proposition 26. Consider a capacitor with a dielectric
material inside it of permittivity ε. If E is the magnitude
of the electric field between the plates of the capacitor, the
energy density η of the electric field will be:

η = 1
2εE2

Proposition 27. Consider N capacitors of capacitance
Ci. We can associate the capacitors in two ways:

• in series:
1

Ctotal
=

N∑
i=1

1
Ci

• in parallel:

Ctotal =
N∑

i=1
Ci

Electric current
Definition 28. An electric current is a stream of charged
particles moving through an electrical conductor or space.
Mathematically, the electric current is:

I = dQ

dt

By agreement, the direction of the electric current is the
one of the positive charges.

Definition 29. The current density J is the amount of
charge per unit of time that flows through a unit area of a
chosen cross section. Mathematically, we have the follow-
ing relation:

I =
ˆ

S

J · dS

Proposition 30. Let n be the number of charge carriers
per unit of volume (charge carrier density) of a conduc-
tor, q be the charge of these carriers, S be the section of
the conductor and vd be the drift velocity (average veloc-
ity attained by charged particles in a material due to an
electric field). Then, we have:

I = ∆Q

∆t
= qn∥vd∥S

Moreover:
J = qnvd

Law 31 (Microscopic Ohm’s law). Let n be the charge
carrier density of a conductor, τ be the average time be-
tween collisions of electrons and E be the electric field at
which electrons are accelerated. Then:

J = ne2τ

me
E =: σE

Here, σ is called conductivity.

Law 32 (Macroscopic Ohm’s law). Suppose a conduc-
tor has a resistance R and carries an electric current I. If
the conductor is subjected to a potential difference ∆V ,
then:

I = ∆V

R

Definition 33 (Resistivity). Consider a conductor with
conductivity σ that has length ℓ, section S and electric re-
sistance R. Then, the resistivity of the conductor is:

ρ = R
S

ℓ
= 1

σ

Moreover, this resistivity varies with the temperature in
the following way:

ρ(T ) = ρ0 [1 + α(T − T0)]

where ρ0 is the resistivity of the material at temperature
T0 and α is the temperature coefficient of resistivity.

Proposition 34 (Joule effect). Suppose that a conduc-
tor of resistance R carries an electric current I. If it is
subjected to a potential difference ∆V , then the power
dissipated by heat is:

P = IV = RI2 = V 2

R

Proposition 35. Consider N resistors of resistance Ri.
We can associate the resistors in two ways:

• in series:

Rtotal =
N∑

i=1
Ri

• in parallel:
1

Rtotal
=

N∑
i=1

1
Ri

Kirchhoff’s laws and RC circuits

Definition 36. A battery is a device that maintains a
constant potential difference while charges move along the
circuit. The electromotive force (emf) ξ of a battery de-
scribes the work done per unit of charge. Generally, bat-
teries have an internal resistance r and therefore the po-
tential difference between their terminals is:

∆V = ξ − Ir

where I is the electric current passing through it. Finally,
the total energy stored in the battery is:

W = Qξ

where Q is the charge of the battery.

Law 37 (Kirchhoff’s laws).

1. Kirchhoff’s junction rule: In a node (junction), the
sum of currents flowing into that node is equal to
the sum of currents flowing out of that node.
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2. Kirchhoff’s loop rule: The directed sum of the po-
tential differences around any closed loop is zero.

Proposition 38 (Capacitor discharging). Suppose we
have a circuit consisting of a resistor of resistance R and a
charged capacitor of capacitance C and charge Q. Then,
the charge of the capacitor as a function of time will be:

q(t) = Qe− t
RC

And, therefore, the electric current will be:

i(t) = I0e− t
RC

where I0 is the electric current at t = 01.

Proposition 39 (Capacitor charging). Suppose we
have a circuit consisting of a battery of emf ξ, a resistor
of resistance R and a discharged capacitor of capacitance
C. Then, the charge of the capacitor as a function of time
will be:

q(t) = Qf (1 − e− t
RC )

where Qf is the final charge of the capacitor. Therefore
the electric current will be:

i(t) = ξ

R
e− t

RC

3. | Magnetostatics
Magnetic force

Proposition 40. Consider a point charge q moving at a
velocity v. If we apply a magnetic field B to it, a magnetic
force acting on the particle is created:

F = q(v × B)

The SI unit of the magnetic field is the Tesla (1 T =
1 N · A−1 · m−1).

Proposition 41. Consider a wire of length ℓ transport-
ing an electric current I. If we apply a magnetic field B
to the wire and ℓ is the vector pointing at the direction of
the current and whose magnitude is ℓ, then the magnetic
force created by the wire is:

F = I(ℓ × B)

If the we take a differential element of length dℓ, then:

dF = I(dℓ × B)

Lemma 42. The work done by the magnetic field on a
particle is zero.

Proposition 43. Consider a particle of mass m, charge
q and velocity v. If there is a magnetic field B applied to
it, we have two possibilities for its trajectory:

• If v ⊥ B, the trajectory will be circular with radius:

r = mv

qB

• If v ̸⊥ B, then v = v⊥ + v∥ (where v⊥ ⊥ B and
v∥ ∥ B) and the trajectory will be a helicoidal with
radius:

r = mv⊥

qB

Proposition 44. If there is a charge particle q moving
at a velocity v in a region where there is an electric field
E and a magnetic field B, the particle experiences a force
called Lorentz force:

F = q(E + v × B)

Magnetic moment

Definition 45. We define the magnetic moment of a coil
as:

µ = IS

where I is the electric current passing through it and S is
the surface vector. The magnetic moment of a solenoid of
N turns (each of are S) is:

µ = NIS

Proposition 46. The torque done when a magnetic field
B is applied to an object of magnetic moment µ is:

τ = µ × B

This torque tends to line up the magnetic moment with
the magnetic field B, so that it takes its lowest energy
configuration. The potential energy associated with the
magnetic moment is:

U = −µ · B

Proposition 47. Consider a magnetic dipole of magnetic
moment µ that cannot rotate over itself within a magnetic
field B. The external force necessary to move the dipole
a distance dy is:

Fext = d(µ · B)
dy

Proposition 48 (Hall effect). The Hall effect is the
production of a voltage difference VH across an electrical
conductor of width d that is transverse to an electric cur-
rent I in the conductor and to an applied magnetic field
B perpendicular to the current. It is used for:

• determine the density n of charge carriers:

n = IB

qdVH

where q is the charge of the charge carriers.

• measure the magnitude of the magnetic field:

B = nqd

I
VH

1Sometimes RC is denoted by τ and it is called the RC time constant.
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Figure 2: Hall effect when negative charge carriers are
flowing through the circuit

Biot-Savart law

Proposition 49. The magnetic field created by a point
charge q moving at velocity v at a distance r from it is:

B = µ0

4π

qv × r̂
∥r∥2

where µ0 is the vacuum permeability and r̂ is the unit
vector pointing from the charge to the point where we
calculate the magnetic field.

Law 50 (Biot-Savart law). The magnetic field created
by a wire of length dℓ carrying an electric current I at a
distance r from the wire is:

dB = µ0

4π

I dℓ × r̂
∥r∥2

Proposition 51. Magnetic field created by:

• a coil of radius R when it carries a current I:

– on its center:

B = µ0I

2R
ex

– at a distance x from its center in the same axis:

B = µ0

2
R2I

(x2 + R2)3/2 ex

• a solenoid of N turns, length ℓ and radius R when
it carries a current I:

– at a distance x from its center and over its axis:

B = µ0

2 nI

(
x − a√

(x − a)2 + R2
−

− x − b√
(x − b)2 + R2

)
ex

where n = N
ℓ .

(x, 0)

ba

ℓ

N turns

R

I I

B

Figure 3

– inside the solenoid (|a|, |b| ≫ R) and far from
its ends:

B = µ0nIex

• a finite wire at a point P situated at distance R from
the axis of the wire and angles θ1 and θ2 from the
point to the ends of the wire:

B = µ0I

4πR
(sin θ1 + sin θ2)

I

P

θ1

θ2R

····

····

····

····

····

B

Figure 4

• an infinite wire at a distance R from it:

B = µ0I

2πR

Gauß’ law and Ampère’s law

Proposition 52. The magnetic force per unit of length ℓ
between two straight parallel conductors carrying electric
currents I1 and I2 and separated a distance r from each
other is:

F

ℓ
= µ0

2π

I1I2

r

Law 53 (Gauß’ law for magnetism). The magnetic
flux through any closed surface S is zero.

‹

S

B · dS = 0

Law 54 (Ampère’s law). The line integral of a mag-
netic field B around a closed curve C is proportional to
the total current Ienc passing through a surface S enclosed
by C. ˛

C

B · dℓ = µ0Ienc
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Magnetism of the matter
Proposition 55. Consider a particle of mass m, charge
q, angular momentum L and magnetic moment µ. The
relation between L and µ is:

µ = q

2m
L

Proposition 56. The angular momentum is quantized.
For an electron the quantum unit of the magnetic moment
is called Bohr magneton and has a value of:

µB = eℏ
2me

Therefore:

µL = −µB
L
ℏ

and µS = −2µB
S
ℏ

where µL is the magnetic moment due to the orbital an-
gular momentum and µS is the magnetic moment due to
the spin. The total angular momentum is: j = L + S

Definition 57. The magnetization M is defined as:

M = dµ

dV

where dV is the volume element. Moreover if a section of
a cylinder of length dℓ carries a current di, then:

M = di

dℓ

Proposition 58. Suppose we place a cylinder of magnetic
material inside a long solenoid that has n turns per unit
of length and carries a current I. Then, the applied field
of the solenoid Bapp (Bapp = µ0nI) magnetizes the mate-
rial so that it acquires a magnetization M. The resultant
magnetic field at a point inside the solenoid is:

B = Bapp + µ0M

Proposition 59. The magnetization M of a material is
found to be proportional to the applied magnetic field that
produces the alignment of the magnetic dipoles in the ma-
terial. So, using the previous notation, we can write:

M = χm
Bapp

µ0

where the constant χm is called magnetic susceptibility.
Based on the value of χm, materials can be classified in
three groups: ferromagnetic, paramagnetic and diamag-
netic.

Material χm Attraction
Ferromagnetic (102, 105) Strong attraction
Paramagnetic (10−5, 10−2) Weak attraction
Diamagnetic (−10−6, −10−4) Weak repulsion

Definition 60. The permeability µ of a material is de-
fined as:

µ = (1 + χm)µ0

Electromagnetic induction

Definition 61. We define the magnetic flux as:

ΦB =
ˆ

S

B · dS

Law 62 (Faraday’s law). The emf ξ induced on a cir-
cuit is equal to the time rate of change of the magnetic
flux ΦB through the circuit.

ξ =
˛

E · dℓ = −dΦB

dt

Law 63 (Lenz’s law). The emf and induced electric cur-
rent tend to oppose the change in flux and to exert a me-
chanical force which opposes the motion.

Proposition 64. Consider a coil of radius r and a mag-
netic field B applied to it. Then, this induces an electric
field of magnitude:

E = −r

2
dB

dt

Proposition 65. The emf induced on a circuit by the
relative motion between a magnetic field B and a segment
of length ℓ of electric current is:

ξ = −Bℓv

where v is the velocity of the segment relative to the mag-
netic field.

Proposition 66. Due to the rotation at angular velocity
ω of a solenoid of N turns and section S in a magnetic
field B, the potential difference induced between the ends
of the solenoid is:

V = NBSω sin(ωt) =: V0 sin(ωt)2

Moreover if we connect the solenoid to a circuit of resis-
tance R, we will produce an intensity I given by:

I = V0

R
sin(ωt)

Definition 67 (Eddy current). Eddy currents are loops
of electrical current induced within conductors by a chang-
ing magnetic field. These currents induce a magnetic force
that opposes the movement.

Inductance

Definition 68. Consider a solenoid of N turns, length ℓ
and section S carrying an electric current I. Then, the
magnetic flux ΦB that passes through it is

ΦB = LI

where L = µ0n2Sℓ and n = N
ℓ . The coefficient L is called

inductance. The SI unit of the inductance is the Henry
(1 H = Wb · A−1).

2With this method, the energy isn’t used at all. To solve this, three-phase electric power are used instead. This method consist in three
coils separated by 120◦ between them.
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Definition 69. An inductor is a solenoid with many
turns.
Proposition 70. Consider a solenoid of inductance L and
internal resistance r carrying an electric current I. Then,
Faraday-Lenz law can be written as:

ξ = −L
dI

dt

Therefore, the potential difference between the two ends
of the solenoid is:

∆V = −L
dI

dt
− Ir

Definition 71. Consider two circuits close to each other
so that the magnetic flux across a circuit depends also on
the electric current that carries the other circuit. This
dependance is given by:

ΦB,1 = L1I1 + M12I2 ΦB,2 = L2I2 + M21I1

where ΦB,i is the flux that passes across the circuit i, Ii

is the electric current flowing in the circuit i, Li is the in-
ductance coefficient of the circuit i and Mij is the mutual
inductance between the circuit i and j. Relating to the
latter point, in general we have M12 = M21.
Proposition 72. Consider an inductor of inductance L
carrying an electric current I. Then, the potential energy
stored in the inductor is:

U = 1
2LI2

Proposition 73. Consider an inductor that produces a
magnetic field B inside it. Then, the energy density η of
the magnetic field will be:

η = 1
2

B2

µ0

Generalized Ampère’s law

Definition 74. The displacement current is defined as:

Id = ε0
dΦE

dt

where ΦE is the flux of the electric field through the sur-
face where the current is flowing.

Law 75. The generalized Ampère’s law (Ampère-Maxwell
law) which takes into account displacement currents is:

˛

C

B · dℓ = µ0I + µ0ε0
d
dt

ˆ

S

E · dS

Definition 76. The speed of the electromagnetic waves
in the vacuum is:

v = 1
√

ε0µ0
=: c

Law Differential form Integral form

Gauß’ law ∇· E = ρ

ε0

‹

S

E · dS = Qint

ε0

Gauß’ law for magnetism ∇· B = 0
‹

S

B · dS = 0

Faraday-Lenz law ∇× E = −∂B
∂t

˛

C

E · dℓ = − d
dt

ˆ

S

B · dS

Ampère-Maxwell law ∇× B = µ0J + µ0ε0
∂E
∂t

˛

C

B · dℓ = µ0I + µ0ε0
d
dt

ˆ

S

E · dS

Figure 5: Maxwell equations
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