
Numerical methods for PDEs

1. | Finite element method
Variational formulation of elliptic PDEs
Definition 1. Consider a elliptic pde of the form:

−
n∑

i,j=1
∂j(aij∂iu) +

n∑
i=1

bi∂iu+ cu = f (1)

in a bounded open subset Ω ⊂ Rn with aij , bi, c and f
sufficiently regular functions. The variational formulation
of this problem is:

n∑
i,j=1

⟨aij∂iu, ∂jv⟩L2(Ω)+
n∑

i=1
⟨bi∂iu, v⟩L2(Ω)+⟨cu, v⟩L2(Ω) =

= ⟨f, v⟩L2(Ω) +
n∑

i,j=1
⟨aij∂iuνj , v⟩L2(∂ Ω)

where v is a test function (sufficiently regular) and ν is
the outward unit normal vector on ∂ Ω ∈ C1. The func-
tions in the last inner product on ∂ Ω are meant to be in
the sense of traces. From now on, the left hand side of
the variational formulation will be denoted by a(u, v) and
ℓ(v) := ⟨f, v⟩L2(Ω).

Remark. This formulation makes sense for aij , bi, c ∈
L∞(Ω) and f ∈ L2(Ω). We will look for a solution u ∈ V ,
where V is a suitable space of functions, such that the
variational formulation holds for all v ∈ V .

Definition 2 (Dirichlet boundary conditions). Con-
sider Eq. (1) with Dirichlet boundary conditions u = g on
∂ Ω. If g = 0, the boundary term disappears and we can
choose V = H1

0 (Ω). If g ̸= 0, and both g and ∂ Ω are
smooth (i.e. g ∈ H1(Ω)), by ?? we can find ug ∈ H1(Ω)
such that Tr(ug) = g. Then, we set ũ := u− ug ∈ H1

0 (Ω)
and satisfies:

a(ũ, v) = ℓ(v) − a(ug, v) ∀v ∈ H1
0 (Ω)

Definition 3 (Neumann boundary conditions).
Consider Eq. (1) with Neumann boundary conditions∑n

i,j=1 aij∂iuνj = g on ∂ Ω, for g ∈ L2(∂ Ω). In this case,
we take V = H1(Ω) and look for a solution u ∈ V such
that:

a(u, v) = ℓ(v) + ⟨g, v⟩L2(∂ Ω) ∀v ∈ V

Definition 4 (Robin boundary conditions). Con-
sider Eq. (1) with Robin boundary conditions γu +∑n

i,j=1 aij∂iuνj = g on ∂ Ω, for g ∈ L2(∂ Ω) and γ ∈
L∞(∂ Ω). In this case, we take V = H1(Ω) and look for a
solution u ∈ V such that:

a(u, v) + ⟨γu, v⟩L2(∂ Ω) = ℓ(v) + ⟨g, v⟩L2(∂ Ω) ∀v ∈ V

Remark. Recall that for these problems to have a unique
solution, we need to impose the coercivity and continuity
in ?? ??.

Proposition 5. Consider the homogeneous Dirichlet
problem from Eq. (1) and set β = α−1∑n

i=1 ∥bi∥L∞(Ω)
2,

where α is the ellipticity constant of the PDE. Then, the
homogeneous Dirichlet problem has a unique solution u in
H1

0 (Ω) if ∀x ∈ Ω we have c− β
2 ≥ 0. In this case, ∃C > 0

such that:
∥u∥H1(Ω) ≤ C ∥f∥L2(Ω)

Consequently, the non-homogeneous Dirichlet problem for
g ∈ H1(∂ Ω) has a unique solution u in H1(Ω) such that:

∥u∥H1(Ω) ≤ C̃(∥f∥L2(Ω) + ∥g∥H1(∂ Ω))

Proposition 6. Consider the Neumann problem from
Eq. (1) for g ∈ L2(∂ Ω) and set β = α−1∑n

i=1 ∥bi∥L∞(Ω)
2,

where α is the ellipticity constant of the PDE. Then, the
Neumann problem has a unique solution u in H1(Ω) if
∀x ∈ Ω we have c− β

2 ≥ δ > 0. In this case, ∃C > 0 such
that:

∥u∥H1(Ω) ≤ C(∥f∥L2(Ω) + ∥g∥L2(∂ Ω))

Proposition 7. Consider the Robin problem from Eq. (1)
for g ∈ L2(∂ Ω) and γ ∈ L∞(∂ Ω) and set β =
α−1∑n

i=1 ∥bi∥L∞(Ω)
2, where α is the ellipticity constant

of the PDE. Then, the Robin problem has a unique solu-
tion u in H1(Ω) if ∀x ∈ Ω we have c − β

2 ≥ δ ≥ 0 and
γ ≥ η ≥ 0 with either δ > 0 or η > 0. In this case, ∃C > 0
such that:

∥u∥H1(Ω) ≤ C(∥f∥L2(Ω) + ∥g∥L2(∂ Ω))

Galerkin method
Definition 8. The conforming Galerkin method consists
in looking for a solution uh ∈ Vh ⊂ V such that:

ah(uh, vh) = ℓh(vh) ∀vh ∈ Vh

where Vh is a closed finite-dimensional subspace of V and
ah and ℓh are the approximations of a and ℓ in Vh.
Remark. Here h is meant to be a discretization parameter.
Theorem 9 (Céa’s lemma). Let u ∈ V be the solution
of the variational formulation of Eq. (1) and uh ∈ Vh be
the solution of the Galerkin method. Then, ∃C > 0 such
that:

∥u− uh∥V ≤ C inf
vh∈Vh

∥u− vh∥V

Finite element spaces
Remark. Finite element methods are a special case of
Galerkin methods in which the finite-dimensional sub-
space Vh consists of piecewise polynomial functions over a
mesh.
Definition 10. A finite element is a triplet (K,P,N )
where:

• K ⊆ Rn is a simply connected bounded open set
with piecewise smooth boundary (the geometric el-
ement).
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• P is a finite-dimensional space of functions defined
on K, whose elements are called basis functions.

• N = {N1, . . . , Nd} is a basis of P∗.

Lemma 11. Let P be d-dimensional vector space and let
{N1, . . . , Nd} ⊂ P∗. The following statements are equiva-
lent:

1. {N1, . . . , Nd} is a basis of P∗.

2. For all v ∈ P such that Ni(v) = 0 for all i = 1, . . . , d,
then v = 0.

Remark. To construct a finite element, we usually proceed
as follows:

1. We choose a geometric element K.

2. We choose a polynomial space P up to a given degree
k.

3. We choose the degrees of freedom N =
{N1, . . . , Nd}, where d = dim P, such that the cor-
responding interpolation problem is well-posed.

4. We compute the dual basis of N , which gives a basis
of P.

Definition 12. Let (K,P,N ) be a finite element and
{ψ1, . . . , ψd} be the corresponding basis of P. For a given
function v such that Ni(v) is defined ∀i ∈ {1, . . . , d}, we
define the local interpolant of v as:

IKv :=
d∑

i=1
Ni(v)ψi

Lemma 13. Let (K,P,N ) be a finite element and IK be
the local interpolant operator associated to it. Then, the
following properties hold:

1. IK is linear.

2. Ni(IKv) = Ni(v) ∀i ∈ {1, . . . , d}.

3. IKv = v ∀v ∈ P, i.e. IK is a projection.

Definition 14. A subdivision of a bounded open set
Ω ⊂ Rn is a collection T of open sets Ki such that:

1. Ki ∩Kj = ∅ ∀i ̸= j.

2. Ω =
⋃

K∈T K.

Definition 15. Let T be a subdivision of Ω such that for
each K ∈ T there exists a finite element (K,P,N ) with
local interpolant IK . Let m be the order of the highest
partial derivative appearing in any of the degrees of free-
dom of N . We define the global interpolant IT v of T , for
v ∈ Cm(Ω), as:

IT v|K := IKv ∀K ∈ T

Definition 16. A triangulation of a bounded open set
Ω ⊂ R2 is a subdivision T of Ω such that:

1. Each K ∈ T is a triangle.

2. The intersection of two triangles is either empty or
a common vertex or a common edge.

Definition 17. Let (K̂, P̂, N̂ ), (K,P,N ) be finite ele-
ments and T : Rn → Rn be an affine transformation. We
say that these finite elements are affinely equivalent by T
if:

1. K = T (K̂).

2. P = {p̂ ◦ T−1 : p̂ ∈ P̂}.

3. N = {Ni}, where Ni(p) = N̂i(p ◦ T ) ∀p ∈ P.

Lemma 18. Let (K̂, P̂, N̂ ), (K,P,N ) be two affine
equivalent finite elements by the affine transformation TK .
Then:

I
K̂

(v ◦ TK) = IKv ◦ T

Polygonal interpolation in Sobolev spaces
Lemma 19 (Bramble-Hilbert lemma). Let F :
W k,p(Ω) → R be such that:

1. |F (v)| ≤ c1|v|W k,p(Ω) ∀v ∈ W k,p(Ω), where

|v|W k,p(Ω) :=


(∑

|α|=k ∥∂αv∥Lp(Ω)

)1/p

if p < ∞
max|α|=k ∥∂αv∥L∞(Ω) if p = ∞

2. |F (u+ v)| ≤ c2(|F (u)| + |F (v)|) ∀u, v ∈ W k,p(Ω).

3. |F (q)| = 0 ∀q ∈ Pk−1(Ω), where Pℓ(Ω) is the space
of polynomials of degree less than ℓ.

Then, ∃C > 0 such that ∀v ∈ W k,p(Ω):

|F (v)| ≤ C|v|W k,p(Ω)

Theorem 20. Let (K,P,N ) be a finite element such that
Pk−1 ⊆ P for some k ∈ N and all N ∈ N be bounded in
W k,p(K) for some p ∈ [1,∞]. Then, ∃C > 0 such that
∀v ∈ W k,p(K):

|v − IKv|W ℓ,p(K) ≤ C|v|W k,p(K) ∀ℓ ∈ {0, . . . , k}

Remark. Let (K,P,N ) be a finite element and (K̂, P̂, N̂ )
be the reference element. From now on, if they are
affine equivalent by TK : K̂ → K, we will assume that
TK x̂ = AK x̂+ bK , with AK invertible.

Lemma 21. Let k ∈ N and p ∈ [1,∞]. Then, ∃C > 0
such that ∀K ⊂ Ω and ∀v ∈ W k,p(K̂):

|v|
W k,p(K̂) ≤ C ∥AK∥k |det AK |−1/p|v|W k,p(K)

|v|W k,p(K) ≤ C
∥∥AK

−1∥∥k |det AK |1/p|v|
W k,p(K̂)

Definition 22. Let (K,P,N ) be a finite element. We
define the diameter of K as:

hK := max
x,y∈K

∥x− y∥

We define the insphere diameter of K as:

ρK := 2 max{ρ > 0 : B(x, ρ) ⊂ K for some x ∈ K}

We define the condition number of K as σK := hK

ρK
.
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Lemma 23. Let (K,P,N ), (K̂, P̂, N̂ ) be affine equivalent
finite elements by TK : K̂ → K. Then, |det AK | = vol(K)

vol(K̂)
,

∥AK∥ ≤ hK

ρ
K̂

and
∥∥AK

−1∥∥ ≤
h

K̂

ρK
.

Theorem 24 (Local interpolation error). Let
(K̂, P̂, N̂ ) be a finite element with Pk−1 ⊆ P for some
k ∈ N and all N ∈ N be bounded in W k,p(K̂) for some
p ∈ [1,∞]. Then, for all finite element (K,P,N ) affine
equivalent to (K̂, P̂, N̂ ) by TK : K̂ → K, ∃C > 0 (inde-
pendent of K) such that ∀v ∈ W k,p(K):

|v − IKv|W ℓ,p(K) ≤ ChK
kσK

ℓ|v|W k,p(K) ∀ℓ ∈ {0, . . . , k}

Definition 25. A subdivision T of Ω ∈ Rn is called reg-
ular if ∃C > 0 such that ∀K ∈ T we have σK ≤ C.

Theorem 26 (Global interpolation error). Let T be
a regular subdivision of Ω ∈ Rn and (K̂, P̂, N̂ ) be a refer-
ence finite element with Pk−1 ⊆ P for some k ∈ N and all
N ∈ N be bounded in W k,p(K̂) for some p ∈ [1,∞]. Let
h := maxK∈T hK . Then, ∃C > 0 (independent of h) such
that ∀v ∈ W k,p(Ω):

|v − IT v|W ℓ,p(Ω) +
k∑

ℓ=1

(
hℓ
∑

K∈T
|v − IKv|pW ℓ,p(K)

)1/p

≤

≤ Chk|v|W k,p(Ω)

if p < ∞ and:

|v − IT v|W ℓ,∞(Ω) +
k∑

ℓ=1
hℓ max

K∈T
|v − IKv|W ℓ,∞(K) ≤

≤ Chk|v|W k,∞(Ω)

if p = ∞.

Error estimates for finite element approxima-
tion
Theorem 27. Let Ω ⊂ Rn be open and bounded, u ∈
H1(Ω) be the solution of the boundary value problem and
T be a regular triangulation of Ω with reference element
(K̂, P̂, N̂ ) such that Pk−1 ⊆ P for some k ∈ N. Let
uh ∈ Vh be the solution of the Galerkin method. Then, if
u ∈ Hm, with n

2 < m < k, then ∃C > 0 (independent of
h and u) such that:

∥u− uh∥H1(Ω) ≤ Chm−1 ∥u∥Hm(Ω)

2. | Spectral methods
Definition 28. The idea of spectral methods is to approx-
imate the solution u of a boundary value problem by an
expression in terms of the so-called trial functions:

u(x) ≈
N∑

i=1
ũiϕi(x)

We will impose the following requirements on the trial
functions:

1. The approximation should converge rapidly as N →
∞.

2. The computation of the coefficients ũi and the re-
construction of u should be efficient.

3. Given the coefficients of some function u, it should
be easy to determine the coefficients of the derivative
of u.

Remark. When using spectral methods, it is generally as-
sumed that the solution of the problem of interest is very
smooth, and thus, the trial functions are globally smooth,
i.e. algebraic or trigonometric polynomials.

Definition 29. The choice of the test functions distin-
guishes between three types of spectral methods:

1. Galerkin methods: the test functions are the same as
the trial functions. These test functions usually sat-
isfy some or all the boundary conditions. The PDE
is enforced by requiring that the residual is orthog-
onal to the test functions.

2. Collocation methods: the test functions are Dirac
delta distributions centered at the so-called colloca-
tion points. This approach requires the PDE to be
satisfied exactly at the collocation points. A supple-
mentary set of equations may be imposed to satisfy
the boundary conditions.

3. τ methods: these are similar to the Galerkin meth-
ods in the way the PDE is enforced, but the test
functions don’t need to satisfy the boundary condi-
tions.

Remark. From what follows, we will focus collocation
methods.

Periodic problem

When considering a problem with periodic boundary con-
ditions, we can use trigonometric polynomials as trial
functions.

Remark. It can be seen that the Fourier basis functions
{eikx : k ∈ Z} and it’s coefficients satisfy the requirements
of Theorem 28, using the FFT for the computation of the
coefficients.

Definition 30. Given a complex-valued periodic functon
u defined in [0, 2π] and N ∈ N, we define the interpolant
of u as:

INu(x) :=
N∑

k=−N+1
ũkeikx

where ũk =
∑2N−1

j=0 u(xj)e−ikxj are the discrete Fourier
coefficients and xj = 2πj

2N .

Proposition 31. Let PNu = 1
2π

∑N
k=−N+1 ûkeikx be the

truncated Fourier series of u. Then, we have:

∥u− INu∥2 = ∥u− PNu∥2 + ∥RNu∥2

3



with:

RNu(x) = 1
2π

N∑
k=−N+1

∑
m∈Z∗

ûk+2mN eikx

because
ũk = 2N

2π
∑
m∈Z

ûk+2mN

Remark. Note that (PNu)′ = PNu
′, but (INu)′ ̸= INu

′.
What we do in general is to pass to the Fourier space,
differentiate and then come back to the physical space.

Non-periodic problems
Remark. Recall that using trigonometric polynomials as
trial functions for problems with non-periodic boundary
conditions can lead to the Gibbs phenomenon. To prevent
that from happening, we will use algebraic polynomials as
trial functions. But in that case, we need to choose the
collocation points carefully, to prevent the so-called Runge
phenomenon (see ??).
In this section we will only consider one case of polynomial
trial functions, the so-called Chebyshev polynomials (see
??).
Definition 32. Given a real-valued function u defined in
[−1, 1] and N ∈ N, we define the interpolant of u with
orthogonal polynomials {pk}k∈N∪{0} and weight function
ω(x) as:

INu(x) =
N∑

k=0
ũkpk(x)

where ũk = 1
γk

N∑
j=0

u(xj)pk(xj)ωj , γk =
N∑

j=0
pk(xj)2ωj , xj

are the chosen nodes and ωj are the weights corresponding
to the Gauß-Lobatto formula:

N∑
j=0

xj
kωj =

1ˆ

−1

xkω(x) dx

Remark. Recall that from Gauß quadrature, we have
N∑

j=0
u(xj)v(xj)ωj =

1ˆ

−1

u(x)v(x)ω(x) dx

for all uv ∈ P2N−1 (space of polynomials of degree less
than 2N − 1).

Remark. Recall that the Chebyshev polynomials are those
defined by being the family of orthogonal polynomials with
respect to the weight function ω(x) = 1√

1−x2 in [−1, 1].

Lemma 33. Chebyshev polynomials satisfy the following
properties:

1. Tk+1(x) = 2xTk(x)−Tk−1(x) ∀k ∈ N, and T0(x) = 1
and T1(x) = x.

2.
1ˆ

−1

(Tk(x))2 1√
1 − x2

= π

2 ck, where ck = 2 − 1k>0.

3. 2Tk(x) = 1
k+1 (Tk+1)′(x) − 1

k−1 (Tk−1)′(x) ∀k ∈ N,
and (T0)′(x) = 0 and (T1)′(x) = 1.

Proposition 34. For Chebyshev polynomials, we have
ωj = π

Nc̄j
with c̄j = 2 − 10<j<N and xj = cos jπ

N . More-
over, the Chebyshev transform is given by:

ũk = 2
πc̄k

N∑
j=0

u(xj)
c̄j

cos jkπ
N

Remark. From this last expression, we can see that the
Chebyshev transform is equivalent to the discrete cosine
transform (DCT), and so it can be computed efficiently
using the FFT.

Remark. To differentiate a function u =
∑

k∈N ûkTk using
the Chebyshev transform, we first compute the Chebyshev
transform of u, then we differentiate the coefficients using
the formula

ckû′
k = û′

k+1 + 2(k + 1)ûk+1

in a backward sweep (since û′
k = 0 for k ≥ N) and finally

we compute the inverse Chebyshev transform of the result.
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