
Stochastic calculus

Along the document we assume that we work in a prob-
ability space (Ω,F ,P) and that all the random variables
are defined on this space.

1. | Preliminaries
Stochastic processes
Proposition 1. A stochastic process X = (Xt)t∈T is
Gaussian if and only if ∀n ∈ N, ∀t1, . . . , tn ∈ T,
∀λ1, . . . , λn ∈ R,

Z := λ1Xt1 + · · · + λnXtn

is a Gaussian random variable. In particular, we have:

E(eiZ) = eiE(Z)− 1
2 Var(Z)

Remark. A stochastic process X = (Xt)t∈T can also be
viewed as a single random variable taking values in RT,
equipped with the product σ-algebra

⊗
t∈T

B(R).

Proposition 2. Let m : T → R be a measurable function
and γ : T2 → R be a symmetric positive-definite function.
Then, there exists a Gaussian process (Xt)t∈T such that
E(Xt) = m(t) and Cov(Xs, Xt) = γ(s, t).

Definition 3. Let (Xt)t∈T, (Ys)s∈S be two stochastic pro-
cesses. We say that they are jointly Gaussian if the con-
catenated process ((Xt)t∈T, (Ys)s∈S) is Gaussian.

Lemma 4. Two jointly Gaussian stochastic processes
(Xt)t∈T, (Ys)s∈S are independent if and only if ∀t ∈ T,
∀s ∈ S, Cov(Xt, Ys) = 0.

Proposition 5. Two stochastic processes (Xt)t∈T,
(Ys)s∈S are independent if and only if ∀n ∈ N, ∀t1, . . . , tn ∈
T, ∀s1, . . . , sn ∈ S and ∀f, g : Rn → R bounded and mea-
surable functions, we have:

E(f(Xt1 , . . . , Xtn)g(Ys1 , . . . , Ysn
)) =

= E(f(Xt1 , . . . , Xtn))E(g(Ys1 , . . . , Ysn
))

Brownian motion
Definition 6. A Brownian motion is a stochastic process
(Bt)t≥0 such that:

1. B is Gaussian with E(Bt) = 0 and Cov(Bs, Bt) =
s ∧ t.

2. B has continuous paths.

Proposition 7. Let B be a Brownian motion. Then:

1. B0 = 0 a.s.

2. B has independent increments.

3. B has stationary increments.

Conversely, any stochastic process with these properties
has the law of a Brownian motion.

Theorem 8 (Strong law of large numbers for Brow-
nian motion). Let (Bt)t≥0 be a Brownian motion. Then:

Bt
t

a.s.−→
t→∞

0

Proof. We already now that the process s → sB1/s1s>0 is
a Brownian motion. In particular, we must have continu-
ity at 0 = B0. □

Theorem 9 (Markov property for Brownian mo-
tion). Let B = (Bt)t≥0 be a Brownian motion and a ≥ 0
fixed. Then, the Brownian motion (Bt+a −Ba)t≥0 is in-
dependent of (Bs)s∈[0,a].

Proof. The processes (Bs)s∈[0,a] and (Bt+a −Ba)t≥0 are
jointly Gaussian, because their coordinates are linear com-
binations of coordinates of the same Gaussian process B.
Thus, by Theorem 4 it reduces to compute the following
correlation:

Cov(Bs, Bt+a −Ba) = s ∧ (t+ a) − s ∧ a = 0

□

Remark. Recall that s ∧ t := min(s, t) and s ∨ t :=
max(s, t).

Martingales
Definition 10. Let (Xt)t≥0 be a stochastic process. We
define the natural filtration of X as FX := (FX

t )t≥0, where
FX
t := σ(Xs : s ≤ t).

From now on, we will assume that we work in a filtered
probability space (Ω,F ,P, (Ft)t≥0).

Definition 11 (Martingale). A stochastic process
(Xt)t≥0 is a martingale if:

1. it is adapted, i.e. Xt is Ft-measurable for all t ≥ 0.

2. E(|Xt|) < ∞ for all t ≥ 0.

3. E(Xt | Fs) = Xs for all 0 ≤ s ≤ t.

The process is called a sub-martingale if the last condition
is replaced by E(Xt | Fs) ≥ Xs for all 0 ≤ s ≤ t and a
super-martingale if E(Xt | Fs) ≤ Xs for all 0 ≤ s ≤ t.

Proposition 12. Let B = (Bt)t≥0 be a Brownian motion.
Then, the following processes are martingales (Mt)t≥0
with respect to the natural filtration induced by B:

• Mt = Bt

• Mt = B2
t − t

• Mt = eθBt− 1
2 θ

2t, for any fixed θ ∈ R.
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Proposition 13. Let A ⊆ R be a closed set and X =
(Xt)t≥0 be an adapted continuous process. Then, the hit-
ting time of A by X, defined as:

TA := inf{t ≥ 0 : Xt ∈ A}

is a stopping time.

Proof. Using the continuity of X and the fact that A is
closed, one can easily check that:

{TA ≤ t} =
⋂
k∈N

⋃
s∈[0,t]∩Q

{
d(Xs, A) ≤ 1

k

}

Now,
{
d(Xs, A) ≤ 1

k

}
∈ Fs ⊆ Ft because X is adapted

and z 7→ d(z,A) is measurable. Thus, {TA ≤ t} ∈ Ft
because it is a countable union and intersection of events
in Ft. □

Theorem 14 (Doob’s optional sampling theorem).
Let (Mt)t≥0 be a continuous martingale and T be a stop-
ping time. Then, the stopped process MT := (Mt∧T )t≥0
is a continuous martingale. In particular, ∀t ≥ 0,
E(Mt∧T ) = E(M0). If MT is uniformly integrable and
T

a.s.
≤ ∞, then taking t → ∞ we have E(MT ) = E(M0).

Lemma 15 (Orthogonality of martingales). Let
(Mt)t≥0 be a continuous martingale and let 0 ≤ s ≤ t.
Then:

E((Mt −Ms)2 | Fs) = E(Mt
2 −Ms

2 | Fs)

Proof. We have that:

E((Mt −Ms)2 | Fs) = E(Mt
2 − 2MtMs +Ms

2 | Fs) =
= E(Mt

2+Ms
2 |Fs)−2MsE(Mt |Fs) = E(Mt

2−Ms
2 |Fs)

□

Theorem 16 (Doob’s maximal inequality). If M is
a continuous square-integrable martingale, then ∀a, t ≥ 0
we have:

P
(

sup
0≤s≤t

|Ms| ≥ a

)
≤ E(Mt

2)
a2

Proposition 17. Let (Mn) be a sequence of continu-
ous square-integrable martingales and suppose that for
each t ≥ 0, the limit Mt :=L2

= lim
n→∞

Mn
t exists. Then,

M = (Mt)t≥0 is a continuous square-integrable martin-
gale.

Proof. By 16 Doob’s maximal inequality applied to Mn−
Mm we have that for fixed t ≥ 0 and k ∈ N:

P
(

sup
0≤s≤t

|Mn
s −Mm

s | ≥ 1
k2

)
≤ k2E((Mn

t −Mm
t )2) ≤ 1

k2

where in the last inequality we have used that (Mn) con-
verges in L2 and so we have chosen n,m large enough so
that the inequality holds. Thus, there is an increasing
sequence (nk) such that:

P
(

sup
0≤s≤t

|Mnk+1
s −Mnk

s | ≥ 1
k

)
≤ 1
k2

By ?? ??, we deduce that

∞∑
k=1

sup
0≤s≤t

|Mnk+1
s −Mnk

s | < ∞

which ensures that (Mnk ) is continuous in the space of
continuous functions equipped with the topology of uni-
form convergence on every compact set. But the limit is
necessarily a version of M , because for each t ≥ 0 we have
Mn
t → Mt in L2. □

Quadratic variation

Definition 18. Let f : R≥0 → R be a function. We define
the absoulte variation of f on the interval [s, t] as:

V (f, s, t) := sup
(tk)0≤k≤n∈P([s,t])

n∑
k=1

|f(tk+1) − f(tk)|

where P([s, t]) is the set of all partitions of [s, t]. A func-
tion has finite variation if V (f, s, t) < ∞ for all 0 ≤ s ≤ t.

Lemma 19. Let f, g : R≥0 → R be a function and
0 ≤ s ≤ t. Then:

• V (f, s, t) = V (f, s, u) + V (f, u, t), for all s ≤ u ≤ t.

• If f ∈ C1, then V (f, s, t) =
´ t
s

|f ′(u)| du.

• If f is monotone, then V (f, s, t) = |f(t) − f(s)|.

• V (f + g, s, t) ≤ V (f, s, t) + V (g, s, t).

• Finite variation functions form a vector space.

Proposition 20. Let f : R≥0 → R. Then, f has finite
variation if and only if it can be written as the difference
of two non-decreasing functions.

Sketch of the proof. Theorem 19 gives us the implication
to the left. For the other one, note that the functions
f1(t) := V (f, 0, t) and f2(t) := V (f, 0, t) − f(t) are non-
decreasing. □

Theorem 21 (Quadratic variation). Let M = (Mt)t≥0
be a continuous square-integrable martingale. Then, for
each t ≥ 0 the limit

⟨M⟩t := lim
n→∞

n∑
k=1

∣∣∣Mtn
k

−Mtn
k−1

∣∣∣2
exists in L1 and does not depend on the partition
(tnk )0≤k≤n ∈ P([0, t]) chosen as long as the mesh ∆n :=
max1≤k≤n(tnk − tnk−1) goes to 0 as n → ∞. Moreover,
⟨M⟩ = (⟨M⟩t)t≥0 has the following properties:

1. ⟨M⟩0 = 0

2. ⟨M⟩ is non-decreasing.

3. The function t 7→ ⟨M⟩t is continuous.

4. (Mt
2 − ⟨M⟩t)t≥0 is a martingale.
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Proof. We omit the proof of the existence and continuity.
We will only prove the last property. Let 0 ≤ s ≤ t and
(tnk )0≤k≤n ∈ P([s, t]) be such that ∆n → 0. Then:

E(Mt
2 −Ms

2 | Fs) =
n∑
k=1

E(Mtn
k

2 −Mtn
k−1

2 | Fs)

=
n∑
k=1

E
(

(Mn
tk

−Mn
tk−1

)2 | Fs
)

by the 15 Orthogonality of martingales. Now since we have
convergence of

∑n
k=1 (Mn

tk
−Mn

tk−1
)2 to ⟨M⟩t − ⟨M⟩s in

L1, we get the result:

E(Mt
2 −Ms

2 | Fs) = E(⟨M⟩t − ⟨M⟩s | Fs)

□

Proposition 22. Let B be a Brownian motion. Then:

P(∀s, t ≥ 0, V (B, s, t) = ∞) = 1

But, ⟨B⟩t = t for all t ≥ 0.

Proof. Let B = (Bt)t≥0. Then:

V (B, s, t)≥
n∑
k=1

∣∣∣Bs+k t−s
n

−Bs+(k−1) t−s
n

∣∣∣=√ t− s

n

n∑
k=1

|ξk|

where ξk are i.i.d. N(0, 1). By the ?? ?? we get the re-
sult. The second part is similar, but we get convergence
instead. □

Proposition 23. If a function f has finite variation and
g is continuous, then:

n∑
k=1

(f(tk) − f(tk−1))(g(tk) − g(tk−1)) n→∞−→ 0

Proof. Note that:∣∣∣∣∣
n∑
k=1

(f(tk) − f(tk−1))(g(tk) − g(tk−1))
∣∣∣∣∣ ≤

≤ V (f, 0, t) max
0≤u≤v≤t
|u−v|≤∆n

|g(u) − g(v)|

which goes to zero by uniform continuity of g at [0, t]. □

Corollary 24. Let M = (Mt)t≥0 be a continuous square-
integrable martingale with finite variation a.s. Fix t ≥ 0.
By Theorem 23 we have that ⟨M⟩t = 0 Then:

P(∀t ≥ 0, Mt = M0) = 1

Proof. By 15 Orthogonality of martingales, we have:

E((Mt −M0)2) = E(Mt
2) − E(M0

2) = E(⟨M⟩t) = 0

where the penultimate equality follows from the fact that
Mt

2 −⟨M⟩t is a martingale and so it has constant expecta-
tion. This shows that P(∀t ≥ 0, Mt = M0) = 1. Now we
can use the fact that M is continuous to conclude using
t ∈ Q. □

Proposition 25. The quadratic variation is the unique
process that satisfies Items 21-1 to 21-4.

Proof. Let A be another process satisfying such proper-
ties. Then, M2 − ⟨M⟩ and M2 −A are both martingales.
Thus, A − ⟨M⟩ is also a martingale. But it is also con-
tinuous and has finite variation (by Theorem 20). So by
Theorem 24, A = ⟨M⟩. □

Local martingales

Definition 26. A stochastic process (Mt)t≥0 is a contin-
uous local martingale if there exists a sequence of stopping
times (Tn)n∈N (called localizing sequence) such that:

1. Tn ↗ ∞ a.s.

2. MTn := (Mt∧Tn
)t≥0 is a martingale for all n ∈ N.

Remark. If M is a martingale, then M is a local martin-
gale by taking Tn = +∞ for all n ∈ N.

Remark. Any local martingale is adapted because it is the
pointwise limit of MTn , which are adapted by definition.

Proposition 27. Let M = (Mt)t≥0 be a continuous local
martingale. Then, if ∀t ≥ 0 we have

E
(

sup
0≤s≤t

|Ms|
)
< ∞

then M is a martingale.

Proof. We’ve argued that local martingales are automat-
ically adapted. Moreover:

E(|Mt|) ≤ E
(

sup
0≤s≤t

|Ms|
)
< ∞

Finally, fix 0 ≤ s ≤ t. For all n ∈ N we have:

E(Mt∧Tn
| Fs) = Ms∧Tn

And using the ?? ?? with Mt∧Tn
≤ sup0≤s≤t |Ms| we con-

clude the result. □

Remark. Note that if M is a continuous local martingale
with M0 = 0, then we can always take Tn = inf{t ≥ 0 :
|Mt| ≥ n} as a localizing sequence.

Theorem 28 (Doob’s optional sampling theorem
for local martingales). Let M = (Mt)t≥0 be a continu-
ous local martingale and T be a stopping time. Then, the
stopped process MT := (Mt∧T )t≥0 is a continuous local
martingale.

Proof. Let (Tn)n∈N be a localizing sequence for M . Since
MTn is a continuous martingale, by 14 Doob’s optional
sampling theorem we have that MTn∧T is a continuous
martingale. Thus, MT is a local martingale with localiz-
ing sequence (Tn)n∈N. □

Proposition 29. Continuous local martingales form a
vector space.
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Proof. Let M , M̃ be continuous local martingales with lo-
calizing sequences (Tn)n∈N and (T̃n)n∈N respectively and
λ, λ̃ ∈ R. Then, (Tn ∧ T̃n)n∈N is a localizing sequence for
both M and M̃ and so λMTn∧T̃n + λ̃M̃Tn∧T̃n is a martin-
gale. □

Proposition 30. If M is a continuous local martingale
which has finite variation a.s., then:

P(∀t ≥ 0, Mt = M0) = 1

Proof. Let (Tn)n∈N be a localizing sequence for M . Then,
MTn is a martingale and V (MTn , 0, t) = V (M, 0, t∧Tn) <
∞. Thus, by Theorem 24 we have that MTn

t = MTn
0

∀t ≥ 0 and n ∈ N. Taking n → ∞ we get the result. □

Proposition 31. Let M be a continuous local martingale.
Then, the limit

⟨M⟩t := lim
n→∞

n∑
k=1

∣∣∣Mtn
k

−Mtn
k−1

∣∣∣2
exists in probability for any t ≥ 0 and does not depend
on the partition (tnk )0≤k≤n ∈ P([0, t]) chosen as long as
∆n → 0. Moreover, ⟨M⟩ = (⟨M⟩t)t≥0 is the unique pro-
cess (up to modification) such that:

1. ⟨M⟩0 = 0

2. t 7→ ⟨M⟩t is a.s. continuous.

3. ⟨M⟩ is a.s. non-decreasing.

4. (Mt
2 − ⟨M⟩t)t≥0 is a continuous local martingale.

Theorem 32 (Levy’s characterization of Brown-
ian motion). Let M = (Mt)t≥0 be a stochastic process.
Then, the following are equivalent:

1. M is a continuous local square-integrable martingale
with M0 = 0 and ⟨M⟩t = t.

2. M is a (Ft)t≥0-Brownian motion.

2. | Stochastic integration
Wiener isometry
Definition 33. Let H, H ′ be Hilbert. A map I : H → H ′

is called isometry if it is linear and ∀x ∈ H we have:

∥I(x)∥H′ = ∥x∥H
We speak of partial isometry when I is only defined on a
subspace of H.
Theorem 34. Let H, H ′ be Hilbert, V ⊆ H be a dense
subspace and I : V → H ′ be a partial isometry. Then,
there exists a unique continuous isometry extension of I
to H.
Proof. Let x ∈ H \ V . Then, ∃(xn) ∈ V such that
xn → x. Clearly, any continuous extension must satisfy
I(x) := limn→∞ I(xn), so we take it as a definition. Note
that, first, the limit exists because (I(xn)) is Cauchy and
moreover this definition does not depend on the sequence
(xn). From this definition, the extension is automatically
linear and norm-preserving (because of the continuity).

□

Definition 35. Let (Bt)t≥0 be a Brownian motion and
f ∈ S(R≥0) be a simple function such that f =∑n
k=1 ak1(tk−1,tk] with 0 = t0 ≤ t1 ≤ · · · ≤ tn. We de-

fine the Wiener integral of f as:

I(f) :=
n∑
k=1

ak(Btk −Btk−1)

Remark. Recall that simple functions are dense in Lp (??).

Theorem 36. Let (Bt)t≥0 be a Brownian motion on
(Ω,F ,P). Then, there exists a unique linear and contin-
uous map I : L2(R≥0) → L2((Ω,F ,P)) such that for all
0 ≤ s ≤ t:

I(1(s,t]) = Bt −Bs

Moreover, I is an isometry. The map I is called Wiener
isometry (or Wiener integral) and denoted by I(f) =´∞

0 f(u) dBu.

Remark. Recall that the limit of Gaussian variables is
Gaussian.

Proposition 37. Let (Bt)t≥0 be a Brownian motion.
Then, the following are satisfied:

• For any f ∈ L2(R≥0) we have:

∞̂

0

f(u) dBu
L2

= lim
n→∞

n2∑
k=1

an,k(f)(B k+1
n

−B k
n

)

where an,k(f) := n
´ k+1

n
k
n

f(u) du is an approxima-
tion of f in the interval [ kn ,

k+1
n ].

• The Wiener integral is a Gaussian variable with zero
mean and variance

´∞
0 f(u)2 du.

• For any f, g ∈ L2(R≥0) we have:

Cov

 ∞̂

0

f(u) dBu ,
∞̂

0

g(u) dBu

 =
∞̂

0

f(u)g(u) du

The Wiener integral as a process

Definition 38. Let f ∈ L2
loc(R≥0) and 0 ≤ s ≤ t. We

define the Wiener integral of f as:

tˆ

s

f(u) dBu :=
∞̂

0

f(u)1(s,t](u) dBu

Lemma 39 (Chasles relation). Let f ∈ L2
loc(R≥0) and

0 ≤ r ≤ s ≤ t. Then:

tˆ

r

f(u) dBu =
sˆ

r

f(u) dBu +
tˆ

s

f(u) dBu
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Proposition 40. Let (Bt)t≥0 be a Brownian motion
and f ∈ L2

loc(R≥0). Then, the associate process Mf =
(Mf

t )t≥0 defined as:

Mf
t :=

tˆ

0

f(u) dBu

is a centered Gaussian process with covariance function:

Cov(Mf
s ,M

f
t ) =

s∧tˆ

0

f(u)2 du

Proof. We’ll only proof that Mf is Gaussian (the compu-
tation of the mean and covariance functions is easy). Let
n ∈ N, (t1, . . . , tn) ∈ Rn and (λ1, . . . , λn) ∈ Rn. Then:

n∑
k=1

λkM
f
tk

=
∞̂

0

g(u) dBu

with g(u) =
∑n
k=1 λkf(u)1(0,tk](u) ∈ L2(R≥0), and the

right-hand side is Gaussian because it is a Wiener inte-
gral. □

Theorem 41. Let f ∈ L2
loc(R≥0). Then, Mf is a contin-

uous square-integrable martingale with:

⟨Mf ⟩t =
tˆ

0

f(u)2 du

Proof. The integrability and square-integrability is clear
because Mf is Gaussian. Note that t 7→ Mf

t is continuous
when f = 1(0,a], because the Brownian motion is continu-
ous. Now using Theorem 17 we get the result true for any
f ∈ L2

loc(R≥0). Now let’s prove that Mf is a martingale.
We have:

Mf
t = lim

n→∞

n2∑
k=1

an,k(f1(0,t])(B k+1
n

−B k
n

)

= lim
n→∞

n2∑
k=1

an,k(f1(0,t])(B k+1
n ∧t −B k

n
∧ t)

and the last expression is Ft-measurable. Finally, if
0 ≤ s ≤ t we have that since Mf

t − Mf
s is independent

of Fs:

E(Mf
t −Mf

s | Fs) = E(Mf
t −Mf

s ) = 0

Moreover, ((Mf
t )

2
)t≥0 is clearly adapted and:

E
(

(Mf
t )

2
− (Mf

s )2 | Fs
)

= E
(

(Mf
t −Mf

s )
2

| F∫

)
=

= E
(

(Mf
t −Mf

s )
2)

=
∥∥I(f1(s,t])

∥∥2
L2(Ω) =

=
∥∥f1(s,t]

∥∥2
L2(R≥0) =

tˆ

s

f(u)2 du

where the first equality is due to 15 Orthogonality of mar-
tingales and the we used the isometry property of I. This
implies that (Mf

t )
2
t≥0 −

´ t
0 f(u)2 du is a martingale and

by the uniqueness of the quadratic variation we get the
result. □

Proposition 42. Let (Bt)t≥0 be a Brownian motion. For
any f ∈ L2

loc(R≥0), the process Zf = (Zft )t≥0 defined as:

Zft := e
´ t

0 f(u)dBu− 1
2
´ t

0 f(u)2du

is a continuous square-integrable martingale.

Proof. The integrability and adaptedness poses no prob-
lem. Now fix 0 ≤ s ≤ t. We previously saw that´ t
s
f(u) dBu is independent of Fs and so:

E
(
Zft | Fs

)
= Zfs E

(
e
´ t

s
f(u)dBu− 1

2
´ t

s
f(u)2du

)
= Zfs

because
´ t
s
f(u) dBu ∼ N(0,

´ t
s
f(u)2 du). □

Progressive processes
Definition 43. Let (Ω,F ,P, (Ft)t≥0) be a filtered proba-
bility space and ϕ = (ϕt)t≥0 a stochastic process. We say
that ϕ is progressive if for fixed t ≥ 0 the function

([0, t] × Ω,B([0, t]) ⊗ Ft) −→ (R,B(R))
(u, ω) 7−→ ϕu(ω)

is measurable.

Lemma 44. Let ϕ = (ϕt)t≥0 be a stochastic process and

P := ∩t≥0{A ⊂ R≥0 × Ω : A∩ ([0, t] × Ω) ∈ B([0, t]) ⊗ Ft}

Then, ϕ is progressive if and only if the map (t, ω) 7→ ϕt(ω)
is P-measurable.

Proposition 45. The following stochastic processes
(ϕt)t≥0 are progressive:

• A deterministic process ϕt(ω) = f(t), f : R≥0 → R.

• ϕt(ω) = X(ω)1(a,b](t) where 0 ≤ a < b and X be
Fa-measurable.

• ϕt(ω) = X(ω)1[0,T (ω)](t) where T is a stopping time.

• ϕt(ω) = F (ϕ1
t (ω), . . . , ϕnt (ω)) where F : Rn → R is

measurable and (ϕit)1≤i≤n are progressive.

• A pointwise limit of progressive processes.

• A continuous adapted process.

Itô isometry

Definition 46. We define the set M2(R≥0) as the set of
all progressive processes ϕ = (ϕt)t≥0 such that:

E

 ∞̂

0

ϕu
2 du

 < ∞

Remark. Note that M2(R≥0) = L2(R≥0 × Ω,P, dt⊗ P) is
Hilbert with the scalar product:

⟨ϕ, ψ⟩M2 := E

 ∞̂

0

ϕuψu du


5



Theorem 47 (Itô integral). Let (Bt)t≥0 be a Brown-
ian motion. Then, there exists a unique linear and con-
tinuous map I : M2(R≥0) → L2((Ω,F ,P)) such that
I(ϕ) = X(Bt − Bs) whenever ϕu(ω) = X(ω)1(s,t](u) for
some 0 ≤ s ≤ t and X ∈ L2(Ω,Fs,P). Moreover, I is an
isometry, i.e.:

E

 ∞̂

0

ϕuψu du

 = E (I(ϕ)I(ψ))

We call I the Itô isometry (or Itô integral) and we denote
it by I(ϕ) =

´∞
0 ϕu dBu.

Proposition 48. Let (ϕu), (ψu) ∈ M2(R≥0). Then, the
following are satisfied:

•
∞̂

0

ϕu dBu
L2

= lim
n→∞

n2∑
k=1

n
k+1

nˆ
k
n

ϕu du

 (B k+1
n

−B k
n

)

• If ϕu(ω) = f(t), f ∈ L2(R≥0), then we recover the
Wiener integral.

• E

 ∞̂

0

ϕu dBu

 = 0

• Cov

 ∞̂

0

ϕu dBu ,
∞̂

0

ψu dBu

 = E

 ∞̂

0

ϕuψu du


The Itô integral as a process
Definition 49. Let (ϕu) be a progressive process and
0 ≤ s ≤ t. We define:

tˆ

s

ϕu dBu :=
∞̂

0

ϕu1(s,t](u) dBu

The set of such processes such that ∀t ≥ 0,
E
(´ t

0 ϕu
2 du

)
< ∞ is denoted by M2. The set of such

processes such that ∀t ≥ 0,
´ t

0 ϕu
2 du < ∞ is denoted by

M2
loc.

Remark. Note that M2(R≥0) ⊊ M2 ⊊ M2
loc.

Theorem 50. Let (ϕu) ∈ M2. Then, the associate pro-
cess Mϕ = (Mϕ

t )t≥0 defined as:

Mϕ
t :=

tˆ

0

ϕu dBu

is a continuous square-integrable martingale with:

⟨Mϕ⟩t =
tˆ

0

ϕu
2 du

Remark. Note that the by ?? ?? we have that:

⟨Mϕ,Mψ⟩t =
tˆ

0

ϕuψu du

Generalized Itô integral

Proposition 51. Let (ϕu) ∈ M2
loc. Consider the stopping

time

Tn := inf{t ≥ 0 :
tˆ

0

ϕu
2 du ≥ n}

and the truncated progressive process ϕnt (ω) :=
ϕt(ω)1[0,Tn(ω)](t). Then, ϕn ∈ M2(R≥0).
Definition 52. Let (ϕu) ∈ M2

loc. We define the general-
ized Itô integral of ϕ as:

∞̂

0

ϕu dBu := lim
n→∞

∞̂

0

ϕu1[0,Tn](u) dBu

which is well-defined.
Theorem 53. Let (ϕu) ∈ M2

loc. Then, the associate pro-
cess Mϕ = (Mϕ

t )t≥0 defined as:

Mϕ
t :=

tˆ

0

ϕu dBu

is a continuous local martingale with:

⟨Mϕ⟩t =
tˆ

0

ϕu
2 du

Theorem 54 (Stochastic dominated convergence
theorem). Let t ≥ 0 and (ϕnu) ∈ M2

loc be a sequence
of progressive processes such that ϕnu

P−→
n→∞

ϕu for all a.e.
u ∈ [0, t]. Suppose that ∀u ∈ [0, t] and ∀n ∈ N we have
|ϕnu|

a.e.
≤ Ψu, with Ψ ∈ M2

loc. Then:
tˆ

0

ϕnu dBu
P−→

n→∞

tˆ

0

ϕu dBu

Corollary 55. If (ϕu) is a continuous and adapted pro-
cess, then ∀t ≥ 0 and any subdivision (tnk ) ∈ P([0, t]) such
that ∆n → 0 we have:

n−1∑
k=0

ϕtn
k+1

(Btn
k+1

−Btn
k
) P−→
n→∞

tˆ

0

ϕu dBu

3. | Stochastic differentiation
Itô processes
Proposition 56. Let ψ = (ψt)t≥0 be a stochastic process
such that ∀t ≥ 0 we have

tˆ

0

|ψu| du < ∞

In this case we say that ψ ∈ M1
loc. Then, the process

t 7→
tˆ

0

ψu dBu

is an adapted continuous process.
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Definition 57. An Itô process is a stochastic process
(Xt)t≥0 of the form:

Xt = X0 +
tˆ

0

ϕu dBu +
tˆ

0

ψu du (1)

with ϕ ∈ M2
loc and ψ ∈ M1

loc. The two integrals are called
martingale term and drift term respectively. Instead of
Eq. (1) we usually write:

dXt = ϕt dBt + ψt dt

This expression is called stochastic differential.

Remark. Itô processes form a vector space. That is, if X
and Y are Itô processes and λ, µ ∈ R, then Z = λX + µY
is an Itô process and:

dZt = λdXt + µ dYt

Moreover they are always continuous adapted processes.

Proposition 58. Let X = (Xt)t≥0 be an Itô process such
that ∀t ≥ 0 we have:

dXt = ϕt dBt + ψt dt = ϕ̃t dBt + ψ̃t dt

for some ϕ, ϕ̃ ∈ M2
loc and ψ, ψ̃ ∈ M1

loc. Then, ϕ, ϕ̃ are
indistinguishable and so are ψ, ψ̃.

Proof. By assumption, we have that a.e. ∀t ≥ 0:
tˆ

0

(ϕu − ϕ̃u) dBu =
tˆ

0

(ψu − ψ̃u) du

But since the right-hand side of the equation is a local
martingale and the left-hand side has finite variation, we
have that both sides must be 0 a.e. in t. Moreover, by the
uniqueness of the quadratic variation we have that:

tˆ

0

(ϕu − ϕ̃u)2 du = 0

Letting t → ∞ we get that ϕ, ϕ̃ are indistinguishable. Fi-
nally, from the Lebesgue integral, we have that ψ, ψ̃ are
indistinguishable. □

Proposition 59. Let X = (Xt)t≥0 be an Itô process such
that dXt = ϕt dBt + ψt dt. Then:

• X is a local martingale if and only if X0 ∈ L1 and
ψ = 0.

• X is a square-integrable martingale if and only if
X0 ∈ L2, ϕ ∈ M2 and ψ = 0.

Definition 60. Let X = (Xt)t≥0 be an Itô process such
that dXt = ϕt dBt + ψt dt, and Y = (Yt)t≥0 be a contin-
uous adapted process. Then, Y ϕ ∈ M2

loc and Y ψ ∈ M1
loc

and we define:
tˆ

0

Yu dXu :=
tˆ

0

Yuϕu dBu +
tˆ

0

Yuψu du

Remark. Note that using ?? ?? we also have:

tˆ

0

Yu dXu
P= lim
n→∞

n−1∑
k=0

Ytn
k
(Xtn

k+1
−Xtn

k
)

along any subdivision (tnk )0≤k≤n ∈ P([0, t]) such that
∆n → 0.

Quadratic variation of Itô processes

Lemma 61. Let X = (Xt)t≥0, X̃ = (X̃t)t≥0 be two Itô
processes with differentials:

dXt = ϕt dBt + ψt dt dX̃t = ϕ̃t dBt + ψ̃t dt

Then, for any (tnk )0≤k≤n ∈ P([0, t]) such that ∆n → 0 we
have:

n−1∑
k=0

(Xtn
k+1

−Xtn
k
)(X̃tn

k+1
− X̃tn

k
) P−→
n→∞

tˆ

0

ϕuϕ̃u du =:

=: ⟨X, X̃⟩t

In particular:

⟨X⟩t := ⟨X,X⟩t =
tˆ

0

ϕu
2 du

and we call it the quadratic variation of X.

Proof. We saw it for X = X̃, and the general formula fol-
lows from ?? ??. Now, if ψ = 0, X is a continuous local
martingale with quadratic variation t 7→

´ t
0 ϕu

2 du. Now
if ϕ = 0, we know it because t 7→

´ t
0 ψu du has finite vari-

ation, and therefore, null quadratic variation. Finally in
the general case we have:

n−1∑
k=0

(Xtn
k+1

−Xtn
k
)2 =

n−1∑
k=0

 tnk+1ˆ

tn
k

ϕu dBu


2

+

+
n−1∑
k=0

 tnk+1ˆ

tn
k

ψu dBu


2

+ 2
n−1∑
k=0

tnk+1ˆ

tn
k

ϕu dBu

tnk+1ˆ

tn
k

ψu du

The first part tends to
´ t

0 ϕu
2 du, the second part tends to

0 and for the last part use Theorem 23. □

Theorem 62 (Stochastic integration by parts). Let
X = (Xt)t≥0 and Y = (Yt)t≥0 be two Itô processes. Then,
(XtYt)t≥0 is an Itô process and:

d(XtYt) = Xt dYt + Yt dXt + d⟨X,Y ⟩t

The last term d⟨X,Y ⟩t is called Itô term.

Proof. Let (tnk )0≤k≤n ∈ P([0, t]) such that ∆n → 0. Then:

XtYt −X0Y0 =
n−1∑
k=0

(Xtn
k+1

Ytn
k+1

−Xtn
k
Ytn

k
) =
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=
n−1∑
k=0

(Xtn
k+1

−Xtn
k
)Ytn

k+1
+
n−1∑
k=0

Xtn
k
(Ytn

k+1
− Ytn

k
)+

+
n−1∑
k=0

(Xtn
k+1

−Xtn
k
)(Ytn

k+1
− Ytn

k
)

Letting n → ∞ and using Theorem 61 and a previous
remark we get the result. □

Corollary 63. Let X = (Xt)t≥0 be an Itô process. Then,
(X2

t )t≥0 is an Itô process and:

dX2
t = 2Xt dXt + d⟨X⟩t

Itô’s formula
Theorem 64 (Itô’s formula). Let X = (Xt)t≥0 be an
Itô process and f ∈ C2(R). Then, (f(Xt))t≥0 is an Itô
process and:

df(Xt) = f ′(Xt) dXt + 1
2f

′′(Xt) d⟨X⟩t

Proof. Let t ≥ 0 and (tnk )0≤k≤n ∈ P([0, t]) such that
∆n → 0. Then, using the Taylor expansion of f we have:

f(Xt) − f(X0) =
n−1∑
k=0

f(Xtn
k+1

) − f(Xtn
k
) =

=
n−1∑
k=0

f ′(Xtn
k
)(Xtn

k+1
−Xtn

k
)+

+ 1
2

n−1∑
k=0

f ′′(Xun
k
)(Xtn

k+1
−Xtn

k
)2

with unk ∈ [tnk , tnk+1]. By a previous remark we have that:

n−1∑
k=0

f ′(Xtn
k
)(Xtn

k+1
−Xtn

k
) P−→

tˆ

0

f ′(Xu) dXu

Now, by Theorem 61 we have that:

n−1∑
k=0

Ytn
k
(Xtn

k+1
−Xtn

k
)2 P−→

tˆ

0

Yu d⟨X⟩u

in the elementary case where Yu = 1(0,s](u), s ≥ 0. By
linearity, this immediately extends to the case where Y is
a random step function. By density, it further extends to
the case where Y is any continuous and adapted process.
In particular, we may take Yu = f ′′(Xu), and the formula
holds by uniform continuity:

max
0≤k≤n

∣∣∣f ′′(Xtn
k
) − f ′′(Xun

k
)
∣∣∣ a.e.−→ 0

□

Theorem 65. Let X1, . . . , Xd be Itô processes and f ∈
C2(Rd). Then, (f(X1

t , . . . , X
d
t ))t≥0 is an Itô process and:

df(X) =
d∑
i=1

∂f

∂xi
(X) dXi

t + 1
2

d∑
i,j=1

∂2f

∂xi∂xj
(X) d⟨Xi, Xj⟩t

where X := (X1, . . . , Xd).

Exponential martingales

Lemma 66 (Doléans-Dade exponential). For any
ϕ ∈ M2

loc, the process Zϕ = (Zϕt )t≥0 defined as

Zϕt := e
´ t

0 ϕudBu− 1
2
´ t

0 ϕu
2du

is a continuous local martingale.

Proof. Applying Itô’s formula to f(x) = ex and Xt =´ t
0 ϕu dBu − 1

2
´ t

0 ϕu
2 du we get:

dZϕt = eXt

(
ϕt dBt − 1

2ϕt
2 dt
)

+ 1
2eXtϕt

2 dt = eXtϕt dBt

Since, Zϕ0 = 1, we obtain that ∀t ≥ 0:

Zϕt = 1 +
tˆ

0

Zϕuϕu dBu

and the result follows from Theorem 59. □

Lemma 67. If M is a non-negative local martingale,
then M is a super-martingale. Moreover, for T ∈ R≥0,
(Mt)t∈[0,T ] is a martingale if and only if E(MT ) ≥ E(M0).

Proof. Since M is a local martingale with localizing se-
quence (Tn), then ∀t ≥ 0 we have that E(Mt∧Tn

| Fs) =
Ms∧Tn

and so: Ms∧Tn

a.s.−→
n→∞

Ms

Mt∧Tn

a.s.−→
n→∞

Mt

Now, by ?? ?? we have:

E(Mt | Fs) ≤ lim inf
n→∞

E(Mt∧Tn
| Fs) = lim inf

n→∞
Ms∧Tn

= Ms

which shows that M is a super-martingale. Now, fix
T ≥ 0, and suppose that E(MT ) ≥ E(M0). This forces the
non-increasing map t 7→ E(Mt) to be constant on [0, T ].
In particular, for any 0 ≤ s ≤ t ≤ T , the non-negative
variable Ms −E(Mt | Fs) has zero mean, hence is null a.s.

□

Theorem 68 (Novikov’s condition). Let t ≥ 0 be fixed
and assume that:

E
(

e 1
2
´ t

0 ϕu
2du
)
< ∞

Then, (Zϕs )s∈[0,t] is a martingale.

Proof. Fix 0 < ε < 1. We have that for all s ∈ [0, t]:(
Z(1−ε)ϕ
s

) 1
1−ε2 =

(
Zϕs
) 1

1+ε

(
e 1

2
´ s

0 ϕ
2
udu
) ε

1+ε

Now, choosing s = t∧Tn, where Tn is a localizing sequence
for Z(1−ε)ϕ, taking expectation and using ?? ?? we get:

E
[(
Z

(1−ε)ϕ
t∧Tn

) 1
1−ε2

]
≤ E

[
Zϕt∧Tn

] 1
1+ε E

[
e 1

2
´ t∧Tn

0 ϕ2
udu
] ε

1+ε
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≤ E
[
e 1

2
´ t

0 ϕ
2
udu
] ε

1+ε

because E
[
Zϕt∧Tn

]
= 1. This implies that (Z(1−ε)ϕ

t∧Tn
) is

bounded in Lp for p = 1
ε2 > 1. Thus:

E(Z(1−ε)ϕ
t ) = lim

n→∞
E(Z(1−ε)ϕ

t∧Tn
) = 1

In particular, E
[(
Z

(1−ε)ϕ
t

)p]
≥ 1 and so:

1 ≤ E
[
Zϕt

] 1
1+ε E

[
e 1

2
´ t

0 ϕ
2
udu
] ε

1+ε

Taking ε → 0, yields E(Zϕt ) ≥ 1, which suffices to conclude
by Theorem 67. □

Girsanov’s theorem

Theorem 69 (Giranov’s theorem). Let ϕ ∈ M2
loc

and suppose its associated exponential local martingale
(Zϕt )t≥0 is a martingale. Then, the formula

Q(A) := E(Zϕt 1A) ∀A ∈ Ft

defines a probability measure on (Ω,Ft), under which the
process X = (Xs)s∈[0,t] defined as

Xs := Bs −
sˆ

0

ϕu du

is a (Fs)s∈[0,t]-Brownian motion.

Remark. Note that, by linearity we have that for ant Ft-
measurable non-negative random variable Y :

EQ(Y ) = E(Y Zϕt ) E(Y ) = EQ

(
Y

Zϕt

)

where EQ denotes the expectation with respect to Q. This
is useful for transferring computations between P and Q.

4. | Stochastic differential equations
Introduction

Definition 70. Let X = (Xt)t≥0 be a stochastic process
and b : R≥0×R → R and σ : R≥0×R be deterministic func-
tions called drift and diffusion, respectively. A stochastic
differential equation (SDE) is an equation of the form:

dXt = b(t,Xt) dt+ σ(t,Xt) dBt (2)

Definition 71. Consider the SDE of Eq. (2). We
say that a progressive process X = (Xt)t≥0 defined on
(Ω,F , (Ft)t≥0,P) is a solution of the SDE if (b(t,Xt))t≥0 ∈
M1

loc and (σ(t,Xt))t≥0 ∈ M2
loc and ∀t ≥ 0:

Xt = X0 +
tˆ

0

b(s,Xs) ds+
tˆ

0

σ(s,Xs) dBs

Existence and uniqueness of solutions
Lemma 72 (Grönwall’s lemma). Let (xt)t∈[0,T ] be a
non-negative function in L1([0, T ]) satisfying that ∀t ∈
[0, T ]:

xt ≤ α+ β

tˆ

0

xs ds

for some constants α, β ≥ 0. Then, xt ≤ αeβt for all
t ∈ [0, T ].
Theorem 73 (Existence and uniqueness of solutions
of SDEs). Let b, σ : R≥0 ×R → R be a measurable func-
tion satisfying:

• Uniform spatial Lipschitz continuity: ∃C > 0 such
that ∀t ≥ 0 and ∀x, y ∈ R we have:

|b(t, x) − b(t, y)| ≤ C|x− y|
|σ(t, x) − σ(t, y)| ≤ C|x− y|

• Local square-integrability in time: ∀t ≥ 0 we have:
tˆ

0

|b(s, 0)|2 ds < ∞
tˆ

0

|σ(s, 0)|2 ds < ∞

Then, for each initial condition ζ ∈ L(Ω,F0,P), there ex-
ists a unique (up to indistinguishability) solution X =
(Xt)t≥0 to the SDE of Eq. (2) with X0 = ζ. Moreover,
X ∈ M2.
Remark. In the proof of the above theorem, which we omit
here, it can be shown that

Xt = Ψt

(
ζ, (Bs)s∈[0,t]

)
(3)

for some measurable function Ψt : R × C([0, t],R) → R.

Practical examples
Proposition 74 (Langevin equation). Consider the
following SDE:

dXt = −bXt dt+ σ dBt
with b, σ > 0 and X0 = ζ ∈ L2(Ω,F0,P). Then, the
solution is given by:

Xt = ζe−bt + σ

tˆ

0

e−b(t−s) dBs

Remark. This SDE was proposed by Paul Langevin in
1908 to describe the random motion of a small particle in
a fluid, due to collisions with the surrounding molecules.
Note that the long-term behavior of Xt has law of N(0, σ2

2b )
(because the second term has law N(0, σ2

2b (1−e−2bt))), in-
dependently of the initial condition ζ.
Proposition 75 (Geometric Brownian motion).
Consider the following SDE:

dXt = Xt(b dt+ σ dBt)
with X0 = ζ ∈ L2(Ω,F0,P). Then, the solution is given
by:

Xt = ζe
(
b− σ2

2

)
t+σBt
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Proof. This equation has a unique solution and it’s natu-
ral to expect it is of the form Xt = ζeYt , where Yt is an Itô
process. Identifying dYt = ψt dt+ϕt dBt and using the 64
Itô’s formula we get:

d(ζeYt) = ζeYt

(
dYt + 1

2 d⟨Y ⟩t

)
= ζeYt

(
ψt dt+ ϕt dBt + 1

2ϕ
2
t dt
)

and so ϕt = σ and ψt = b− σ2

2 . □

Proposition 76 (Black-Scholes process). Consider
the following SDE:

dXt = Xt(bt dt+ σt dBt)

with X0 = ζ ∈ L2(Ω,F0,P) and (bt)t≥0, (bt)t≥0 determin-
istic measurable bounded functions. Then, the solution is
given by:

Xt = ζe
´ t

0

(
bs− σ2

s
2

)
ds+

´ t
0 σsdBs

Proof. This equation has a unique solution and as in the
previous example, we expect Xt = ζeYt , where Yt is an Itô
process. Identifying dYt = ψt dt+ϕt dBt and using the 64
Itô’s formula we get:

d(ζeYt) = ζeYt

(
ψt dt+ ϕt dBt + 1

2ϕ
2
t dt
)

and so ϕt = σt and ψt = bt − σ2
t

2 . □

Markov property for diffusions
Definition 77. Let b.σ : R → R be two Lipschitz func-
tions and consider the following homogeneous SDE:{

dXt = b(Xt) dt+ σ(Xt) dBt
X0 = ζ ∈ L2(Ω,F0,P)

(4)

These kinds of problems are called diffusions.

Theorem 78 (Invariance under time shift). Let X =
(Xt)t≥0 be a solution to the SDE of Eq. (4) and assume
we write Xt as in Eq. (3). Then, for any s, t ≥ 0 we have:

Xt+s = Ψt(Xs, (Bu+s −Bs)u∈[0,t])

Definition 79. Let f ∈ L∞(R) and t ≥ 0. We define the
function Ptf as:

Ptf : R −→ R
x 7−→ E(f(Xx

t ))

where Xx
t is the solution to the SDE of Eq. (4) with

X0 = x.

Corollary 80. For any s, t ≥ 0 and any f ∈ L∞(R) we
have:

E(f(Xt+s)) = (Ptf)(Xs)

Proposition 81. The family (Pt)t≥0 has the following
properties:

1. Pt is a bounded linear operator from L∞(R) to itself
for each t ≥ 0.

2. P0 = id and Pt+s = Pt ◦ Ps for all s, t ≥ 0.

3. If f is continuous, then so is t 7→ Ptf(x) for each
fixed x ∈ R.

4. If f is monotone, then so is Ptf for each t ≥ 0.

5. If f is Lipschitz, then so is Ptf for each t ≥ 0.

6. If σ, b, f ∈ Ckb(R) for some k ≥ 1, then so is Ptf for
each t ≥ 0.

Generator of a diffusion
Definition 82 (Generator). The generator of the semi-
group (Pt)t≥0 is the linear operator L defined by:

(Lf)(x) := lim
t→0

Ptf(x) − f(x)
t

for all f ∈ L∞(R) and x ∈ R such that the limit exists.
Those functions form a vector space denoted by Dom(L).

Theorem 83. Let f ∈ C2
b(R). Then:

1. Lf is well-defined and it is given ∀x ∈ R by:

Lf(x) = 1
2σ

2(x)f ′′(x) + b(x)f ′(x)

2. For all t ≥ 0, we have Ptf ∈ Dom(L) and it satisfies
the Kolmogorov’s equation:

d
dtPtf = Pt(Lf) = L(Ptf)

3. The process (Mt)t≥0 defined as

Mt := f(Xt) − f(X0) −
tˆ

0

Lf(Xs) ds

is a continuous square-integrable martingale.

Connection with PDEs
For this section recall the diffusion equation:{

dXx
t = b(Xx

t ) dt+ σ(Xx
t ) dBt

Xx
0 = x

(5)

where b, σ : R → R are Lipschitz functions. Now, fix
f ∈ L∞(R) and consider the PDE:{

∂v
∂t (t, x) = b(x) ∂v∂x (t, x) + 1

2σ
2(x) ∂2v

∂x2 (t, x)
v(0, x) = f(x)

(6)

where v ∈ C1,2([0,∞) × R).

Theorem 84.

1. If v is a bounded solution to the PDE of Eq. (6),
then we must have ∀(t, x) ∈ [0,∞) × R:

v(t, x) = E(f(Xx
t )) (7)
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2. If b, σ, f ∈ C2
b(R), then conversely, the function v

defined in Eq. (7) is a bounded solution of Eq. (6).

Remark. The interest of this connection between SDEs
and PDEs is two-fold: on the one hand, one can use
tools from PDE theory to understand the distribution of
Xx
t . Conversely, the probabilistic representation of Eq. (7)

offers a practical way to numerically solve the PDE of
Eq. (6), by simulation.

Theorem 85 (Feynman-Kac’s formula). Let v ∈

C1,2([0,∞) × R) be a bounded solution to the PDE{
∂v
∂t (t, x) = −h(x)v(t, x) + b(x) ∂v∂x (t, x) + 1

2σ
2(x) ∂2v

∂x2 (t, x)
v(0, x) = f(x)

where f, h : R → R are measurable, with h non-negative.
Then, we have the representation

v(t, x) = E
(
f(Xx

t )e−
´ t

0 h(Xx
s )ds

)
for all (t, x) ∈ [0,∞) × R.
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