
Montecarlo methods

The goal of Montecarlo methods is to compute E(X),
where X is a random variable. In dimension 1, determin-
istic methods are more efficient but in higher dimensions
(d ≥ 4), Montecarlo methods are more competitive.

1. | Foundations
As always, we consider a probability space (Ω, F ,P) and
a random variable Y ∈ L1.

Principle
Definition 1. The main idea will be to approximate E(Y )
by 1

n

∑n
i=1 Yi := Y n, where Yi are i.i.d. random variables

with same law as Y . The variable Y n is called the Mon-
tecarlo estimator of E(Y ).

Lemma 2. The Montecarlo estimator is consistent, i.e.
Y n

a.s.−→ E(Y ), and unbiased, i.e. E(Y n) = E(Y ).

Proof. Use the ?? ??. □

Lemma 3. Assume Y ∈ L2 and let Y n be the Montecarlo
estimator of E(Y ). Then:

∥∥Y n − E(Y )
∥∥

2 =
√

Var(Y )
n

Proof.

∥∥Y n − E(Y )
∥∥

2 =
√
E
((

Y n − E(Y )
)2) =

=
√

Var(Y n) =
√

Var(Y )
n

□

Lemma 4. Let Y ∈ L2 and Y n be the Montecarlo esti-
mator of E(Y ). Then:

√
n(Y n − E(Y )) d−→ N(0, Var(Y ))

Proof. Use ?? ??. □

Remark. In practice, we do not know Var(Y ), so we use
an estimator of it, such as σn

2 = 1
n−1

∑n
i=1 (Yi − Y n)2,

which is a consistent unbiased estimator of Var(Y ). Thus:
√

n

σn
(Y n − E(Y )) d−→ N(0, 1)

by ?? ??.

Lemma 5. Let Y ∈ L2 and Y n be the Montecarlo esti-
mator of E(Y ). Then, a confidence interval for E(Y ) of
level 1 − α is:

CIα :=
(

Y n − z1−α/2
σn√

n
, Y n + z1−α/2

σn√
n

)
where zα/2 is the quantile of order α/2 of the standard
normal distribution.

Random number generator
In this chapter we will assume that we already now how to
simulate sequences of i.i.d. random variables with uniform
distribution on [0, 1].
Remark. In summary, the computer generates a sequence
(xi)0≤i≤m, with m as large as possible, in the following
way: xi+1 = f(xi) and then sets ui = xi

m . The value x0 is
called the seed of the sequence and f is chosen with peri-
odicity as high as possible. In the early days of computers,
f(x) = ax+b mod m, which had periodicity m ∼ 231 −1.
Nowadays, Mersenne Twister algorithm is used, which has
periodicity m ∼ 219937 − 1.

Simulation of random variables
Lemma 6. Let U, (Ui)0≤i≤d ∼ U([0, 1]). Then:

• If a, b ∈ R with a < b, then a + (b − a)U ∼ U([a, b]).

• If p ∈ (0, 1), then 1U≤p ∼ Ber(p).

• If p ∈ (0, 1), then
∑d

i=1 1Ui≤p ∼ B(d, p).

• If (xn), (pn) ∈ R be such that
∑

n≥0 pn = 1, then∑
n≥0 xn1∑n−1

k=0
pk≤U≤

∑n

k=0
pk

∼ U ((xn)).

• If
∏d

i=1(ai, bi) ∈ Rd with ai < bi, then (ai + (bi −
ai)Ui)1≤i≤d ∼ U

(∏d
i=1(ai, bi)

)
.

Proposition 7. Let X be a random variable with cdf F
and U ∼ U([0, 1]). Then,

F −1(u) = inf{x ∈ R : F (x) ≥ u}

satisfies F −1(U) ∼ X.
Proposition 8. Let U ∼ U([0, 1]), X be a random vari-
able with cdf F and a, b ∈ R with a < b be such that
P(a < X ≤ b) > 0. Then:

F −1 (F (a) + (F (b) − F (a))U) ∼ L(X | a < X ≤ b)

Proposition 9 (Acceptance-rejection method). Let
(Xi)i≥1 be i.i.d. Rd-valued random variables, D ∈ B(Rd)
be such that P(X1 ∈ D) > 0 and set:

ν := inf{i ≥ 1 : Xi ∈ D}

Then, Xν ∼ L(X1 | X1 ∈ D).
Remark. The principle of the acceptance-rejection method
is to simulate conditional distributions by rejecting sam-
ples that do not satisfy a prescribed condition.
Proposition 10. Let f be a pdf of some random variable,
(Xi)i≥1 be i.i.d. with pdf g and (Ui)i≥1 be i.i.d. U([0, 1])
independent of (Xi)i≥1. Assume that ∃c ≥ 1 such that
f(x)

a.e.
≤ cg(x) and set:

ν := inf{i ≥ 1 : cg(Xi)Ui ≤ f(Xi)}

Then, Xν admits f as pdf.
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Proposition 11. Let f be a pdf of some random variable
and a1, a2 ∈ R with a2 > 0 be such that

D := {(u, v) ∈ R>0 × R : 0 < u2 < f
(

a1 + a2
v

u

)
}

is bounded. If (U, V ) ∼ U(D), then a1 + a2
V
U admits f as

pdf.

Gaussian distribution
Proposition 12 (Box-Muller method). Let U , V be
i.i.d. U([0, 1]) and set:

X :=
√

−2 log(U) cos(2πV ) Y :=
√

−2 log(U) sin(2πV )

Then, X and Y are i.i.d. N(0, 1).

Proof. Let φ : R2 → R be bounded and measurable.
Then:

E(φ(X, Y )) =

=
ˆ

(0,1)2

φ
(√

−2 log u cos(2πv),
√

−2 log u sin(2πv)
)

du dv =

=
ˆ

R2

φ(x, y) 1
2π

e− x2+y2
2 dx dy

by the change of variable formula. Thus, X and Y are
i.i.d. N(0, 1). □

Proposition 13 (Polar method). Let U , V be i.i.d.
U(D), where D ⊂ R2 is the open unit disk. Let R2 =
U2 + V 2 and set:

X := U

√
−2 log(R2)

R2 Y := V

√
−2 log(R2)

R2

Then, X, Y are i.i.d. N(0, 1).

Proposition 14. Let X ∈ Nd(0, Id), µ ∈ Rd and A ∈
Md(R). Then, µ + AX ∼ Nd(µ, AAT).

Remark. To simulate Y ∼ Nd(µ, Σ), we proceed as fol-
lows:

1. Find A ∈ Md(R) such that Σ = AAT (e.g. by
Cholesky decomposition).

2. Simulate X ∼ Nd(0, Id).

3. Set Y = µ + AX.

2. | Variance reduction techniques
Antithetic control
Definition 15. Let Y = g(X) be a random variable with
X ∼ N(0, σ2). The antithetic method consists in using the
estimator:

Y
A
n := 1

n

n∑
i=1

g(Xi) + g(−Xi)
2

where (Xi)1≤i≤n are i.i.d. N(0, σ2).

Lemma 16. The antithetic estimator Y
A
n is an unbiased

and consistent estimator of E(Y ). Furthermore:

√
n
(

Y
A
n − E(Y )

)
d−→ N

(
0, Var

(
g(X) + g(−X)

2

))
Remark. In terms of computational cost, Y

A
n is more ex-

pensive than Y n but cheaper than Y 2n.

Proposition 17. We have that Var(Y A
n ) ≤ Var(Y n).

Moreover, if
Cov(g(X), g(−X)) ≤ 0

then Var(Y A
n ) ≤ Var(Y 2n).

Proof.

Var(Y A
n ) = 1

2n
(Var(g(X)) + Cov(g(X), g(−X)))

≤ Var(Y n)

And clearly if Cov(g(X), g(−X)) ≤ 0, then Var(Y A
n ) ≤

Var(Y 2n). □

Proposition 18. If g is monotone, then:

Cov(g(X), g(−X)) ≤ 0

Proof. Let X1, X2 be i.i.d. copies of X. Then, since g is
monotone:

(g(X1) − g(X2))(g(−X1) − g(−X2)) ≤ 0

Now taking expectations:

0 ≥ E((g(X1) − g(X2))(g(−X1) − g(−X2))) =
= 2Cov(g(X), g(−X))

□

Control variate

Definition 19. The principle of the control variate is to
find a real-valued random variable X such that E(X) is
known, and a constant b ∈ R such that:

Var(Y + b(X − E(X))) ≪ Var(Y )

We define Y (b) := Y + b(X − E(X)). This suggests the
following estimator:

Y n(b) := 1
n

n∑
i=1

[Yi + b(Xi − E(X))]

where (Yi)1≤i≤n are i.i.d. copies of Y and (Xi)1≤i≤n are
i.i.d. copies of X.

Lemma 20. The control variate estimator Y n(b) is unbi-
ased and consistent. Furthermore:

√
n
(
Y n(b) − E(Y )

) d−→ N (0, Var(Y (b)))

where Y (b) := Y + b(X − E(X)).
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Remark. If b = 0, the control variate estimator Y n(b)
coincides with the classical estimator Y n. Otherwise, the
computational cost of Y n(b) is higher than Y n, but it does
not depend on the choice of b ̸= 0.

Proposition 21. The minimum of Var(Y (b)) is attained
for

b̂ = −Cov(Y, X)
Var(X)

and in that case, Var(Y (b̂)) = Var(Y )(1 − ρXY
2), where

ρXY is the correlation between X and Y .

Remark. Usually, b̂ is unknown, but we can use an esti-
mator of it, such as:

b̂n := −
∑n

i=1(Yi − Y n)(Xi − Xn)∑n
i=1 (Xi − Xn)2

but if we know E(X) and Var(X) explicitly, we can use
them in the formula of b̂n.

Remark. The result of above tell us that we should pick
X strongly correlated to Y but simple enough to know
explicitly E(X).

Definition 22. Let X be a random vector such that E(X)
is known, and b ∈ Rd. We define the multiple control vari-
ate estimator as:

Y n(b) := 1
n

n∑
i=1

[Yi + bT(Xi − E(X))]

where (Yi)1≤i≤n are i.i.d. copies of Y and (Xi)1≤i≤n are
i.i.d. copies of X. We also define Y (b) := Y + bT(X −
E(X)).

Lemma 23. The multiple control variate estimator
Y n(b) is unbiased and consistent. Furthermore:

√
n
(
Y n(b) − E(Y )

) d−→ N (0, Var(Y (b)))

Proposition 24. The minimum of Var(Y (b)) is attained
for

b̂ = −Var(X)−1Cov(X, Y )

and in that case, Var(Y (b̂)) = Var(Y )(1 − R2), where:

R2 := Cov(X, Y )TVar(X)−1Cov(X, Y )
Var(Y )

Importance sampling
Definition 25. Let (Ω, F ,P) be a probability space. We
say that a probability measure Q is equivalent to P if:

{A ∈ F : P(A) = 0} = {A ∈ F : Q(A) = 0}

Lemma 26. Let Q be a probability measure equivalent
to P. Then, there exists a random variable L > 0 such
that ∀A ∈ F , we have Q(A) = EP(L1A). Furthermore, for
all X bounded:

EQ(X) = EP(LX) EP(X) = EQ

(
X

L

)

Conversely, if we have a random variable L > 0 such that
EP(L) = 1, then

Q : F −→ [0, 1]
A 7−→ EP(L1A)

is a probability measure equivalent to P.

Remark. The principle of the importance sampling
method is to change the probability measure in order to
give more weight to important outcomes.

Definition 27. Let (Q, L) be such that it defines a prob-
ability measure equivalent to P. The importance sampling
estimator is defined as:

Y
Q
n := 1

n

n∑
i=1

Li
−1Yi

where (Li, Yi) are i.i.d. copies of (L, Y ) (under Q).

Lemma 28. The importance sampling estimator Y
Q
n is

unbiased and consistent. Furthermore:
√

n
(

Y
Q
n − EP(Y )

)
d−→ N

(
0, VarQ(L−1Y )

)
Remark. In terms of computational cost, the importance
sampling estimator Y

Q
n is more expensive than the classi-

cal estimator Y n. In terms of precision, the best estimator
is the one with the smallest variance so we have to compare
Var(Y ) and VarQ(L−1Y ). It holds:

VarQ(L−1Y ) = EP
(
L−1Y 2)− EP(Y )2

This quantity can be larger or smaller than Var(Y ) de-
pending on the choice of L and thus the success of impor-
tance sampling relies on the choice of an effective change
of probability measure.

3. | Simulation of diffusion processes
The aim of this section is to develop methods to simulate
solutions to SDEs of the form:{

dXt = b(Xt) dt + σ(Xt) dBt X0 = x0 (1)

where b : Rd → Rd and σ : Rd → Md×d(R) are Lipschitz
continuous.

Exact simulation

Proposition 29. To simulate a sample (Bt1 , . . . , Btm
) of

a d-dimensional Brownian motions, we can use the follow-
ing algorithm:

1. Generate (Z1, . . . , Zm) i.i.d. Nd(0, Id).

2. Set Bt0 := 0 and for all 0 ≤ i ≤ m − 1, set:

Bti+1 = Bti
+
√

ti+1 − tiZi+1
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Euler scheme
Definition 30. Consider the SDE of Eq. (1) and let h be
a discretization step. The Euler method consists in:

Xt+h = Xt +
t+hˆ

t

b(Xs) ds +
t+hˆ

t

σ(Xs) dBs

≈ Xt + hb(Xt) + σ(Xt)(Bt+h − Bt)

More generally, if we want to obtain the solution at
(t1, . . . , tn), we can use the following algorithm. Set
X̃m

0 := x0 and for all 0 ≤ i ≤ m − 1, set:

X̃m

ti+1
= X̃m

ti
+ (ti+1 − ti)b(X̃m

ti
) + σ(X̃m

ti
)(Bti+1 − Bti)

Remark. Note that Euler scheme reduces to generating in-
dependent increments Bti+1 − Bti

∼
√

ti+1 − tiNd(0, Id).

Remark. Trying to build an implicit Euler scheme for
SDEs is much more complicated than for ODEs, as we
need to ensure that the process is still adapted.

Definition 31. Let X be the solution to Eq. (1). We
define the continuous Euler scheme as:

X̃t := x0 +
tˆ

0

b(Xϕs
) ds +

tˆ

0

σ(Xϕs
) dBs

where ϕs := max{ti : ti < s}.

Lemma 32. Let X be the solution to Eq. (1) with d = 1
and X̃m be the solution to the Euler scheme. Then, for
p ≥ 1:

sup
n∈N

E
(

sup
0≤t≤T

∣∣X̃m
t

∣∣p) < ∞

Lemma 33. Let X be the solution to Eq. (1) with d = 1
and X̃m be the solution to the Euler scheme. Then, for
p ≥ 1:

max
i=0,...,m−1

E

(
sup

ti≤t≤ti+1

∣∣Xt − X̃m
ϕt

∣∣p) 1
p

≤ C√
m

Theorem 34 (Strong error of the Euler scheme).
Let X be the solution to Eq. (1) with d = 1 and X̃m be
the solution to the Euler scheme. Then, for p ≥ 1:

E
(

sup
0≤t≤T

∣∣Xt − X̃m
t

∣∣p)1/p

≤ C√
m

Theorem 35 (Weak error of the Euler scheme). If
b, σ ∈ C∞(Rd) with bounded derivatives and either one
of the following conditions holds:

• g ∈ C∞
b (Rd)

• g is measurable with polynomial growth and σ is
uniformly elliptic, i.e. ∃λ > 0 such that ∀x, ξ ∈ Rd

we have:
ξT(σσT)(x)ξ ≥ λ ∥ξ∥2

Then: ∣∣E(g(X̃m
T )) − E(g(XT ))

∣∣ ≤ C

m

where T is the final time of the simulation.

Remark. We can write the error taking in the Montecarlo
estimation using the Euler scheme as:

1
n

n∑
i=1

g(X̃m,(i)
T ) − E(g(XT )) =

= 1
n

n∑
i=1

g(X̃m,(i)
T ) − E(g(X̃m

T )) + E(g(X̃m
T )) − E(g(XT ))

where X̃
m,(i)
T are i.i.d. copies of X̃m

T . This error consists
in two terms:

• The statistical error:

1
n

n∑
i=1

g(X̃m,(i)
T ) − E(g(X̃m

T )) ∼ 1√
n

• The discretization error:

E(g(X̃m
T )) − E(g(XT )) ∼ 1

m

This suggests choosing m ∼
√

n. However, confidence
intervals are of little interest in this setting as the ampli-
tude of the bias is similar to the length of the confidence
interval. Thus, we have no control on the error a poste-
riori. We conclude that it is best to be in between the
setting

√
n ≪ m to have meaningful confidence intervals

and
√

n ∼ m for efficiency, say n
1
2 +δ ∼ m for δ > 0 small.

Corollary 36 (Romberg Extrapolation). The
Romberg Extrapolation consists in the following result:

E
(
2g(X̃m

T ) − g(X̃m
T )
)

− E(g(XT )) = C

m2 + o
(

1
m2

)
This suggests using the estimator for E(g(XT )):

1
n

n∑
i=1

(
2g(X̃m,(i)

T ) − g(X̃m,(i)
T )

)
where X̃

m,(i)
T are i.i.d. copies of X̃m

T .

4. | Brownian bridge approach
Brownian bridge
Proposition 37. Let Xt = x + µt + σBt with µ ∈ R,
σ ̸= 0 and (Bt)t≥0 be a Brownian motion. Then, given
(Xu, Xv) = (y, z), the process (Xt)u≤t≤v is a continuous
Gaussian process, independent of (Xt)t≤u and (Xt)t≥v,
such that for all u ≤ t ≤ s ≤ v:

E(Xt | Xu = y, Xv = z) = y + t − u

v − u
(z − y)

Cov(Xt, Xs | Xu = y, Xv = z) = (t − u)(v − s)
v − u

σ2

Corollary 38. Let Xt = x + µt + σBt with µ ∈ R, σ ̸= 0
and (Bt)t≥0 be a Brownian motion. Then, the distribu-
tion of the process (Xt)u≤t≤v given (Xt)t≤u and (Xt)t≥v

is the same as the distribution of

(y + σBt−u)u≤t≤v given Bv−u = z − y

σ
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Exit times

In this section we are interested in approximate the quan-
tity:

E (1τ>T g(XT ))

where τ := inf{t ≥ 0 : Xt /∈ D} and D ⊂ Rd is an open
connected set.

Remark. Due to ??, we have that E (1τ>T g(XT )) is pre-
cisely the solution to the PDE:{

∂tu + b · ∇u + 1
2 tr(σσT∆u) = 0 in[0, T ) × D

u(T, ·) = g inx ∈ D

Proposition 39. Assume that:

• b, σ ∈ C3 with bounded derivatives and σ uniformly
elliptic.

• D is a half-space or ∂ D is bounded of class C3.

• g is measurable with polynomial growth and van-
ishes at a neighborhood of ∂ D.

Then:

E (1τ>T g(XT )) − E(1τ̃m>T g(X̃m
T )) = O

(
1√
m

)
where τ̃m := min{ti : X̃m

ti
/∈ D} and X̃m is the Euler

scheme.

Proposition 40. Assume that:

• b, σ ∈ C5 with bounded derivatives and σ uniformly
elliptic.

• D is a half-space or ∂ D is bounded of class C5.

• g is measurable with polynomial growth and van-
ishes at a neighborhood of ∂ D.

Then:

E (1τ>T g(XT )) − E(1τm>T g(X̃m
T )) = O

(
1
m

)
Proposition 41. Assume that D is a half-space with hy-
perplane orthogonal to ν ∈ Rd passing by z ∈ Rd, i.e.:

D = {y ∈ Rd : νT(y − z) > 0}

If xi, xi+1 ∈ D, then:

P(∃t ∈ [ti, ti+1], X̃m
t /∈ D : X̃m

ti
= xi, X̃m

ti+1
= xi+1) =

= e
−2 m

T

νT(xi−z)νT(xi+1−z)

∥σ(xi)Tν∥2

Lemma 42. Let (Bt)t≥0 be a Brownian motion. Then,
∀a ≤ 0 and b ≥ a we have:

P
(

min
t∈[0,h]

Bt ≤ a | Bh = b

)
= e− 2

h a(a−b)

5. | Computation of sensitivities
In this chapter we aim to construct Montecarlo methods
in order to compute sensitivities of the price of an op-
tion. From the PDE point of view, we aim to compute the
derivatives of the solution (Xx

t )t≥0 of the SDE:{
dXt = b(Xt) dt + σ(Xt) dBt

X0 = x

Finite difference method
Here we will focus on the case d = 1.

Definition 43. Let u(0, x) := E(g(Xx
T )) and ũn(0, x) :=

1
n

∑n
i=1 g(X̃x,(i)

T ) where X̃
x,(i)
T are i.i.d. copies of X̃x

T . We
define the finite difference estimator as:

∂xu(0, x) ≈ u(0, x + ε) − u(0, x − ε)
2ε

≈ ũn(0, x + ε) − ũn(0, x − ε)
2ε

Proposition 44. If g is smooth enough, then:

Var
(

ũn(0, x + ε) − ũn(0, x − ε)
2ε

)
≈ 1

n
Var(g′(Xx

T ))

Remark. When g is irregular, the optimal choice of ε is
not clear, as the bias increases with ε and the variance
increases as ε decreases.

Black-Scholes model
Proposition 45. Recall the one-dimensional Black-
Scholes model:

dXt = rXt dt + σXt dBt

Then:
∂xE(g(Xx

T )) = 1
σxT

E(g(Xx
T )BT )

Pathwise differentiation

Theorem 46. If b, σ ∈ C2 with bounded derivatives, then
the flow x 7→ Xx

t is C1 a.s. and the tangent process DXx

satisfies:

DXx
t = Id+

tˆ

0

Db(Xx
s )DXx

s ds+
d∑

j=1

tˆ

0

Dσj(Xx
s )DXx

s dBj
s

where Dσj is the j-th column of Dσ.

Remark. In one dimension, we have:

∂xXx
t = 1 +

tˆ

0

b′(Xx
s )∇Xx

s ds +
tˆ

0

σ′(Xx
s )∇Xx

s dBs

which yields:

∂xXx
t =exp

 tˆ

0

[
b′(Xx

s ) − 1
2σ′(Xx

s )2
]

ds+
tˆ

0

σ′(Xx
s ) dBs


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Proposition 47. If b, σ ∈ C2 and g ∈ C1 with bounded
derivatives, then:

∇E(g(Xx
T )) = E (∇g(Xx

T )∇Xx
T )

Remark. In practice, to find the derivative of Xx
T we pro-

ceed as in the deterministic case, i.e. solving the coupled
variational equations.

Malliavin differentiation

Proposition 48. If b, σ ∈ C2 with bounded derivatives,
σ is uniformly elliptic and g is measurable with polyno-
mial growth, then:

∇E(g(Xx
T )) = E

g(Xx
T ) 1

T

 T̂

0

(σ−1(Xx
t )DXx

t )TdBt

T

6. | American options
Definition 49. In a frictionless market, the price of an
American option is given by:

v(0, x) = sup
τ∈T0,T

E
(
e−rτ g(Xτ )

)
where r is the risk-free interest rate, T0,T is the set of
stopping times with values in [0, T ] and:

dXt = rXt dt + σ(Xt) dBt X0 = x

In this section we will introduce efficient algorithms to
approximate the price of an American option.

Discretization

Definition 50. Fix a time grid (ti)0≤i≤m with t0 = 0 and
tm = T . The discretization method consists in replacing:

1. T0,T by T̃ m
0,T , the set of stopping times with values

in (ti)0≤i≤m.

2. X by X̃m, the Euler scheme.

Proposition 51. We can compute the price of an Amer-
ican option using the discretization method by the follow-
ing recursive formula:

ṽm(tm, X̃m
tm

) = g(X̃m
tm

)
ṽm(ti, X̃m

ti
) =

= max
{

g(X̃m
ti

), e− rT
m E

(
ṽm(ti+1, X̃m

ti+1
) | X̃m

ti

)}
Proposition 52. If g is Lipschitz continuous, then:

|v(0, x) − ṽm(0, x)| ≤ C√
m

Remark. In the sequel, we assume that r = 0 and we write
X instead of X̃m for the sake of simplicity.

Naive approach
Definition 53. The naive approach consists in proceeding
as follows:

1. Generate (Xj
t1

)1≤j≤n
i.i.d. copies of Xt1 given X0 =

x and approximate:

ṽm(0, x) ≈ max

g(x), 1
n

n∑
j=1

ṽm(t1, Xj
t1

)


2. For each 1 ≤ j ≤ n, generate (Xj,k

t2
)1≤k≤n

i.i.d.
copies of Xt2 given Xt1 = Xj

t1
and approximate:

ṽm(t1, Xj
t1

) ≈ max
{

g(Xj
t1

), 1
n

n∑
k=1

ṽm(t2, Xj,k
t2

)
}

3. For each (j1, . . . , jm−1) ∈ {1, . . . , n}m−1, gener-
ate (Xj1,...,jm−1,k

tm
)1≤k≤n

i.i.d. copies of Xtm
given

Xtm−1 = X
j1,...,jm−1
tm−1

and approximate:

ṽm(tm−1, X
j1,...,jm−1
tm−1

) ≈

≈ max
{

g(Xj1,...,jm−1
tm−1

), 1
n

n∑
k=1

ṽm(tm, X
j1,...,jm−1,k
tm

)
}

Remark. This method provides a consistent estimator.
However, it requires to generate

∑m
i=1 ni ∼ nm random

variables. So the computational cost of the method in-
creases exponentially with the number of exercise dates
and becomes prohibitive for applications to the pricing of
American options.

Regression methods
Definition 54 (Tsitsiklis-Van Roy method). The
Tsitsiklis-Van Roy method consists in approximate the
conditional expectation by a projection on a finite dimen-
sional subspace of L2. Namely, it holds:

E
(
ṽm(ti+1, Xti+1) | Xti

)
=

= arg min
Y ∈L2(Xti

)
E
((

ṽm(ti+1, Xti+1) − Y
)2
)

Here L2(Xti
) is the collection of square-integrable σ(Xti

)-
measurable random variables. Then, we choose a family
of basis functions φ = (φ1, . . . , φℓ) and approximate:

E
(
ṽm(ti+1, Xti+1) | Xti

)
≈

ℓ∑
j=1

αi
jφj(Xti

)

where:

αi = arg min
α∈Rℓ

E


ṽm(ti+1, Xti+1) −

ℓ∑
j=1

αjφj(Xti)

2


One can check that
αi = E(φ(Xti)φ(Xti)

T)
−1

E(φ(Xti)ṽm(ti+1, Xti+1))

provided that E(φ(Xti
)φ(Xti

)T) is non-degenerate.
Proposition 55. An implementation of the Tsitsiklis-Van
Roy method is as follows:

6



1. Generate (Xj
t1

, . . . , Xj
tm

)1≤j≤n
i.i.d. copies of

(Xt1 , . . . , Xtm
).

2. Set V j
m = g(Xj

tm
) for all 1 ≤ j ≤ n.

3. Recursively for i = m − 1, . . . , 1, compute:

α̃i = arg min
α∈Rn

1
n

n∑
j=1

(
V j

i+1 −
ℓ∑

k=1
αkφk(Xj

ti
)
)2

and set:

V j
i = max

{
g(Xj

ti
),

ℓ∑
k=1

α̃i
kφk(Xj

ti
)
}

4. Set:

V0 = max

g(x), 1
n

n∑
j=1

V j
1


Theorem 56. If

E(ṽm(ti+1, Xti+1) | Xti
) =

ℓ∑
j=1

αi
jφj(Xti

)

then the Tsitsiklis-Van Roy estimator V0 is consistent, i.e.
V0

P−→ v(0, x) as n → ∞.

Definition 57 (Longstaff-Schwartz method). The
Longstaff-Schwartz method consists in approximate the op-
timal stopping time instead of the value function itself.
Recall that:

ṽm(0, x) = sup
τ∈T̃ m

0,T

E (g(Xτ )) = E(g(Xτ∗))

where

τ∗ = inf{ti : g(Xti
) ≥ E(ṽm(ti+1, Xti+1) | Xti

)}

Proposition 58. The implementation of the Longstaff-
Schwartz method is as follows:

1. Generate (Xj
t1

, . . . , Xj
tm

)1≤j≤n
i.i.d. copies of

(Xt1 , . . . , Xtm).

2. Define the stopping rule τ̃m = tm and apply it
to the trajectories simulated just before, i.e. set
V j

m = g(Xj
τ̃m

) = g(Xj
tm

) for all 1 ≤ j ≤ n.

3. Recursively for i = m − 1, . . . , 1, compute:

α̃i = arg min
α∈Rn

1
n

n∑
j=1

(
V j

i+1 −
ℓ∑

k=1
αkφk(Xj

ti
)
)2

Then, define for any sample path (Xt1 , . . . , Xtm
), the

stopping rule:

τ̃i =
{

ti if g(Xti
) ≥

∑ℓ
k=1 α̃i

kφk(Xti
)

τ̃i+1 otherwise

and apply it to the trajectories simulated just before,
i.e. set for 1 ≤ j ≤ n:

V j
i =

{
g(Xj

ti
) if g(Xj

ti
) ≥

∑ℓ
k=1 α̃i

kφk(Xj
ti

)
V j

i+1 otherwise

4. Define the stopping rule

τ̃0 =
{

0 if g(x) ≥ 1
n

∑n
j=1 V j

1
τ̃1 otherwise

and apply it to the trajectories simulated just before,
i.e. set:

V0 = 1
n

n∑
j=1

g(Xj
τ̃0

) = max

g(x), 1
n

n∑
j=1

V j
1


Theorem 59. If

E(ṽm(ti+1, Xti+1) | Xti
) =

ℓ∑
j=1

αi
jφj(Xti

)

then the Longstaff-Schwartz estimator V0 is consistent, i.e.
V0

P−→ v(0, x) as n → ∞. Otherwise, the limit corre-
sponds to the value of the option under a sub-optimal
stopping rule and so it underestimates the true price.

Remark. However, when n is finite, τ̃0 is not a stopping
time since it uses information about the future. Thus, we
should add a fifth step to the algorithm:

5. Generate (Xn+j
t1

, . . . , Xn+j
tm

)1≤j≤ñ
i.i.d. copies of

(Xt1 , . . . , Xtm
) and apply the stopping rule τ̃0 to

these new trajectories, i.e. set:

V 0 = 1
ñ

ñ∑
j=1

g(Xn+j
τ̃0

)

Lemma 60 (Rogers’s lemma). We have:

v(0, x) = inf
M∈M0,T

E

(
sup

t∈[0,T ]
g(Xt) − Mt

)

where M0,T is the set of continuous martingales on [0, T ].

Remark. Roughly speaking, we can construct a nearly op-
timal martingale M̃ of the problem above and simulate
i.i.d. copies of (X, M̃) to compute the Monte Carlo esti-
mator:

V 0 = 1
ñ

ñ∑
j=1

sup
t∈[0,T ]

g(Xj
t ) − M̃ j

t

This provides a confidence interval for the true price given
by:

[
V 0 − z1− α

2

√
Var(g(Xτ̃0))

ñ
,

V 0 + z1− α
2

√√√√Var
(

supt∈[0,T ]{g(Xt) − M̃t}
)

ñ

]

7


	Montecarlo methods
	Foundations
	Principle
	Random number generator
	Simulation of random variables
	Gaussian distribution

	Variance reduction techniques
	Antithetic control
	Control variate
	Importance sampling

	Simulation of diffusion processes
	Exact simulation
	Euler scheme

	Brownian bridge approach
	Brownian bridge
	Exit times

	Computation of sensitivities
	Finite difference method
	Black-Scholes model
	Pathwise differentiation
	Malliavin differentiation

	American options
	Discretization
	Naive approach
	Regression methods



