
Fluid mechanics

1. | Equations of motion
Euler’s equations

In this section we will describe the motion of a fluid with a
set of equation that result from the conservation of mass,
momentum and energy. From what follows, let D ⊆ R3

be a region filled with a fluid. For each time t and x ∈ D
we assume that the fluid has a well-defined mass density
ρ(x, t)1. Finally, we denote by u(x, t) the velocity of the
fluid at time t and position x. For the moment, we will
also assume that ρ and u are smooth functions.

Proposition 1 (Conservation of mass). Let W ⊆ D
be a fixed subregion of D. Then:

d
dt

ˆ

W

ρ dV = −
ˆ

∂ W

ρu · dS

Or equivalently:

dρ
dt + div(ρu) = 0 (1)

This latter equation is called the continuity equation.

Proof. The variation of mass in W is given by:

dmW

dt = d
dt

ˆ

W

ρ dV

But on the other hand, the flow of mass through the
boundary of W is given by:

dmW

dt = −
ˆ

∂ W

ρu · dS

where the minus sign accounts for the fact the inward flow
should be positive (increases the mass) and the outward
flow should be negative (decreases the mass). From here
the result follows. The differential form is a consequence
of ?? ??. □

Lemma 2. Let x(t) be the path followed by a fluid par-
ticle. Then its acceleration is given by:

du
dt = ∂u

∂t
+ (u · ∇)u =: Du

Dt

where u · ∇ = u ∂
∂x + v ∂

∂y +w ∂
∂z if u = (u, v, w). Here the

operator
D
Dt := ∂

∂t
+ (u · ∇)

is called the material derivative.

Sketch of the proof. Compute the time derivative of
u(t,x(t)) using the Chain rule. □

For any continuum, forces acting on a piece of material are
of two types. First, there are forces of stress, whereby the
piece of material is acted on by forces across its surface
by the rest of the continuum. Second, there are external
or body, forces such as gravity or a magnetic field, which
exert a force per unit volume on the continuum.

Definition 3 (Ideal fluid). An ideal fluid has the fol-
lowing property: for any motion of the fluid there is a
function p(x, t) called the pressure such that if S is a sur-
face in the fluid with a chosen unit normal n, the force
of stress exerted across the surface S per unit of area at
x ∈ S at time t is p(x, t)n. Thus, the total force of stress
exerted inside a region W ⊆ D is given by:

A∂W := Force on W = −
ˆ

∂ W

pn dS

where the minus sign is because n points outwards.

Proposition 4 (Conservation of momentum). The
balance of momentum for an ideal fluid is given by:

ρ
Du
Dt = −∇p+ ρf

where f is the external force per unit of mass.

Proof. Let e be any fixed vector in space. By ?? ?? we
have:

e·A∂W = −
ˆ

∂ W

pn·e dS = −
ˆ

W

div(pe) dV = −
ˆ

W

∇p·e dV

Hence:
A∂W = −

ˆ

W

∇p dV

On the other hand, the total external body acting on W
is given by:

F =
ˆ

W

ρf dV

Thus, using the ?? ?? the result follows, as ρDu
Dt accounts

for the variation of momentum per unit of volume. □

Corollary 5. The integral form of the conservation of
momentum is given by:

d
dt

ˆ

W

ρu dV = −
ˆ

∂ W

(pn + ρu(u · n)) dS +
ˆ

W

ρf dV

Proof. From Eq. (1) and the material derivative we have:

∂

∂t
(ρu) = − div(ρu)u − ρ(u · ∇)u − ∇p+ ρf

1The assumption that ρ exists is a continuum assumption. Clearly, it does not hold if the molecular structure of matter is taken into
account. For most macroscopic phenomena occurring in nature, it is believed that this assumption is extremely accurate.
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Let e ∈ R3 be a fixed vector. Then:

e· ∂
∂t

(ρu) = −e·div(ρu)u − e·ρ(u·∇)u − e·∇p+ e·ρf

= − div(pe + ρu(u · e)) + ρe · f

Integrating over W and using the ?? ?? we obtain the
result. □

Definition 6. Let x ∈ D. We denote by φ(x, t) the po-
sition of the fluid particle x at time t and fixed t ∈ R,
φt : x → φ(x, t). If W ⊆ D, we denote Wt := φt(W ) the
volume W moving with the fluid.

Lemma 7. Let J(x, t) be the Jacobian determinant of
φt. Then:

∂

∂t
J(x, t) = J(x, t)(div u)(φ(x, t), t)

Proof. We have that J = det Dφ = det
(

∂ϕ1
∂x ,

∂ϕ2
∂x ,

∂ϕ3
∂x

)
,

where φ = (ϕ1, ϕ2, ϕ3) and ∂ϕi

∂x :=
(

∂ϕi

∂x ,
∂ϕi

∂y ,
∂ϕi

∂z

)T
.

Hence, from the multilineary property of the determinant
we have:

∂

∂t
J = det

(
∂

∂t

∂ϕ1

∂x ,
∂ϕ2

∂x ,
∂ϕ3

∂x

)
+det

(
∂ϕ1

∂x ,
∂

∂t

∂ϕ2

∂x ,
∂ϕ3

∂x

)
+ det

(
∂ϕ1

∂x ,
∂ϕ2

∂x ,
∂

∂t

∂ϕ3

∂x

)
(2)

Now if u = (u1, u2, u3), then:

∂

∂t

∂ϕi

∂x = ∂

∂xui(φ(x, t), t)

= ∂ui

∂ϕ1

∂ϕ1

∂x + ∂ui

∂ϕ2

∂ϕ2

∂x + ∂ui

∂ϕ3

∂ϕ3

∂x

because ∂ϕi

∂t = ui(φ(x, t), t). Introducing this into Eq. (2)
we obtain:
∂

∂t
J = J

(
∂u1

∂ϕ1
+ ∂u2

∂ϕ2
+ ∂u3

∂ϕ3

)
= J(div u)(φ(x, t), t)

□

Corollary 8. We have:

d
dt

ˆ

Wt

ρu dV =
ˆ

Wt

ρ
Du
Dt dV

Proof. Using the ?? ?? we have that:

d
dt

ˆ

Wt

ρu dV =
ˆ

W

[
D
Dt (ρu)(φ(x, t), t) + (ρu)·

· (div u)(φ(x, t), t)
]
J(x, t) dV

=
ˆ

Wt

D
Dt (ρu) + (ρdiv u)u dV

=
ˆ

Wt

ρ
Du
Dt dV

where the last equality follows from the Theorem 1:

Dρ
Dt + ρdiv u = ∂ρ

∂t
+ div(ρu) = 0

□

Corollary 9 (Transport theorem). For any smooth
enough function f(x, t) we have:

d
dt

ˆ

Wt

ρf dV =
ˆ

Wt

ρ
Df
Dt dV

d
dt

ˆ

Wt

f dV =
ˆ

Wt

[
df
dt + div(fu)

]
dV

Definition 10. A flow is called incompressible if for any
fluid subregion W ⊆ D we have:

vol(Wt) = vol(W ) = const.

Otherwise, the flow is called compressible.

Proposition 11. Consider the flow φ and its Jacobian
J . Then, the following are equivalent:

1. The flow is incompressible.

2. div u = 0.

3. J = 1.

Proof. Note that:

d
dt

ˆ

Wt

dV = d
dt

ˆ

W

J dV =
ˆ

Wt

J div u dV

Hence, if div u = 0 then the flow is incompressible. Now,
if the flow is incompressible we have that:

0 = d
dt

ˆ

Wt

dV =
ˆ

W

dJ
dt dV

which is implies that J = const. by ?? ??. Since J(x, 0) =
1 we have that J = 1. Finally, from Theorem 7 we have
that if J = 1 then div u = 0. □

Definition 12. A fluid is called homogeneous if ρ = ρ(t),
that is, if ρ is constant in space.

Proposition 13. A fluid is incompressible if and only if
Dρ
Dt = 0. In particular, if the fluid is homogeneous, then
it is incompressible if and only if ρ = const. (i.e. it is also
constant in time).

Proof. We can write Eq. (1) as:

Dρ
Dt + ρdiv u = 0

And the result follows from Theorem 11. □

Proposition 14. Let J be the Jacobian of the flow φ.
Then:

ρ(φ(x, t), t)J(x, t) = ρ(x, 0)
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Sketch of the proof. From 9 Transport theorem with f = 1
we have:

ˆ

W0

ρ(x, 0) dV =
ˆ

Wt

ρ dV = d
dt

ˆ

W0

ρJ dV

Since, W0 is arbitrary, the result follows from ?? ??. □

Remark. As a corollary, a fluid that is homogeneous at
t = 0 but is compressible, will generally not remain homo-
geneous. However, the fluid will remain homogeneous if it
is incompressible.

Definition 15. The kinetic energy of a moving portion
Wt of a fluid is defined as:

Ekinetic = 1
2

ˆ

Wt

ρ ∥u∥2 dV

where the norm is the Euclidean norm.

Lemma 16. The rate of change of kinetic energy is given
by:

dEkinetic

dt =
ˆ

Wt

ρu · Du
Dt dV

Proof. From 9 Transport theorem we have that:

dEkinetic

dt = 1
2

ˆ

Wt

ρ
D ∥u∥2

Dt dV

Now use the linearity of the material derivative and the
dot product. □

Theorem 17. Consider an incompressible fluid such that
the rate of change of kinetic energy in a portion of fluid
equals the rate at which the pressure and body forces do
work:

dEkinetic

dt = −
ˆ

∂Wt

pu · dS +
ˆ

Wt

ρu · f dV

Then, the Euler equations that completely describe the
motion of the fluid are:

ρ
Du
Dt = −∇p+ ρf

Dρ
Dt = 0
div u = 0

with the boundary conditions u · n = 0 on ∂D.

Proof. From 16 and using the ?? ?? we have:
ˆ

Wt

ρu · Du
Dt dV = −

ˆ

Wt

[div(pu) − ρu · f ] dV

= −
ˆ

Wt

[u · ∇p− ρu · f ]

because div u = 0. This equation is a consequence of
balance of momentum. □

Remark. This argument, in addition, shows that if we as-
sume E = Ekinetic, then the fluid must be incompressible.

Definition 18. A compressible flow is called isentropic if
there exists a function w, called the enthalpy, such that:

∇w = 1
ρ

∇p

Remark. From this part we will need some basic concepts
of thermodynamics, that we review here. Recall that:

p = pressure ρ = density T = temperature s = entropy
w = enthalpy ϵ = internal energy per unit mass

These quantities are related by the First Law of Thermo-
dynamics:

dw = T ds+ 1
ρ

dp (3)

which using that ϵ = w − p/ρ can be written as:

dϵ = T ds+ p

ρ2 dρ

Remark. Note that if the pressure is a function of ρ only,
then the flow is isentropic by defining w =

´ p′(ρ)
ρ dρ which

is the integrated version of Eq. (3).

Theorem 19. For isentropic flows, the integral form of
the energy balace reads as follows: The rate of change of
energy in a portion of fluid equals the rate at which work
is done on it.

dEtotal

dt = d
dt

ˆ

Wt

[
1
2ρ ∥u∥2 + ρϵ

]
dV

=
ˆ

Wt

ρu · f dV −
ˆ

∂Wt

pu · dS

And the Euler equations are:
Du
Dt = −∇w + f
∂ρ

∂t
+ div(ρu) = 0

and the boundary conditions are u · n = 0 on ∂D.

Remark. Gases can often be treated as isentropic fluid
with p = Aργ where A and γ ≥ 1 are constants. Here:

w = γAργ−1

γ − 1 ϵ = Aργ−1

γ − 1

Definition 20. Given a fluid with velocity field u(x, t), a
streamline is a curve x(s) such that u(x(s), t) = dx

ds with
t fixed.

Definition 21. We define the trajectory as the curve x(t)
such that u(x(t), t) = dx

dt .

Remark. If u is independent of t, then the streamlines and
trajectories coincide. In this case, the fluid is said to be
stationary or steady.
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Theorem 22 (Bernoulli’s theorem). In a stationary
isentropic flow with a present conservative force f = −∇ψ,
the quantity

1
2 ∥u∥2 + w + ψ

is constant along streamlines. The same holds for homo-
geneous incompressible flow with w replaced by p/ρ.

Proof. An easy check shows that:
1
2∇

(
∥u∥2

)
= (u · ∇)u + u × (∇× u)

Because the flow is steady, the equations of motion give
(u · ∇)u = −∇w + f . Thus:

∇
(

1
2 ∥u∥2 + w + ψ

)
= u × (∇× u)

Let x(s) be a streamline. Then:

d
ds

[(
1
2 ∥u∥2 + w + ψ

)
(x(s), t)

]
=[u×(∇× u)]·x′(s) = 0

because x′(s) = u is orthogonal to u × (∇× u). □

Rotation and vorticity
Definition 23. Let u = (u, v, w) be the velocity field of
a fluid. The vorticity is the vector field ξ := ∇× u.

Proposition 24. Let x ∈ R3 and let u(x) be a smooth
vector field. Then, in a small neighbourhood of x, u is the
sum of a translation, a deformation and a rotation (with
rotation vector ξ/2):

u(y) = u(x) + D(x) · h + 1
2ξ(x) × h + O

(
∥h∥2

)
(4)

where y = x+h. The matrix D is symmetric and is called
the deformation tensor.

Proof. From ?? ?? we have:

u(y) = u(x) + ∇u(x) · h + O
(

∥h∥2
)

Now let:

D = 1
2

[
∇u(x) + ∇u(x)T

]
S = 1

2

[
∇u(x) − ∇u(x)T

]
Thus, ∇u = D + S and S · h = 1

2 ξ(x) × h. □

Remark. The physical intuition behind D is the follow-
ing. Because D is symmetric, for each x fixed, there is an
orthonormal basis B such that:

DB =

d1 0 0
0 d2 0
0 0 d3


Now if we ignore all the terms in (4) except D(x) · h, we
see that:

dh
dt = D(x) · h

which is equivalent to three linear differential equations of
the form:

dh̃i

dt = dih̃i

Hence, the vector field D(x) · h is thus merely expanding
or contracting along each of the axis of B. Finally, the
rotation term 1

2 ξ(x) × h induces a flow

dh
dt = 1

2ξ(x) × h

whose solution is a well-known rotation h(t) =
R(t, ξ(x))h(0), where R(t, ξ(x)) is the matrix that rep-
resents a rotation through an angle t about the axis ξ(x).

Lemma 25. Let u be the velocity field of a flow and C
be a closed curve with Ct := φt(C) the curve transported
by the flow. Then:

d
dt

ˆ

Ct

u · ds =
ˆ

Ct

Du
Dt · ds

Proof. Assume x(s), 0 ≤ s ≤ 1 is a parametrization of C.
Then, φ(x(s), t), 0 ≤ s ≤ 1 is a parametrization of Ct.
Thus, using the 9 Transport theorem we have:

d
dt

ˆ

Ct

u · ds = d
dt

1ˆ

0

u(φ(x(s), t)) · ∂
∂s

φ(x(s), t)ds

=
1ˆ

0

Du
Dt (φ(x(s), t)) · ∂

∂s
φ(x(s), t)ds+

+
1ˆ

0

u(φ(x(s), t)) · ∂
∂t

d
dsφ(x(s), t)ds

The first term is the desired result. For the second term
I2, note that d

dt φ = u and therefore:

I2 = 1
2

1ˆ

0

∂

∂s
(u · u)(φ(x(s), t), t)ds = 0

because Ct is closed. □

Theorem 26 (Kelvin’s circulation theorem). Con-
sider a isentropic fluid without external forces and C be a
closed curve with Ct := φt(C) the curve transported by
the flow. Then:

d
dt

ˆ

Ct

u · ds = 0

Proof. Using the Euler equations we know that Du
Dt =

−∇w. Thus, from Theorem 25 we have:

d
dt

ˆ

Ct

u · ds = −
ˆ

Ct

∇w · ds = 0

because Ct is closed. □

Definition 27. A vortex line is a curve ℓ such that it is
tangent to the vorticity vector field ξ at each point. A
vortex sheet is a surface Σ such that it is tangent to the
vorticity vector field ξ at each point.

4



Proposition 28. If a surface (or a curve) move with the
flow of an isentropic fluid, and it is a vortex sheet (or a
vortex line) at time t = 0, then it is a vortex sheet (or a
vortex line) at any time t.

Sketch of the proof. Use ?? ??. □

Proposition 29. For an isentropic fluid (in the absence
of external forces) with vorticity ξ and vorticity per unit
of mass ω := ξ

ρ , the following holds:

Dω

Dt − (ω · ∇)u = 0

ω(φ(x, t), t) = Dφt(x) · ω(x, 0)

Definition 30. A vortex tube is a two-dimensional sur-
face S formed by all vortex lines passing through a given
closed curve C.

Theorem 31 (Helmholtz’s theorem). Consider an
isentropic fluid. Then:

1. If C1, C2 are two closed curves encircling the same
vortex tube, then:

ˆ

C1

u · ds =
ˆ

C2

u · ds

This value is called strength of the vortex tube.

2. The strength of a vortex tube is constant in time as
the tube moves with the fluid.

Proof. POSAR FIGURA. Let C1, C2 be the oriented
curves of ?? and V be the volume enclosed within the
tube between the two sections delimited by them. Using
that S is a vortex sheet and ?? ?? we have:

0 =
ˆ

V

div ξ dV =
ˆ

S1⊔S2⊔S

ξ · dA =
ˆ

C1

ξ · ds −
ˆ

C2

ξ · ds

The second part follows from 26 Kelvin’s circulation the-
orem. □

Proposition 32. Consider a two-dimensional homoge-
neous incompressible fluid in a simply connected domain
D ⊆ R2. Then, the vorticity vector field ξ = (0, 0, ξ)
satisfies the following boundary problem:

Dξ
Dt = 0
∆ψ = −ξ
u = (∂yψ,−∂xψ)

with ψ = 0 on ∂ D. The function ψ is called stream func-
tion. These equations completely determine the flow. The
first equation is called vorticity equation.

Proof. From incompressibility, if u = (u, v) we have that
∂xu = −∂yv. Thus, from vector calculus, we know that
there exists a unique function (except for an additive con-
stant) ψ such that u = (∂yψ,−∂xψ). Moreover, an easy

check shows that ψ is contant along streamlines. Thus, we
can adjust the constant so that ψ = 0 on ∂ D. Now, since
the scalar vortex function is ξ = ∂xv − ∂yu, we have that
∆ψ = −ξ. To prove the first equation, adapt Theorem 29.

□

Remark. Note that in the previous proposition we also
have the following:

(u · ∇)ξ = u∂xξ+ v∂yξ = ∂yψ∂xξ− ∂xψ∂yξ = det D(ξ, ψ)

Thus, the flow is stationary if and only if ξ and ψ are
functionally dependent.

Theorem 33. Consider a three-dimensional homoge-
neous incompressible fluid in a convex domain D ⊆ R3.
Then, the vorticity vector field ξ satisfies the following
boundary problem:

Dξ

Dt − (ξ · ∇)u = 0
∆A = −ξ

div A = 0
u = ∇× A

Remark. The convexity is used to ensure that given
div u = 0, there exists a vector field A such that u =
∇× A and div A = 0.

Remark. One of the troubles with the 3-dimensional case
is that given ξ, the vector field A is not uniquely de-
termined (we cannot impose boundary condition such as
A = 0 on ∂ D because A need not be constant on ∂ D as
was the case with ψ).

Navier-Stokes equations
Theorem 34 (Cauchy’s stress theorem). The force
acting on a surface S of a fluid is a linear function of the
normal vector n to S.

In ?? we defined an ideal fluid as one in which forces across
a surface were normal to that surface. We now consider
more general fluids. We will assume now that the force
exerted across a surface S per unit of area is given by:

Force on S = −p(x, t)n + σ(x, t) · n

where the matrix σ is called stress tensor2.

Remark. We will make the following assumptions to the
stress tensor:

• σ is a linear function (ax+ b) of the velocity gradi-
ents ∇u.

• σ is invariant under rigid body rotations. That is,
if U is an orthogonal matrix:

σ(U · ∇u · U−1) = U · σ(∇u) · U−1

• σ is symmetric.
2The new feature is that σ · n need not be parallel to n. The separation of the forces into pressure and other forces in is somewhat

ambiguous because σ · n may contain a component parallel to n. This issue will be resolved later when we give a more definite functional
form to σ.
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Proposition 35. The stress tensor σ can be written as:

σ = 2µ
[
D − 1

3(div u)I
]

+ ζ(div u)I

where I is the identity matrix, D is the deformation ten-
sor, µ is the first viscosity coefficient and ζ = λ + 2

3µ is
the second viscosity coefficient.

Proof. Since σ is symmetric, it follows that only depends
on the symmetric part of ∇u, that is, on the deformation
tensor D. Thus, the eigenvalues of σ are linear functions
of those of D. By property 2, they must also be symmet-
ric because we can choose U to permute two eigenvalues
of D and this must permute the corresponding eigenval-
ues of σ. Thus, the eigenvalues σi of σ can be written as
σi = adi + b, or equivalently:

σi = λdiv u + 2µdi

for some constants λ and µ and i = 1, 2, 3. Using again,
property 2, we can reconstruct σ as:

σ = λ(div u)I + 2µD

Or equivalently:

σ = 2µ
[
D − 1

3(div u)I
]

+ ζ(div u)I

□

Corollary 36. Introducing the stress tensor, the balance
of momentum equation yields the Navier-Stokes equations:

ρ
Du
Dt = −∇p+ (λ+ µ)∇(div u) + µ∆u

Sketch of the proof. Follow the proof of 4 Conservation of
momentum adapted to the stress tensor. □

Remark. This equation together with the continuity equa-
tion and energy equation completely describe the flow in
a compressible viscous fluid. In the case of an incompress-
ible homogeneous fluid with ρ = ρ0 = const., the complete
set of equations becomes the Navier-Stokes equations for
incompressible flow:

Du
Dt = −∇p′ + ν∆u
div u = 0

where p′ = p/ρ0 and ν = µ/ρ0 is the kinematic viscosity.
To this we should add boundary condition, which for an
ideal fluid we use u·n = 0 and if the solid wall that bounds
the fluid is stationary, we use u = 0 on the walls.

Reynolds number
Proposition 37. For a given problem, let L be the unit of
length (characteristic length) and U be the unit of veloc-
ity (characteristic velocity). This choice determines then
the unit of time T = L/U . If we convert u, x and t to
dimensionless quantities by

u′ := u
U

x′ := x
L

t′ := t

T

then the Navier-Stokes equations for incompressible flow
become:

∂u′

∂t′
+ (u′ · ∇′)u = −∇p′ + ν

LU
∆′u′

div u′ = 0

where p′ = p/(ρ0U
2). In this equation, the term (u′ ·∇′)u′

is called the convective term (or inertia term) and the term
ν∆′u′ is called the diffusive term (or dissipation term).

Sketch of the proof. Use the ?? ??. □

Definition 38. For a given problem, let L be the unit of
length (characteristic length) and U be the unit of velocity
(characteristic velocity). We define the Reynolds number
as:

Re = LU

ν

Remark. Note that the dimensionless Navier-Stokes equa-
tions for incompressible flow only depend on the Reynolds
number.

Definition 39. Two flows with the same geometry and
the same Reynolds number are said to be similar. More
precisely, let u1 and u2 be two flows on regions D1 and D2
that are related by a scale factor λ so that L1 = λL2. Let
choices of U1 and U2 be made for each flow, and let the
viscosities be ν1 and ν2, respectively. If Re1 = Re2, then
the dimensionless velocity fields u1 and u2 satisfy exactly
the same equation on the same region.

Remark. This idea of the similarity of flows is used in the
design of experimental models. For example, suppose we
are contemplating a new design for an aircraft wing, and
we wish to know the behavior of a fluid flow around it.
Rather than build the wing itself, it may be faster and
more economical to perform the initial tests on a scaled-
down version. We design our model so that it has the same
geometry as the full-scale wing, and we choose values for
the undisturbed velocity, coefficient of viscosity, and so on,
such that the Reynolds number for the flow in our experi-
ment matches that of the actual flow. We can then expect
the results of our experiment to be relevant to the actual
flow over the full-scale wing.

Theorem 40 (Helmholtz-Hodge decomposition
theorem). Let D ⊂ R3 be a region with smooth bound-
ary and w be a vector field on D. Then, there exists a
unique decomposition:

w = u + ∇p

where u has zero divergences and it’s parallel to ∂ D, i.e.
u · n = 0 on ∂ D.

Proof. We use the fact that the following problem has ex-
istence and uniqueness of solutions up to the addition of
a constant to p: ∆p = div w in D

∂p

∂n = w · n on ∂ D
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Now let u := w−∇p, where p is the solution of the above
problem. Then, div u = 0 and u ·n = 0. To prove unique-
ness, first note that if w = u + ∇p, then:

ˆ

D

u · ∇p = 0

which follows automatically from the ?? ??, the hypothe-
sis on u and the relation:

div(up) = u · ∇p+ pdiv u

Now, if moreover we have w = u′ + ∇p′, then 0 =
u − u′ + ∇(p− p′) and therefore taking the inner product
with u − u′ and integrating we get:

0 =
ˆ

D

∥u − u′∥2 +
ˆ

D

(u − u′) · ∇(p− p′) =

=
ˆ

D

∥u − u′∥2

Hence, u = u′ and therefore ∇p = ∇p′, which implies
that p− p′ = const. □

Definition 41. Let D ⊂ R3 be a region with smooth
boundary. Given a vector field w = u + ∇p on D, we can
define the orthogonal projector operator P as:

P(w) := u

Remark. The Navier-Stokes equations become thus:

∂tu = P
(

−(u · ∇)u + 1
Re∆u

)
Remark. If Re ≫ 1, then the Navier-Stokes equations for
incompressible flow can be approximated by the Stokes’
equations:

∂tu = −∇p+ 1
Re∆u

div u = 0

Proposition 42. Consider an incompressible viscous flow
confined in a region D ⊂ R3 with smooth boundary. Then:

d
dtEkinetic = −µ

ˆ

D

∥∇u∥2 dV

Proof. We have that:

d
dtEkinetic = d

dt
1
2

ˆ

D

ρ ∥u∥2 dV =
ˆ

D

ρu · Du
Dt dV

=
ˆ

D

ρu · (−∇p+ µ∆u) dV

= µ

ˆ

D

ρu · ∆u dV

because div u = 0 and the orthogonality of u and ∇p.
Now using that div(u · ∇u) = u · ∆u + ∥∇u∥2, the ?? ??
and the boundary condition u = 0, we get the result. □

Proposition 43. Consider a three-dimensional viscous
incompressible flow. Then, the vorticity equation be-
comes:

Dξ

Dt − (ξ · ∇)u = 1
Re∆ξ

Definition 44. Assume we have an equation of state
p = p(ρ), with p′(ρ) > 0. Define c =

√
p′(ρ), and called it

the speed of sound. Then, the Mach number is defined as:

Ma = u

c

where u = ∥u∥.

7


	Fluid mechanics
	Equations of motion
	Euler's equations
	Rotation and vorticity
	Navier-Stokes equations
	Reynolds number



