Stochastic calculus

Along the document we assume that we work in a prob-
ability space (2, F,P) and that all the random variables
are defined on this space.

1. | Preliminaries

Stochastic processes

A stochastic process X = (X¢),cp is
Gaussian if and only if Vn € N, Vt,...,t, € T,
VA1, ..., A\ €ER,

Z = Alth R )\nth
is a Gaussian random variable. In particular, we have:

E(eiZ) _ ei]E(Z)—%Var(Z)

A stochastic process X = (X;),.p can also be
viewed as a single random variable taking values in RT,
equipped with the product o-algebra ® B(R).

teT

Let m : T — R be a measurable function
and v : T? — R be a symmetric positive-definite function.
Then, there exists a Gaussian process (X¢),cp such that
E(X:) = m(t) and Cov(Xs, X;) = (s, 1).

Let (X¢)yeps (Ys),es be two stochastic pro-
cesses. We say that they are jointly Gaussian if the con-
catenated process ((Xt),cr, (Ys),es) is Gaussian.

Two jointly Gaussian stochastic processes
(Xt)ier> (Ys),es are independent if and only if V¢ € T,
Vs €S, Cov(Xy,Ys) =0.

Two stochastic processes
(Ys),cg are independent if and only if Vn € N, Vty, ..., t, €
T, Vs1,...,8, € Sand Vf,g : R™ — R bounded and mea-
surable functions, we have:

(Xt)teﬂl"

E(f(th' : "th)g(YS17 e 7Y5n)) =

=E(f(Xeys - Xe )E(9(Y, -0, Y5,)

Brownian motion

A Brownian motion is a stochastic process
(Bt),;>( such that:

1. B is Gaussian with E(B;) = 0 and Cov(Bs, B;) =
sAT.

2. B has continuous paths.

Let B be a Brownian motion. Then:
1. Bp =0 a.s.
2. B has independent increments.

3. B has stationary increments.

Conversely, any stochastic process with these properties
has the law of a Brownian motion.

(Strong law of large numbers for Brow-
nian motion). Let (B,),-, be a Brownian motion. Then:

Be as
t t—oo
We already now that the process s — sBy/,15>0 is
a Brownian motion. In particular, we must have continu-
ity at 0 = By.

(Markov property for Brownian mo-
tion). Let B = (B;),, be a Brownian motion and a > 0
fixed. Then, the Brownian motion (B, — Ba)ysg is in-

dependent of (Bs) (g q-

The processes (Bs)c(,q and (Btta — Ba)is are
jointly Gaussian, because their coordinates are linear com-
binations of coordinates of the same Gaussian process B.
Thus, by it reduces to compute the following
correlation:

Cov(Bs, Biyq —Ba) =sA(t+a)—sAha=0

Recall that s At =
max(s,t).

min(s,t) and s V¢t =

Martingales

Let (X¢);>, be a stochastic process. We
define the natural filtration of X as FX := (F{¥),,, where
FX =0(Xs:5<1).

From now on, we will assume that we work in a filtered
probability space (0, F, P, (Ft);50)-

(Martingale). A stochastic process
(Xt);50 is a martingale if:

1. it is adapted, i.e. X; is Fy-measurable for all ¢ > 0.
2. E(|X¢]) < oo for all t > 0.
3 E(X; | Fs) =X forall 0 < s <t.

The process is called a sub-martingale if the last condition
is replaced by E(X; | Fs) > X5 forall 0 < s <t and a
super-martingale if B(X; | Fs) < X for all 0 < s <.

Let B = (Bt),; be a Brownian motion.
Then, the following processes are martingales (M),
with respect to the natural filtration induced by B:

e« M,=DB,
. Mt:Bg—t

o M, =e"B:=30°t for any fixed 0 € R.



Let A C R be a closed set and X =
(X¢);>o be an adapted continuous process. Then, the hit-
ting time of A by X, defined as:

Ty:=inf{t>0: X, € A}
is a stopping time.

Using the continuity of X and the fact that A is
closed, one can easily check that:

- U {ax.o<i}

keN se€[0,t]NQ

Now, {d X5, A) < 1} € Fs C F; because X is adapted
and z — d(z, A) is measurable. Thus, {T4 < t} € F
because it is a countable union and intersection of events
in ./—"t.

(Doob’s optional sampling theorem)
Let (My),~, be a continuous martingale and 7" be a stop-
ping time. Then, the stopped process M* := (Minr),
is a continuous martingale. In particular, Vi > 0,
E(Miar) = E(Mp). If M7 is uniformly integrable and

T 2 00, then taking ¢ — oo we have E(My) = E(Mp).

(Orthogonality of martingales). Let
(My),~, be a continuous martingale and let 0 < s < t.
Then:

E((M; — My)* | Fy) = E(M;*> — M2 | Fy)
We have that:

E((M, — M,)* | Fs) = E(M;> — 2M, M, + M,>

= RE(M2+ M2 | F,)—2ME(M,| F,) =

‘ ]:5) =
E(M,?— M| F,)

(Doob’s maximal inequality). If M is
a continuous square-integrable martingale, then Va,t > 0

we have: )
E(M,
IP’<sup MS|Za>§ (M7)

0<s<t a?

Let (M™) be a sequence of continu-

ous square-integrable martingales and suppose that for
2

each t > 0, the limit M, =% lim M Then,

n—oo
M = (M), is a continuous square-integrable martin-

gale.

exists.

By applied to M™ —

M™ we have that for fixed ¢t > 0 and k € N:
n m 1 2 n m\2 1
P{ sup [M]— M >~ |) <KE(M—M"))< 5
ogsgt & E kQ L L k/’Q

where in the last inequality we have used that (M™) con-
verges in L? and so we have chosen n,m large enough so
that the inequality holds. Thus, there is an increasing
sequence (ny) such that:

IP’< sup | Mttt

0<s<t

L1 1

By 7?7 7?7, we deduce that

oo

Z sup |MIk+

b1 0<s<t

- M| < oo

which ensures that (M™) is continuous in the space of
continuous functions equipped with the topology of uni-
form convergence on every compact set. But the limit is
necessarily a version of M, because for each ¢t > 0 we have
M} — My in L2

Quadratic variation

Let f : R>o — R be a function. We define
the absoulte variation of f on the interval [s, t] as:

V(f78,t) = ‘f tk+1 )|
(tk)o<k<nep([5 t]) ;
where P([s,t]) is the set of all partitions of [s,t]. A func-

tion has finite variation if V(f,s,t) < oo for all 0 < s < t.

Let f.g
0 < s <t. Then:

V(f,s,t) =

o If f € CH, then V(f,s,t) =

: R>p — R be a function and

V(f,s,u)+V(f,u,t), forall s <u <t

SN

o If f is monotone, then V(f,s,t) =

)| du.
|f(t) —
o V(f+g,s1t) <V(fs,t)+V(g,s,t).

f(s)l.

o Finite variation functions form a vector space.

Let f : R>9 — R. Then, f has finite
variation if and only if it can be written as the difference
of two non-decreasing functions.

gives us the implication
to the left. For the other one, note that the functions
fl(t) = V(faoat) and fQ(t) = V(fvoat) - f(t) are 1o1m-

decreasing.

(Quadratic variation). Let M = (M;),~,
be a continuous square-integrable martingale. Then, for
each t > 0 the limit

lim
n—o0

n 2
) ‘Mtn ~ My
k k—1

(M), =

t

exists in L' and does not depend on the partition
(th)o<r<n € P([0,1]) chosen as long as the mesh A, :=

max;<p<n(t? — t7_,) goes to 0 as n — co. Moreover,
(M) = ((M),)t>0 has the following properties:

>0:O

2. (M) is non-decreasing,.

1. (M

3. The function t — (M), is continuous.

=~

(M,? — (M),),>, is a martingale.



We omit the proof of the existence and continuity.
We will only prove the last property. Let 0 < s < ¢ and
(t)o<r<n € P([s,t]) be such that A, — 0. Then:

E(M — M* | Fo) =Y E(Mn® — My
k=1

(4 -0 )P )
k=1

21 F)

1

by the . Now since we have
convergence of Y ¢ | (M — Mg;_lf to (M), — (M), in
L', we get the result:

E(Mt2 - M82 ‘ -7:9) = ]E(<M>t - <M>5 | ‘7:9)

Let B be a Brownian motion. Then:
P(Vs,t > 0,V(B,s,t) =c0) =1
But, (B), =t for allt > 0.
Let B = (Bt);>,- Then:

n n
[t—s
V(Bvsvt)ZZ’Bs-‘rkt:—Ls _Bs-l-(k—l)f%s = n Z|§k|
k=1 k=1
where & are i.i.d. N(0,1). By the ?? ??7 we get the re-
sult. The second part is similar, but we get convergence
instead.

If a function f has finite variation and
g is continuous, then:

D (F ) = =) (g(tr) = g(ti-1)) =30

k=1

Note that:

D (Ftk) = Ftr-1))(g(tr) — g(tr—1))| <
k=1

s V(50,0 0<unzt

lu—v|<An

l9(u) = g(v)|

which goes to zero by uniform continuity of g at [0, ¢].

Let M = (M,),~, be a continuous square-
integrable martingale with finite variation a.s. Fix ¢ > 0.
By we have that (M), = 0 Then:

P(Vt >0, M, = M) =1
By

, we have:
E((M; — My)?) = E(M,*) — E(Mo®) = E((M),) =0

where the penultimate equality follows from the fact that
M, — (M), is a martingale and so it has constant expecta-
tion. This shows that P(Vt > 0, M; = My) = 1. Now we
can use the fact that M is continuous to conclude using

teQ.

The quadratic variation is the unique
process that satisfies to

Let A be another process satisfying such proper-
ties. Then, M? — (M) and M? — A are both martingales.
Thus, A — (M) is also a martingale. But it is also con-
tinuous and has finite variation (by ). So by

, A= (M).

Local martingales

A stochastic process (M), is a contin-
uwous local martingale if there exists a sequence of stopping

times (7},),cy (called localizing sequence) such that:

1. T, /oo a.s.
2. M := (M, ), is a martingale for all n € N.

If M is a martingale, then M is a local martin-
gale by taking T}, = +oo for all n € N.

Any local martingale is adapted because it is the
pointwise limit of M ™~ which are adapted by definition.

Let M = (M),~ be a continuous local
martingale. Then, if V¢ > 0 we have

E ( sup |MS> < 00
0<s<t

then M is a martingale.
We’ve argued that local martingales are automat-

ically adapted. Moreover:

B < s M) <o

0<s<t
Finally, fix 0 < s < t. For all n € N we have:

E(Minr, | Fs) = M,
And using the ?? 77 with M7, < supg<,<; | M| we con-
clude the result.

Note that if M is a continuous local martingale
with My = 0, then we can always take T;, = inf{t > 0 :
|M;| > n} as a localizing sequence.

(Doob’s optional sampling theorem
for local martingales). Let M = (M,),-, be a continu-
ous local martingale and T be a stopping time. Then, the

stopped process M7 := (Mynr),», is a continuous local
martingale. -
Let (Ty),,cn be a localizing sequence for M. Since

M7 is a continuous martingale, by
we have that M7»"T is a continuous
martingale. Thus, M7 is a local martingale with localiz-

ing sequence (T},),,cy-

Continuous local martingales form a
vector space.



Let M, M be continuous local martingales with lo-
calizing sequences (T,),, oy and (15,),,cy respectively and
A\ A €R. Then, (T, A Tn)nGN is a localizing sequence for
both M and M and so AMT+"Tn 4 XN[TATn is a martin-

gale.

If M is a continuous local martingale
which has finite variation a.s., then:

PVt > 0, M, = M) = 1

Let (T},),,cy be a localizing sequence for M. Then,
M7 is a martingale and V(M ,0,t) = V(M,0,tAT,) <
00. Thus, by we have that M" = M]"
vt > 0 and n € N. Taking n — oo we get the result.

Let M be a continuous local martingale.
Then, the limit

n 2

(M), = nh_)ﬂgoz ‘Mt;; — My
k=1

exists in probability for any ¢ > 0 and does not depend

on the partition (£),,,, € P([0,]) chosen as long as

A, — 0. Moreover, (M) = ((M),)¢>0 is the unique pro-

cess (up to modification) such that:
1. (M),=0
2. t— (M), is a.s. continuous.
3. (M) is a.s. non-decreasing.

4. (My* — (M),),s, is a continuous local martingale.

(Levy’s characterization of Brown-

ian motion). Let M = (M;),~, be a stochastic process.
Then, the following are equivalent:

1. M is a continuous local square-integrable martingale
with My =0 and (M), =t.

2. M is a (F;),>o-Brownian motion.

2. | Stochastic integration

Wiener isometry

Let H, H' be Hilbert. Amap I : H — H’
is called isometry if it is linear and Vx € H we have:

@) e = M2l

We speak of partial isometry when I is only defined on a
subspace of H.

Let H, H' be Hilbert, V C H be a dense
subspace and I : V — H' be a partial isometry. Then,
there exists a unique continuous isometry extension of I
to H.

Let x € H\ V. Then, 3(z,) € V such that
z, — x. Clearly, any continuous extension must satisfy
I(z) :=limy, 00 I(x,), so we take it as a definition. Note
that, first, the limit exists because (I(z,)) is Cauchy and
moreover this definition does not depend on the sequence
(zr,). From this definition, the extension is automatically
linear and norm-preserving (because of the continuity).

Let (B¢),~, be a Brownian motion and
f € S(Rsp) be a simple function such that f =
Yoher ke, g with 0 =t < t; < --- < t,. We de-
fine the Wiener integral of f as:

I(f) = Z ak(Btk - Btk—l)

k=1
Recall that simple functions are dense in LP (77).

Let (B¢);>, be a Brownian motion on
(Q, F,P). Then, there exists a unique linear and contin-
uous map I : L?(R>q) — L*((Q,F,P)) such that for all
0<s<t:

I(l(s,t]) = B; — B;

Moreover, I is an isometry. The map I is called Wiener
isometry (or Wiener integral) and denoted by I(f) =

fooo f(u)dB,.

Recall that the limit of Gaussian variables is
Gaussian.

Let (Bt);>, be a Brownian motion.
Then, the following are satisfied:

o For any f € L?(R>o) we have:

oo n2
/f(u) dB, £ nli_g;o;an,k(f)(B% —By)
" -

b1
where a, ;(f) == n [," f(u)du is an approxima-

tion of f in the interval [%, kzl]

e The Wiener integral is a Gaussian variable with zero
mean and variance [ f(u)? du
0 .

o For any f,g € L?(R>() we have:

oo

Cov 7 f(u)dB,, / g(u)dB, | = 70 F(u)g(w) du
0 0 0

The Wiener integral as a process

Let f € L% (R>p) and 0 < s < t. We

define the Wiener integral of f as:

t o)

[ rwaB. = [ 1w ds,

s 0

(Chasles relation). Let f € L?

loc(RZO) and
0<r<s<t. Then:

/f(u)dBu =/Sf(U)dBu+/tf(U)dBu



Let (Bt);>, be a Brownian motion
and f € LIOC(RZO)'
(Mtf)tzo defined as:

Then, the associate process M/ =

t

M/ ::/f(u)dBu
0

is a centered Gaussian process with covariance function:
Cov(M!, M) = / f(u

We'll only proof that M/ is Gaussian (the compu-
tation of the mean and covariance functions is easy). Let

neN, (t,...,tn) € R” and (A1, ..., \,) € R”. Then:
n o0
S M = / g(u)dB,
k=1 0
with g(u) = Y0 ) Aef(u)Llo,)(u) € L*(Rxg), and the

right-hand side is Gaussian because it is a Wiener inte-
gral.

Let f € L% (R>0). Then, M/ is a contin-
uous square-integrable martingale with:

M7y, = [ f(w)?du
/

The integrability and square-integrability is clear
because M7 is Gaussian. Note that t Mtf is continuous
when f = 1(g 4], because the Brownian motion is continu-
ous. Now using we get the result true for any
f € L% (Rsg). Now let’s prove that M7 is a martingale.
We have:

77,2

Mtf = lim Zan,k(fl(o,t])(B% —B%)
=1

n—oo

n2

= lim > anp(flo)(Besry, — Be At)
=1

n— oo

and the last expression is Fi;-measurable. Finally, if
0 < s < t we have that since Mtf — Msf is independent
of F:

E(Mtf_M!|fs):E(Mtf_Msf):0

AT
Moreover, ((M{) )i>o is clearly adapted and:
2 2 2
E () - (MI) | F,) M) | F) =

:E((M Mf )_ ||I fLsn) ||L2(Q

:E((Mg” -

= 11l teesy = / (0 du

where the first equality is due to
and the We used the isometry property of I. This

implies that (M) 1y? >0 fo % du is a martingale and
by the unlqueness of the quadratlc variation we get the
result.

Let (Bt),>( be a Brownian motion. For
any f € L3 (Rx), the process Z/ = (Zf)t>O defined as:

78 = ol F@ABu—3 [ F)*du

is a continuous square-integrable martingale.

The integrability and adaptedness poses no prob-
lem. Now fix 0 < s < t. We previously saw that
fst f(u)dB, is independent of F, and so:

E (2 | 7)) = 2{E (el f00aBu—d [ 1w — 7

because fst f(u)dB, ~ N(0, fst flu)? du

Progressive processes

Let (Q, F,P, (Ft),>() be a filtered proba-
bility space and ¢ = (¢¢),~, a stochastic process. We say
that ¢ is progressive if for fixed ¢t > 0 the function

— (R, B(R))
— ¢y (w)

([0,4] x ©,B([0,1]) ® F)
(u,w)

is measurable.
Let ¢ = (¢¢),~o be a stochastic process and

P = thO{A C RZO xQ:AN ([O,t] X Q) S B([O,t]) ®]:t}

Then, ¢ is progressive if and only if the map (¢, w) — ¢¢(w)
is P-measurable.

The following stochastic processes
(¢t)t20 are progressive:

o A deterministic process ¢(w) = f(t), f: R>o = R.

o $r(w) = X(w)1ap(t) where 0 < a < b and X be
JFa-measurable.

o ¢t(w) = X (w)1,7(w) (t) where T is a stopping time.

o d(w) = F(or(w),...,¢"(w)) where F : R® — R is

measurable and (¢}), ., ,, are progressive.
e A pointwise limit of progressive processes.

e A continuous adapted process.

1t6 isometry

We define the set M?(Rx>() as the set of
all progressive processes ¢ = (¢1),, such that:

/(bquu < 00
0

Note that MQ(RZQ> = LQ(RZO X Q, P, dt ® ]P) is
Hilbert with the scalar product:

<¢7 w>M2 =E d)uwu du
/



(It6 integral). Let (B;),~, be a Brown-
ian motion. Then, there exists a unique linear and con-
tinuous map I : M?(Rso) — L2((Q,F,P)) such that
I(¢) = X(B; — Bs) whenever ¢, (w) = X (w)1(,4(u) for
some 0 < s <tand X € L?(Q, F,,P). Moreover, I is an
isometry, i.e.:

/ butbudu | =E(I($)I(1))
0

We call I the Ité isometry (or Ité integral) and we denote
it by I(¢) = fooo ¢y dBy,.

Let (¢u), (¥u) € M?*(R>g). Then, the
following are satisfied:

)

3=

o0 n2 n

2
/¢udBuL:nlgx;Okzl n / Gudu | (Bees — B
) -

If ¢u(w) = f(t), f € L*(R>0), then we recover the
Wiener integral.

/¢udBu =0
0

Cov /¢udBu,/wudBu _E /mwudu
0 0 0

The 1t6 integral as a process

Let (¢,) be a progressive process and
0 < s <t. We define:

t o]
/Qbu dB, == /¢u1(s7t] (u) dB
s 0

The set of such processes such that V¢t > 0,
E <f0t b du) < oo is denoted by M?2. The set of such

processes such that V¢ > 0, fot ¢, du < oo is denoted by
M2

loc*

Note that M?(R>o) € M? ¢ M?

loc*

Let (¢,) € M2 Then, the associate pro-
(Mtds)tzo defined as:

t
¢ :/gbudBu
0

is a continuous square-integrable martingale with:

cess M¢ =

t

(M?), = [ ¢.%du
!

Note that the by ?? 7?7 we have that:

t
<M¢>’M¢’>t = stﬂ/}u du
/

Generalized It6 integral

Let (¢,) € M .. Consider the stopping
time

t
=inf{t >0: /(bquu >n}
0
and the truncated progressive process

¢¢(w)Lo,7,, ()] (t). Then, ¢ € M?(R>o).

Let (¢,) € M2 .. We define the general-
ized Ité integral of ¢ as:

00 oo
/¢u dB, = nlggo / d)ul[O,Tn](u) dB,
0 0

which is well-defined.

or(w) =

Let (¢,) € M2 .. Then, the associate pro-
cess M? = (]\4,5¢)t20 defined as:
t
Pi= [ ouan,
0

is a continuous local martingale with:

t
(M?), = [ ¢,%du
/

(Stochastic dominated convergence
theorem). Let ¢t > 0 and (¢)) € MIOC be a sequence

of progressive processes such that ¢; —> ¢, for all a.e.
[0 t]. Suppose that Yu € [0,¢] and Vn € N we have
|¢"\ < U, with ¥ € MZ . Then:

t
/ ordB, 5 / 6. dB,
n—oo
0 0

If (¢p,) is a continuous and adapted pro-
cess, then V¢ > 0 and any subdivision (t}) € P((0,t]) such
that A,, — 0 we have:

n—1
> b, By,
k=0

t
— Byr) /qbu dB,
k7 n—oo
0

3. | Stochastic differentiation

Ito processes

Let ¥ = (1¢),~ be a stochastic process
such that V¢ > 0 we have B
t
/ [ty | du < 00
0

In this case we say that ¢ € M, _. Then, the process

t
tn—)/wudBu
0

is an adapted continuous process.



An Ité6 process is a stochastic process
(X¢)y>q of the form:

t t
Xt:X0+/¢udBu+/1/Judu (1)
0 0

with ¢ € MZ . and ¢ € M _. The two integrals are called
martingale term and drift term respectively. Instead of
we usually write:

dXt == ¢t dBt + th dt
This expression is called stochastic differential.

It6 processes form a vector space. That is, if X
and Y are It6 processes and A\, u € R, then Z = A X + uY
is an Itd process and:

dZ; = AdX; + pdYs:

Moreover they are always continuous adapted processes.

Let X =
that V¢t > 0 we have:

(X¢);>0 be an It process such

dX; = ¢y dB; + 1y dt = ¢ dBy + 1y dt

for some ¢,p € MZ . and 1, ) e M. Then, ¢, é are

indistinguishable and so are 1, 1.

By assumption, we have that a.e. V¢t > 0:

= /twu — ) du

But since the right-hand side of the equation is a local
martingale and the left-hand side has finite variation, we
have that both sides must be 0 a.e. in t. Moreover, by the
uniqueness of the quadratic variation we have that:

t

/(<z>u—~

0

t

/(m—a}ufdu:o

0

Letting t — oo we get that ¢, q’; are indistinguishable. Fi-
nally, from the Lebesgue integral, we have that i, ¢ are
indistinguishable.

Let X = (X¢),, be an It6 process such

that dX; = ¢, dB; + 9, dt. Then:

e X is a local martingale if and only if Xy € L! and
b= 0.

e X is a square-integrable martingale if and only if
Xo € L?, ¢ € M? and v = 0.

Let X = (X}),>, be an It6 process such
that dX; = ¢y dB; +;dt, and Y = (Y2);>0 be a contin-

uous adapted process. Then, Y¢ € MZ _ and Y € M.
and we define:

t t t

/ Y, dX, = / Yo dBy + / Yitby du

0 0 0

Note that using 7?7 7?7 we also have:

(Xn

k+1

)

t n—1
P ..
[voax,® tim 327y
0 k=0

along any subdivision (t}!),<.<, € P([0,]) such that
A, — 0. T
Quadratic variation of It6 processes

Let X = (Xi)y50, X =
processes with differentials:

(Xt)tZO be two Itd

dX; = ¢ dBy + 9 dt dX; = ¢; dB; + ¢ dt

Then, for any (t}})y<,<, € P([0,t]) such that A, — 0 we

have:
n—1 t
- - P -
> Xy, = X)Xy, = Xip) — [ dududu=:
k=0 0
= <X7 X>t

In particular:

(X), = (X,X), = /¢u2du
0

and we call it the quadratic variation of X.

We saw it for X = X, and the general formula fol-
lows from ?? ?7. Now, if ¢y = 0, X is a continuous local
martingale with quadratic variation t — fot éu? du. Now
if ¢ = 0, we know it because t — fot 1, du has finite vari-
ation, and therefore, null quadratic variation. Finally in
the general case we have:

n—1 n—1 t2+1
2
> (X, = Xp)* =3 $udBu | +
k=0 k=0 i
2 n
el iyt tk+1 this
+Z /z/)udB +22/¢>udB /wudu
in k=0 fn i

The first part tends to fot &2 du, the second part tends to
0 and for the last part use .

(Stochastic integration by parts). Let
X = (Xt)i50 and Y = (¥3),5 be two It6 processes. Then,
(XtY})tZO is an Ito process and:

d(XyY3) = X, dY; + Y, dX, + d(X,Y),
The last term d(X,Y), is called Ito term.

Let ()<<, € P([0,t]) such that A, — 0. Then:

n—1
XYy = XoYo =) (Xip, Yir | — XupY¥yp) =
k=0



n—1 n—1
=y (X, W+ Z X (Yen = Yin)
k=0 k=0

Letting n — oo and using
remark we get the result.

Let X =
(X?);>0 is an Itd process and:

and a previous

(Xt)tzo be an Itd process. Then,

dX7? = 2X,dX, +d(X),

It6’s formula

(Itd’s formula). Let X = (Xi),5, be an

It6 process and f € C%*(R). Then, (f(X;)),5, is an Ito
process and: -

Af(X0) = F1(X0) X, + 51 (X) 4(X),

Let t > 0 and (t}})g<p<, € P([0,t]) such that
A, — 0. Then, using the Taylor expansion of f we have:

n—1
f(X) = f(Xo) = ) [(Xep, ) — f(Xip) =
k=0
n—1
= f (X )(Xt;gﬂ = X))+
k=0
n—1
1 1 X X X 2
+§ f ( )( thy tz)
k=0
with uf € [t7, 7, ,]. By a previous remark we have that:
n—1 . t
S (X)X, — Xep) / (X
k=0 /
Now, by we have that:

n—1
E YVtTI
k=0

in the elementary case where Y, = 1¢ 4(u), s > 0. By
linearity, this immediately extends to the case where Y is
a random step function. By density, it further extends to
the case where Y is any continuous and adapted process.
In particular, we may take Y, = f”(X,), and the formula
holds by uniform continuity:

t
(Xip,, — Xip)? / Y, d(X
0

12 _ 1 n a.e.
Jpax |f (Xep) = f"(Xup)| =0
Let X! ..., X% be It6 processes and f €

C?(R9). Then, (f(X},... ,Xﬂ))t20 is an It6 process and:

of DL~ 0 -
df(X) = 2 o, (X)dX! + 2i;1M(X)d<X , X7,
where X := (X1,..., X9).

Exponential martingales

(Doléans-Dade exponential). For any

# € M2 _, the process Z¢ = (Zv?)tzo defined as

loc

29 = els $udBu—} [§ 6u%du

is a continuous local martingale.

Applying It6’s formula to f(z) = €* and X; =

[3 ¢udBy — 1 [ 6, du we get:
[ X 1 2 1 X 2 X
dZt =et ¢t dBt — 5(725,5 de¢ + ie td)t dt = e t¢t dBt

Since, Zg = 1, we obtain that V¢ > 0:

t
zZ¢ =1 +/Z{f¢ud3u
0

and the result follows from

If M is a non-negative local martingale,
then M is a super-martingale. Moreover, for T € R,
(Mt)te[o,T] is a martingale if and only if E(Mr) > E(M)).

Since M is a local martingale with localizing se-
quence (T},), then V¢ > 0 we have that E(Mar, | Fs) =
M, and so:

Now, by ?? 7?7 we have:

E(M; | Fs) < liminf E(Miar, | Fs) = liminf Mgar, = M

n—oo n—oo

which shows that M is a super-martingale. Now, fix
T > 0, and suppose that E(Mr) > E(Mjy). This forces the
non-increasing map t — E(M;) to be constant on [0, T].
In particular, for any 0 < s < t < T, the non-negative
variable My — E(M, | F) has zero mean, hence is null a.s.

(Novikov’s condition). Let ¢ > 0 be fixed
and assume that:

E (e%fé Wdu) < 0

Then, (st))se[o,t] is a martingale.

Fix 0 < e < 1. We have that for all s € [0,]:

(Z(1—6)¢) 1-e

Now, choosing s = tAT,,, where T, is a localizing sequence
for Z(1=)¢_ taking expectation and using ?? ?? we get:

= ()7 (bl ¢d)*

1 =

£ [(Zt(if)‘b) } <E[Zf, | T E[er B k] T




€

< E[e% I «zﬁdu] T+

because E[ZfATn} = 1. This implies that (Zt(i;i)qb) is
bounded in LP for p = E% > 1. Thus:

E(Z9%) = lim E(Z079%) =1

n—o0 tATy

p
In particular, E [(Zt(l_a)¢> } > 1 and so:

£

1< E{Zﬂ mE{e% Is ¢id“} e

Taking e — 0, yields E(Z{) > 1, which suffices to conclude
by .

Girsanov’s theorem

(Giranov’s theorem). Let ¢ € M?

loc
and suppose its associated exponential local martingale

(th’)tZO is a martingale. Then, the formula

Q(A) :=E(Z’14) VAeF

defines a probability measure on (2, F;), under which the

process X = (X;),¢(o, defined as

X, = BS—/¢>udu
0

is a (Fs) e [o,-Brownian motion.

Note that, by linearity we have that for ant F;-
measurable non-negative random variable Y:

Eo(Y)=E(YZ{) E(Y)=Eq (;)

where Eg denotes the expectation with respect to Q. This
is useful for transferring computations between P and Q.

4. | Stochastic differential equations

Introduction

Let X = (X}),>, be a stochastic process
and b : R>gxR — Rand ¢ : R>o xR be deterministic func-
tions called drift and diffusion, respectively. A stochastic
differential equation (SDE) is an equation of the form:

dXt = b(t,Xt)dt+O'(t,Xt) dBt (2)

Consider the SDE of . We
say that a progressive process X = (Xi),, defined on

(92, F, (Ft);>0, P) is a solution of the SDEIf (b(t, X)), €
My, and (o(t, X;)),>, € M, and Vt > 0:

loc

t t

X, :XOJr/b(s,Xs)der/a(s,Xs)st
0 0

Existence and uniqueness of solutions

(Gronwall’s lemma). Let (1), 7 be a

non-negative function in L'([0,T]) satisfying that V¢ €
[0, T7]:

t
a:tga—l—ﬂ/xsds
0

for some constants c, 5 > 0. Then, z; < ae®® for all
t e 0,77

(Existence and uniqueness of solutions
of SDEs). Let b,0 : R>¢g X R — R be a measurable func-
tion satisfying:

e Uniform spatial Lipschitz continuity: 3C' > 0 such
that V¢t > 0 and Vz,y € R we have:

b(t, ) — b(t,y)| < Clz —y|
‘U(th) - U(ta y)' < C‘x - y‘

o Local square-integrability in time: V¢ > 0 we have:
t

/|b(s,0)\2ds <o

0

t
/|a(s,0)|2ds < o0
0

Then, for each initial condition ¢ € L(Q, Fy,P), there ex-
ists a unique (up to indistinguishability) solution X =
(X+);>o to the SDE of with Xo = ¢. Moreover,
X e M2.

In the proof of the above theorem, which we omit
here, it can be shown that

X =1, (C, (BS)se[O,t]> (3)

for some measurable function ¥; : R x C([0,t],R) — R.

Practical examples

(Langevin equation). Consider the
following SDE:

dXt = —bXt dt + O'dBt

with b, > 0 and Xy = ¢ € L*(Q, Fo,P).
solution is given by:

Then, the

t
X, = (e " 4 a/e*f’(H) dB,
0
This SDE was proposed by Paul Langevin in

1908 to describe the random motion of a small particle in

a fluid, due to collisions with the surrounding molecules.
Note that the long-term behavior of X; has law of N(0, ‘2’—;)
(because the second term has law N (0, ‘2’—2(1 —e 2th))), in-
dependently of the initial condition (.

(Geometric Brownian motion)
Consider the following SDE:

dXt = Xt(bdt + O'dBt)

with Xo = ¢ € L3(Q, Fo,P). Then, the solution is given
by:
(72
Xt _ Ce(b—T)H—UBt



This equation has a unique solution and it’s natu-
ral to expect it is of the form X; = (e¥t, where Y; is an It6
process. Identifying dY; = ¢ dt + ¢; dB; and using the

we get:

d(¢e¥?) = ¢e <dYt + ;d<Y>t>
= Ce™ <¢t dt + ¢; dB; + %gbf dt)

andsoqﬁt:aandd)t:bf"—;.

(Black-Scholes process). Consider
the following SDE:

dXt = Xt(bt dt + ot dBt)

with X = ¢ € L*(Q, Fo,P) and (bt),~¢, (bt),>o determin-
istic measurable bounded functions. Then, the solution is
given by:

2
N (bs—'%s> ds+ [} o.dB,
Xt = Ce

This equation has a unique solution and as in the
previous example, we expect X; = (e¥*, where Y; is an Itd
process. Identifying dY; = 1, dt + ¢; d B, and using the

we get:

d(Ce™) = ¢e' (1/% dt + ¢ dB; + %Qﬁ dt)

2
and so ¢y = oy and ¢y = by — G-

Markov property for diffusions

Let b.o0 : R — R be two Lipschitz func-
tions and consider the following homogeneous SDE:

{

These kinds of problems are called diffusions.

dX; = b(X,) dt + o(X,) dB,

XOZCELQ(Qa]:OvIP) (4)

(Invariance under time shift). Let X =
(X+);>0 be a solution to the SDE of and assume
we write X; as in . Then, for any s,t > 0 we have:

Bs)uE[O,t])

Let f € L*(R) and ¢t > 0. We define the

Xt+s = \Ijt(Xen (Bu+s -

function P, f as:

Pf:R— R
x — E(f(X}))

where X is the solution to the SDE of with

X():{,E.

For any s,t > 0 and any f € L*®(R) we
have:

E(f(Xt+s)) = (Ptf) (Xs)

The family (P;),-, has the following
properties: -

10

. Py is a bounded linear operator from L>°(R) to itself
for each ¢t > 0.

Py =1id and Py s = P, o P; for all s,t > 0.

If f is continuous, then so is t — P.f(x) for each
fixed z € R.

If f is monotone, then so is P;f for each t > 0.

If f is Lipschitz, then so is P, f for each ¢ > 0.

If 0,b, f € CF(R) for some k > 1, then so is P, f for
each ¢t > 0.

Generator of a diffusion

(Generator). The generator of the semi-
group (P;), is the linear operator L defined by:

Pif(z) — f(x)

(Lf)(z) := lim ;

t—0

for all f € L*°(R) and = € R such that the limit exists.
Those functions form a vector space denoted by Dom(L).

Let f € CZ(R). Then:
1. Lf is well-defined and it is given Vz € R by:

Li(x) = 50%(@)f"(@) + ba)f' ()

For all ¢ > 0, we have P,f € Dom(L) and it satisfies
the Kolmogorov’s equation:

d
&Ptfzpt(Lf):L(Ptf)

The process (My), defined as

M, == f(X,) - f(Xo) — [ Lf(X.)ds

t
0
is a continuous square-integrable martingale.

Connection with PDEs

For this section recall the diffusion equation:

{

where b,0 : R — R are Lipschitz functions.
f € L*(R) and consider the PDE:

dXy
Xi==

b(X7)dt + o(XF) dB, )

Now, fix

9 (t,2) = b(x) 2 (t,2) + Lo?(2) LY (t, ) ©)
v(0,2) = f(x)

where v € C12([0,00) x R).

1. If v is a bounded solution to the PDE of
then we must have V(¢,z) € [0,00) x R:

o(t,z) = E(f(X7))



2. If b,o, f € C3(R), then conversely, the function v C2([0,00) x R) be a bounded solution to the PDE
defined in is a bounded solution of

%(t, ) = —h(z)v(t,x) + b(m)%(t,x) + %az(x)%(t,x)
The interest of this connection between SDEs

v(0,7) = f(x)
and PDEs is two-fold: on the one hand, one can use
tools from PDE theory to understand the distribution of where f,h : R — R are measurable, with /& non-negative.

X7. Conversely, the probabilistic representation of Then, we have the representation
offers a practical way to numerically solve the PDE of L
, by simulation. v(t,z) =FE <f(Xt”’)e_ Jo MXDds)

(Feynman-Kac’s formula). Let v € for all (¢,2) € [0,00) X R.

11
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