Stochastic calculus

Along the document we assume that we work in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and that all the random variables are defined on this space.

1. | Preliminaries

Stochastic processes

Proposition 1. A stochastic process $X = (X_t)_{t \in \mathbb{T}}$ is Gaussian if and only if $\forall n \in \mathbb{N}, \ \forall t_1, \dots, t_n \in \mathbb{T}, \ \forall \lambda_1, \dots, \lambda_n \in \mathbb{R},$

$$Z := \lambda_1 X_{t_1} + \dots + \lambda_n X_{t_n}$$

is a Gaussian random variable. In particular, we have:

$$\mathbb{E}(e^{iZ}) = e^{i\mathbb{E}(Z) - \frac{1}{2}Var(Z)}$$

Remark. A stochastic process $X = (X_t)_{t \in \mathbb{T}}$ can also be viewed as a single random variable taking values in $\mathbb{R}^{\mathbb{T}}$, equipped with the product σ -algebra $\bigotimes \mathcal{B}(\mathbb{R})$.

Proposition 2. Let $m: \mathbb{T} \to \mathbb{R}$ be a measurable function and $\gamma: \mathbb{T}^2 \to \mathbb{R}$ be a symmetric positive-definite function. Then, there exists a Gaussian process $(X_t)_{t \in \mathbb{T}}$ such that $\mathbb{E}(X_t) = m(t)$ and $\mathrm{Cov}(X_s, X_t) = \gamma(s, t)$.

Definition 3. Let $(X_t)_{t\in\mathbb{T}}$, $(Y_s)_{s\in\mathbb{S}}$ be two stochastic processes. We say that they are *jointly Gaussian* if the concatenated process $((X_t)_{t\in\mathbb{T}}, (Y_s)_{s\in\mathbb{S}})$ is Gaussian.

Lemma 4. Two jointly Gaussian stochastic processes $(X_t)_{t\in\mathbb{T}}$, $(Y_s)_{s\in\mathbb{S}}$ are independent if and only if $\forall t\in\mathbb{T}$, $\forall s\in\mathbb{S}$, $\operatorname{Cov}(X_t,Y_s)=0$.

Proposition 5. Two stochastic processes $(X_t)_{t\in\mathbb{T}}$, $(Y_s)_{s\in\mathbb{S}}$ are independent if and only if $\forall n\in\mathbb{N}, \forall t_1,\ldots,t_n\in\mathbb{T}, \forall s_1,\ldots,s_n\in\mathbb{S}$ and $\forall f,g:\mathbb{R}^n\to\mathbb{R}$ bounded and measurable functions, we have:

$$\mathbb{E}(f(X_{t_1}, \dots, X_{t_n})g(Y_{s_1}, \dots, Y_{s_n})) = \\ = \mathbb{E}(f(X_{t_1}, \dots, X_{t_n}))\mathbb{E}(g(Y_{s_1}, \dots, Y_{s_n}))$$

Brownian motion

Definition 6. A Brownian motion is a stochastic process $(B_t)_{t>0}$ such that:

- 1. B is Gaussian with $\mathbb{E}(B_t) = 0$ and $Cov(B_s, B_t) = s \wedge t$.
- 2. B has continuous paths.

Proposition 7. Let B be a Brownian motion. Then:

- 1. $B_0 = 0$ a.s.
- 2. B has independent increments.
- 3. B has stationary increments.

Conversely, any stochastic process with these properties has the law of a Brownian motion.

Theorem 8 (Strong law of large numbers for Brownian motion). Let $(B_t)_{t>0}$ be a Brownian motion. Then:

$$\frac{B_t}{t} \xrightarrow[t \to \infty]{\text{a.s.}} 0$$

Proof. We already now that the process $s \to sB_{1/s}\mathbf{1}_{s>0}$ is a Brownian motion. In particular, we must have continuity at $0 = B_0$.

Theorem 9 (Markov property for Brownian motion). Let $B = (B_t)_{t \geq 0}$ be a Brownian motion and $a \geq 0$ fixed. Then, the Brownian motion $(B_{t+a} - B_a)_{t \geq 0}$ is independent of $(B_s)_{s \in [0,a]}$.

Proof. The processes $(B_s)_{s \in [0,a]}$ and $(B_{t+a} - B_a)_{t \geq 0}$ are jointly Gaussian, because their coordinates are linear combinations of coordinates of the same Gaussian process B. Thus, by Theorem 4 it reduces to compute the following correlation:

$$Cov(B_s, B_{t+a} - B_a) = s \wedge (t+a) - s \wedge a = 0$$

Remark. Recall that $s \wedge t := \min(s,t)$ and $s \vee t := \max(s,t)$.

Martingales

Definition 10. Let $(X_t)_{t\geq 0}$ be a stochastic process. We define the *natural filtration* of X as $\mathcal{F}^X := (\mathcal{F}^X_t)_{t\geq 0}$, where $\mathcal{F}^X_t := \sigma(X_s : s \leq t)$.

From now on, we will assume that we work in a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t>0})$.

Definition 11 (Martingale). A stochastic process $(X_t)_{t>0}$ is a *martingale* if:

- 1. it is adapted, i.e. X_t is \mathcal{F}_t -measurable for all $t \geq 0$.
- 2. $\mathbb{E}(|X_t|) < \infty$ for all $t \geq 0$.
- 3. $\mathbb{E}(X_t \mid \mathcal{F}_s) = X_s \text{ for all } 0 \leq s \leq t.$

The process is called a *sub-martingale* if the last condition is replaced by $\mathbb{E}(X_t \mid \mathcal{F}_s) \geq X_s$ for all $0 \leq s \leq t$ and a *super-martingale* if $\mathbb{E}(X_t \mid \mathcal{F}_s) \leq X_s$ for all $0 \leq s \leq t$.

Proposition 12. Let $B = (B_t)_{t \geq 0}$ be a Brownian motion. Then, the following processes are martingales $(M_t)_{t \geq 0}$ with respect to the natural filtration induced by B:

- $M_t = B_t$
- $M_t = B_t^2 t$
- $M_t = e^{\theta B_t \frac{1}{2}\theta^2 t}$, for any fixed $\theta \in \mathbb{R}$.

Proposition 13. Let $A \subseteq \mathbb{R}$ be a closed set and $X = (X_t)_{t \geq 0}$ be an adapted continuous process. Then, the *hitting time* of A by X, defined as:

$$T_A := \inf\{t \ge 0 : X_t \in A\}$$

is a stopping time.

Proof. Using the continuity of X and the fact that A is closed, one can easily check that:

$$\{T_A \le t\} = \bigcap_{k \in \mathbb{N}} \bigcup_{s \in [0,t] \cap \mathbb{O}} \left\{ d(X_s, A) \le \frac{1}{k} \right\}$$

Now, $\{d(X_s,A) \leq \frac{1}{k}\} \in \mathcal{F}_s \subseteq \mathcal{F}_t$ because X is adapted and $z \mapsto d(z,A)$ is measurable. Thus, $\{T_A \leq t\} \in \mathcal{F}_t$ because it is a countable union and intersection of events in \mathcal{F}_t .

Theorem 14 (Doob's optional sampling theorem). Let $(M_t)_{t\geq 0}$ be a continuous martingale and T be a stopping time. Then, the *stopped process* $M^T:=(M_{t\wedge T})_{t\geq 0}$ is a continuous martingale. In particular, $\forall t\geq 0$, $\mathbb{E}(M_{t\wedge T})=\mathbb{E}(M_0)$. If M^T is uniformly integrable and $T\leq \infty$, then taking $t\to \infty$ we have $\mathbb{E}(M_T)=\mathbb{E}(M_0)$.

Lemma 15 (Orthogonality of martingales). Let $(M_t)_{t\geq 0}$ be a continuous martingale and let $0\leq s\leq t$. Then:

$$\mathbb{E}((M_t - M_s)^2 \mid \mathcal{F}_s) = \mathbb{E}(M_t^2 - M_s^2 \mid \mathcal{F}_s)$$

Proof. We have that:

$$\mathbb{E}((M_t - M_s)^2 \mid \mathcal{F}_s) = \mathbb{E}(M_t^2 - 2M_t M_s + M_s^2 \mid \mathcal{F}_s) =$$

$$= \mathbb{E}(M_t^2 + M_s^2 \mid \mathcal{F}_s) - 2M_s \mathbb{E}(M_t \mid \mathcal{F}_s) = \mathbb{E}(M_t^2 - M_s^2 \mid \mathcal{F}_s)$$

Theorem 16 (Doob's maximal inequality). If M is a continuous square-integrable martingale, then $\forall a, t \geq 0$ we have:

$$\mathbb{P}\left(\sup_{0 < s < t} |M_s| \ge a\right) \le \frac{\mathbb{E}(M_t^2)}{a^2}$$

Proposition 17. Let (M^n) be a sequence of continuous square-integrable martingales and suppose that for each $t \geq 0$, the limit $M_t := \lim_{n \to \infty} M_t^n$ exists. Then, $M = (M_t)_{t \geq 0}$ is a continuous square-integrable martingale.

Proof. By 16 Doob's maximal inequality applied to $M^n - M^m$ we have that for fixed $t \ge 0$ and $k \in \mathbb{N}$:

$$\mathbb{P}\left(\sup_{0 \le s \le t} |M_s^n - M_s^m| \ge \frac{1}{k^2}\right) \le k^2 \mathbb{E}((M_t^n - M_t^m)^2) \le \frac{1}{k^2}$$

where in the last inequality we have used that (M^n) converges in L^2 and so we have chosen n, m large enough so that the inequality holds. Thus, there is an increasing sequence (n_k) such that:

$$\mathbb{P}\left(\sup_{0 < s < t} |M_s^{n_{k+1}} - M_s^{n_k}| \ge \frac{1}{k}\right) \le \frac{1}{k^2}$$

By ?? ??, we deduce that

$$\sum_{k=1}^{\infty} \sup_{0 \leq s \leq t} |M_s^{n_{k+1}} - M_s^{n_k}| < \infty$$

which ensures that (M^{n_k}) is continuous in the space of continuous functions equipped with the topology of uniform convergence on every compact set. But the limit is necessarily a version of M, because for each $t \geq 0$ we have $M_t^n \to M_t$ in L^2 .

Quadratic variation

Definition 18. Let $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ be a function. We define the absolute variation of f on the interval [s, t] as:

$$V(f, s, t) := \sup_{(t_k)_{0 \le k \le n} \in P([s, t])} \sum_{k=1}^{n} |f(t_{k+1}) - f(t_k)|$$

where P([s,t]) is the set of all partitions of [s,t]. A function has *finite variation* if $V(f,s,t) < \infty$ for all $0 \le s \le t$.

Lemma 19. Let $f, g: \mathbb{R}_{\geq 0} \to \mathbb{R}$ be a function and $0 \leq s \leq t$. Then:

- V(f, s, t) = V(f, s, u) + V(f, u, t), for all $s \le u \le t$.
- If $f \in C^1$, then $V(f, s, t) = \int_s^t |f'(u)| du$.
- If f is monotone, then V(f, s, t) = |f(t) f(s)|.
- V(f+q,s,t) < V(f,s,t) + V(q,s,t).
- Finite variation functions form a vector space.

Proposition 20. Let $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$. Then, f has finite variation if and only if it can be written as the difference of two non-decreasing functions.

Sketch of the proof. Theorem 19 gives us the implication to the left. For the other one, note that the functions $f_1(t) := V(f,0,t)$ and $f_2(t) := V(f,0,t) - f(t)$ are non-decreasing.

Theorem 21 (Quadratic variation). Let $M = (M_t)_{t \geq 0}$ be a continuous square-integrable martingale. Then, for each $t \geq 0$ the limit

$$\langle M \rangle_t := \lim_{n \to \infty} \sum_{k=1}^n \left| M_{t_k^n} - M_{t_{k-1}^n} \right|^2$$

exists in L^1 and does not depend on the partition $(t_k^n)_{0 \le k \le n} \in P([0,t])$ chosen as long as the $mesh \ \Delta_n := \max_{1 \le k \le n} (t_k^n - t_{k-1}^n)$ goes to 0 as $n \to \infty$. Moreover, $\langle M \rangle = (\langle M \rangle_t)_{t \ge 0}$ has the following properties:

- 1. $\langle M \rangle_0 = 0$
- 2. $\langle M \rangle$ is non-decreasing.
- 3. The function $t \mapsto \langle M \rangle_t$ is continuous.
- 4. $({M_t}^2 \langle M \rangle_t)_{t \ge 0}$ is a martingale.

Proof. We omit the proof of the existence and continuity. We will only prove the last property. Let $0 \le s \le t$ and $(t_k^n)_{0 \le k \le n} \in P([s,t])$ be such that $\Delta_n \to 0$. Then:

$$\mathbb{E}(M_t^2 - M_s^2 \mid \mathcal{F}_s) = \sum_{k=1}^n \mathbb{E}(M_{t_k^n}^2 - M_{t_{k-1}^n}^2 \mid \mathcal{F}_s)$$
$$= \sum_{k=1}^n \mathbb{E}\left((M_{t_k}^n - M_{t_{k-1}}^n)^2 \mid \mathcal{F}_s\right)$$

by the 15 Orthogonality of martingales. Now since we have convergence of $\sum_{k=1}^{n} \left(M_{t_k}^n - M_{t_{k-1}}^n\right)^2$ to $\langle M \rangle_t - \langle M \rangle_s$ in L^1 , we get the result:

$$\mathbb{E}(M_t^2 - M_s^2 \mid \mathcal{F}_s) = \mathbb{E}(\langle M \rangle_t - \langle M \rangle_s \mid \mathcal{F}_s)$$

Proposition 22. Let B be a Brownian motion. Then:

$$\mathbb{P}(\forall s, t \ge 0, V(B, s, t) = \infty) = 1$$

But, $\langle B \rangle_t = t$ for all $t \geq 0$.

Proof. Let $B = (B_t)_{t>0}$. Then:

$$V(B,s,t)\!\ge\!\sum_{k=1}^n \left|B_{s+k\frac{t-s}{n}}-B_{s+(k-1)\frac{t-s}{n}}\right|\!=\!\sqrt{\frac{t-s}{n}}\sum_{k=1}^n |\xi_k|$$

where ξ_k are i.i.d. N(0,1). By the ?? ?? we get the result. The second part is similar, but we get convergence instead.

Proposition 23. If a function f has finite variation and g is continuous, then:

$$\sum_{k=1}^{n} (f(t_k) - f(t_{k-1}))(g(t_k) - g(t_{k-1})) \stackrel{n \to \infty}{\longrightarrow} 0$$

Proof. Note that:

$$\left| \sum_{k=1}^{n} (f(t_k) - f(t_{k-1}))(g(t_k) - g(t_{k-1})) \right| \le$$

$$\le V(f, 0, t) \max_{\substack{0 \le u \le v \le t \\ |u-v| < \Delta_n}} |g(u) - g(v)|$$

which goes to zero by uniform continuity of g at [0, t].

Corollary 24. Let $M = (M_t)_{t\geq 0}$ be a continuous square-integrable martingale with finite variation a.s. Fix $t\geq 0$. By Theorem 23 we have that $\langle M\rangle_t = 0$ Then:

$$\mathbb{P}(\forall t \geq 0, M_t = M_0) = 1$$

Proof. By 15 Orthogonality of martingales, we have:

$$\mathbb{E}((M_t - M_0)^2) = \mathbb{E}(M_t^2) - \mathbb{E}(M_0^2) = \mathbb{E}(\langle M \rangle_t) = 0$$

where the penultimate equality follows from the fact that ${M_t}^2 - \langle M \rangle_t$ is a martingale and so it has constant expectation. This shows that $\mathbb{P}(\forall t \geq 0, \ M_t = M_0) = 1$. Now we can use the fact that M is continuous to conclude using $t \in \mathbb{Q}$.

Proposition 25. The quadratic variation is the unique process that satisfies Items 21-1 to 21-4.

Proof. Let A be another process satisfying such properties. Then, $M^2 - \langle M \rangle$ and $M^2 - A$ are both martingales. Thus, $A - \langle M \rangle$ is also a martingale. But it is also continuous and has finite variation (by Theorem 20). So by Theorem 24, $A = \langle M \rangle$.

Local martingales

Definition 26. A stochastic process $(M_t)_{t\geq 0}$ is a continuous local martingale if there exists a sequence of stopping times $(T_n)_{n\in\mathbb{N}}$ (called localizing sequence) such that:

- 1. $T_n \nearrow \infty$ a.s.
- 2. $M^{T_n} := (M_{t \wedge T_n})_{t \geq 0}$ is a martingale for all $n \in \mathbb{N}$.

Remark. If M is a martingale, then M is a local martingale by taking $T_n = +\infty$ for all $n \in \mathbb{N}$.

Remark. Any local martingale is adapted because it is the pointwise limit of M^{T_n} , which are adapted by definition.

Proposition 27. Let $M = (M_t)_{t \geq 0}$ be a continuous local martingale. Then, if $\forall t \geq 0$ we have

$$\mathbb{E}\left(\sup_{0\leq s\leq t}|M_s|\right)<\infty$$

then M is a martingale.

Proof. We've argued that local martingales are automatically adapted. Moreover:

$$\mathbb{E}(|M_t|) \le \mathbb{E}\left(\sup_{0 \le s \le t} |M_s|\right) < \infty$$

Finally, fix $0 \le s \le t$. For all $n \in \mathbb{N}$ we have:

$$\mathbb{E}(M_{t\wedge T_n}\mid \mathcal{F}_s)=M_{s\wedge T_n}$$

And using the ?? ?? with $M_{t \wedge T_n} \leq \sup_{0 \leq s \leq t} |M_s|$ we conclude the result.

Remark. Note that if M is a continuous local martingale with $M_0 = 0$, then we can always take $T_n = \inf\{t \geq 0 : |M_t| \geq n\}$ as a localizing sequence.

Theorem 28 (Doob's optional sampling theorem for local martingales). Let $M = (M_t)_{t\geq 0}$ be a continuous local martingale and T be a stopping time. Then, the stopped process $M^T := (M_{t \wedge T})_{t\geq 0}$ is a continuous local martingale.

Proof. Let $(T_n)_{n\in\mathbb{N}}$ be a localizing sequence for M. Since M^{T_n} is a continuous martingale, by 14 Doob's optional sampling theorem we have that $M^{T_n \wedge T}$ is a continuous martingale. Thus, M^T is a local martingale with localizing sequence $(T_n)_{n\in\mathbb{N}}$.

Proposition 29. Continuous local martingales form a vector space.

Proof. Let M, \tilde{M} be continuous local martingales with localizing sequences $(T_n)_{n\in\mathbb{N}}$ and $(\tilde{T}_n)_{n\in\mathbb{N}}$ respectively and $\lambda, \tilde{\lambda} \in \mathbb{R}$. Then, $(T_n \wedge \tilde{T}_n)_{n\in\mathbb{N}}$ is a localizing sequence for both M and \tilde{M} and so $\lambda M^{T_n \wedge \tilde{T}_n} + \tilde{\lambda} \tilde{M}^{T_n \wedge \tilde{T}_n}$ is a martingale.

Proposition 30. If M is a continuous local martingale which has finite variation a.s., then:

$$\mathbb{P}(\forall t \ge 0, \ M_t = M_0) = 1$$

Proof. Let $(T_n)_{n\in\mathbb{N}}$ be a localizing sequence for M. Then, M^{T_n} is a martingale and $V(M^{T_n},0,t)=V(M,0,t\wedge T_n)<\infty$. Thus, by Theorem 24 we have that $M_t^{T_n}=M_0^{T_n}$ $\forall t\geq 0$ and $n\in\mathbb{N}$. Taking $n\to\infty$ we get the result.

Proposition 31. Let M be a continuous local martingale. Then, the limit

$$\langle M \rangle_t := \lim_{n \to \infty} \sum_{k=1}^n \left| M_{t_k^n} - M_{t_{k-1}^n} \right|^2$$

exists in probability for any $t \geq 0$ and does not depend on the partition $(t_k^n)_{0 \leq k \leq n} \in P([0,t])$ chosen as long as $\Delta_n \to 0$. Moreover, $\langle M \rangle = (\langle M \rangle_t)_{t \geq 0}$ is the unique process (up to modification) such that:

- 1. $\langle M \rangle_0 = 0$
- 2. $t \mapsto \langle M \rangle_t$ is a.s. continuous.
- 3. $\langle M \rangle$ is a.s. non-decreasing.
- 4. $({M_t}^2 \langle M \rangle_t)_{t \geq 0}$ is a continuous local martingale.

Theorem 32 (Levy's characterization of Brownian motion). Let $M = (M_t)_{t\geq 0}$ be a stochastic process. Then, the following are equivalent:

- 1. M is a continuous local square-integrable martingale with $M_0 = 0$ and $\langle M \rangle_t = t$.
- 2. M is a $(\mathcal{F}_t)_{t\geq 0}$ -Brownian motion.

2. Stochastic integration

Wiener isometry

Definition 33. Let H, H' be Hilbert. A map $I: H \to H'$ is called *isometry* if it is linear and $\forall x \in H$ we have:

$$||I(x)||_{H'} = ||x||_H$$

We speak of partial isometry when I is only defined on a subspace of H.

Theorem 34. Let H, H' be Hilbert, $V \subseteq H$ be a dense subspace and $I: V \to H'$ be a partial isometry. Then, there exists a unique continuous isometry extension of I to H

Proof. Let $x \in H \setminus V$. Then, $\exists (x_n) \in V$ such that $x_n \to x$. Clearly, any continuous extension must satisfy $I(x) := \lim_{n \to \infty} I(x_n)$, so we take it as a definition. Note that, first, the limit exists because $(I(x_n))$ is Cauchy and moreover this definition does not depend on the sequence (x_n) . From this definition, the extension is automatically linear and norm-preserving (because of the continuity).

Definition 35. Let $(B_t)_{t\geq 0}$ be a Brownian motion and $f\in \mathcal{S}(\mathbb{R}_{\geq 0})$ be a simple function such that $f=\sum_{k=1}^n a_k \mathbf{1}_{(t_{k-1},t_k]}$ with $0=t_0\leq t_1\leq \cdots \leq t_n$. We define the *Wiener integral* of f as:

$$I(f) := \sum_{k=1}^{n} a_k (B_{t_k} - B_{t_{k-1}})$$

Remark. Recall that simple functions are dense in L^p (??).

Theorem 36. Let $(B_t)_{t\geq 0}$ be a Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. Then, there exists a unique linear and continuous map $I: L^2(\mathbb{R}_{\geq 0}) \to L^2((\Omega, \mathcal{F}, \mathbb{P}))$ such that for all $0 \leq s \leq t$:

$$I(\mathbf{1}_{(s,t]}) = B_t - B_s$$

Moreover, I is an isometry. The map I is called Wiener isometry (or Wiener integral) and denoted by $I(f) = \int_0^\infty f(u) dB_u$.

Remark. Recall that the limit of Gaussian variables is Gaussian.

Proposition 37. Let $(B_t)_{t\geq 0}$ be a Brownian motion. Then, the following are satisfied:

• For any $f \in L^2(\mathbb{R}_{>0})$ we have:

$$\int_{0}^{\infty} f(u) dB_u \stackrel{L^2}{=} \lim_{n \to \infty} \sum_{k=1}^{n^2} a_{n,k}(f) \left(B_{\frac{k+1}{n}} - B_{\frac{k}{n}}\right)$$

where $a_{n,k}(f) := n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(u) du$ is an approximation of f in the interval $\left[\frac{k}{n}, \frac{k+1}{n}\right]$.

- The Wiener integral is a Gaussian variable with zero mean and variance $\int_0^\infty f(u)^2 du$.
- For any $f, g \in L^2(\mathbb{R}_{>0})$ we have:

$$\operatorname{Cov}\left(\int_{0}^{\infty} f(u) \, \mathrm{d}B_{u}, \int_{0}^{\infty} g(u) \, \mathrm{d}B_{u}\right) = \int_{0}^{\infty} f(u)g(u) \, \mathrm{d}u$$

The Wiener integral as a process

Definition 38. Let $f \in L^2_{loc}(\mathbb{R}_{\geq 0})$ and $0 \leq s \leq t$. We define the *Wiener integral* of f as:

$$\int_{0}^{t} f(u) dB_u := \int_{0}^{\infty} f(u) \mathbf{1}_{(s,t]}(u) dB_u$$

Lemma 39 (Chasles relation). Let $f \in L^2_{loc}(\mathbb{R}_{\geq 0})$ and $0 \leq r \leq s \leq t$. Then:

$$\int_{r}^{t} f(u) dB_{u} = \int_{r}^{s} f(u) dB_{u} + \int_{s}^{t} f(u) dB_{u}$$

and $f \in L^2_{loc}(\mathbb{R}_{\geq 0})$. Then, the associate process $M^f = \text{any } f \in L^2_{loc}(\mathbb{R}_{\geq 0})$, the process $Z^f = (Z^f_t)_{t \geq 0}$ defined as: $(M_t^J)_{t>0}$ defined as:

$$M_t^f := \int_0^t f(u) \, \mathrm{d}B_u$$

is a centered Gaussian process with covariance function:

$$Cov(M_s^f, M_t^f) = \int_0^{s \wedge t} f(u)^2 du$$

Proof. We'll only proof that M^f is Gaussian (the computation of the mean and covariance functions is easy). Let $n \in \mathbb{N}, (t_1, \ldots, t_n) \in \mathbb{R}^n$ and $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$. Then:

$$\sum_{k=1}^{n} \lambda_k M_{t_k}^f = \int_{0}^{\infty} g(u) \, \mathrm{d}B_u$$

with $g(u) = \sum_{k=1}^n \lambda_k f(u) \mathbf{1}_{(0,t_k]}(u) \in L^2(\mathbb{R}_{\geq 0})$, and the right-hand side is Gaussian because it is a Wiener inte-

Theorem 41. Let $f \in L^2_{loc}(\mathbb{R}_{\geq 0})$. Then, M^f is a continuous square-integrable martingale with:

$$\langle M^f \rangle_t = \int_0^t f(u)^2 \, \mathrm{d}u$$

Proof. The integrability and square-integrability is clear because M^f is Gaussian. Note that $t \mapsto M_t^f$ is continuous when $f = \mathbf{1}_{(0,a]}$, because the Brownian motion is continuous. Now using Theorem 17 we get the result true for any $f \in L^2_{loc}(\mathbb{R}_{>0})$. Now let's prove that M^f is a martingale. We have:

$$M_t^f = \lim_{n \to \infty} \sum_{k=1}^{n^2} a_{n,k} (f \mathbf{1}_{(0,t]}) (B_{\frac{k+1}{n}} - B_{\frac{k}{n}})$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n^2} a_{n,k} (f \mathbf{1}_{(0,t]}) (B_{\frac{k+1}{n} \wedge t} - B_{\frac{k}{n}} \wedge t)$$

and the last expression is \mathcal{F}_t -measurable. Finally, if $0 \le s \le t$ we have that since $M_t^f - M_s^f$ is independent of \mathcal{F}_s :

$$\mathbb{E}(M_t^f - M_s^f \mid \mathcal{F}_s) = \mathbb{E}(M_t^f - M_s^f) = 0$$

Moreover, $((M_t^f)^2)_{t>0}$ is clearly adapted and:

$$\mathbb{E}\left(\left(M_{t}^{f}\right)^{2}-\left(M_{s}^{f}\right)^{2}\mid\mathcal{F}_{s}\right)=\mathbb{E}\left(\left(M_{t}^{f}-M_{s}^{f}\right)^{2}\mid\mathcal{F}_{f}\right)=$$

$$=\mathbb{E}\left(\left(M_{t}^{f}-M_{s}^{f}\right)^{2}\right)=\left\|I(f\mathbf{1}_{(s,t]})\right\|_{L^{2}(\Omega)}^{2}=$$

$$=\left\|f\mathbf{1}_{(s,t]}\right\|_{L^{2}(\mathbb{R}_{\geq0})}^{2}=\int_{0}^{t}f(u)^{2}\,\mathrm{d}u$$

where the first equality is due to 15 Orthogonality of martingales and the we used the isometry property of I. This implies that ${(M_t^f)}^2_{t\geq 0} - \int_0^t f(u)^2 \,\mathrm{d} u$ is a martingale and by the uniqueness of the quadratic variation we get the result.

Proposition 40. Let $(B_t)_{t>0}$ be a Brownian motion Proposition 42. Let $(B_t)_{t>0}$ be a Brownian motion. For

$$Z_t^f := e^{\int_0^t f(u) dB_u - \frac{1}{2} \int_0^t f(u)^2 du}$$

is a continuous square-integrable martingale.

Proof. The integrability and adaptedness poses no problem. Now fix $0 \le s \le t$. We previously saw that $\int_{s}^{t} f(u) dB_{u}$ is independent of \mathcal{F}_{s} and so:

$$\mathbb{E}\left(Z_t^f \mid \mathcal{F}_s\right) = Z_s^f \mathbb{E}\left(e^{\int_s^t f(u) dB_u - \frac{1}{2} \int_s^t f(u)^2 du}\right) = Z_s^f$$

because $\int_{s}^{t} f(u) dB_{u} \sim N(0, \int_{s}^{t} f(u)^{2} du)$.

Progressive processes

Definition 43. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ be a filtered probability space and $\phi = (\phi_t)_{t \geq 0}$ a stochastic process. We say that ϕ is progressive if for fixed $t \geq 0$ the function

$$([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t) \longrightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$
$$(u,\omega) \longmapsto \phi_u(\omega)$$

is measurable.

Lemma 44. Let $\phi = (\phi_t)_{t>0}$ be a stochastic process and

$$\mathcal{P} := \cap_{t \geq 0} \{ A \subset \mathbb{R}_{\geq 0} \times \Omega : A \cap ([0, t] \times \Omega) \in \mathcal{B}([0, t]) \otimes \mathcal{F}_t \}$$

Then, ϕ is progressive if and only if the map $(t, \omega) \mapsto \phi_t(\omega)$ is \mathcal{P} -measurable.

Proposition 45. The following stochastic processes $(\phi_t)_{t>0}$ are progressive:

- A deterministic process $\phi_t(\omega) = f(t), f : \mathbb{R}_{>0} \to \mathbb{R}$.
- $\phi_t(\omega) = X(\omega)\mathbf{1}_{(a,b]}(t)$ where $0 \le a < b$ and X be
- $\phi_t(\omega) = X(\omega) \mathbf{1}_{[0,T(\omega)]}(t)$ where T is a stopping time.
- $\phi_t(\omega) = F(\phi_t^1(\omega), \dots, \phi_t^n(\omega))$ where $F: \mathbb{R}^n \to \mathbb{R}$ is measurable and $(\phi_t^i)_{1 \le i \le n}$ are progressive.
- A pointwise limit of progressive processes.
- A continuous adapted process.

Itô isometry

Definition 46. We define the set $\mathbb{M}^2(\mathbb{R}_{>0})$ as the set of all progressive processes $\phi = (\phi_t)_{t>0}$ such that:

$$\mathbb{E}\left(\int\limits_{0}^{\infty}\phi_{u}^{2}\,\mathrm{d}u\right)<\infty$$

Remark. Note that $\mathbb{M}^2(\mathbb{R}_{\geq 0}) = L^2(\mathbb{R}_{\geq 0} \times \Omega, \mathcal{P}, dt \otimes \mathbb{P})$ is Hilbert with the scalar product:

$$\langle \phi, \psi \rangle_{\mathbb{M}^2} := \mathbb{E} \left(\int_0^\infty \phi_u \psi_u \, \mathrm{d}u \right)$$

Theorem 47 (Itô integral). Let $(B_t)_{t\geq 0}$ be a Brownian motion. Then, there exists a unique linear and continuous map $I: \mathbb{M}^2(\mathbb{R}_{\geq 0}) \to L^2((\Omega, \mathcal{F}, \mathbb{P}))$ such that $I(\phi) = X(B_t - B_s)$ whenever $\phi_u(\omega) = X(\omega)\mathbf{1}_{(s,t]}(u)$ for some $0 \leq s \leq t$ and $X \in L^2(\Omega, \mathcal{F}_s, \mathbb{P})$. Moreover, I is an isometry, i.e.:

$$\mathbb{E}\left(\int_{0}^{\infty} \phi_{u} \psi_{u} \, \mathrm{d}u\right) = \mathbb{E}\left(I(\phi)I(\psi)\right)$$

We call I the Itô isometry (or Itô integral) and we denote it by $I(\phi) = \int_0^\infty \phi_u dB_u$.

Proposition 48. Let $(\phi_u), (\psi_u) \in \mathbb{M}^2(\mathbb{R}_{\geq 0})$. Then, the following are satisfied:

•
$$\int_{0}^{\infty} \phi_u \, \mathrm{d}B_u \stackrel{L^2}{=} \lim_{n \to \infty} \sum_{k=1}^{n^2} \left(n \int_{\frac{k}{n}}^{\frac{k+1}{n}} \phi_u \, \mathrm{d}u \right) \left(B_{\frac{k+1}{n}} - B_{\frac{k}{n}} \right)$$

• If $\phi_u(\omega) = f(t)$, $f \in L^2(\mathbb{R}_{\geq 0})$, then we recover the Wiener integral.

•
$$\mathbb{E}\left(\int_{0}^{\infty} \phi_u \, \mathrm{d}B_u\right) = 0$$

•
$$\operatorname{Cov}\left(\int_{0}^{\infty} \phi_{u} \, \mathrm{d}B_{u}, \int_{0}^{\infty} \psi_{u} \, \mathrm{d}B_{u}\right) = \mathbb{E}\left(\int_{0}^{\infty} \phi_{u} \psi_{u} \, \mathrm{d}u\right)$$

The Itô integral as a process

Definition 49. Let (ϕ_u) be a progressive process and $0 \le s \le t$. We define:

$$\int_{s}^{t} \phi_u \, \mathrm{d}B_u := \int_{0}^{\infty} \phi_u \mathbf{1}_{(s,t]}(u) \, \mathrm{d}B_u$$

The set of such processes such that $\forall t \geq 0$, $\mathbb{E}\left(\int_0^t \phi_u^2 \, \mathrm{d}u\right) < \infty$ is denoted by \mathbb{M}^2 . The set of such processes such that $\forall t \geq 0$, $\int_0^t \phi_u^2 \, \mathrm{d}u < \infty$ is denoted by $\mathbb{M}^2_{\mathrm{loc}}$.

Remark. Note that $\mathbb{M}^2(\mathbb{R}_{\geq 0}) \subsetneq \mathbb{M}^2 \subsetneq \mathbb{M}^2_{loc}$.

Theorem 50. Let $(\phi_u) \in \mathbb{M}^2$. Then, the associate process $M^{\phi} = (M_t^{\phi})_{t>0}$ defined as:

$$M_t^{\phi} := \int_0^t \phi_u \, \mathrm{d}B_u$$

is a continuous square-integrable martingale with:

$$\langle M^{\phi} \rangle_t = \int_0^t \phi_u^2 \, \mathrm{d}u$$

Remark. Note that the by ?? ?? we have that:

$$\langle M^{\phi}, M^{\psi} \rangle_t = \int\limits_0^t \phi_u \psi_u \, \mathrm{d}u$$

Generalized Itô integral

Proposition 51. Let $(\phi_u) \in \mathbb{M}^2_{loc}$. Consider the stopping time

$$T_n := \inf\{t \ge 0 : \int_0^t \phi_u^2 du \ge n\}$$

and the truncated progressive process $\phi_t^n(\omega) := \phi_t(\omega) \mathbf{1}_{[0,T_n(\omega)]}(t)$. Then, $\phi^n \in \mathbb{M}^2(\mathbb{R}_{\geq 0})$.

Definition 52. Let $(\phi_u) \in \mathbb{M}^2_{loc}$. We define the *generalized Itô integral* of ϕ as:

$$\int_{0}^{\infty} \phi_u \, \mathrm{d}B_u := \lim_{n \to \infty} \int_{0}^{\infty} \phi_u \mathbf{1}_{[0, T_n]}(u) \, \mathrm{d}B_u$$

which is well-defined.

Theorem 53. Let $(\phi_u) \in \mathbb{M}^2_{loc}$. Then, the associate process $M^{\phi} = (M_t^{\phi})_{t \geq 0}$ defined as:

$$M_t^{\phi} := \int_0^t \phi_u \, \mathrm{d}B_u$$

is a continuous local martingale with:

$$\langle M^{\phi} \rangle_t = \int_0^t \phi_u^2 \, \mathrm{d}u$$

Theorem 54 (Stochastic dominated convergence theorem). Let $t \geq 0$ and $(\phi_u^n) \in \mathbb{M}_{loc}^2$ be a sequence of progressive processes such that $\phi_u^n \xrightarrow[n \to \infty]{\mathbb{P}} \phi_u$ for all a.e. $u \in [0,t]$. Suppose that $\forall u \in [0,t]$ and $\forall n \in \mathbb{N}$ we have $|\phi_u^n| \stackrel{\text{a.e.}}{\leq} \Psi_u$, with $\Psi \in \mathbb{M}_{loc}^2$. Then:

$$\int_{0}^{t} \phi_{u}^{n} dB_{u} \xrightarrow[n \to \infty]{\mathbb{P}} \int_{0}^{t} \phi_{u} dB_{u}$$

Corollary 55. If (ϕ_u) is a continuous and adapted process, then $\forall t \geq 0$ and any subdivision $(t_k^n) \in P([0,t])$ such that $\Delta_n \to 0$ we have:

$$\sum_{k=0}^{n-1} \phi_{t_{k+1}^n} (B_{t_{k+1}^n} - B_{t_k^n}) \xrightarrow[n \to \infty]{\mathbb{P}} \int_0^t \phi_u \, \mathrm{d}B_u$$

3. Stochastic differentiation

Itô processes

Proposition 56. Let $\psi = (\psi_t)_{t \geq 0}$ be a stochastic process such that $\forall t \geq 0$ we have

$$\int_{0}^{t} |\psi_{u}| \, \mathrm{d}u < \infty$$

In this case we say that $\psi \in \mathbb{M}^1_{loc}$. Then, the process

$$t \mapsto \int_{0}^{t} \psi_u \, \mathrm{d}B_u$$

is an adapted continuous process.

Definition 57. An *Itô process* is a stochastic process $(X_t)_{t>0}$ of the form:

$$X_t = X_0 + \int_0^t \phi_u \, \mathrm{d}B_u + \int_0^t \psi_u \, \mathrm{d}u \tag{1}$$

with $\phi \in \mathbb{M}^2_{loc}$ and $\psi \in \mathbb{M}^1_{loc}$. The two integrals are called martingale term and drift term respectively. Instead of Eq. (1) we usually write:

$$dX_t = \phi_t dB_t + \psi_t dt$$

This expression is called *stochastic differential*.

Remark. Itô processes form a vector space. That is, if X and Y are Itô processes and $\lambda, \mu \in \mathbb{R}$, then $Z = \lambda X + \mu Y$ is an Itô process and:

$$dZ_t = \lambda dX_t + \mu dY_t$$

Moreover they are always continuous adapted processes.

Proposition 58. Let $X = (X_t)_{t \ge 0}$ be an Itô process such that $\forall t \ge 0$ we have:

$$dX_t = \phi_t dB_t + \psi_t dt = \tilde{\phi}_t dB_t + \tilde{\psi}_t dt$$

for some $\phi, \tilde{\phi} \in \mathbb{M}^2_{\text{loc}}$ and $\psi, \tilde{\psi} \in \mathbb{M}^1_{\text{loc}}$. Then, $\phi, \tilde{\phi}$ are indistinguishable and so are $\psi, \tilde{\psi}$.

Proof. By assumption, we have that a.e. $\forall t \geq 0$:

$$\int_{0}^{t} (\phi_{u} - \tilde{\phi}_{u}) dB_{u} = \int_{0}^{t} (\psi_{u} - \tilde{\psi}_{u}) du$$

But since the right-hand side of the equation is a local martingale and the left-hand side has finite variation, we have that both sides must be 0 a.e. in t. Moreover, by the uniqueness of the quadratic variation we have that:

$$\int_{0}^{t} \left(\phi_{u} - \tilde{\phi}_{u}\right)^{2} \mathrm{d}u = 0$$

Letting $t\to\infty$ we get that ϕ , ϕ are indistinguishable. Finally, from the Lebesgue integral, we have that ψ , $\tilde{\psi}$ are indistinguishable.

Proposition 59. Let $X = (X_t)_{t \ge 0}$ be an Itô process such that $dX_t = \phi_t dB_t + \psi_t dt$. Then:

- X is a local martingale if and only if $X_0 \in L^1$ and $\psi = 0$.
- X is a square-integrable martingale if and only if $X_0 \in L^2$, $\phi \in \mathbb{M}^2$ and $\psi = 0$.

Definition 60. Let $X=(X_t)_{t\geq 0}$ be an Itô process such that $\mathrm{d} X_t=\phi_t\,\mathrm{d} B_t+\psi_t\,\mathrm{d} t,$ and $Y=(Y_t)_{t\geq 0}$ be a continuous adapted process. Then, $Y\phi\in\mathbb{M}^2_{\mathrm{loc}}$ and $Y\psi\in\mathbb{M}^1_{\mathrm{loc}}$ and we define:

$$\int_{0}^{t} Y_u \, \mathrm{d}X_u := \int_{0}^{t} Y_u \phi_u \, \mathrm{d}B_u + \int_{0}^{t} Y_u \psi_u \, \mathrm{d}u$$

Remark. Note that using ?? ?? we also have:

$$\int_{0}^{t} Y_{u} \, \mathrm{d}X_{u} \stackrel{\mathbb{P}}{=} \lim_{n \to \infty} \sum_{k=0}^{n-1} Y_{t_{k}^{n}} (X_{t_{k+1}^{n}} - X_{t_{k}^{n}})$$

along any subdivision $(t_k^n)_{0 \le k \le n} \in P([0,t])$ such that $\Delta_n \to 0$.

Quadratic variation of Itô processes

Lemma 61. Let $X = (X_t)_{t \geq 0}$, $\tilde{X} = (\tilde{X}_t)_{t \geq 0}$ be two Itô processes with differentials:

$$dX_t = \phi_t dB_t + \psi_t dt \qquad d\tilde{X}_t = \tilde{\phi}_t dB_t + \tilde{\psi}_t dt$$

Then, for any $(t_k^n)_{0 \le k \le n} \in \mathcal{P}([0,t])$ such that $\Delta_n \to 0$ we have:

$$\sum_{k=0}^{n-1} (X_{t_{k+1}^n} - X_{t_k^n}) (\tilde{X}_{t_{k+1}^n} - \tilde{X}_{t_k^n}) \xrightarrow[n \to \infty]{\mathbb{P}} \int_0^t \phi_u \tilde{\phi}_u \, \mathrm{d}u =:$$

$$=: \langle X, \tilde{X} \rangle_t$$

In particular:

$$\langle X \rangle_t := \langle X, X \rangle_t = \int_0^t \phi_u^2 du$$

and we call it the quadratic variation of X.

Proof. We saw it for $X = \tilde{X}$, and the general formula follows from ?? ??. Now, if $\psi = 0$, X is a continuous local martingale with quadratic variation $t \mapsto \int_0^t \phi_u^2 du$. Now if $\phi = 0$, we know it because $t \mapsto \int_0^t \psi_u du$ has finite variation, and therefore, null quadratic variation. Finally in the general case we have:

$$\sum_{k=0}^{n-1} (X_{t_{k+1}^n} - X_{t_k^n})^2 = \sum_{k=0}^{n-1} \left(\int_{t_k^n}^{t_{k+1}^n} \phi_u \, \mathrm{d}B_u \right)^2 + \sum_{k=0}^{n-1} \left(\int_{t_k^n}^{t_{k+1}^n} \psi_u \, \mathrm{d}B_u \right)^2 + 2 \sum_{k=0}^{n-1} \int_{t_k^n}^{t_{k+1}^n} \phi_u \, \mathrm{d}B_u \int_{t_k^n}^{t_{k+1}^n} \psi_u \, \mathrm{d}u$$

The first part tends to $\int_0^t \phi_u^2 du$, the second part tends to 0 and for the last part use Theorem 23.

Theorem 62 (Stochastic integration by parts). Let $X = (X_t)_{t \geq 0}$ and $Y = (Y_t)_{t \geq 0}$ be two Itô processes. Then, $(X_t Y_t)_{t \geq 0}$ is an Itô process and:

$$d(X_t Y_t) = X_t dY_t + Y_t dX_t + d\langle X, Y \rangle_t$$

The last term $d\langle X, Y \rangle_t$ is called *Itô term*.

Proof. Let $(t_k^n)_{0 \le k \le n} \in P([0,t])$ such that $\Delta_n \to 0$. Then:

$$X_tY_t - X_0Y_0 = \sum_{k=0}^{n-1} (X_{t_{k+1}^n}Y_{t_{k+1}^n} - X_{t_k^n}Y_{t_k^n}) =$$

$$= \sum_{k=0}^{n-1} (X_{t_{k+1}^n} - X_{t_k^n}) Y_{t_{k+1}^n} + \sum_{k=0}^{n-1} X_{t_k^n} (Y_{t_{k+1}^n} - Y_{t_k^n}) + \sum_{k=0}^{n-1} (X_{t_{k+1}^n} - X_{t_k^n}) (Y_{t_{k+1}^n} - Y_{t_k^n})$$

Letting $n \to \infty$ and using Theorem 61 and a previous remark we get the result.

Corollary 63. Let $X = (X_t)_{t \ge 0}$ be an Itô process. Then, $(X_t^2)_{t > 0}$ is an Itô process and:

$$dX_t^2 = 2X_t dX_t + d\langle X \rangle_t$$

Itô's formula

Theorem 64 (Itô's formula). Let $X = (X_t)_{t \geq 0}$ be an Itô process and $f \in C^2(\mathbb{R})$. Then, $(f(X_t))_{t \geq 0}$ is an Itô process and:

$$df(X_t) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) d\langle X \rangle_t$$

Proof. Let $t\geq 0$ and $(t_k^n)_{0\leq k\leq n}\in \mathcal{P}([0,t])$ such that $\Delta_n\to 0$. Then, using the Taylor expansion of f we have:

$$f(X_t) - f(X_0) = \sum_{k=0}^{n-1} f(X_{t_{k+1}^n}) - f(X_{t_k^n}) =$$

$$= \sum_{k=0}^{n-1} f'(X_{t_k^n}) (X_{t_{k+1}^n} - X_{t_k^n}) +$$

$$+ \frac{1}{2} \sum_{k=0}^{n-1} f''(X_{u_k^n}) (X_{t_{k+1}^n} - X_{t_k^n})^2$$

with $u_k^n \in [t_k^n, t_{k+1}^n]$. By a previous remark we have that:

$$\sum_{k=0}^{n-1} f'(X_{t_k^n})(X_{t_{k+1}^n} - X_{t_k^n}) \xrightarrow{\mathbb{P}} \int_0^t f'(X_u) \, \mathrm{d}X_u$$

Now, by Theorem 61 we have that:

$$\sum_{k=0}^{n-1} Y_{t_k^n} (X_{t_{k+1}^n} - X_{t_k^n})^2 \stackrel{\mathbb{P}}{\longrightarrow} \int_0^t Y_u \, \mathrm{d}\langle X \rangle_u$$

in the elementary case where $Y_u = \mathbf{1}_{(0,s]}(u)$, $s \geq 0$. By linearity, this immediately extends to the case where Y is a random step function. By density, it further extends to the case where Y is any continuous and adapted process. In particular, we may take $Y_u = f''(X_u)$, and the formula holds by uniform continuity:

$$\max_{0 \le k \le n} \left| f''(X_{t_k^n}) - f''(X_{u_k^n}) \right| \xrightarrow{\text{a.e.}} 0$$

Theorem 65. Let X^1, \ldots, X^d be Itô processes and $f \in C^2(\mathbb{R}^d)$. Then, $(f(X_t^1, \ldots, X_t^d))_{t>0}$ is an Itô process and:

$$df(\mathbf{X}) = \sum_{i=1}^{d} \frac{\partial f}{\partial x_i}(\mathbf{X}) dX_t^i + \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{X}) d\langle X^i, X^j \rangle_t$$

where $\mathbf{X} := (X^1, \dots, X^d)$.

Exponential martingales

Lemma 66 (Doléans-Dade exponential). For any $\phi \in \mathbb{M}^2_{loc}$, the process $Z^{\phi} = (Z_t^{\phi})_{t>0}$ defined as

$$Z_t^{\phi} := \mathrm{e}^{\int_0^t \phi_u \mathrm{d}B_u - \frac{1}{2} \int_0^t \phi_u^2 \mathrm{d}u}$$

is a continuous local martingale.

Proof. Applying Itô's formula to $f(x) = e^x$ and $X_t = \int_0^t \phi_u dB_u - \frac{1}{2} \int_0^t \phi_u^2 du$ we get:

$$dZ_t^{\phi} = e^{X_t} \left(\phi_t dB_t - \frac{1}{2} \phi_t^2 dt \right) + \frac{1}{2} e^{X_t} \phi_t^2 dt = e^{X_t} \phi_t dB_t$$

Since, $Z_0^{\phi} = 1$, we obtain that $\forall t \geq 0$:

$$Z_t^{\phi} = 1 + \int_0^t Z_u^{\phi} \phi_u \, \mathrm{d}B_u$$

and the result follows from Theorem 59.

Lemma 67. If M is a non-negative local martingale, then M is a super-martingale. Moreover, for $T \in \mathbb{R}_{\geq 0}$, $(M_t)_{t \in [0,T]}$ is a martingale if and only if $\mathbb{E}(M_T) \geq \mathbb{E}(M_0)$.

Proof. Since M is a local martingale with localizing sequence (T_n) , then $\forall t \geq 0$ we have that $\mathbb{E}(M_{t \wedge T_n} \mid \mathcal{F}_s) = M_{s \wedge T_n}$ and so:

$$\begin{cases} M_{s \wedge T_n} & \xrightarrow{\text{a.s.}} M_s \\ M_{t \wedge T_n} & \xrightarrow{\text{a.s.}} M_t \end{cases}$$

Now, by ?? ?? we have:

$$\mathbb{E}(M_t \mid \mathcal{F}_s) \leq \liminf_{n \to \infty} \mathbb{E}(M_{t \wedge T_n} \mid \mathcal{F}_s) = \liminf_{n \to \infty} M_{s \wedge T_n} = M_s$$

which shows that M is a super-martingale. Now, fix $T \geq 0$, and suppose that $\mathbb{E}(M_T) \geq \mathbb{E}(M_0)$. This forces the non-increasing map $t \mapsto \mathbb{E}(M_t)$ to be constant on [0,T]. In particular, for any $0 \leq s \leq t \leq T$, the non-negative variable $M_s - \mathbb{E}(M_t \mid \mathcal{F}_s)$ has zero mean, hence is null a.s.

Theorem 68 (Novikov's condition). Let $t \ge 0$ be fixed and assume that:

$$\mathbb{E}\left(\mathrm{e}^{\frac{1}{2}\int_0^t\phi_u^2\mathrm{d}u}\right)<\infty$$

Then, $(Z_s^{\phi})_{s \in [0,t]}$ is a martingale.

Proof. Fix $0 < \varepsilon < 1$. We have that for all $s \in [0, t]$:

$$\left(Z_s^{(1-\varepsilon)\phi} \right)^{\frac{1}{1-\varepsilon^2}} = \left(Z_s^{\phi} \right)^{\frac{1}{1+\varepsilon}} \left(e^{\frac{1}{2} \int_0^s \phi_u^2 du} \right)^{\frac{\varepsilon}{1+\varepsilon}}$$

Now, choosing $s = t \wedge T_n$, where T_n is a localizing sequence for $Z^{(1-\varepsilon)\phi}$, taking expectation and using ?? ?? we get:

$$\mathbb{E}\left[\left(Z_{t\wedge T_n}^{(1-\varepsilon)\phi}\right)^{\frac{1}{1-\varepsilon^2}}\right] \leq \mathbb{E}\Big[Z_{t\wedge T_n}^{\phi}\Big]^{\frac{1}{1+\varepsilon}}\mathbb{E}\Big[\mathrm{e}^{\frac{1}{2}\int_0^{t\wedge T_n}\phi_u^2\mathrm{d}u}\Big]^{\frac{\varepsilon}{1+\varepsilon}}$$

$$\leq \mathbb{E} \Big[\mathrm{e}^{\frac{1}{2} \int_0^t \phi_u^2 \mathrm{d}u} \Big]^{\frac{\varepsilon}{1+\varepsilon}}$$

because $\mathbb{E}\Big[Z_{t\wedge T_n}^{\phi}\Big]=1$. This implies that $(Z_{t\wedge T_n}^{(1-\varepsilon)\phi})$ is bounded in L^p for $p=\frac{1}{\varepsilon^2}>1$. Thus:

$$\mathbb{E}(Z_t^{(1-\varepsilon)\phi}) = \lim_{n \to \infty} \mathbb{E}(Z_{t \wedge T_n}^{(1-\varepsilon)\phi}) = 1$$

In particular, $\mathbb{E}\left[\left(Z_t^{(1-\varepsilon)\phi}\right)^p\right]\geq 1$ and so:

$$1 \leq \mathbb{E} \Big[Z_t^\phi \Big]^{\frac{1}{1+\varepsilon}} \mathbb{E} \Big[\mathrm{e}^{\frac{1}{2} \int_0^t \phi_u^2 \mathrm{d}u} \Big]^{\frac{\varepsilon}{1+\varepsilon}}$$

Taking $\varepsilon \to 0$, yields $\mathbb{E}(Z_t^{\phi}) \ge 1$, which suffices to conclude by Theorem 67.

Girsanov's theorem

Theorem 69 (Giranov's theorem). Let $\phi \in \mathbb{M}^2_{loc}$ and suppose its associated exponential local martingale $(Z_t^{\phi})_{t\geq 0}$ is a martingale. Then, the formula

$$\mathbb{Q}(A) := \mathbb{E}(Z_t^{\phi} \mathbf{1}_A) \qquad \forall A \in \mathcal{F}_t$$

defines a probability measure on (Ω, \mathcal{F}_t) , under which the process $X = (X_s)_{s \in [0,t]}$ defined as

$$X_s := B_s - \int_0^s \phi_u \, \mathrm{d}u$$

is a $(\mathcal{F}_s)_{s\in[0,t]}$ -Brownian motion.

Remark. Note that, by linearity we have that for ant \mathcal{F}_{t} -measurable non-negative random variable Y:

$$\mathbb{E}_{\mathbb{Q}}(Y) = \mathbb{E}(YZ_t^\phi) \qquad \mathbb{E}(Y) = \mathbb{E}_{\mathbb{Q}}\left(\frac{Y}{Z_t^\phi}\right)$$

where $\mathbb{E}_{\mathbb{Q}}$ denotes the expectation with respect to \mathbb{Q} . This is useful for transferring computations between \mathbb{P} and \mathbb{Q} .

4. | Stochastic differential equations

Introduction

Definition 70. Let $X = (X_t)_{t \geq 0}$ be a stochastic process and $b : \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$ and $\sigma : \mathbb{R}_{\geq 0} \times \mathbb{R}$ be deterministic functions called *drift* and *diffusion*, respectively. A *stochastic differential equation (SDE)* is an equation of the form:

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t$$
 (2)

Definition 71. Consider the SDE of Eq. (2). We say that a progressive process $X = (X_t)_{t\geq 0}$ defined on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ is a solution of the SDE if $(\overline{b}(t, X_t))_{t\geq 0} \in \mathbb{M}^1_{\mathrm{loc}}$ and $(\sigma(t, X_t))_{t\geq 0} \in \mathbb{M}^2_{\mathrm{loc}}$ and $\forall t \geq 0$:

$$X_t = X_0 + \int_0^t b(s, X_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s$$

Existence and uniqueness of solutions

Lemma 72 (Grönwall's lemma). Let $(x_t)_{t \in [0,T]}$ be a non-negative function in $L^1([0,T])$ satisfying that $\forall t \in [0,T]$:

$$x_t \le \alpha + \beta \int_0^t x_s \, \mathrm{d}s$$

for some constants $\alpha, \beta \geq 0$. Then, $x_t \leq \alpha e^{\beta t}$ for all $t \in [0, T]$.

Theorem 73 (Existence and uniqueness of solutions of SDEs). Let $b, \sigma : \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$ be a measurable function satisfying:

• Uniform spatial Lipschitz continuity: $\exists C > 0$ such that $\forall t \geq 0$ and $\forall x, y \in \mathbb{R}$ we have:

$$|b(t,x) - b(t,y)| \le C|x - y|$$

$$|\sigma(t,x) - \sigma(t,y)| \le C|x - y|$$

• Local square-integrability in time: $\forall t \geq 0$ we have:

$$\int_{0}^{t} |b(s,0)|^{2} ds < \infty \qquad \int_{0}^{t} |\sigma(s,0)|^{2} ds < \infty$$

Then, for each initial condition $\zeta \in L^{(\Omega)}, \mathcal{F}_0, \mathbb{P}$, there exists a unique (up to indistinguishability) solution $X = (X_t)_{t \geq 0}$ to the SDE of Eq. (2) with $X_0 = \zeta$. Moreover, $X \in \mathbb{M}^2$.

Remark. In the proof of the above theorem, which we omit here, it can be shown that

$$X_t = \Psi_t \left(\zeta, (B_s)_{s \in [0, t]} \right) \tag{3}$$

for some measurable function $\Psi_t : \mathbb{R} \times C([0,t],\mathbb{R}) \to \mathbb{R}$.

Practical examples

Proposition 74 (Langevin equation). Consider the following SDE:

$$dX_t = -bX_t dt + \sigma dB_t$$

with $b, \sigma > 0$ and $X_0 = \zeta \in L^2(\Omega, \mathcal{F}_0, \mathbb{P})$. Then, the solution is given by:

$$X_t = \zeta e^{-bt} + \sigma \int_0^t e^{-b(t-s)} dB_s$$

Remark. This SDE was proposed by Paul Langevin in 1908 to describe the random motion of a small particle in a fluid, due to collisions with the surrounding molecules. Note that the long-term behavior of X_t has law of $N(0, \frac{\sigma^2}{2b})$ (because the second term has law $N(0, \frac{\sigma^2}{2b}(1-\mathrm{e}^{-2bt}))$), independently of the initial condition ζ .

Proposition 75 (Geometric Brownian motion). Consider the following SDE:

$$dX_t = X_t(b dt + \sigma dB_t)$$

with $X_0 = \zeta \in L^2(\Omega, \mathcal{F}_0, \mathbb{P})$. Then, the solution is given by:

$$X_t = \zeta e^{\left(b - \frac{\sigma^2}{2}\right)t + \sigma B_t}$$

Proof. This equation has a unique solution and it's natural to expect it is of the form $X_t = \zeta e^{Y_t}$, where Y_t is an Itô process. Identifying $dY_t = \psi_t dt + \phi_t dB_t$ and using the 64 Itô's formula we get:

$$d(\zeta e^{Y_t}) = \zeta e^{Y_t} \left(dY_t + \frac{1}{2} d\langle Y \rangle_t \right)$$
$$= \zeta e^{Y_t} \left(\psi_t dt + \phi_t dB_t + \frac{1}{2} \phi_t^2 dt \right)$$

and so $\phi_t = \sigma$ and $\psi_t = b - \frac{\sigma^2}{2}$.

Proposition 76 (Black-Scholes process). Consider the following SDE:

$$dX_t = X_t(b_t dt + \sigma_t dB_t)$$

with $X_0 = \zeta \in L^2(\Omega, \mathcal{F}_0, \mathbb{P})$ and $(b_t)_{t \geq 0}$, $(b_t)_{t \geq 0}$ deterministic measurable bounded functions. Then, the solution is given by:

$$X_t = \zeta e^{\int_0^t \left(b_s - \frac{\sigma_s^2}{2}\right) ds + \int_0^t \sigma_s dB_s}$$

Proof. This equation has a unique solution and as in the previous example, we expect $X_t = \zeta e^{Y_t}$, where Y_t is an Itô process. Identifying $dY_t = \psi_t dt + \phi_t dB_t$ and using the 64 Itô's formula we get:

$$d(\zeta e^{Y_t}) = \zeta e^{Y_t} \left(\psi_t dt + \phi_t dB_t + \frac{1}{2} \phi_t^2 dt \right)$$

and so $\phi_t = \sigma_t$ and $\psi_t = b_t - \frac{\sigma_t^2}{2}$.

Markov property for diffusions

Definition 77. Let $b.\sigma: \mathbb{R} \to \mathbb{R}$ be two Lipschitz functions and consider the following *homogeneous SDE*:

$$\begin{cases} dX_t = b(X_t) dt + \sigma(X_t) dB_t \\ X_0 = \zeta \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}) \end{cases}$$
(4)

These kinds of problems are called *diffusions*.

Theorem 78 (Invariance under time shift). Let $X = (X_t)_{t \geq 0}$ be a solution to the SDE of Eq. (4) and assume we write X_t as in Eq. (3). Then, for any $s, t \geq 0$ we have:

$$X_{t+s} = \Psi_t(X_s, (B_{u+s} - B_s)_{u \in [0,t]})$$

Definition 79. Let $f \in L^{\infty}(\mathbb{R})$ and $t \geq 0$. We define the function $P_t f$ as:

$$P_t f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \mathbb{E}(f(X_t^x))$$

where X_t^x is the solution to the SDE of Eq. (4) with $X_0 = x$.

Corollary 80. For any $s,t\geq 0$ and any $f\in L^\infty(\mathbb{R})$ we have:

$$\mathbb{E}(f(X_{t+s})) = (P_t f)(X_s)$$

Proposition 81. The family $(P_t)_{t\geq 0}$ has the following properties:

- 1. P_t is a bounded linear operator from $L^{\infty}(\mathbb{R})$ to itself for each t > 0.
- 2. $P_0 = \text{id}$ and $P_{t+s} = P_t \circ P_s$ for all $s, t \ge 0$.
- 3. If f is continuous, then so is $t \mapsto P_t f(x)$ for each fixed $x \in \mathbb{R}$.
- 4. If f is monotone, then so is $P_t f$ for each $t \geq 0$.
- 5. If f is Lipschitz, then so is $P_t f$ for each $t \geq 0$.
- 6. If $\sigma, b, f \in \mathcal{C}_{\mathrm{b}}^{k}(\mathbb{R})$ for some $k \geq 1$, then so is $P_{t}f$ for each $t \geq 0$.

Generator of a diffusion

Definition 82 (Generator). The generator of the semi-group $(P_t)_{t\geq 0}$ is the linear operator L defined by:

$$(Lf)(x) := \lim_{t \to 0} \frac{P_t f(x) - f(x)}{t}$$

for all $f \in L^{\infty}(\mathbb{R})$ and $x \in \mathbb{R}$ such that the limit exists. Those functions form a vector space denoted by Dom(L).

Theorem 83. Let $f \in \mathcal{C}^2_b(\mathbb{R})$. Then:

1. Lf is well-defined and it is given $\forall x \in \mathbb{R}$ by:

$$Lf(x) = \frac{1}{2}\sigma^{2}(x)f''(x) + b(x)f'(x)$$

2. For all $t \geq 0$, we have $P_t f \in \text{Dom}(L)$ and it satisfies the *Kolmogorov's equation*:

$$\frac{\mathrm{d}}{\mathrm{d}t}P_tf = P_t(Lf) = L(P_tf)$$

3. The process $(M_t)_{t>0}$ defined as

$$M_t := f(X_t) - f(X_0) - \int_0^t Lf(X_s) ds$$

is a continuous square-integrable martingale.

Connection with PDEs

For this section recall the diffusion equation:

$$\begin{cases} dX_t^x = b(X_t^x) dt + \sigma(X_t^x) dB_t \\ X_0^x = x \end{cases}$$
 (5)

where $b, \sigma : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions. Now, fix $f \in L^{\infty}(\mathbb{R})$ and consider the PDE:

$$\begin{cases} \frac{\partial v}{\partial t}(t,x) = b(x)\frac{\partial v}{\partial x}(t,x) + \frac{1}{2}\sigma^2(x)\frac{\partial^2 v}{\partial x^2}(t,x) \\ v(0,x) = f(x) \end{cases}$$
 (6)

where $v \in \mathcal{C}^{1,2}([0,\infty) \times \mathbb{R})$.

Theorem 84.

1. If v is a bounded solution to the PDE of Eq. (6), then we must have $\forall (t, x) \in [0, \infty) \times \mathbb{R}$:

$$v(t,x) = \mathbb{E}(f(X_t^x)) \tag{7}$$

2. If $b, \sigma, f \in \mathcal{C}^2_b(\mathbb{R})$, then conversely, the function v defined in Eq. (7) is a bounded solution of Eq. (6).

Remark. The interest of this connection between SDEs and PDEs is two-fold: on the one hand, one can use tools from PDE theory to understand the distribution of X_t^x . Conversely, the probabilistic representation of Eq. (7) offers a practical way to numerically solve the PDE of Eq. (6), by simulation.

 $\mathcal{C}^{1,2}([0,\infty)\times\mathbb{R})$ be a bounded solution to the PDE

$$\begin{cases} \frac{\partial v}{\partial t}(t,x) = -h(x)v(t,x) + b(x)\frac{\partial v}{\partial x}(t,x) + \frac{1}{2}\sigma^2(x)\frac{\partial^2 v}{\partial x^2}(t,x) \\ v(0,x) = f(x) \end{cases}$$

where $f,h:\mathbb{R}\to\mathbb{R}$ are measurable, with h non-negative. Then, we have the representation

$$v(t,x) = \mathbb{E}\left(f(X_t^x)e^{-\int_0^t h(X_s^x)ds}\right)$$

Theorem 85 (Feynman-Kac's formula). Let $v \in \text{for all } (t,x) \in [0,\infty) \times \mathbb{R}$.