Montecarlo methods

The goal of Montecarlo methods is to compute E(X),
where X is a random variable. In dimension 1, determin-
istic methods are more efficient but in higher dimensions
(d > 4), Montecarlo methods are more competitive.

1. | Foundations

As always, we consider a probability space (2, F,P) and
a random variable Y € L.

Principle

The main idea will be to approximate E(Y")
by %Z?:l Y, :==Y,, where Y; are i.i.d. random variables
with same law as Y. The variable Y,, is called the Mon-
tecarlo estimator of E(Y').

The Montecarlo estimator is consistent, i.e.

a.s. X7

Y, = E(Y), and unbiased, i.e. E(Y,) = E(Y).
Use the 77 ?77.

Assume Y € L? and let Y,, be the Montecarlo
estimator of E(Y"). Then:

Var(Y)

n

1Y —E®)], =

7. 5, = /B (7. - B0)*) =

— /Var(V,,) = \/Val;fy)

Let Y € L? and Y,, be the Montecarlo esti-
mator of E(Y'). Then:

VY, —E(Y)) % N(0, Var(Y))

In practice, we do not know Var(Y), so we use

= 12

an estimator of it, such as 7,2 = 5 3" (V; - Y,),
which is a consistent unbiased estimator of Var(Y"). Thus:

@(?n —E(Y)) -5 N(0,1)

by 77 ?7.

Let Y € L? and Y,, be the Montecarlo esti-
mator of E(Y). Then, a confidence interval for E(Y) of
level 1 — a is:

_ Tpn — oy,
CIQ = (Yn — Zlfa/z\/i%, Yn + Zla/2\/%)

where z, /o is the quantile of order a/2 of the standard
normal distribution.

Random number generator

In this chapter we will assume that we already now how to
simulate sequences of i.i.d. random variables with uniform
distribution on [0, 1].

In summary, the computer generates a sequence
(%i)g<i<ms With m as large as possible, in the following
way: 211 = f(2;) and then sets u; = ¥*. The value g is
called the seed of the sequence and f is chosen with peri-
odicity as high as possible. In the early days of computers,
f(x) = az+b mod m, which had periodicity m ~ 231 —1.
Nowadays, Mersenne Twister algorithm is used, which has
periodicity m ~ 219937 — 1,

Simulation of random variables
Let U, (Ui)g<i<ca ~ U([0,1]). Then:
o If a,b € R with a < b, then a+ (b —a)U ~ U([a, b)).
o If p e (0,1), then 1<, ~ Ber(p).
« Ifpe(0,1), then ° | 1., ~ B(d, p).
o If (x,),(pn) € R be such that > - p, = 1, then

ano xnlz;’:;g p’“SUSZ::o e U ((xn))

o If 1% (a5, 0:) € R with a; < b;, then (a; + (b; —
a;))Ui)i<i<a ~ U (H?zl(ai, bl))

Let X be a random variable with cdf F'
and U ~ U([0,1]). Then,

F~'(u) =inf{z € R: F(z) > u}
satisfies F~1(U) ~ X.

Let U ~ U([0,1]), X be a random vari-
able with cdf F' and a,b € R with a < b be such that
P(a < X <b) > 0. Then:

F~Y(F(a) + (F(b) — F(a))U) ~ L(X | a < X <)

(Acceptance-rejection method). Let
(X;);>; be i.i.d. R%valued random variables, D € B(R?)
be such that P(X; € D) > 0 and set:

v:=inf{i >1: X, € D}
Then, X, ~ E(X1 | X, € D)

The principle of the acceptance-rejection method
is to simulate conditional distributions by rejecting sam-
ples that do not satisfy a prescribed condition.

Let f be a pdf of some random variable,
(Xi);>, be iid. with pdf g and (U;),~, be i.id. U([0,1])
independent of (X;);5,. Assume that 3¢ > 1 such that

flx) age cg(z) and set:
v:=inf{i > 1:cg(X;)U; < f(X)}
Then, X, admits f as pdf.



Let f be a pdf of some random variable
and aq,as € R with as > 0 be such that

D :={(u,v) € Ryg xR:0 < u? <f<a1+02%)}

is bounded. If (U, V) ~
pdf.

U(D), then a; + a2 admits f as

Gaussian distribution

(Box-Muller method). Let U, V be
1]) and set:

Lid. U([o,

=+/—2log(U)cos(27V) Y :=

Then, X and Y are i.i.d. N(0,1).

—2log(U) sin(27V)

Let ¢ : R2 — R be bounded and measurable.

Then:

= /(p v/ —2log u cos(27v), \/—21ogusin(27w)) dudv =

(0,1)2
1 22 4y?
=/<p(x,y)*e_ 4
2

R2

xdy

by the change of variable formula. Thus, X and Y are

iid. N(0,1).

(Polar method). Let U, V be i.id.
U(D), where D C R? is the open unit disk. Let R? =
U? 4+ V? and set:

—2log(R?)
X = U T Y =V

Then, X, Y are i.i.d. N(0,1).

—2log(R?)
R2

Let X € Ng(0,I), o € RY and A €
My(R). Then, pp 4+ AX ~ Ng(p, AAT).

To simulate Y ~ Ng(pu,X), we proceed as fol-
lows:

1. Find A € My(R) such that ¥ = AA" (e.g. by

Cholesky decomposition).
2. Simulate X ~ Nd(O, Id)
3. Set Y =pu+ AX.

2. | Variance reduction techniques

Antithetic control

Let Y = g(X) be a random variable with
X ~ N(0,0?). The antithetic method consists in using the
estimator:

(—X5)

1 n
SR

where (X;),,,, are i.id. N(0,02).

—A
The antithetic estimator Y, is an unbiased
and consistent estimator of E(Y). Furthermore:

Vi (V2 - E()) 4 N (O,Var <9<X>+29<—X>)>

. A .
In terms of computational cost, Y, is more ex-

pensive than Y,, but cheaper than Y,.
We have that Var(?:) < Var(Y,).
Moreover, if

Cov(9(X),9(=X)) <0

then Var(Y) < Var(Va,).

A

Var(Y,)) = )) + Cov(g(X

5 (Vax(g(X ). 9(~X)))

< Var(Y,)

And clearly if Cov(g(X 7:) <

Var(Y ).

),9(—X)) < 0, then Var(

If g is monotone, then:

Cov(g(X),g(—=X)) <0

Let X7, X2 be i.i.d. copies of X. Then, since g is
monotone:

(9(X1) — 9(X2))(9(—=X1) — g(=X32)) <0
Now taking expectations:
0= E((9(X1) — 9(X2))(9(=X1) — 9(=X2))) =
= 2Cov(g(X), 9(—=X))

Control variate

The principle of the control variate is to
find a real-valued random variable X such that E(X) is
known, and a constant b € R such that:

Var(Y + b(X — E(X))) < Var(Y)

We define Y(b) := Y + b(X — E(X)).
following estimator:

This suggests the

lijymx ~B(X))]

3

where (Y;),,<,, are ii.d. copies of Y and (X;),.,., are
ii.d. copies of X. o

The control variate estimator Y ,,(b) is unbi-
ased and consistent. Furthermore:

Vi (Va(b) —E(Y)) —5 N (0, Var(Y (b))

where Y(b) :=Y + (X — E(X)).



If b = 0, the control variate estimator Y, (b)
coincides with the classical estimator Y,,. Otherwise, the
computational cost of Y ,,(b) is higher than Y,,, but it does
not depend on the choice of b # 0.

The minimum of Var(Y (b)) is attained

for
- Cov(Y, X)

Var(X)

and in that case, Var(Y (b)) = Var(Y)(1 — pxy?2), where
pxy is the correlation between X and Y.

IA):

Usually, b is unknown, but we can use an esti-
mator of it, such as:

B o _Z;L:I (Y:L — ?n)(Xz - Yn)
Z?:l (Xi - Yn)2

but if we know E(X) and Var(X) explicitly, we can use
them in the formula of lA)n

The result of above tell us that we should pick
X strongly correlated to Y but simple enough to know
explicitly E(X).

Let X be a random vector such that E(X)
is known, and b € R?. We define the multiple control vari-
ate estimator as:

n

Volb) = - S [V + bT(X; ~ E(X))]

i=1
where (Y;),<,-,, are i.i.d. copies of Y and (X;),.,;,, are
i.i.d. copies of X. We also define Y(b) := Y 4+ b™(X —
E(X)).

L The multiple control variate estimator
Y ,.(b) is unbiased and consistent. Furthermore:

Vi (Ya(b) = E(Y)) % N (0, Var(Y (b))

The minimum of Var(Y (b)) is attained
for .
b = —Var(X) 'Cov(X,Y)

and in that case, Var(Y (b)) = Var(Y)(1 — R?), where:

_ Cov(X,Y)" Var(X)~'Cov(X,Y)

2.
R Var(Y)

Importance sampling

Let (Q, F,P) be a probability space. We
say that a probability measure Q is equivalent to P if:

{Ac F:P(A) =0} ={AecF:Q4) =0}

Let Q be a probability measure equivalent
to P. Then, there exists a random variable L > 0 such
that VA € F, we have Q(A) = Ep(L14). Furthermore, for
all X bounded:

Bo(X) =Ex(LX)  E:(X)=Eq (7 )

Conversely, if we have a random variable L > 0 such that
Ep(L) =1, then

Q: F— ]0,1]
Ar— E]PJ(L]_A)

is a probability measure equivalent to P.

The principle of the importance sampling
method is to change the probability measure in order to
give more weight to important outcomes.

Let (Q, L) be such that it defines a prob-
ability measure equivalent to P. The importance sampling
estimator is defined as:

4(@—1 - L .
Y, .75;@ ly,

where (L;,Y;) are i.i.d. copies of (L,Y) (under Q).

The importance sampling estimator ?g is
unbiased and consistent. Furthermore:

vn (?S - EP(Y)) 4 N (0, Varg(L™'Y))

In terms of computational cost, the importance

sampling estimator ?S is more expensive than the classi-
cal estimator Y ,,. In terms of precision, the best estimator
is the one with the smallest variance so we have to compare
Var(Y) and Varg(L~'Y). It holds:

Varg(L™'Y) = Ep (L71Y?) — Ep(Y)*

This quantity can be larger or smaller than Var(Y') de-
pending on the choice of L and thus the success of impor-
tance sampling relies on the choice of an effective change
of probability measure.

3. | Simulation of diffusion processes

The aim of this section is to develop methods to simulate
solutions to SDEs of the form:

{dxt =b(X¢) dt + o(X;) dB; X = x0o (1)

where b : R? = R? and o : R — Mgy 4(R) are Lipschitz
continuous.

Exact simulation

To simulate a sample (By,,..., By, ) of

a d-dimensional Brownian motions, we can use the follow-
ing algorithm:

1. Generate (Zy,...,Z,,) iid. Ng(0,1,).

2. Set By, :=0and for all 0 <i¢ <m — 1, set:

By, =By, +V/tit1 —tiliy1



Euler scheme

Consider the SDE of and let h be
a discretization step. The Fuler method consists in:

t+h t+h
Xt+}l:Xt+/b(Xs)dS+/U(XS)st

t t

~ X;+ hb(Xt) + U(Xt)(Bt+h — Bt)

More generally, if we want to obtain the solution at

(~t1, ...,ty), we can use the following algorithm. Set
ng :=x%p and for all 0 < ¢ <m — 1, set:
X, =X+ (ti — t)b(X]) + o(X,)(By,,, —By,)

Note that Euler scheme reduces to generating in-
dependent increments By, | — By, ~ /fir1 — ;Nq(0,14).

Trying to build an implicit Euler scheme for
SDEs is much more complicated than for ODEs, as we
need to ensure that the process is still adapted.

Let X be the solution to We
define the continuous Euler scheme as:
t t
X; = x0+/b(X¢5)ds+/a(X¢s)st
0 0
where ¢ := max{t; : t; < s}.
Let X be the solution to withd =1

and X™ be the solution to the Euler scheme. Then, for
p>1:
supE( sup }Xtm}p) < oo
neN  \0<t<T
n Let X be the solution to withd =1
and X™ be the solution to the Euler scheme. Then, for
p>1:
. Cs.
max E su X, — X7 < —
i=0,...,m—1 (ti§t§€£+1| ! ¢t| > o \/m
(Strong error of the Euler scheme)
Let X be the solution to with d = 1 and X™ be
the solution to the Euler scheme. Then, for p > 1:

- p 1/p C

E| sup |X:— X" < —
(0§t£T| i ) T Vm

(Weak error of the Euler scheme). If

b, € C*(R?) with bounded derivatives and either one
of the following conditions holds:

« gECP(RY)
e ¢ is measurable with polynomial growth and o is

uniformly elliptic, i.e. I > 0 such that Vx, & € R?
we have:

Moo (x) > A€
Then:

31Q

[E(g(X7)) — E(9(X7))| <

where T is the final time of the simulation.

We can write the error taking in the Montecarlo
estimation using the Euler scheme as:

U3 g(Xp )~ E(g(Xr)) =
i=1

= % > g(X7Y) — B(g(XF)) + E(g(XF)) — E(g(X7))
i=1

om, (7 .. . it . .
where X, @) are i.id. copies of X7'. This error consists
in two terms:

o The statistical error:

n

n -

o The discretization error:

E(g(Xp)) ~ Bg(Xr)) ~ -

This suggests choosing m ~ +/n. However, confidence
intervals are of little interest in this setting as the ampli-
tude of the bias is similar to the length of the confidence
interval. Thus, we have no control on the error a poste-
riori. We conclude that it is best to be in between the
setting v/n < m to have meaningful confidence intervals
and \/n ~ m for efficiency, say nz % ~ m for § > 0 small.

(Romberg Extrapolation). The
Romberg Extrapolation consists in the following result:

E (29(X5") — (X)) — E(9(Xr)) = mﬁ ‘o (?i)

This suggests using the estimator for E(g(Xr)):
1 = om, (i om, (i
o Z (29(XT : )) —g(Xr ( )))
i=1
where X7 are i.i.d. copies of X7

4. | Brownian bridge approach

Brownian bridge

Let X; = x4+ put + 0B, with p € R,
o # 0 and (Bi),, be a Brownian motion. Then, given
(Xu, Xy) = (y, 2), the process (X;),,<, is a continuous
Gaussian process, independent of (X;),., and (X¢),s,,

such that for all u <t < s < w:
t—u

v—Uu

E(Xt‘Xu:anv:Z):y+ (ny)

t — —
Cov(Xp, X, | Xo =y, X, = 2) = U0 Z9)
v—u
Let Xy =x4+ut+oB; with p € R, 0 #£0
and (Bi),~, be a Brownian motion. Then, the distribu-
tion of the process (X¢),<;<, given (Xt),., and (X¢),s,
is the same as the distribution of - -
=Y

(y + UBt_TL)uStSU given BU—U = p



Exit times

In this section we are interested in approximate the quan-
tity:
E(175rg(XT))

where 7 := inf{t > 0: X; ¢ D} and D C R? is an open
connected set.

Due to ??, we have that E (1,57g(Xr)) is pre-
cisely the solution to the PDE:

in[0,T) x D

u(T,") =g int € D

{&u +b-Vu+itr(coTAu) =0
Assume that:

e b,o € C? with bounded derivatives and o uniformly
elliptic.

e D is a half-space or 9 D is bounded of class C3.

e g is measurable with polynomial growth and van-
ishes at a neighborhood of 9 D.

Then:

Y 1
E(1r>79(Xr)) — E(Limsrg(X7)) = O (ﬁ)
where 7™ := min{t; : X* ¢ D} and X™ is the Euler
scheme.

Assume that:

« b,o € C® with bounded derivatives and o uniformly
elliptic.

e D is a half-space or 8 D is bounded of class C°.

e ¢ is measurable with polynomial growth and van-
ishes at a neighborhood of 9 D.

Then:

E(1,579(X7)) — E(Lrmsrg(XH)) = O (;)

Assume that D is a half-space with hy-
perplane orthogonal to v € R? passing by z € R?, i.e.:

D={yeR?:vT(y —2) >0}
If x;,x;+1 € D, then:

P(Et € [ti,tiJrl],Xtm ¢ D Xtin' = XiaXtTJrl = XiJrl) =

_om Vi T i —2)

—e llo ) To|?

Let (B;),~, be a Brownian motion. Then,
Va < 0 and b > a we have:

P ( mln Bt S a ‘ Bh = b) — e_%a((l—b)
te[0,h]

5. | Computation of sensitivities

In this chapter we aim to construct Montecarlo methods
in order to compute sensitivities of the price of an op-
tion. From the PDE point of view, we aim to compute the
derivatives of the solution (Xf),-, of the SDE:

dX; = b(X;) dt + o(X;) dB;
XO =X

Finite difference method
Here we will focus on the case d = 1.

Let u(0,z) := E(g(X%)) and 4"(0,z) :=
IS g(X5 D) where X3 are i.i.d. copies of X%. We
define the finite difference estimator as:

(0, 7) ~ u(0, +€)2—€u(0,x —€)

_u"(0,x+¢) —u"(0,x —¢)
- 2e

If g is smooth enough, then:

Var (u 0,z +¢)—a"(0,x —¢)

- ) ~ Ll (x5)

When g is irregular, the optimal choice of ¢ is
not clear, as the bias increases with ¢ and the variance
increases as € decreases.

Black-Scholes model

Recall the one-dimensional Black-
Scholes model:

dXt = TXt dt + O'Xt dBt

Then:
1

0:E(g(X7)) = o

E(9(X7)Br)

Pathwise differentiation

If b, o € C? with bounded derivatives, then
the flow x — X} is C! a.s. and the tangent process DX*
satisfies:

t t
DX} =1,+ [ Db(X})DX ds+zd: / Do (X¥)DX* dB/
0 i=17p
where Do ; is the j-th column of Do.
In one dimension, we have:
t t
DX =1+ / W(XT)V X ds + / o/ (XT)V X" dB,
0 0
which yields:
¢ t
0. X7 =exp / [b’(Xj) ~ ;a’(Xf)Q] ds+ / o'(X7)dB,
0 0



If b,o € C? and g € C! with bounded
derivatives, then:

VE(9(X7)) = E(V9(X7)VXT)

In practice, to find the derivative of X7 we pro-
ceed as in the deterministic case, i.e. solving the coupled
variational equations.

Malliavin differentiation

If b,o € C? with bounded derivatives,
o is uniformly elliptic and g is measurable with polyno-
mial growth, then:
T T
VE((X}) = E |905) 1| [ (o7 (DX dB,
0

6. | American options

In a frictionless market, the price of an
American option is given by:

v(0,x) = sup E(e*’”

T€To, T

Tg(XT))

where r is the risk-free interest rate, Tor is the set of

stopping times with values in [0, 7] and:
dXt:TXtdt+U(Xt)dBt X():LE

In this section we will introduce efficient algorithms to

approximate the price of an American option.

Discretization

Fix a time grid (¢;)y<;<,, With to = 0 and
tm, = T. The discretization method consists in replacing:

1. To,r by ’76%, the set of stopping times with values

in (t)o<icm:
2. X by X™, the Euler scheme.

We can compute the price of an Amer-
ican option using the discretization method by the follow-
ing recursive formula:

EE (0, ) | ) )

If g is Lipschitz continuous, then:

C

In the sequel, we assume that r = 0 and we write
X instead of X™ for the sake of simplicity.

|U(Oa 'T) — o™

Naive approach

The naive approach consists in proceeding
as follows:
J
1. Generate (Xh)lgjgn
x and approximate:

ii.d. copies of Xy, given Xy =

0™ (0,x) ~ max < g(x

1 n
HZ@ (t1, X7)

2. For each 1 < j < n, generate (thz;k)1<k<n iid.

= th and approximate:

n
>t}
k=1

3. For each (ji,...,jm-1) € {L,...,
ate (ngn"“’“"'*"’f) iid. copies of X;  given

Xy

copies of Xy, given Xy,

~m(t1,X§1) R~ max{ Xgl

3\'—‘

m—1
n}""", gener-

1<k<n
= X{!"7"=' and approximate:

m—1

o™ (tm—l, Xg;;:;jmfl) ~

n
1Z~ k
%max{ (Xt,]lu“i‘jm 1 = o m;X]h sJm—1, )
- ‘n

This method provides a consistent estimator.
However, it requires to generate > .~ n‘ ~ n™ random
variables. So the computational cost of the method in-
creases exponentially with the number of exercise dates
and becomes prohibitive for applications to the pricing of
American options.

Regression methods

(Tsitsiklis-Van Roy method). The
Tsitsiklis-Van Roy method consists in approximate the
conditional expectation by a projection on a finite dimen-
sional subspace of L2. Namely, it holds:

E (ﬂm(ti+1’Xti+1) | Xti) =
= argmin E ((ﬂm(ti+1,Xti+1) — Y)z)
YGLZ(Xti)
Here L?(X;,) is the collection of square-integrable o (X, )-
measurable random variables. Then, we choose a family
of basis functions ¢ = (¢1,...,¢¢) and approximate:

Zajgaj (X,)

E (5™ (tiy1, X1,,,) | X1,)

it+1

where:

a' =argminE
acRt

~1m
'U" (tl+17 Xti+1

£
) - Zaj¢j(Xti)

One can check that
) -1 o
a' = IE(SD(XtL)QO(th)T) E(‘P(Xti)v (ti"l‘l’XtH»l))
provided that E(p(Xy,)@(X:,)") is non-degenerate.

An implementation of the Tsitsiklis-Van
Roy method is as follows:



1. Generate (X7 ,...,X] i<j<n Lid. copies of
(Xtyy- s Xt
2. Set Vi, = g(X{ ) foralll1<j<n.
3. Recursively for t =m —1,...,1, compute:
2
. 1 <
a' :argminfz Vi Zakgok
acRn® nj:l
and set:
V/ = max {g(Xi), > am(xt{.)}
k=1
4. Set:

Vo = max < g(z

Z v
If

E(0™ (tit1, Xt,, ) | Xt,)

Z ;i (X,)
then the Tsitsiklis-Van Roy estimator Vj is consistent, i.e.
Vo — v(0,z) as n — oo.

(Longstaff-Schwartz method). The
Longstaff-Schwartz method consists in approximate the op-

timal stopping time instead of the value function itself.
Recall that:

0™ (0,z) =

i+1

517}_1; E(9(X-)) = E(g(X-~))

where

T = inf{ti : g(Xti) > E(ﬁm(ti+1’Xti+1) l th)}

The implementation of the Longstaff-
Schwartz method is as follows:
(Xgl,...,XtJm)lgjgn
X))

m

1. Generate i.i.d. copies of

(Xtyye- s

2. Define the stopping rule 7,, = t, and apply it

to the trajectories simulated just before, i.e. set
Vi =g(XL )=g(X] )foralll1<j<n.
3. Recursively for t =m —1,...,1, compute:
1o ’
a' :argminfz z+1 Zakgpk
ackr T =1
Then, define for any sample path (X, ..., X;, ), the

stopping rule:

~ t;
Ti =1 -
Ti+1

and apply it to the trajectories simulated just before,
ie set for 1 <j<n:

. , P ,
i faxd) i g(xd) > S alen(X])
! Vi, otherwise

. 0~
if g(Xe,) > > p—y dpok(Xe,)
otherwise

4. Define the stopping rule

s = 0 ifg(x)> %Z;;l v/
71 otherwise

and apply it to the trajectories simulated just before,
ie. set:

ZVJ

E(ﬁ (1+17Xt1+1 |Xt

ZO‘J% Xi;)

then the Longstaff-Schwartz estimator Vj is consistent, i.e.

Vo v(0,2) as n — oo. Otherwise, the limit corre-
sponds to the value of the option under a sub-optimal
stopping rule and so it underestimates the true price.

However, when n is finite, 7y is not a stopping
time since it uses information about the future. Thus, we
should add a fifth step to the algorithm:

5. Generate (X;™7,... X" copies of

e i
m <j<n
(Xty,--., Xz, ) and apply the stopping rule 7, to
these new trajectories, i.e. set:

7

1 i
KO - % Zg(X‘FoJrj)

=1

(Rogers’s lemma). We have:

v(0,2) = inf sup g(X;) —

E
MeMo,r tel0,T]

5

where My 1 is the set of continuous martingales on [0, 7.

Roughly speaking, we can construct a nearly op-
timal martingale M of the problem above and simulate
i.i.d. copies of (X, M) to compute the Monte Carlo esti-
mator:

n

1 )
Vo=— sup Q(Xt]) -
n =1 t€l0.T]

MY

This provides a confidence interval for the true price given

Vo +2i-g ~

Var (SuPte[O,T] {g(X1) - Mt}) ]
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