Introduction to nonlinear elliptic PDEs

1. Introduction

Definition 1. Let a_{ij} , b_j , c, f be known scalar functions defined on $\Omega \subseteq \mathbb{R}^d$. Usually we will denote $\mathbf{A} = (a_{ij})$ and $\mathbf{b} = (b_j)$. A *linear second-order PDE* is an equation of the form:

$$-\sum_{i,j=1}^{d} a_{ij}(\mathbf{x})\partial_{ij}^{2}u(\mathbf{x}) + \sum_{j=1}^{d} b_{j}(\mathbf{x})\partial_{j}u(\mathbf{x}) + c(\mathbf{x})u(\mathbf{x}) = f(\mathbf{x})$$

where $u:\Omega\to\mathbb{R}$ is the unknown function. This form is called *non-divergence form*. If we write the equation in the form:

$$-\sum_{i=1}^{d} \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{d} a_{ij}(\mathbf{x}) \partial_j u(\mathbf{x}) \right) + \sum_{j=1}^{d} b_j(\mathbf{x}) \partial_j u(\mathbf{x}) + c(\mathbf{x}) u(\mathbf{x}) = f(\mathbf{x})$$

then we say that the equation is in divergence form. Together with the PDE we usually impose boundary conditions on $\partial \Omega$. The Dirichlet boundary condition is:

$$u|_{\partial\Omega}=g$$

and it is called homogeneous if g=0. The Neumann boundary condition is:

$$\langle \mathbf{n}, \mathbf{A} \nabla u \rangle |_{\partial \Omega} = g$$

where we have assumed that the boundary of Ω is smooth enough to define the normal vector \mathbf{n} . The condition is called *homogeneous* if g=0. Note that if $\mathbf{A}=\mathbf{I}_d$, then the Neumann boundary condition is just $\partial_{\mathbf{n}}u=g$.

Remark. If the coefficients $a_{ij} \in \mathcal{C}^1$, then we are able to convert the equation from non-divergence form to divergence form and vice versa.

Definition 2. Let a_{ij}, b_j, c be known functions on $\Omega \subseteq \mathbb{R}^d$. We say that the operator

$$L = -\sum_{i,j=1}^{d} a_{ij} \partial_{ij}^2 + \sum_{j=1}^{d} b_j \partial_j + c$$
 (1)

is uniformly elliptic if there exists $\theta > 0$ such that for all $x \in \Omega$ and all $\mathbf{p} \in \mathbb{R}^d$ we have:

$$Q_x(\mathbf{p}) := \mathbf{p}^{\mathrm{T}} \mathbf{A}(\mathbf{x}) \mathbf{p} = \sum_{i=1}^d a_{ij}(\mathbf{x}) p_i p_j \ge \theta \sum_{i=1}^d p_i^2 = \theta \|\mathbf{p}\|^2$$

Remark. Geometrically speaking, this implies that the sets

$$\xi_{x,h} = \{ \mathbf{p} \in \mathbb{R}^d : Q_x(\mathbf{p}) = h \}$$

are ellipsoids.

Definition 3. Consider the problem

$$\mathcal{D}_f := \begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where L is as in Eq. (1). The weak formulation (or variational formulation) of the problem is:

$$\langle \boldsymbol{\nabla} u, \boldsymbol{\nabla} v \rangle_2 + \langle \mathbf{b} \cdot \boldsymbol{\nabla} u, v \rangle_2 + \langle cu, v \rangle_2 = \langle f, v \rangle_2 \quad \forall v \in H^1_0(\Omega)$$

A solution of such problem is called a *weak solution* of \mathcal{D}_f .

Definition 4. If the weak solution u_f of the problem \mathcal{D}_f is in $H_0^1(\Omega) \cap W^{2,p}(\Omega)$ for some $p \in [1, \infty)$, then u_f is called a *strong solution* of \mathcal{D}_f . If $u_f \in \mathcal{C}^2(\Omega) \cap H_0^1(\Omega)$, then we say that u_f is a *classical solution* of \mathcal{D}_f .

Proposition 5. Let H be Hilbert and $K: H \to H$ be a continuous linear operator. Then, the following are equivalent:

- 1. K is compact.
- 2. For any bounded sequence $(u_n) \in H$, the sequence (Ku_n) has a convergent subsequence.
- 3. For any sequence $(u_n) \in H$ such that $u_n \to u$, we have $Ku_n \to Ku$.

2. Hilbert space methods for divergence form linear PDEs

In this section, we will assume that $\Omega \subset \mathbb{R}^d$ is an open, bounded subset, $a_{ij} = a_{ji}$ and $a_{ij}, b_j, c \in L^{\infty}(\Omega)$.

Lax-Milgram theorem

Remark. Instead of the usual norm for $H_0^1(\Omega)$, here we will use the following one:

$$||u||_{H_0^1(\Omega)}^2 = ||\nabla u||_{L^2(\Omega)}^2$$

Definition 6. Let H be a Hilbert space and $a: H \times H \to \mathbb{R}$ be a bilinear map. We say that a is *continuous* if $\exists C > 0$ such that $\forall u, v \in H$ we have:

$$|a(u,v)| \leq C \|u\| \|v\|$$

Definition 7. Let H be a Hilbert space and $a: H \times H \to \mathbb{R}$ be a bilinear map. We say that a is *coercive* if $\exists \alpha > 0$ such that $\forall u \in H$ we have:

$$a(u, u) \ge \alpha \|u\|^2$$

Definition 8. Let H be a Hilbert space and $a: H \times H \to \mathbb{C}$ be a bilinear map. We say that a is *symmetric* if $\forall u, v \in H$ we have:

$$a(u,v) = \overline{a(v,u)}$$

Theorem 9 (Lax-Milgram theorem). Let H be a Proposition 11. Consider the problem: Hilbert space and $a: H \times H \to \mathbb{R}$ be a continuous and coercive bilinear map. Then, $\forall f \in H^* \exists ! u_f \in H$ such that:

$$a(u_f, v) = f(v) \quad \forall v \in H$$

In addition, if H is a real Hilbert space and a is symmetric, then u is the unique minimizer of:

$$\min_{v \in H} \left\{ \frac{1}{2} a(v, v) - f(v) \right\}$$

Proposition 10. Consider the problem:

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

with $L = -\sum_{i,j=1}^{d} \partial_i(a_{ij}\partial_j)$ and $f \in L^2(\Omega)$. Then, the problem has a unique weak solution $u \in H_0^1(\Omega)$ and

$$||u||_{H_0^1(\Omega)} \le C ||f||_{L^2(\Omega)}$$

Proof. Consider the bilinear form

$$a(u,v) := \int\limits_{\Omega} \sum_{i,j=1}^{d} a_{ij} \partial_i u \partial_j v$$

We check the hypotheses of 9 Lax-Milgram theorem:

1. a is continuous:

$$|a(u, v)| \le \sum_{i,j=1}^{d} ||a_{ij}||_{\infty} ||\nabla u||_{2} ||\nabla v||_{2}$$

$$\le C ||u||_{H_{0}^{1}(\Omega)} ||v||_{H_{0}^{1}(\Omega)}$$

 $2. \ a$ is coercive:

$$a(u, u) = \int_{\Omega} \sum_{i,j=1}^{d} a_{ij} \partial_i u \partial_j u$$
$$\geq \theta \int_{\Omega} \sum_{i=1}^{d} |\partial_i u|^2$$
$$= \theta \|u\|_{H_0^1(\Omega)}^2$$

by the uniform ellipticity of L.

Moreover, since $a(u, u) = \langle f, u \rangle_2$ we have that:

$$\theta \|u\|_{H_0^1(\Omega)}^2 \le \langle f, u \rangle_2 \le \|f\|_2 \|u\|_2 \le C \|f\|_2 \|u\|_{H_0^1(\Omega)}$$

by the ?? ??.

Abstract Fredholm alternative

Remark. One can check that if we try to apply 9 Lax-Milgram theorem to the problem:

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

with $L = -\sum_{i,j=1}^d \partial_i(a_{ij}\partial_j) + \sum_{j=1}^d b_j\partial_j$, it fails due to the coercivity condition.

$$\mathcal{D}_{\mu,f} := \begin{cases} L_{\mu}u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

with $L_{\mu} = -\sum_{i,j=1}^{d} \partial_{i}(a_{ij}\partial_{j}) + \sum_{j=1}^{d} b_{j}\partial_{j} + \mu$. Then, if $\mu > 0$ is large enough, the problem has a unique weak solution in $H_0^1(\Omega)$

Sketch of the proof. Taking the natural bilinear map a, the coercivity condition becomes:

$$a_{\mu}(u, u) \ge \theta \|u\|_{H_0^1(\Omega)}^2 - C \|u\|_{H_0^1(\Omega)} \|u\|_2 + \mu \|u\|_2^2$$

which for μ large enough it is bigger than $\delta \|u\|_{H^1_{\sigma}(\Omega)}^2$ for some $\delta > 0$.

Lemma 12. Let H be Hilbert and $K: H \to H$ be a compact linear operator. Then, $\dim \ker(\operatorname{id} - K) < \infty$.

Proof. If dim ker(id -K) = ∞ , then $\exists (u_n) \in \ker(\mathrm{id} - K)$ orthonormal, and thus bounded. In particular, $u_n = Ku_n$ and since K is compact, we have that (Ku_n) has a convergent subsequence. But:

$$0 = \lim_{k \to \infty} \|Ku_{n_k} - Ku_{n_{k+1}}\|^2$$

$$= \lim_{k \to \infty} \|u_{n_k} - u_{n_{k+1}}\|^2$$

$$= \lim_{k \to \infty} \|u_{n_k}\|^2 + \|u_{n_{k+1}}\|^2$$

$$= 2$$

by ?? ??.

Lemma 13. Let H be Hilbert and $K: H \to H$ be a compact linear operator. Then, $\exists c > 0$ such that $\forall u \in \ker(\mathrm{id} - K)^{\perp} \text{ we have } ||u - Ku|| \ge c ||u||.$

Proof. We proceed by contradiction. Suppose we have a sequence $(u_n) \in \ker(\mathrm{id} - K)^{\perp}$ with $||u_n|| = 1$ such that $||u_n - Ku_n|| \to 0$. Since (u_n) is bounded, we have that (u_n) has a weakly convergent subsequence (u_{n_k}) to $u \in H$. Since K is compact, we have that $Ku_{n_k} \to Ku$, and thus by continuity of the norm, u = Ku. Thus $u \in \ker(\mathrm{id} - K)$ and $u \in \ker(\mathrm{id} - K)^{\perp}$, which implies u = 0, a contraction with ||u|| = 1.

Lemma 14. Let H be Hilbert and $K: H \to H$ be a compact linear operator. Then, im(id - K) is closed.

Proof. Let $(v_n) \in \operatorname{im}(\operatorname{id} - K)$ be such that $v_n \to v \in H$. Then, $\exists (u_n) \in H$ such that $v_n = (\mathrm{id} - K)u_n$. By ?? ??, we can write $u_n = u_n^{\ker} + u_n^{\ker^{\perp}}$, where $u_n^{\ker} \in \ker(\mathrm{id} - K)$ and $u_n^{\ker^{\perp}} \in \ker(\mathrm{id} - K)^{\perp}$. Thus, $v_n = (\mathrm{id} - K)u_n^{\ker^{\perp}}$ and by Theorem 13, we have:

$$||v_n - v_m|| \ge c ||u_n^{\ker^{\perp}} - u_m^{\ker^{\perp}}||$$

Since (v_n) is Cauchy, so it is $(u_n^{\ker^{\perp}})$, and thus $(u_n^{\ker^{\perp}})$ converges to some $u \in \ker(\mathrm{id} - K)^{\perp}$. Thus, $v = (\mathrm{id} - K)u \in \mathrm{id}$ $\operatorname{im}(\operatorname{id} - K)$.

Theorem 15 (Abstract Fredholm alternative). Let H be Hilbert and $K: H \to H$ be a compact linear operator. Then:

- 1. $\ker(\mathrm{id} K)$ and $\ker(\mathrm{id} K^*)$ are both finite dimensional, and they have the same dimension.
- 2. $\operatorname{im}(\operatorname{id} K) = \ker(\operatorname{id} K^*)^{\perp}$. In particular, $\operatorname{im}(\operatorname{id} K)$ is closed.
- 3. Either $\ker(\mathrm{id}-K) \neq \{0\}$ or $\mathrm{id}-K$ is an isomorphism.

Proof.

- 2. From ?? we have that $\overline{\operatorname{im} A} = (\ker A^*)^{\perp}$ for any general operator A between Hilbert spaces. Thus, $\operatorname{im}(\operatorname{id} K) = \ker(\operatorname{id} K^*)^{\perp} \iff \operatorname{im}(\operatorname{id} K)$ is closed, which reduces to Theorem 14.
- 3. We first show that $\ker(\mathrm{id} K) = \{0\}$ $\ker(\mathrm{id} - K^*) = \{0\}.$ The argument is symmetric because $K^{**} = K$ and the fact that K is compact \iff K^* is compact. So suppose $\ker(\mathrm{id} -$ K) = {0}. Then, id – K is injective. Assume $\ker(\mathrm{id} - K^*) \neq \{0\}$. Then, $\mathrm{im}(\mathrm{id} - K) = \ker(\mathrm{id} - K)$ $K^*)^{\perp} \neq H$ and so $\operatorname{im}((\operatorname{id} - K)^2) \subseteq \operatorname{im}(\operatorname{id} - K)$. Indeed, if we had equality, then for any $u \in H$, we would have $(id - K)u \in im((id - K)^2)$, and thus $\exists v \in H \text{ such that } (\mathrm{id} - K)u = (\mathrm{id} - K)^2 v$, which implies u = (id - K)v because ker(id - K) ={0}. Now, recursively, we have an infinite sequence $\operatorname{im}((\operatorname{id} - K)^{n+1}) \subseteq \operatorname{im}((\operatorname{id} - K)^n), \text{ which implies}$ that $\forall n \ \exists u_n \in \operatorname{im}((\operatorname{id} - K)^n) \cap \operatorname{im}((\operatorname{id} - K)^{n+1})^{\perp}$ with $||u_n|| = 1$. Thus, $\langle u_n, u_m \rangle = \delta_{n,m}$. But $u_n Ku_n \in \operatorname{im}((\operatorname{id} - K)^{n+1})$ so, $u_n - Ku_n \perp u_n$. This implies, by ?? ??, that $||Ku_n||^2 = ||u_n - Ku_n||^2 +$ $||u_n||^2 \geq 1$, which is a contradiction with the compactness of K because any orthonormal sequence always converges weakly to zero (and so $Ku_n \to 0$). So either $\ker(\mathrm{id} - K) \neq \{0\}$ or $\mathrm{id} - K$ is bijective.

To finish this point, we need to prove that if $\ker(\mathrm{id}-K)=\{0\}$, then $(\mathrm{id}-K)^{-1}$ is a bounded linear operator. But this is a consequence of Theorem 13: if $u\in H$, then $u\in \ker(\mathrm{id}-K)^\perp$ and thus $\|(\mathrm{id}-K)u\|\geq c\,\|u\|$, which implies that $\|v\|\geq c\,\|(\mathrm{id}-K)^{-1}v\|$ taking $v=(\mathrm{id}-K)u$.

Assume without loss of generality that dim ker(id − K) < dim ker(id − K*). Then, there exists a linear injective map A : ker(id − K) → ker(id − K*) = im(id − K)[⊥]. Let K̃ be the operator defined by K̃u = Ku + Au^{ker}, where u^{ker} is the projection of u onto ker(id − K). Then, K̃ is compact (because K is compact and so is A, because it has finite range). Moreover, if u ∈ ker(id − K̃), then (id − K)u − Au^{ker} = 0, which since (id − K)u ∈ im(id − K) and Au^{ker} ∈ im(id − K)[⊥] implies that both terms are zero. So u = u^{ker} ∈ ker(id − K) and since A is injective, u = u^{ker} = 0. Thus, ker(id − K̃) = {0} and by the previous point, id − K̃ is an isomorphism from H to itself. So, for every w ∈ ker(id − K*), ∃u ∈ H such that w = (id − K̃)u. Projecting both

sides onto $\ker(\mathrm{id}-K^*)=\mathrm{im}(\mathrm{id}-K)^\perp$, we have $w=-Au^{\ker}$, which implies that A is onto, and so $\dim\ker(\mathrm{id}-K)=\dim\ker(\mathrm{id}-K^*)$. Theorem 12 finishes the proof.

Definition 16. Consider the operator L as in Eq. (1). We define the *formal adjoint* of L as:

$$L^*v := -\sum_{i,j=1}^d \partial_i (a_{ij}\partial_j v) - \sum_{j=1}^d \partial_j (b_j v) + cv$$
$$= -\sum_{i,j=1}^d \partial_i (a_{ij}\partial_j v) - \sum_{j=1}^d b_j \partial_j v + \left(c - \sum_{j=1}^d \partial_j b_j\right) v$$

It satisfies $\langle Lu, v \rangle = \langle u, L^*v \rangle$ for all $u, v \in H_0^1(\Omega)$.

Proposition 17. The homogeneous adjoint problem

$$\mathcal{D}_0^* := \begin{cases} L^* v = 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega \end{cases}$$

whose weak formulation is

$$\langle \nabla v, \nabla w \rangle_2 + \langle \mathbf{b} \cdot \nabla v, w \rangle_2 = 0 \quad \forall w \in H_0^1(\Omega)$$

has a finite dimensional solution space W_0 , the space V_0 of solutions of \mathcal{D}_0 has also finite dimension and dim $W_0 = \dim V_0$. Moreover, if $f \in L^2(\Omega)$, \mathcal{D}_f is solvable if and only if $\langle f, v \rangle = 0$ for all $v \in W_0$.

Proof. We saw in Theorem 11 that for $\mu \geq \mu_0 > 0$, L_{μ} is an isomorphism. Now we want to solve $L_0 u = f$. Consider the change of variables $u = L_{\mu_0}^{-1} w$, with $w = L_{\mu_0} u \in H^{-1}(\Omega)$. Thus, the equation becomes:

$$f = (L_{\mu_0} - \mu_0)L_{\mu_0}^{-1}w = w - \mu_0L_{\mu_0}^{-1}w = (\mathrm{id} - K)w$$

with $K = \mu_0 L_{\mu_0}^{-1}$. We claim that $K : L^2(\Omega) \to L^2(\Omega)$ is compact. Note that $K = \mu_0 \iota_{H_0^1 \hookrightarrow L^2} \circ L_{\mu_0}^{-1} \circ \iota_{L^2 \hookrightarrow H^{-1}}$, so since $L_{\mu_0}^{-1}$ and $\iota_{L^2 \hookrightarrow H^{-1}}$ are bounded, and we have a compact embedding $H_0^1 \hookrightarrow L^2$, we have that K is compact. Finally, one can check that:

$$\operatorname{id} - K^* = (\operatorname{id} - K)^* = (L_0 L_{\mu_0}^{-1})^* = (L_{\mu_0}^*)^{-1} L_0^*$$

By 15 Abstract Fredholm alternative, we have that (id -K)w=f has a solution if and only if (id $-K^*$) $h=0 \Longrightarrow \langle f,h\rangle_{L^2}=0$ for all $h\in L^2$. But $L_{\mu_0}^*$ is an isomorphism, so (id $-K^*$) $h=0 \iff L_0^*h=0$.

Definition 18. We define the following problem:

$$\mathcal{N}_f := \begin{cases} -\Delta u = f & \text{in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega \end{cases}$$

and $\mathcal{N}_f^* = \mathcal{N}_f$. The weak formulation of the problem is:

$$\langle \nabla u, \nabla v \rangle = \langle f, v \rangle \quad \forall v \in H^1(\Omega)$$

from H to itself. So, for every $w \in \ker(\mathrm{id} - K^*)$, **Proposition 19.** \mathcal{N}_f has at least one solution if and only $\exists u \in H$ such that $w = (\mathrm{id} - \tilde{K})u$. Projecting both if for any weak solution v of \mathcal{N}_0 we have $\langle f, v \rangle = 0$.

Spectrum of compact operators

In this section \mathbb{K} will denote either \mathbb{R} or \mathbb{C} .

Definition 20. Let H be a \mathbb{K} -Hilbert space and $K: H \to H$ be a bounded operator. We define the *resolvent set* of K as:

$$\rho(K) = \{ \lambda \in \mathbb{K} : \lambda \mathrm{id} - K \text{ is invertible} \}$$

and the spectrum of K as:

$$\sigma(K) = \mathbb{K} \setminus \rho(K)$$

Proposition 21. Let H be a \mathbb{K} -Hilbert space and $T: H \to H$ be a bounded operator. Then, $\sigma(T)$ is closed.

Proof. Note that $\rho(K)$ is open because if $\lambda \in \rho(T)$, then $\exists \varepsilon \in \mathbb{R}$ such that $|\varepsilon| < \|(\lambda \mathrm{id} - K)^{-1}\|$. And so $(\lambda + \varepsilon)\mathrm{id} - K$ is invertible. Thus, $\sigma(K)$ is closed. \Box

Theorem 22. Let H be an infinite-dimensional separable Hilbert space and $K: H \to H$ be a compact operator. Then:

- 1. $0 \in \sigma(K)$.
- 2. If $\lambda \in \sigma(K) \setminus \{0\}$, then λ is an eigenvalue of K.
- 3. $\sigma(K)$ is closed and at most countable.
- 4. If $\sigma(K) \cap \mathbb{R}$ is infinite, then $\sigma(K) \setminus \{0\}$ is of the form $\{\lambda_n\}_{n \in \mathbb{N}}$ with $\lambda_n \to 0$.
- 5. If $\lambda \in \sigma(K) \setminus \{0\}$, then:

$$\dim\left(\bigcup_{p\geq 1}\ker\left(\lambda\mathrm{id}-K\right)^p\right)<\infty$$

Proof.

- 1. Assume $0 \notin \sigma(K)$. Then, K is bijective and so id $= K \circ K^{-1}$ is compact, as it is the composition of a compact operator and a bounded operator. But this is a contradiction with ?? ?? because the image of any bounded set under a compact operator is relatively compact (or precompact).
- 2. If $\ker(\lambda \operatorname{id} K) = \{0\}$, then by 15 Abstract Fredholm alternative, $\lambda \operatorname{id} K$ is an isomorphism, and thus $\lambda \in \rho(K)$.

Lemma 23. Let H be a Hilbert space and $T: H \to H$ be a continuous self-adjoint operator. Then:

$$||T|| = \sup_{||x||=1} |\langle x, Tx \rangle|$$

Proof. Clearly $\alpha:=\sup_{\|x\|=1}|\langle x,Tx\rangle|\leq \|T\|$. For the converse, it suffices to show that $|\langle Tx,y\rangle|\leq \alpha$ for all $\|x\|=\|y\|=1$. We have:

$$\langle Tx, y \rangle = \frac{1}{4} \left(\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle \right)$$

And then, by ?? ??:

$$\left|\left\langle Tx,y\right\rangle \right| \le \frac{\alpha}{4} \left(\left\| x+y \right\|^2 + \left\| x-y \right\|^2 \right) = \alpha$$

Lemma 24. Let $H \neq \{0\}$ be Hilbert and $K : H \to H$ be a compact and self-adjoint operator. Then:

$$\sup_{\|x\|=1} \langle x, Kx \rangle = \lambda$$

where λ is the largest eigenvalue of K.

Proof. Let (x_n) be a maximizing sequence with $||x_n|| = 1$. After extraction, we can assume that $x_n \rightharpoonup x_*$ and so $Kx_n \to Kx_*$. Thus, $\langle x_n, Kx_n \rangle \to \langle x_*, Kx_* \rangle$. So x_* is a maximizer. Now, take $h \perp x_*$ and ||h|| = 1. Then, $x_t := \frac{x_* + th}{\sqrt{1 + t^2}}$ satisfies $||x_t|| = 1$ and:

$$\langle x_t, Kx_t \rangle = \langle x_*, Kx_* \rangle + 2t \langle h, Kx_* \rangle + o(t) \leq \langle x_*, Kx_* \rangle$$

because of the maximality. So we must have $\langle h, Kx_* \rangle = 0$, which implies $Kx_* \in (\langle x_* \rangle^{\perp})^{\perp} = \langle x_* \rangle$. Thus, $Kx_* = \lambda x_*$.

Regularity theorems for weak solutions of divergence-form elliptic PDEs

Theorem 25 (Inner regularity). Assume, in addition to the usual assumptions, that $a_{ij} \in C^1(\Omega)$. Let $f \in L^2(\Omega)$ and $u \in H^1(\Omega)$ be a weak solution of Lu = f. Then, $u \in H^2_{loc}(\Omega)$ and for any compact embedding $\omega \subset\subset \Omega$, meaning that $\overline{\omega} \subset \Omega$ compact, we have $u \in H^2(\omega)$ and:

$$||u||_{H^2(\omega)} \le C \left(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

Corollary 26. Assume that $a_{ij} \in \mathcal{C}^{m+1}(\Omega)$ for some $m \in \mathbb{N}$, and $b_j, c \in \mathcal{C}^m(\Omega)$. Let $f \in H^m(\Omega)$ and $u \in H^1$ be a weak solution of Lu = f. Then, $u \in H^{m+2}_{loc}(\Omega)$ and for any $\omega \subset \subset \Omega$ we have $u \in H^{m+2}(\omega)$ and:

$$||u||_{H^{m+2}(\omega)} \le C \left(||f||_{H^m(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

Corollary 27. Assume $a_{ij}, b_j, c, f \in \mathcal{C}^{\infty}(\Omega)$. Let $u \in H^1(\Omega)$ be a weak solution of Lu = f. Then, $u \in \mathcal{C}^{\infty}(\Omega)$.

Theorem 28 (Regularity up to the boundary). Assume that $\partial \Omega$ is C^2 and that $a_{ij} \in C^1(\overline{\Omega})$, $b_j, c \in L^{\infty}(\Omega)$. Let $f \in L^2(\Omega)$ and $u \in H_0^1(\Omega)$ be a weak solution of \mathcal{D}_f . Then, $u \in H^2(\Omega)$ and:

$$||u||_{H^{2}(\Omega)} \le C \left(||f||_{L^{2}(\Omega)} + ||u||_{L^{2}(\Omega)} \right)$$

Corollary 29. Assume that $\partial \Omega$ is \mathcal{C}^m , $m \in \mathbb{N}$, and that $a_{ij} \in \mathcal{C}^{m+1}(\overline{\Omega})$, $b_j, c \in \mathcal{C}^m(\overline{\Omega})$. Let $f \in H^m(\Omega)$ and $u \in H_0^1(\Omega)$ be a weak solution of \mathcal{D}_f . Then, $u \in H^{m+2}(\Omega)$ and

$$||u||_{H^{m+2}(\Omega)} \le C \left(||f||_{H^m(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

Corollary 30. Assume that $\partial \Omega$ is C^{∞} and that $a_{ij}, b_j, c, f \in C^{\infty}(\overline{\Omega})$. Let $u \in H_0^1(\Omega)$ be a weak solution of \mathcal{D}_f . Then, $u \in C^{\infty}(\Omega)$ and $\forall m \in \mathbb{N}$:

$$||u||_{H^m(\Omega)} \le C \left(||f||_{H^m(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

Weak maximum principle for weak solutions of divergence-form elliptic PDEs

Lemma 31. Let $\Omega \subseteq \mathbb{R}^d$ open and $u \in H^1(\Omega)$. Then:

$$u^{+} := \begin{cases} u & \text{if } u > 0 \\ 0 & \text{if } u \le 0 \end{cases} \qquad u^{-} := \begin{cases} -u & \text{if } u < 0 \\ 0 & \text{if } u \le 0 \end{cases}$$

are also in $H^1(\Omega)$ and:

$$\boldsymbol{\nabla} \big(u^+ \big) \overset{\text{a.e.}}{=} \begin{cases} \boldsymbol{\nabla} u & \text{if } u > 0 \\ 0 & \text{if } u \leq 0 \end{cases} \boldsymbol{\nabla} \big(u^- \big) \overset{\text{a.e.}}{=} \begin{cases} -\boldsymbol{\nabla} u & \text{if } u < 0 \\ 0 & \text{if } u \geq 0 \end{cases}$$

Corollary 32. Let $\Omega \subseteq \mathbb{R}^d$ open and $u \in H^1(\Omega)$. Then, $|u| \in H^1(\Omega)$ and $\nabla |u| = \operatorname{sgn} \nabla u$.

Lemma 33. Let $(u_n) \in H^1(\Omega)$ be such that $u_n \stackrel{H^1(\Omega)}{\longrightarrow} u$. Then, $u_n^{\pm} \stackrel{H^1(\Omega)}{\longrightarrow} u^{\pm}$.

Corollary 34. Let $u \in H^1(\Omega)$. Then, $\operatorname{Tr}_{\partial\Omega}(u^{\pm}) = (\operatorname{Tr}_{\partial\Omega}u)^{\pm}$.

Lemma 35. Let $\Omega \subseteq \mathbb{R}^d$ open with \mathcal{C}^1 boundary, $u \in H^1(\Omega)$ and $\operatorname{Tr}_{\partial\Omega} u \stackrel{\text{a.e.}}{\leq} 0$. Then, $u^+ \in H^1(\Omega)$.

Theorem 36 (Weak maximum principle). Let $\Omega \subseteq \mathbb{R}^d$ open and bounded with \mathcal{C}^1 boundary, $a_{ij} = a_{ji}, c \in L^{\infty}(\Omega), c \geq 0, L = -\sum_{i,j=1}^{d} \partial_i(a_{ij}\partial_j) + c$ be elliptic and $f \in L^2(\Omega)$ with $f \leq 0$. Let $u \in H^1(\Omega)$ be such that:

•
$$\int_{\Omega} \left[\sum_{i,j=1}^{d} a_{ij} \partial_i u \partial_j v + cuv \right] = \int_{\Omega} fv \ \forall v \in H_0^1(\Omega)$$

• $\operatorname{Tr}_{\partial\Omega} u \overset{\text{a.e.}}{\leq} 0$

Then, $u \stackrel{\text{a.e.}}{\leq} 0$.

Proof. Take $v=u^+\in H^1_0(\Omega)$ by Theorem 35. Then, we have:

$$0 \le \theta \|\nabla u^+\|_{L^2}^2 \le \int_{\{u>0\}} \sum_{i,j=1}^d a_{ij} \partial_i u \partial_j u + cu^2 = \int_{\{u>0\}} fu \le 0$$

where in the second inequality we used the ellipticity of L. Thus, we must have $\nabla u^+ = 0$ a.e. in Ω , which implies $u^+ = 0$ a.e. in Ω , because $u^+|_{\partial\Omega} = 0$.

Theorem 37 (Weak maximum principle). Let $\Omega \subseteq \mathbb{R}^d$ open and bounded with \mathcal{C}^1 boundary, $a_{ij} = a_{ji}, b_j, c \in L^{\infty}(\Omega), c \stackrel{\text{a.e.}}{\geq} 0, L = -\sum_{i,j=1}^d \partial_i (a_{ij}\partial_j) + \sum_{j=1}^d b_j \partial_j + c$ be elliptic and $f \in L^2(\Omega)$ with $f \stackrel{\text{a.e.}}{\leq} 0$. Let $u \in H^1(\Omega)$ be such that:

•
$$\int_{\Omega} \left[\sum_{i,j=1}^{d} a_{ij} \partial_i u \partial_j v + \sum_{j=1}^{d} b_j v \partial_j u + c u v \right] = \int_{\Omega} f v$$

$$\forall v \in H_0^1(\Omega)$$

• $\operatorname{Tr}_{\partial\Omega} u \stackrel{\text{a.e.}}{\leq} 0$

Then, $u \stackrel{\text{a.e.}}{\leq} 0$.

Proof. Let $m \ge 0$ and $v_m = (u - m)^+$. Proceeding as in the previous proof, we have:

$$0 \le \theta \|\nabla v_m\|_{L^2}^2 - d\|\mathbf{b}\|_{\infty} \|\nabla v_m\|_{L^2} \|v_m\|_{L^2}$$

$$\le \int_{\{u>m\}} \sum_{i,j=1}^d a_{ij} \partial_i u \partial_j v_m + \sum_{j=1}^d b_j \partial_j u v_m + c u v_m$$

$$= \int_{\{u>m\}} f v_m \le 0$$

Thus, $\|\nabla v_m\|_{L^2} \leq C \|v_m\|_{L^2}$, with C independent of m. Note that since Ω is bounded, $\lim_{m\to\infty} |\{u>m\}| = 0$ by $\ref{eq:constraints}$, and so $\lim_{m\to\infty} \operatorname{supp} v_m = 0$ as well since $\operatorname{supp} v_m \subseteq \{u>m\}$. We now continue the proof for $d\geq 3$. By $\ref{eq:constraints}$? we have a continuous embedding $H^1_0(\Omega) \hookrightarrow L^{2^*}$ with $\frac{1}{2^*} = \frac{1}{2} - \frac{1}{d}$. So, $\|v_m\|_{L^{2^*}} \leq \delta \|\nabla v_m\|_{L^2}$. Thus:

$$\begin{split} \| \boldsymbol{\nabla} v_m \|_{L^2} & \leq C \, \| v_m \|_{L^2} \leq C | \mathrm{supp} \, v_m |^{1 - \frac{2}{2^*}} \, \| v_m \|_{L^{2^*}} \leq \\ & \leq C \delta | \mathrm{supp} \, v_m |^{1 - \frac{2}{2^*}} \, \| \boldsymbol{\nabla} v_m \|_{L^2} \leq \frac{1}{2} \, \| \boldsymbol{\nabla} v_m \|_{L^2} \end{split}$$

where in the second inequality we used $\ref{eq:condition}$?? and the last one is valid for $m \geq m_0$ large enough. Thus, $\|\nabla v_m\|_{L^2} = 0$ for $m \geq m_0$, which implies $u \leq m_0$. This means that $|\{u > m_0\}| = 0$ and that $\forall \varepsilon > 0$, $|\{u \geq m_0 - \varepsilon\}| > 0$. Suppose now that $m_0 > 0$ and let $S_{\varepsilon} = |\{u > m_0 - \varepsilon\}|$. Again by $\ref{eq:condition}$??, $\lim_{\varepsilon \to 0} S_{\varepsilon} = 0$. But then, proceeding as in the previous step:

$$\|\boldsymbol{\nabla} v_{m_0-\varepsilon}\|_{L^2} \leq C\delta S_{\varepsilon}^{1-\frac{2}{2^*}} \|\boldsymbol{\nabla} v_{m_0-\varepsilon}\|_{L^2} \leq \frac{1}{2} \|\boldsymbol{\nabla} v_{m_0-\varepsilon}\|_{L^2}$$

by choosing ε small enough. Thus, $\|\nabla v_{m_0-\varepsilon}\|_{L^2}=0$ and so $u \leq m_0 - \varepsilon$, which is a contradiction. Thus, $m_0=0$ (because $m_0 \geq 0$ from the beginning) and so $u \leq 0$.

Theorem 38 (Weak minimum principle). Let $\Omega \subseteq \mathbb{R}^d$ open and bounded with \mathcal{C}^1 boundary, $a_{ij} = a_{ji}, b_j, c \in L^{\infty}(\Omega), c \stackrel{\text{a.e.}}{\geq} 0, L = -\sum_{i,j=1}^d \partial_i (a_{ij}\partial_j) + \sum_{j=1}^d b_j \partial_j + c$ be elliptic and $f \in L^2(\Omega)$ with $f \stackrel{\text{a.e.}}{\geq} 0$. Let $u \in H^1(\Omega)$ be such that:

•
$$\int_{\Omega} \left[\sum_{i,j=1}^{d} a_{ij} \partial_i u \partial_j v + \sum_{j=1}^{d} b_j v \partial_j u + cuv \right] = \int_{\Omega} fv$$

$$\forall v \in H_0^1(\Omega)$$

• $\operatorname{Tr}_{\partial\Omega} u \overset{\text{a.e.}}{\geq} 0$

Then, $u \stackrel{\text{a.e.}}{\geq} 0$.

Sketch of the proof. Apply 37 Weak maximum principle to $u \mapsto -u$ with $f \mapsto -f$.

Corollary 39. If u is a weak solution of \mathcal{D}_0 with $c \geq 0$, then $u \stackrel{\text{a.e.}}{=} 0$.

Proof. If u is a weak solution of \mathcal{D}_0 , then u is a super-(that is, $Lu \geq 0$) and sub-solution (that is $Lu \leq 0$) of \mathcal{D}_0 . Thus, using 37 Weak maximum principle and 38 Weak minimum principle we conclude that $u \stackrel{\text{a.e.}}{=} 0$. Corollary 40. For each $f \in L^2(\Omega)$, the problem \mathcal{D}_f has a unique weak solution u_f . Moreover, if $\partial \Omega \in \mathcal{C}^1$, then $u_f \in H^2(\Omega) \cap H^1_0(\Omega)$ and $f \mapsto u_f$ is a bounded linear operator from $L^2(\Omega)$ to $H^2(\Omega) \cap H^1_0(\Omega)$. If $\partial \Omega \in \mathcal{C}^{m+1}$, $b_j \in \mathcal{C}^{m-1}$ and $f \in H^{m-1}(\Omega)$, then $u_f \in H^{m+1}(\Omega) \cap H^1_0(\Omega)$ and $f \mapsto u_f$ is a bounded linear operator from $H^{m-1}(\Omega)$ to $H^{m+1}(\Omega) \cap H^1_0(\Omega)$.

Sketch of the proof. 15 Abstract Fredholm alternative applied to this problem (check Theorem 17) tells us that either there is a nonzero weak solution to \mathcal{D}_0 or \mathcal{D}_f is solvable for all $f \in L^2(\Omega)$. But the first case is impossible by Theorem 39.

Theorem 41. Let $1 and <math>\Omega \subset \mathbb{R}^d$ be open and bounded with \mathcal{C}^{m+1} boundary, $m \geq 1$. Let $a_{ij} \in \mathcal{C}^m(\overline{\Omega})$, $b_j, c \in \mathcal{C}^{m-1}(\overline{\Omega})$ and $Lu = -\sum_{i,j=1}^d \partial_i (a_{ij}\partial_j u) + \sum_{j=1}^d b_j \partial_j u + cu$ be an elliptic operator. Then, for any $f \in W^{m-1,p}(\Omega)$, if $u \in H_0^1(\Omega)$ is a weak solution of \mathcal{D}_f , then $u \in W^{m+1,p}(\Omega)$ and:

$$||u||_{W^{m+1,p}(\Omega)} \le C \left(||f||_{W^{m-1,p}(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

If in addition the weak solution of \mathcal{D}_0 is u=0, then $L:W^{m+1,p}(\Omega)\cap W^{1,p}_0(\Omega)\to W^{m-1,p}(\Omega)$ is an isomorphism, where $W^{1,p}_0(\Omega)$ is the closure of $C^\infty_0(\Omega)$ in $W^{1,p}(\Omega)$.

3. | Regularity in $C^{k,\alpha}$ for non-divergence form elliptic PDEs

In this section we will still always work in $\Omega \subset \mathbb{R}^d$ open and bounded and the elliptic operator L (with ellipticity constant θ) will be in its non-divergence form:

$$L = -\sum_{i,j=1}^{d} a_{ij}\partial_{ij}^{2} + \sum_{j=1}^{d} b_{j}\partial_{j} + c$$

with $a_{ij} = a_{ji}$. Moreover we will not use the usual Hölder norm

$$||u||_{\mathcal{C}^{k,\alpha}(\Omega)} = \sup_{\substack{x \neq y \\ |\beta| = k}} \frac{\left| \partial^{\beta} u(x) - \partial^{\beta} u(y) \right|}{\left| x - y \right|^{\alpha}}$$

but the following one:

$$||u||_{\mathcal{C}^{k,\alpha}(\overline{\Omega})} = \sup_{\substack{x \in \overline{\Omega} \\ |\beta| \le k}} |\partial^{\beta} u(x)| + \sup_{\substack{x \ne y \\ |\beta| = k}} \frac{|\partial^{\beta} u(x) - \partial^{\beta} u(y)|}{|x - y|^{\alpha}}$$

Remark. Recall that $(\mathcal{C}^{k,\alpha}(\overline{\Omega}), \|\cdot\|_{\mathcal{C}^{k,\alpha}(\overline{\Omega})})$ is a Banach space and that if $0 < \alpha_1 \le \alpha_2 < 1$, then $\mathcal{C}^{k,\alpha_2}(\overline{\Omega}) \subseteq \mathcal{C}^{k,\alpha_1}(\overline{\Omega})$

Schauder estimates

Theorem 42 (Schauder estimates). Let $\Omega \subset \mathbb{R}^d$ be open and bounded with $\partial \Omega \in \mathcal{C}^{2,\alpha}$ for some $0 < \alpha < 1$. In the elliptic operator L assume that $a_{ij}, b_j, c \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$. Then, $\exists C > 0$ such that if $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$ solves Lu = f, with $f \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$, then $u \in \mathcal{C}^{2,\alpha}(\overline{\Omega})$ and:

$$||u||_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \le C \left(||f||_{\mathcal{C}^{0,\alpha}(\overline{\Omega})} + ||u||_{\mathcal{C}^{1,\alpha}(\overline{\Omega})} \right)$$

Moreover we have:

$$||u||_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \le \tilde{C}\left(||f||_{\mathcal{C}^{0,\alpha}(\overline{\Omega})} + ||u||_{\mathcal{C}^{0}(\overline{\Omega})}\right)$$

Corollary 43. Let $\Omega \subset \mathbb{R}^d$ be open and bounded with $\partial \Omega \in \mathcal{C}^{k+2,\alpha}$ for some $0 < \alpha < 1$ and $k \geq 0$. In the elliptic operator L assume that $a_{ij}, b_j, c \in \mathcal{C}^{k,\alpha}(\overline{\Omega})$. Then, $\exists c > 0$ such that if $u \in \mathcal{C}^{k+2}(\Omega) \cap \mathcal{C}^k(\overline{\Omega})$ solves Lu = f, with $f \in \mathcal{C}^{k,\alpha}(\overline{\Omega})$, then $u \in \mathcal{C}^{k+2,\alpha}(\overline{\Omega})$ and:

$$\|u\|_{\mathcal{C}^{k+2,\alpha}(\overline{\Omega})} \leq C \left(\|f\|_{\mathcal{C}^{k,\alpha}(\overline{\Omega})} + \|u\|_{\mathcal{C}^{k+1,\alpha}(\overline{\Omega})} \right)$$

Maximum and comparison principles

Lemma 44. If $\mathbf{A}, \mathbf{B} \in \mathcal{M}_d(\mathbb{R})$ are symmetric and $\mathbf{A}, \mathbf{B} \geq 0$, then $\operatorname{tr}(\mathbf{A}\mathbf{B}) \geq 0$.

Theorem 45 (Weak maximum principle). Let $u \in C^2(\Omega)$ be such that $Lu \leq 0$. Then:

- If c = 0, then $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$.
- If $c \ge 0$, then $\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u^+$.

Proof. Assume first that Lu < 0 and c = 0. Suppose $\exists x_0 \in \Omega$ such that $u(x_0) = \max_{\overline{\Omega}} u$. Then, $\nabla u(x_0) = 0$ and $\mathbf{H}u(x_0) \leq 0$, that is, $\sum_{i,j=1}^d \frac{\partial^2 u}{\partial x_i \partial x_j}(x_0) p_i p_j \leq 0$ $\forall \mathbf{p} \in \mathbb{R}^d$. On the other hand:

$$\operatorname{tr}(\mathbf{A}(x_0)\mathbf{H}u(x_0)) = \sum_{i,j=1}^{d} a_{ij}(x_0) \frac{\partial^2 u}{\partial x_i \partial x_j}(x_0)$$
$$= -Lu(x_0) > 0$$

The ellipticity of L implies that $\mathbf{A} > 0$, but this is a contradiction with Theorem 44 because $\mathbf{H}u(x_0) \leq 0$. If we now have $c \geq 0$, assume that $\max_{\overline{\Omega}} u^+ > \max_{\partial \Omega} u^+$. Then, $\exists x_0 \in \Omega$ such that $u(x_0) > 0$ and $u(x_0) = \max_{\overline{\Omega}} u^+$. Similarly, we have:

$$\operatorname{tr}(\mathbf{A}(x_0)\mathbf{H}u(x_0)) = \sum_{i,j=1}^{d} a_{ij}(x_0) \frac{\partial^2 u}{\partial x_i \partial x_j}(x_0)$$
$$= -Lu(x_0) + c(x_0)u(x_0) \ge 0$$

which again leads to a contraction. Now assume $Lu \leq 0$. Take $u_{\varepsilon} = u + \varepsilon e^{\lambda x_1}$, with $\varepsilon > 0$ and $\lambda > 0$ yet to be chosen. An easy computation shows that:

$$Lu_{\varepsilon} \le e^{\lambda x_1} [-\lambda^2 a_{11} + b_1 \lambda + c]$$

$$\le e^{\lambda x_1} [-\lambda^2 a_{11} + \|\mathbf{b}\|_{\infty} \lambda + c] < 0$$

for λ large enough. We do here the case c=0 (the other is analogous). From what we have previously seen, $\exists y_{\varepsilon} \in \partial \Omega$ such that $u(x) \leq u_{\varepsilon}(x) \leq u_{\varepsilon}(y_{\varepsilon})$. And so we can find a sequence y_{ε_n} that converges to some $y_0 \in \partial \Omega$ (because $\partial \Omega$ is compact) as $\varepsilon_n \to 0$, which implies $u(x) \leq u(y_0)$.

Theorem 46 (Weak minimum principle). Let $u \in C^2(\Omega)$ be such that $Lu \geq 0$. Then:

• If c = 0, then $\min_{\overline{\Omega}} u = \min_{\partial \Omega} u$.

• If $c \ge 0$, then $\min_{\overline{\Omega}} u \ge -\max_{\partial \Omega} u^-$.

Sketch of the proof. Apply 45 Weak maximum principle to -u using that $(-u)^+ = u^-$.

Remark. Nothing can be said if c < 0. For example, consider -u'' - u = 0, which has $u(x) = \sin(x)$ as a solution, and take $\Omega = (0, \pi)$.

Lemma 47 (Hopf's lemma). Let $u \in C^2(\Omega)$ be such that $Lu \leq 0$ and suppose that the region Ω is connected and that satisfies the *interior ball condition*: for any $x \in \partial \Omega$ there exists r > 0 and $y \in \Omega$ such that $B(y,r) \subset \Omega$ and $\overline{B(y,r)} \cap \partial \Omega = \{x\}$. Suppose in addition that c = 0 and $x \in \partial \Omega$ is such that $u(x_0) = \max_{\overline{\Omega}} u$.

Then, either u is constant in Ω or

$$\liminf_{t \to 0^+} \frac{u(x_0) - u(x_0 + t\mathbf{n})}{t} > 0$$

for any vector **n** of the form $\mathbf{n} = \frac{x_0 - y_0}{\|x_0 - y_0\|}$ with $B(y_0, r) \subset \Omega$ and $\overline{B(y_0, r)} \cap \partial \Omega = \{x_0\}.$

Remark. In particular, if $\partial \Omega \in \mathcal{C}^1$ and $u \in \mathcal{C}^1(\overline{\Omega})$, then 47 Hopf's lemma implies that either u is constant in Ω or $\partial_{\mathbf{n}} u(x_0) = \nabla u(x_0) \cdot \mathbf{n} > 0$.

Theorem 48 (Strong maximum principle). Let $\Omega \subset \mathbb{R}^d$ be open, bounded and connected, and $u \in \mathcal{C}^2(\Omega)$ be such that $Lu \leq 0$. Then:

- 1. If c = 0 and $\exists x_0 \in \Omega$ such that $u(x_0) \ge u(x) \ \forall x \in \Omega$, then u = const. in Ω .
- 2. If $c \geq 0$ and $\exists x_0 \in \Omega$ such that $u(x_0) \geq 0$ and $u(x_0) \geq u(x) \ \forall x \in \Omega$, then $u = \text{const. in } \Omega$.

Proof. Assume c=0, the other case is similar. Let $M=\max_{\overline{\Omega}}u,\ C:=\{u=M\}$ and $V:=\{u< M\}$. Take $y\in V$ satisfying $d(y,C)< d(y,\partial\Omega)$ and let B be the largest ball with center at y whose interior lies in V. Then, there exists $x_0\in C$ with $x_0\in\partial B$. Clearly V satisfies the interior ball condition at x_0 , whence 47 Hopf's lemma implies that $\partial_{\mathbf{n}}u(x_0)>0$. But $\partial_{\mathbf{n}}u(x_0)=0$ because $x_0\in C$, which is a contradiction. Thus, $V=\varnothing$ and so $u=\mathrm{const.}$ in Ω .

Theorem 49 (Strong minimum principle). Let $\Omega \subset \mathbb{R}^d$ be open, bounded and connected, and $u \in \mathcal{C}^2(\Omega)$ be such that $Lu \geq 0$. Then:

- 1. If c = 0 and $\exists x_0 \in \Omega$ such that $u(x_0) \le u(x) \ \forall x \in \Omega$, then u = const. in Ω .
- 2. If $c \geq 0$ and $\exists x_0 \in \Omega$ such that $u(x_0) \leq 0$ and $u(x_0) \leq u(x) \ \forall x \in \Omega$, then $u = \text{const. in } \Omega$.

Sketch of the proof. Apply 48 Strong maximum principle to -u.

Theorem 50 (A priori estimate). Suppose that $c \geq 0$ and $u \in C^2(\Omega)$ is a solution of

$$\begin{cases} Lu = f & \text{in } \Omega \\ u|_{\partial\Omega} = h & \text{on } \partial\Omega \end{cases}$$

with $f \in \mathcal{C}^0(\overline{\Omega})$ and $h \in \mathcal{C}^0(\partial \Omega)$. Then, $\forall x \in \overline{\Omega}$:

$$u(x) \le \max_{\partial \Omega} h^+ + C \max_{\overline{\Omega}} f^+$$

with C independent of u, f and h. Moreover, we have:

$$|u| \le \max_{\partial \Omega} |h| + C \max_{\overline{\Omega}} |f|$$

Proof. Let

$$w(x) = \max_{\partial \Omega} h^{+} + \max_{\overline{\Omega}} f^{+}(\cosh(\lambda r) - \cosh(\lambda x_{1}))$$

with $r = \max\{|x_1| : x \in \overline{\Omega}\}$. An easy check shows that for $\lambda = \lambda_0 > 0$ large enough we have:

$$\begin{cases} Lw \ge \max_{\overline{\Omega}} f^+ \\ \max_{\partial \Omega} h^+ \le w \le \max_{\partial \Omega} h^+ + \max_{\overline{\Omega}} f^+ \cosh(\lambda_0 r) \end{cases}$$

Let v = u - w. Then, $Lv \leq 0$ and $v|_{\partial\Omega} \leq 0$. Thus, 45 Weak maximum principle implies that $v \leq 0$ in Ω , that is, $u \leq w$ in Ω .

Continuation method

Theorem 51 (Continuation method). Let $\Omega \subset \mathbb{R}^d$ be open and bounded with $\partial \Omega \in \mathcal{C}^{2,\alpha}$ for some $0 < \alpha < 1$. Consider the problem:

$$\begin{cases} Lu = f & \text{in } \Omega \\ u|_{\partial\Omega} = h & \text{on } \partial\Omega \end{cases}$$

with $f, a_{ij}, b_j, c \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$ and $h \in \mathcal{C}^{0,\alpha}(\partial \Omega)$. Then, there exists a solution to this problem in $\mathcal{C}^{2,\alpha}(\overline{\Omega})$.

Proof. We will do it for h = 0. Let $t \in [0, 1]$ and consider the problem:

$$\mathcal{D}_t := \begin{cases} L_t u = f & \text{in } \Omega \\ u|_{\partial \Omega} = 0 & \text{on } \partial \Omega \end{cases}$$

with $L_t = tL - (1-t)\Delta$. We know that \mathcal{D}_0 has a unique weak solution $u_0 \in H_0^1(\Omega)$. The idea of the continuation method is that if \mathcal{D}_t is solvable for all f, then for k > 0 small enough, \mathcal{D}_{t+k} is solvable for all f too. Rewrite \mathcal{D}_{t+k}

$$\begin{cases} L_t u = f - k(L + \Delta)u & \text{in } \Omega \\ u|_{\partial\Omega} = 0 & \text{on } \partial\Omega \end{cases}$$

We need to solve the fixed point problem $u = \phi(u)$, with

$$\begin{array}{ccc} \phi: \mathcal{C}^{2,\alpha} & \longrightarrow & \mathcal{C}^{2,\alpha} \\ u & \longmapsto \phi(u) = {L_t}^{-1} f - k {L_t}^{-1} (L + \Delta) u \end{array}$$

From 42 Schauder estimates and 50 A priori estimate we deduce that $\|u\|_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \leq C \|f\|_{\mathcal{C}^{0,\alpha}(\overline{\Omega})}$. So $\forall \varphi \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$ we have $\|L_t^{-1}\varphi\|_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \leq C \|\varphi\|_{\mathcal{C}^{0,\alpha}(\overline{\Omega})}$ (it can be seen that the constant does not depend on t). We will show that ϕ is a contraction for k small enough. Let $u, v \in \mathcal{C}^{2,\alpha}(\overline{\Omega})$. Then:

$$\|\phi(u) - \phi(v)\|_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \le Ck \|(L + \Delta)(u - v)\|_{\mathcal{C}^{0,\alpha}(\overline{\Omega})}$$

$$\le \tilde{C}k \|u - v\|_{\mathcal{C}^{2,\alpha}(\overline{\Omega})}$$

So take $k \leq \frac{1}{2\tilde{C}}$. Repeating this argument a finite number of times $(\tilde{C} \text{ does not depend on } t)$ we conclude that \mathcal{D}_1 is solvable.

4. Existence theorems for nonlinear elliptic PDEs by fixed point methods

In this section we will mostly consider almost linear elliptic PDEs of the form:

$$\begin{cases} Lu = f(x, u) \\ u|_{\partial\Omega} = 0 \end{cases}$$
 (2)

with L either $-\sum_{i,j=1}^{d} \partial_i (a_{ij}\partial_j) + \sum_{j=1}^{d} b_j \partial_j$ or $-\sum_{i,j=1}^{d} a_{ij}\partial_{ij}^2 + \sum_{j=1}^{d} b_j \partial_j$, and $f: \Omega \times \mathbb{R} \to \mathbb{R}$.

Method of subsoltions and supersolutions

Theorem 52. Suppose that an operator L is uniformly elliptic on an open bounded set $\Omega \subset \mathbb{R}^d$ with $\partial \Omega \in \mathcal{C}^2$, with c=0 and either in divergence form (with $a_{ij} \in \mathcal{C}^1$) or non-divergence form (with $a_{ij}, b_j \in \mathcal{C}^{0,\alpha}$). Suppose that $f \in \mathcal{C}^1(\overline{\Omega} \times \mathbb{R})$ and assume that the problem of Eq. (2) has a bounded subsolution \underline{u} and a bounded supersolution \overline{u} such that $\underline{u} \leq \overline{u}$. Then, there exists a solution u to Eq. (2) such that $\underline{u} \leq u \leq \overline{u}$, which is in $H_0^1(\Omega) \cap H_0^2(\Omega)$ if L is in divergence form and in $\mathcal{C}^{2,\alpha}(\overline{\Omega})$ if L is in non-divergence form.

 $\begin{array}{l} \textit{Proof.} \text{ Let } \underline{M} := \max\{\|\underline{u}\|_{\infty}, \|\overline{u}\|_{\infty}\} \text{ and modify } f \text{ outside the set } \overline{\Omega} \times [-M, M] \text{ so that the modified function } \widetilde{f} \text{ is globally Lipschitz in } u \text{ and } \sup_{\overline{\Omega} \times \mathbb{R}} \left|\frac{\widetilde{f}}{u}\right| \leq \sup_{\overline{\Omega} \times [-M-2, M+2]} \left|\frac{f}{u}\right| + \end{array}$

1 =: k. Then, the function $g(x,t) = \tilde{f}(x,t) + kt$ is non-decreasing in t, and we can rewrite the problem as:

$$\begin{cases} (L+k)u = g(x,u) & \text{in } \Omega \\ u|_{\partial\Omega} = 0 & \text{on } \partial\Omega \end{cases}$$

Now we construct a sequence of functions $\{u_n\}_{n\in\mathbb{N}}$ as follows. Let $u_0 = \underline{u}$ and $\forall n \in \mathbb{N} \cup \{0\}$, u_{n+1} be the solution of:

$$\begin{cases} (L+k)u = g(x, u_n) & \text{in } \Omega \\ u|_{\partial\Omega} = 0 & \text{on } \partial\Omega \end{cases}$$

Take $w = u_n - u_{n+1}$. By induction, using the monotonicity of g we have that w solves:

$$\begin{cases} (L+k)w \le 0 & \text{in } \Omega \\ w|_{\partial\Omega} \le 0 & \text{on } \partial\Omega \end{cases}$$

So by the 45 Weak maximum principle we have that $w \leq 0$ in Ω . Similarly, taking $v = u_{n+1} - \overline{u}$ we have that v solves the same problem, so $v \leq 0$ in Ω . Summarizing, one can check we have $\underline{u} \leq u_n \leq u_{n+1} \leq \overline{u}$ for all $n \in \mathbb{N}$. So $\exists u(x) := \lim_{n \to \infty} u_n(x)$, which is a solution to the problem.

It suffices to see that $u_n \stackrel{\mathcal{C}^{0,\alpha}}{\longrightarrow} u$ because then we'd have $g(x,u_n) \stackrel{\mathcal{C}^{0,\alpha}}{\longrightarrow} g(x,u)$ and so $u_{n+1} = (L+k)^{-1}g(x,u_n) \stackrel{\mathcal{C}^{2,\alpha}}{\longrightarrow} (L+k)^{-1}g(x,u) = u$. But this is clear because $u_n \stackrel{W^{1,p}}{\longrightarrow} u$ (because of the compact embedding $W^{2,p} \subset W^{1,p}$) for all $p < \infty$, and we have an embedding $W^{1,p}(\Omega) \subset \mathcal{C}^{0,\theta}(\overline{\Omega})$ for p > d and for some particular $\theta = 1 - \frac{d}{p}$ (see ?? ??). Now given $\theta = \alpha$ choose p according that relation.

Topological fixed point theorems

Theorem 53 (Brower fixed point). Let $C \subset \mathbb{R}^n$ be a closed convex bounded set and $f: C \to C$ be a continuous function. Then, f has at least a fixed point.

Theorem 54 (Schauder fixed point). Let C be a convex set in a Banach space $(E, \|\cdot\|)$ and $f: C \to C$ be a continuous function. Assume one of the following two assumptions:

- C is compact for $\|\cdot\|$.
- C is closed and bounded and f is compact.

Then, f has at least a fixed point.

Proof. We will prove it in a Hilbert space $(E, \|\cdot\|)$. Assume the first assumption. Let $\varepsilon > 0$. Then, by compactness $\exists N_{\varepsilon} \in \mathbb{N}$ and $x_1^{\varepsilon}, \ldots, x_{N_{\varepsilon}}^{\varepsilon} \in C$ such that $C \subset \bigcup_{i=1}^{N_{\varepsilon}} B(x_i^{\varepsilon}, \varepsilon)$. Let $V_{\varepsilon} = \langle x_1^{\varepsilon}, \ldots, x_{N_{\varepsilon}}^{\varepsilon} \rangle$ be the linear span of these vectors and $C_{\varepsilon} := V_{\varepsilon} \cap C$. Then, $\forall x \in C$ $d(x, C_{\varepsilon}) < \varepsilon$ because $d(x, x_j^{\varepsilon}) < \varepsilon$ for some j and $x_j^{\varepsilon} \in C_{\varepsilon}$. Let $p_{\varepsilon} : E \to C_{\varepsilon}$ be the nonlinear projection on the closed convex bounded set C_{ε} . For all $x \in C$ we have $\|x - p_{\varepsilon}(x)\| \le d(x, C_{\varepsilon}) < \varepsilon$. Now define $f_{\varepsilon} : C_{\varepsilon} \to C_{\varepsilon}$ by $f_{\varepsilon}(x) = p_{\varepsilon}(f(x))$. Then, f_{ε} is continuous and by 53 Brower fixed point we have that f_{ε} has a fixed point $x_{\varepsilon} \in C_{\varepsilon}$. Thus:

$$||f(x_{\varepsilon}) - x_{\varepsilon}|| = ||f(x_{\varepsilon}) - p_{\varepsilon}(f(x_{\varepsilon}))|| < \varepsilon$$

By compactness, there is a sequence $\varepsilon_n \to 0$ and $x \in C$ such that $||x_{\varepsilon_n} - x|| \to 0$. By the continuity of f, x is a fixed point of f.

Now assume the second hypothesis. Let $K = \overline{\operatorname{Conv}(f(C))}$ be the closure of the *convex hull* of f(C), that is the smallest convex set containing f(C). Then, K is compact and convex. Moreover, $K \subseteq C$ since $f(C) \subseteq C$, C is convex and closed. Furthermore, $f(K) \subseteq f(C) \subseteq K$. So f restricts to a continuous function $f|_K : K \to K$. By the first assumption, $f|_K$ has a fixed point $x \in K \subseteq C$.

Theorem 55 (Schaefer fixed point). Let $(E, \|\cdot\|)$ be Banach and $f: E \to E$ be continuous and compact. Suppose that $\exists M > 0$ such that $\forall (\lambda, u) \in [0, 1] \times E$ with $u = \lambda f(u)$ we have $\|u\| < M$. Then, f has at least a fixed point, that lies in $\overline{B(0, M)}$.

Proof. Take $C = \overline{B(0, M)}$. For $x \in C$, let:

$$\tilde{f}(x) := \begin{cases} f(x) & \text{if } x \in C \\ M \frac{f(x)}{\|f(x)\|} & \text{if } \|f(x)\| > M \end{cases}$$

An easy check shows that $f: C \to C$ is continuous and compact. So, by 54 Schauder fixed point $\exists x_* \in C$ such that $x_* = \tilde{f}(x_*)$. If $||x_*|| = ||f(x_*)|| > M$, then:

$$||x_*|| = M \frac{||f(x_*)||}{||f(x_*)||} = M$$

which is absurd. So $f(x_*) = x_*$.

5. Variational methods for nonlinear elliptic PDEs

In this section we will solve a PDE $Lu = f(x, u, \nabla u)$ by minimizing a certain functional under some constraints.

Linear case

Proposition 56 (Without constraints). Consider the problem:

$$\begin{cases}
Lu := -\sum_{i,j=1}^{d} \partial_i (a_{ij}\partial_j u) + cu = f \\
u|_{\partial\Omega} = 0
\end{cases}$$
(3)

with L elliptic, $a_{ij}, c \in L^{\infty}(\Omega)$ with $a_{ij} = a_{ji}, c \geq 0$, and $f \in L^2(\Omega)$. Then, the problem has a unique weak solution $u \in H_0^1(\Omega)$, and it minimizes the functional:

$$I(u) = \frac{1}{2}\beta(u, u) - \int_{\Omega} fu$$

where
$$\beta(u, v) = \sum_{i,j=1}^{d} \int_{\Omega} a_{ij} \partial_i u \partial_j v + \int_{\Omega} cuv.$$

Proof. By ?? ?? (using the scalar product β , which is positive definite because $c \geq 0$) we have that this problem has a unique weak solution $u_f \in H_0^1(\Omega)$. Moreover, it minimizes the functional I. Indeed, we have:

$$\begin{split} I(u) - I(u_f) &= \beta(u_f, u - u_f) - \int f(u - u_f) + \\ &+ \frac{1}{2}\beta(u - u_f, u - u_f) = \frac{1}{2}\beta(u - u_f, u - u_f) > 0 \end{split}$$

if $u \neq u_f$.

Lemma 57. Let X be a Banach space and $\Phi: X \to \mathbb{R}$ be continuous and convex, then it is weakly sequentially lower semicontinuous, that is, if $u_n \rightharpoonup u$ in X, then $\Phi(u) \leq \liminf_{n \to \infty} \Phi(u_n)$.

Theorem 58. Let $(X, \|\cdot\|)$ be a reflexive Banach space and $\Phi: X \to \mathbb{R}$ be continuous, convex and such that $\lim_{\|u\|\to\infty} \Phi(u) = +\infty$. Then, Φ has a minimizer. This minimizer is unique if Φ is strictly convex.

Proof. Let $\{u_n\}_{n\in\mathbb{N}}\subset X$ be a minimizing sequence. Then, $\sup \Phi(u_n)<\infty$, so by the coercivity property of Φ we have $n\in\mathbb{N}$ that $\{u_n\}_{n\in\mathbb{N}}$ is bounded, and so $\{u_n\}_{n\in\mathbb{N}}$ has a weakly convergent subsequence $\{u_{n_k}\}_{k\in\mathbb{N}}$ with limit $u\in X$. By Theorem 57 we have:

$$\Phi(u) \le \lim_{k \to \infty} \Phi(u_{n_k}) = \inf_{u \in X} \Phi(u)$$

But $\Phi(u) \ge \inf_{u \in X} \Phi(u)$, so u is a minimizer.

Theorem 59 (With constraints). Consider the problem of Eq. (3). We know that L is invertible with inverse $L^{-1}: L^2(\Omega) \to H^1_0(\Omega)$. But $H^1_0(\Omega)$ is compactly embedded into $L^2(\Omega)$ (see ?? ??), so:

$$\begin{array}{ccc} K:L^2(\Omega) \longrightarrow L^2(\Omega) \\ f &\longmapsto L^{-1}f \end{array}$$

is compact. Thus, a Hilbert basis (u_n) of K with $Ku_n = \mu_n u_n$, $\mu_n > 0$ with $\mu_n \to 0$ as $n \to \infty$ exists (we may assume $\mu_n \searrow 0$). Thus, $Lu_n = \lambda_n u_n$ with $\lambda_n = \frac{1}{\mu_n} \nearrow +\infty$. Then:

$$\lambda_1 = \min_{\substack{u \in H_0^1(\Omega) \\ \|u\|_{L^2(\Omega)} = 1}} \langle Lu, u \rangle_{H^{-1} \times H_0^1} = \min_{\substack{u \in H_0^1(\Omega) \setminus \{0\}}} \frac{\langle Lu, u \rangle_{H^{-1} \times H_0^1}}{\|u\|_{L^2(\Omega)}^2}$$

And:

$$\begin{split} \lambda_k &= \min_{\substack{u \in H_0^1(\Omega) \\ u \in \langle u_1, \dots, u_{k-1} \rangle^{\perp} L^2 \\ \|u\|_{L^2(\Omega)} = 1}} \langle Lu, u \rangle_{H^{-1} \times H_0^1} \\ &= \min_{\substack{u \in H_0^1(\Omega) \setminus \{0\} \\ u \in \langle u_1, \dots, u_{k-1} \rangle^{\perp} L^2}} \frac{\langle Lu, u \rangle_{H^{-1} \times H_0^1}}{\|u\|_{L^2(\Omega)}^2} \\ &= \min_{\substack{V \text{ subspace of } H_0^1(\Omega) \\ \dim(V) = k}} \max_{\substack{u \in V \setminus \{0\} \\ \|u\|_{L^2(\Omega)} = 1}} \langle Lu, u \rangle_{H^{-1} \times H_0^1} \\ &= \max_{\substack{W \text{ subspace of } H_0^1(\Omega) \\ \operatorname{codim}(W) = k - 1}} \min_{\substack{u \in W \setminus \{0\} \\ \|u\|_{L^2(\Omega)} = 1}} \langle Lu, u \rangle_{H^{-1} \times H_0^1} \end{split}$$

<u>Proof.</u> We only prove some of them. Recall that $H_0^1 = \bigoplus_{n \in \mathbb{N}} \langle u_n \rangle^{H_0^1}$ and $L^2 = \bigoplus_{n \in \mathbb{N}} \langle u_n \rangle^{L^2}$. Take $u \in H_0^1(\Omega) \setminus \{0\}$ and write $u = \sum_{n \in \mathbb{N}} \alpha_n u_n$, which converges in both L^2 and H_0^1 . We have:

$$\langle Lu, u \rangle_{H^{-1} \times H_0^1} = \sum_{n \in \mathbb{N}} \lambda_n \alpha_n^2 \ge \lambda_1 \sum_{n \in \mathbb{N}} \alpha_n^2 = \lambda_1 \|u\|_{L^2(\Omega)}^2$$

So the first equality holds since the lower bound is attained by $u = u_1$. Now take $u \perp_{L^2} \langle u_1, \dots, u_{k-1} \rangle$. Then, $\alpha_1 = \dots = \alpha_{k-1} = 0$ and so:

$$\langle Lu,u\rangle_{H^{-1}\times H^1_0}=\sum_{n\geq n}\lambda_n{\alpha_n}^2\geq \lambda_n\sum_{n\geq n}{\alpha_n}^2=\lambda_n\left\|u\right\|_{L^2(\Omega)}^2$$

So the third equality holds since the lower bound is attained by $u = u_k$.

Nonlinear case without constraints

Definition 60. We say that $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is *Carathéodory* if f is measurable in x and continuous in t.

Theorem 61 (Superposition operator). Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be Carathéodory satisfying the growth condition $|f(x,t)| \leq C(1+|t|^{\theta}) \ \forall (x,t) \in \Omega \times \mathbb{R}$ with $\theta \geq 1$. Then, for any $\theta \leq p < \infty$, the superposition operator

$$\Phi_f: L^p(\Omega) \longrightarrow L^{p/\theta}(\Omega)$$

$$u \longmapsto f(\cdot, u(\cdot))$$

is continuous.

Proof. Let $(u_n), u \in L^p(\Omega)$ be such $u_n \xrightarrow{L^p} u$. We will prove that $v_n := f(\cdot, u_n(\cdot))$ is precompact in $L^{p/\theta}(\Omega)$ (that is, any subsequence v_{n_k} has a convergent subsequence) and has only one limit point, which is $v := f(\cdot, u(\cdot))$. Take a subsequence (v_{n_k}) of (v_n) . We know that $u_{n_k} \xrightarrow{L^p} u$. We know that in this case there exists a subsequence

 $u_{n_{k_j}} \stackrel{\text{a.e.}}{\to} u$ and $\left|u_{n_{k_j}}\right| \leq h$ with $h \in L^p$. Then, by the continuity of f, $v_{n_{k_j}} \stackrel{\text{a.e.}}{\to} v$ and by the growth condition, $v_{n_{k_j}} \leq C(1+\left|h(x)\right|^{\theta}) \in L^{p/\theta}$. So, by $\ref{eq:condition}$? $v_{n_{k_j}} \stackrel{L^{p/\theta}}{\to} v$.

Proposition 62. Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be Carathéodory satisfying the growth condition $|f(x,t)| \leq C(1+|t|^{\theta})$ $\forall (x,t) \in \Omega \times \mathbb{R}$ with $1 \leq \theta \leq 2^*$, $\frac{1}{2^*} = \frac{1}{2} - \frac{1}{d}$, (if $d \geq 3$) and $1 \leq \theta < \infty$ (if d = 2). Then, the superposition operator

$$\Phi_f: H^1(\Omega) \longrightarrow L^{p/\theta}(\Omega)$$

$$u \longmapsto f(\cdot, u(\cdot))$$

is continuous for all $\theta \leq p \leq 2^*$ (if $d \geq 3$) and $\theta \leq p < \infty$ (if d = 2). Moreover, Φ_f is compact if $\theta (if <math>d > 3$) or $\theta (if <math>d = 2$).

Definition 63. Let X, Y be normed spaces and $T: X \to Y$. We say that T is *Fréchet differentiable* at $u \in X$ if $\exists L \in \mathcal{L}(X,Y)$ such that:

$$\lim_{\substack{h \to 0 \\ h \in X \setminus \{0\}}} \frac{\|T(u+h) - T(u) - Lh\|}{\|h\|} = 0$$

In this case, we say that L is the Fréchet derivative of T at u. We denote it by $\mathrm{d}T(u)$.

Definition 64. Let X, Y be normed spaces and $T: X \to Y$. We say that T is $G\hat{a}teaux$ differentiable at $u \in X$ if $\exists L \in \mathcal{L}(X, Y)$ such that $\forall h \in X$:

$$\lim_{\substack{t \to 0 \\ t \neq 0}} \frac{T(u+th) - T(u)}{t} = Lh$$

In this case, we say that L is the $G\hat{a}teaux$ derivative of T at u. We denote it by DT(u).

Lemma 65. Let X, Y be normed spaces and $T: X \to Y$. Then, if the Fréchet and Gâteaux derivatives of T at u exist, they are unique. Moreover we have:

- If T is Frechet differentiable at u, then it is Gâteaux differentiable at u and both differentials coincide.
- If T is Fréchet differentiable at u, T is continuous at u.
- If T is Gâteaux differentiable at $u \in U$ and the map

$$U \longrightarrow \mathcal{L}(X,Y)$$
$$u \longmapsto DT(u)$$

is continuous, then T is Fréchet differentiable at u and dT(u) = DT(u).

Proposition 66. Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be Carathéodory satisfying the growth condition $|f(x,t)| \leq C(1+|t|^{\theta})$ $\forall (x,t) \in \Omega \times \mathbb{R}$ with $1 \leq \theta \leq \frac{d+2}{d-2}$ (if $d \geq 3$) and $1 \leq \theta < \infty$ (if d=2). Let $F(x,t) := \int_0^t f(x,s) \, \mathrm{d}s$ and consider the functional

$$\Psi: H^1(\Omega) \longrightarrow \mathbb{R}$$

$$u \longmapsto \int_{\Omega} F(x, u(x)) \, \mathrm{d}x$$

Then, Ψ is well-defined on H^1 , it is of class \mathcal{C}^1 and its differential is given by:

$$d\Psi(u) h = \int_{\Omega} f(x, u(x))h(x) dx$$

Proof. We will assume $d \geq 3$, the case d = 2 is similar. We have that $|F(x,t)| \leq \tilde{C}(1+|t|^{\theta+1})$. Note that $2 \leq \theta+1 \leq 2^*$, so taking $p=\theta+1$ in Theorem 62 we have that

$$\Phi_F: H^1(\Omega) \longrightarrow L^1(\Omega)$$

$$u \longmapsto \int_0^u f(x,s) \, \mathrm{d}s$$

is continuous. Thus, Ψ is well-defined and continuous. Let $h \in H^1(\Omega), t \in (-1,1)$ and consider $g(t) = \Psi(u+th)$. We have:

$$\left| \frac{\partial}{\partial t} F(x, u + th) \right| = |f(x, u + th)h(x)|$$

$$\leq C \left(1 + (|u| + |h|)^{\theta} \right) |h| =: H$$

By Theorem 62, we know that $(|u|+|h|)^{\theta} \in L^{2^*/\theta}$ and $|h| \in L^{2^*}$, so by ?? ?? (since $\frac{1}{2^*} + \frac{\theta}{2^*} = \frac{\theta+1}{2^*} \le 1$) we have that $H \in L^1(\Omega)$. Thus, by ?? we have that g is differentiable and:

$$g'(0) = \int_{\Omega} f(x, u(x))h(x) dx$$

So $\exists D\Psi(u)$ and

$$D\Psi(u)h = \int_{\Omega} f(x, u(x))h(x) dx = \langle \Phi_f(u), h \rangle_{L^{p'} \times L^p}$$

where $\frac{1}{p}+\frac{1}{p'}=1$ and $2\leq p\leq 2^*$. To prove that $\Psi\in\mathcal{C}^1$, it suffices to show that $\Phi_f\in\mathcal{C}(H^1,L^{p'})$. We have $f(x,t)\leq C(1+|t|^{\theta})$, so $\Phi_f:H^1\to L^{p/\theta}$ is continuous for $\frac{d+2}{d-2}\leq p\leq 2^*$. If $p'\leq p/\theta$, since Ω is bounded, $L^{p/\theta}\hookrightarrow L^{p'}$ is continuous by $\ref{eq:theory}$?? An easy check shows that if we take $p=2^*$, and p' such that $\frac{1}{p}+\frac{1}{p'}=1$, these inequality hold.

Theorem 67 (Without constraints). Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be Carathéodory satisfying

- $|f(x,t)| \le C(1+|t|^{\theta}) \ \forall (x,t) \in \Omega \times \mathbb{R} \text{ with } 1 \le \theta \le \frac{d+2}{d-2} \text{ (if } d \ge 3) \text{ and } 1 \le \theta < \infty \text{ (if } d = 2).$
- $f(x,t)\operatorname{sgn}(t) \leq C' \ \forall (x,t) \in \Omega \times \mathbb{R}$.

Let $F(x,t) := \int_0^t f(x,s) ds$ and for $u \in H^1_0(\Omega)$ consider the functional:

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u) dx$$

Then, $I \in \mathcal{C}^1(H_0^1, \mathbb{R})$, it is bounded from below and there is $\underline{u} \in H_0^1(\Omega)$ such that $I(\underline{u}) = \min_{u \in H_0^1(\Omega)} I(u)$. Moreover, \underline{u} is a weak solution to the problem:

$$\begin{cases}
-\Delta u = f(x, u) & \text{in } \Omega \\
u|_{\partial\Omega} = 0 & \text{on } \partial\Omega
\end{cases}$$
(4)

Proof. We saw in Theorem 66 that the map $u \mapsto \int_{\Omega} F(x, u(x)) dx$ is of class C^1 and its differential is given by $h \mapsto \int_{\Omega} f(x, u(x))h(x) dx$. Moreover:

$$\int_{\Omega} |\nabla(u+h)|^2 - \int_{\Omega} |\nabla u|^2 = 2 \int_{\Omega} \nabla u \cdot \nabla h + o\left(\|h\|_{H_0^1}\right)$$

Since, $u \mapsto \int_{\Omega} \nabla u \cdot \nabla h$ is linear and continuous, we have that I is of class \mathcal{C}^1 and its differential is given by:

$$dI(u) h = \int_{\Omega} \nabla u \cdot \nabla h - \int_{\Omega} f(x, u(x)) h(x) dx$$

Integrating the hypothesis on f, we deduce that:

- $|F(x,t)| \leq \tilde{C}(1+|t|^{\theta+1}) \ \forall (x,t) \in \Omega \times \mathbb{R}$ with $1 \leq \theta \leq 2^*$ (if $d \geq 3$) and $1 \leq \theta < \infty$ (if d = 2).
- $F(x,t) \le C'|t| \ \forall (x,t) \in \Omega \times \mathbb{R}$.

Thus:

$$\begin{split} I(u) &\geq \frac{1}{2} \| \boldsymbol{\nabla} u \|_{L^{2}}^{2} - C' \int |u| \geq \frac{1}{2} \| \boldsymbol{\nabla} u \|_{L^{2}}^{2} - C'' \| u \|_{L^{2}} \geq \\ &\geq \frac{1}{2} \| \boldsymbol{\nabla} u \|_{L^{2}}^{2} - \bar{C} \| \boldsymbol{\nabla} u \|_{L^{2}} = -\frac{\bar{C}^{2}}{2} + \frac{1}{2} \left(\| \boldsymbol{\nabla} u \|_{L^{2}} - \bar{C} \right)^{2} \end{split}$$

where we used $\ref{eq:constraints}$ in the third inequality. So $\inf_{u\in H_0^1(\Omega)}I(u) \geq -\frac{\bar{C}^2}{2} > -\infty. \quad \text{Thus, I is bounded from below. Moreover, I is coercive in the sense that <math display="block">\lim_{\|u\|_{H_0^1}\to\infty}I(u) = +\infty.$

Now take a minimizing sequence (u_n) for I. Then, $\sup_{n\in\mathbb{N}}I(u_n)<\infty$ and by the coercivity property we have

 $\sup_{n\in\mathbb{N}}\|u_n\|_{H^1_0}<\infty. \text{ After extraction, we have } u_n\xrightarrow{H^1_0}\underline{u} \text{ for some }\underline{u}\in H^1_0(\Omega) \text{ and using Theorem 62 we have a compact embedding } H^1_0(\Omega)\hookrightarrow L^p(\Omega) \text{ for any } 1< p<2^*, \text{ so } u_n\xrightarrow{L^p}\underline{u}. \text{ Using the growth property and taking } p=\theta+1<2^* \text{ we conclude that } F(\cdot,u_n(\cdot))\xrightarrow{L^{p/\theta}}F(\cdot,\underline{u}(\cdot)). \text{ So, } \int_{\Omega}F(x,u_n(x))\,\mathrm{d}x\to\int_{\Omega}F(x,\underline{u}(x))\,\mathrm{d}x. \text{ On the other hand, since } u_n\xrightarrow{H^1_0}\underline{u}, \text{ we have that } \|\underline{u}\|_{H^1_0}\leq \liminf_{n\to\infty}\|u_n\|_{H^1_0}. \text{ Thus, if } m:=\min_{u\in H^1_0(\Omega)}I(u), \text{ we have:}$

- $I(\underline{u}) \leq \liminf_{n \to \infty} I(u_n) = m$.
- $I(\underline{u}) \ge m$ because $\underline{u} \in H_0^1(\Omega)$.

So \underline{u} is a minimizer for I. Moreover, this implies that $\int_{\Omega} |\nabla u_n|^2 \to \int_{\Omega} |\nabla \underline{u}|^2$, so $u_n \overset{H_0^1}{\to} \underline{u}$. Since, \underline{u} is a minimizer for I, we have that the map $t \mapsto I(\underline{u} + th)$ has a minimum at t = 0. Thus, $\forall h \in H_0^1(\Omega)$:

$$dI(\underline{u}) h = \int_{\Omega} \nabla \underline{u} \cdot \nabla h - \int_{\Omega} f(x, \underline{u}(x)) h(x) dx = 0$$

So \underline{u} is a weak solution to the problem of Eq. (4).

Theorem 68 (Bootstrap). Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be Carathéodory satisfying the growth condition $|f(x,t)| \leq C(1+|t|^{\theta}) \ \forall (x,t) \in \Omega \times \mathbb{R}$ with $\theta \geq 1$. Assume $\partial \Omega \in \mathcal{C}^2$ and $1 \leq p < \infty$. We have an isomorphism $-\Delta: W^{2,p}(\Omega) \cap W^{1,p} \to L^p(\Omega)$, meaning that for each $g \in L^p(\Omega)$ there exists a unique strong solution \underline{u} of

$$\begin{cases} -\Delta u = g & \text{in } \Omega \\ u|_{\partial\Omega} = 0 & \text{on } \partial\Omega \end{cases}$$

in $W^{2,p}$. Then, $\underline{u} \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$ for $0 < \alpha < 1$ and $\underline{u} \in \bigcap_{1 \le p < \infty} W^{2,p}(\Omega)$.

Proof. Define $g(x) = \Phi_f(\underline{u})(x) = f(x,\underline{u}(x))$. We have that $\underline{u} \in H_0^1(\Omega)$ (because it is a weak solution), so by Theorem 62 $\underline{u} \in L^{2^*}$. Thus, $g \in L^{p_1}$ with $p_1 = \frac{2^*}{\theta}$. So $\underline{u} \in W^{2,p_1}$ and thus $\underline{u} \in L^{q_1}$ with $\frac{1}{q_1} = \frac{1}{p_1} - \frac{2}{d}$ (critical Sobolev embedding). Hence, we get $g \in L^{p_2}$ with $p_2 = \frac{q_1}{\theta}$. We can repeat this process as long as $p_n < \frac{d}{2}$. We study the sequence $a_n = \frac{1}{p_n}$. In the process we have that if $a_n > \frac{2}{d}$, then:

$$a_{n+1} = \theta a_n - \frac{2}{d}\theta$$

with $a_1 = \frac{\theta}{2} - \frac{\theta}{d}$. The fixed point is $r := \frac{2\theta}{d(\theta-1)}$. So:

$$a_n = r + \theta^n (a_1 - r)$$

But an easy check shows that $a_1 - r < 0$, so $a_n \to -\infty$, which is a contradiction since $a_n > \frac{2}{d}$. Thus, the process stops after a finite number of times, and thus, we get $\underline{u} \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$ for $0 < \alpha < 1$ and $\underline{u} \in \bigcap_{1 \le n \le 2} W^{2,p}(\Omega)$.

Nonlinear case with constraints

Theorem 69 (Lagrange multipliers). Let E be a normed space and $I, J \in C^1(E, \mathbb{R})$. Assume that:

- For some $\mu \in \mathbb{R}$ and all $u \in E$ we have that if $J(u) = \mu$, then $\mathrm{d}J(u) \neq 0$.
- $\bullet \ \exists \underline{u} \in E \text{ such that } J(\underline{u}) = \mu \text{ and } I(\underline{u}) = \min_{\substack{u \in E \\ J(u) = \mu}} I(u).$

Then, $\exists \lambda \in \mathbb{R}$, called Lagrange multiplier, such that $dI(\underline{u}) = \lambda dJ(\underline{u})$.

Theorem 70 (Lagrange multipliers in several variables). Let E be a normed space and $I, J_1, \ldots, J_m \in \mathcal{C}^1(E, \mathbb{R})$. Assume that:

- For some $\mu_1, \ldots, \mu_m \in \mathbb{R}$ and all $u \in E$ we have that if $J_i(u) = \mu_i$ for all $i = 1, \ldots, m$, then $\mathrm{d} J_1(u), \ldots, \mathrm{d} J_m(u)$ are linearly independent in E^* .
- $\exists \underline{u} \in E$ such that $J_i(\underline{u}) = \mu_i$ for all $i = 1, \dots, m$ and $I(\underline{u}) = \min_{\substack{u \in E \\ J_i(u) = \mu_i}} I(u)$.

Then, $\exists \lambda_1, \dots, \lambda_m \in \mathbb{R}$, called Lagrange multipliers, such that:

$$dI(\underline{u}) = \lambda_1 dJ_1(\underline{u}) + \dots + \lambda_m dJ_m(\underline{u})$$

Proposition 71 (Aplication). Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function defined by $f(x,t) = |t|^{\theta} \operatorname{sgn}(t)$, with $1 \leq \theta \leq \frac{d+2}{d-2}$ and define the following functionals in $E = H_0^1(\Omega)$:

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$$
 $J(u) = \int_{\Omega} F(x, u) dx$

with $F(x,t) = \int_0^t f(x,s) ds$. Then, $\tilde{u} = \underline{u}/t$ is a weak solution to the problem:

$$\begin{cases}
-\Delta u = f(x, u) & \text{in } \Omega \\
u|_{\partial\Omega} = 0 & \text{on } \partial\Omega
\end{cases}$$
(5)

where \underline{u} is the minimizer of the problem $\min_{\substack{u \in H_0^1(\Omega)\\J(u)=1}} I(u)$.

Proof. We will solve first a much simpler problem:

$$\begin{cases}
-\Delta u = \lambda f(x, u) & \text{in } \Omega \\
u|_{\partial\Omega} = 0 & \text{on } \partial\Omega
\end{cases}$$
(6)

with $\lambda>0$. Denote by m the minimizer of I under J(u)=1. Since $F(x,t)=\frac{|t|^{\theta+1}}{\theta+1}$, under J(u)=1 we have that $\|u\|_{L^{\theta+1}}^{\theta+1}=\theta+1$. Now, since $\theta+1\leq 2^*$, we have a continuous embedding $H_0^1(\Omega)\hookrightarrow L^{\theta+1}(\Omega)$, so $\frac{1}{2}\|\nabla u\|_{L^2}^2\geq C\|u\|_{L^{\theta+1}}^2\geq K>0$. Thus, $m\geq K>0$. Now, take a minimizing sequence (u_n) for I. Since u_n is bounded in H_0^1 , after extraction we have $u_n\stackrel{H_0^1}{\longrightarrow}\underline{u}$ for some $\underline{u}\in H_0^1(\Omega)$. Moreover, $u_n\stackrel{L^{\theta+1}}{\longrightarrow}\underline{u}$ by compact embedding. Thus, $1=J(u_n)\to J(\underline{u})$. So $J(\underline{u})=1$ and since $m=\liminf_{n\to\infty}I(u_n)\geq I(\underline{u})$ and $I(\underline{u})\geq m$, we have that \underline{u} is a minimizer for I under J(u)=1. Now, we know that I,J are of class \mathcal{C}^1 on $H_0^1(\Omega)$ and

$$\mathrm{d}J(u)\,h = \int\limits_{\Omega} |u|^{\theta - 1} u h$$

If J(u)=1, then $\mathrm{d}J(u)\,u=\theta+1\neq 0$. So there is a Lagrange multiplier $\lambda\in\mathbb{R}$ such that $\mathrm{d}I(u)=\lambda\,\mathrm{d}J(u)$, that is:

$$\int_{\Omega} \mathbf{\nabla} \underline{u} \cdot \mathbf{\nabla} h = \lambda \int_{\Omega} |\underline{u}|^{\theta - 1} \underline{u} h$$

Whence \underline{u} is a weak solution of Eq. (6). Note that taking $h = \underline{u}$ we deduce that $\lambda > 0$.

Now take $t = \lambda^{-\frac{1}{\theta-1}} > 0$ and $\tilde{u} = t^{-1}u$. Then:

$$-\Delta(\tilde{u}t) = \lambda t^{\theta-1} |\tilde{u}|^{\theta-1} \tilde{u}t \iff -\Delta \tilde{u} = |\tilde{u}|^{\theta-1} \tilde{u} = f(x,\tilde{u})$$

So \tilde{u} is a weak solution in $H^1_0(\Omega)$ of Eq. (5) and $\tilde{u} \neq 0$ because $\frac{1}{\theta+1} \int_{\Omega} |\tilde{u}|^{\theta+1} = \lambda^{\frac{\theta+1}{\theta-1}} > 0$.

Remark. In general, it suffices to have $f: \Omega \times \mathbb{R} \to \mathbb{R}$ Carathéodory with:

- $|f(x,t)| \leq C(1+|t|^{\theta}) \ \forall (x,t) \in \Omega \times \mathbb{R} \text{ with } 1 \leq \theta \leq \frac{d+2}{d-2} \text{ (if } d \geq 3) \text{ and } 1 \leq \theta < \infty \text{ (if } d=2).$
- $f(x,t)t \ge C' \min_{2 \le \alpha, \beta \le \theta+1} \{|t|^{\alpha}, |t|^{\beta}\} \ \forall (x,t) \in \Omega \times \mathbb{R}.$

Remark. If J is not homogeneous we cannot proceed as in the proof. But in this case we use the *Nehari manifold method*.

Proposition 72 (Nehari manifold method). Let f be as in 71 Aplication with the additional assumptions that:

- $t \mapsto f(\cdot,t)$ is C^1 with a growth condition $\left|\frac{\partial f}{\partial t}\right| \le C(1+|t|^{\theta-1})$.
- $f(x,t)t < \partial_t f(x,t)t^2 \ \forall (x,t) \in \Omega \times \mathbb{R}^*$.

(5) Let $\mathcal{N} := \{ u \in H_0^1(\Omega) \setminus \{0\} : J(u) = 0 \}$, where:

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u) dx$$
$$J(u) = dI(u) u = \int_{\Omega} |\nabla u|^2 - \int_{\Omega} f(x, u) u$$

Then, if $\underline{u} \in \mathcal{N}$ is a minimizer of I under J(u) = 0, then $dI(\underline{u}) = 0$ and so \underline{u} is a weak solution to Eq. (5).

Proof. We have that:

$$dJ(u) h = 2 \int_{\Omega} \nabla u \cdot \nabla h - \int_{\Omega} [\partial_u f(x, u) u + f(x, u)] h$$

Thus, if $u \in \mathcal{N}$, we have:

$$dJ(u) u = \int_{\Omega} [f(x, u)u - \partial_u f(x, u)u^2] < 0$$

because J(u)=0 and at the end we used one of the extra hypothesis on f. Now assume $\underline{u}\in\mathcal{N}$ and $I(\underline{u})=\min_{\substack{u\in H_0^1(\Omega)\\J(u)=0}}I(u)$. Then, $\exists\lambda\in\mathbb{R}$ such that $\mathrm{d}I(\underline{u})=\lambda\,\mathrm{d}J(\underline{u})$. Thus:

$$\int_{\Omega} [\boldsymbol{\nabla} \underline{u} \cdot \boldsymbol{\nabla} h - f(x, \underline{u}) h] = \lambda \int_{\Omega} [\partial_{u} f(x, \underline{u}) \underline{u} + f(x, \underline{u}) - f(x, \underline{u})] h$$

Moreover, $\int_{\Omega} |\nabla \underline{u}|^2 = \int_{\Omega} f(x,\underline{u})\underline{u}$. So taking $h = \underline{u}$ we get:

$$0 = \lambda \int_{\Omega} [f\underline{u} - \partial_u f\underline{u}^2]$$

which implies $\lambda = 0$ because of the extra hypothesis on f.

Mountain pass method

Our goal in this section is again find a nonzero weak solution in $H_0^1(\Omega)$ to Eq. (5).

Definition 73. Let E be a Banach space and $I \in \mathcal{C}^1(E,\mathbb{R})$. We say that I satisfies the *Palais-Smale condition at level* c if every sequence (u_n) in E, such that $I(u_n) \to c$ and $\mathrm{d}I(u_n) \to 0$ in E^* , has a convergent subsequence (that is, is precompact).

Theorem 74 (Ambrosetti-Rabinowitz theorem). Let E be a Banach space and $I \in \mathcal{C}^1(E, \mathbb{R})$. Assume that $\exists a \neq b \in E$ such that

$$c:=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}I(\gamma(t))>\max\{I(a),I(b)\}$$

with

$$\Gamma := \{ \gamma \in \mathcal{C}([0,1], E) : \gamma(0) = a, \gamma(1) = b \}$$

Then, there is a sequence (u_n) in E such that $I(u_n) \to c$ and $\mathrm{d}I(u_n) \to 0$ in E^* . Such a sequence is called a *Palais-Smale sequence*.

Corollary 75 (Mountain pass theorem). Let E be a Banach space and $I \in \mathcal{C}^1(E,\mathbb{R})$. Assume that $\exists a \neq b \in E$ such that

$$c := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)) > \max\{I(a), I(b)\}$$

with

$$\Gamma := \{ \gamma \in \mathcal{C}([0,1], E) : \gamma(0) = a, \gamma(1) = b \}$$

If, moreover, I satisfies the Palais-Smale condition at level c, then $\exists u_* \in E$ such that $I(u_*) = c$ and $\mathrm{d}I(u_*) = 0$.

Proposition 76. Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be Carathéodory satisfying:

- $f(x,t)t \ge pF(x,t) \ \forall (x,t) \in \Omega \times \mathbb{R}$ (superquadradicity condition).
- $f(x,t)t < \overline{C}|t|^{p_1}$ for |t| > 1.
- $f(x,t)t > C|t|^{p_2}$ for |t| < 1.

with $2 < p, p_1, p_2 < 2^*$ and $F(x,t) = \int_0^t f(x,s) \, \mathrm{d}s$. Consider the functional:

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u) dx$$

Then, $\exists \underline{u} \in H_0^1(\Omega)$ such that $I(\underline{u}) = \min_{u \in H_0^1(\Omega)} I(u)$ and \underline{u} is a weak solution to Eq. (5).

Proof. First of all, note that the thrid hypothesis on f implies that $F(x,t) \geq 0$ for $|t| \leq 1$. From the superquadradicity condition, for t > 0, the function $|t|^{-p}F(x,t)$ is nondecreasing (the derivative is nonnegative). So, for $0 \leq t \leq 1$ we have $F(x,t) \leq |t|^p F(x,1)$. Similarly, for $-1 \leq t \leq 0$ the function is nonincreasing and so we have $F(x,t) \leq |t|^p F(x,-1)$. Using the upper estimate we get, for $|t| \geq 1$, $F(x,t) \leq \overline{\overline{C}} |t|^{p_1}$ and so $|F(x,t)| \leq C'(|t|^p + |t|^{p_1}) \ \forall t$. So:

$$\int_{\Omega} F(x, u) \le C' (\|u\|_{L^{p}}^{p} + \|u\|_{L^{p_{1}}}^{p_{1}})$$

$$\le C'' (\|\nabla u\|_{L^{2}}^{p} + \|\nabla u\|_{L^{2}}^{p_{1}})$$

by ?? ?? and ?????. And thus:

$$I(u) \ge \|\nabla u\|_{L^2}^2 \left(\frac{1}{2} - C''\left[\|\nabla u\|_{L^2}^{p-2} + \|\nabla u\|_{L^2}^{p_1-2}\right]\right)$$

$$\geq \frac{1}{4} \|u\|_{H_0^1}^2 \tag{7}$$

for $\|u\|_{H_0^1} \leq r$ with r>0 small enough. Now, take $u_1 \in H_0^1(\Omega) \setminus \{0\}$ and $\lambda>0$ to be chosen later. From the previous reasoning, we have $F(x,t) \geq F(x,1)|t|^p$ for $t\geq 1$ and $F(x,t) \geq F(x,-1)|t|^p$ for $t\leq -1$. So, $F(x,t)\geq K|t|^p\geq 0$ for some K>0 and all $|t|\geq 1$. Now, since $u_1\neq 0$ $\exists \varepsilon>0$ such that $\int_{\Omega}|u_1|^p\mathbf{1}_{\{|u_1|\geq \varepsilon\}}>0$. So for $\lambda\geq \frac{1}{\varepsilon}$ we have:

$$I(\lambda u_1) \leq \frac{\lambda^2}{2} \|\nabla u_1\|_{L^2}^2 - \int_{\Omega} F(x, \lambda u_1) \mathbf{1}_{\{|u_1| \geq \varepsilon\}} \leq$$

$$\leq \frac{\lambda^2}{2} \|\nabla u_1\|_{L^2}^2 - K\lambda^p \int_{\Omega} |u_1|^p \mathbf{1}_{\{|u_1| \geq \varepsilon\}} =$$

$$= A\lambda^2 - B\lambda^p \xrightarrow{\lambda \to \infty} -\infty$$

where the first inequality follows from the fact that $F(x,t) \geq 0$ for $|t| \leq 1$. So we may choose $\lambda = \lambda_1 > 0$ such that $I(\lambda_1 u_1) \leq 0$ and given the previous r > 0 we choose u_1 with $\|\lambda_1 u_1\|_{H_0^1} > r$. Now let

$$\Gamma := \{ \gamma \in \mathcal{C}([0,1], H_0^1(\Omega)) : \gamma(0) = 0, \gamma(1) = \lambda_1 u_1 \}$$

and define $c:=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}I(\gamma(t))$. Take $\gamma\in\Gamma$. Since $\|\gamma(0)\|_{H^1_0}=0$ and $\|\gamma(1)\|_{H^1_0}>r,\ \exists t_0\in(0,1)$ such that $\|\gamma(t_0)\|_{H^1_0}=r$. So by Eq. (7) we have:

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)) \ge \frac{r^2}{4} > 0 = \max\{I(0), I(\lambda_1 u_1)\}$$

In order to use 75 Mountain pass theorem it's missing to check that I satisfies the Palais-Smale condition at level c. Let (u_n) be a Palais-Smale sequence at level c. We then have:

$$\begin{cases} I(u_n) \to c \\ dI(u_n) \xrightarrow{H^{-1}} 0 \end{cases}$$

The second equation implies that $dI(u_n) u_n \to 0$ and thus:

$$\begin{cases} \frac{1}{2} \int_{\Omega} |\nabla u_n|^2 - \int_{\Omega} F(x, u_n) \, \mathrm{d}x = c + \mathrm{o}(1) \\ \int_{\Omega} |\nabla u_n|^2 - \int_{\Omega} f(x, u_n) u_n \, \mathrm{d}x = \mathrm{o}\left(\|u_n\|_{H_0^1}\right) \end{cases}$$

From here subtracting the first equation (multiplied by p) to the second one, we have:

$$\left(1 - \frac{p}{2}\right) \int_{\Omega} |\nabla u_n|^2 dx + \int_{\Omega} \left[pF(x, u_n) - f(x, u_n) u_n \right] dx =$$

$$= -pc + o(1) + o\left(\|u_n\|_{H_0^1} \right)$$

By hypothesis the second term is negative, so:

$$\left(\frac{1}{2} - \frac{1}{p}\right) \int_{\Omega} |\nabla u_n|^2 dx \le c + o(1) + o\left(\|u_n\|_{H_0^1}\right)$$

So $\exists K>0$ such that $\|u_n\|_{H^1_0}\leq K\ \forall n\in\mathbb{N}$. So after extracting a subsequence we have $u_n\stackrel{H^1_0}{\longrightarrow} u$ for some

 $u\in H^1_0(\Omega)$ and by compact embedding $u_n\stackrel{L^p}{\longrightarrow} u$ for all $1\leq p<2^*$. But f is Carathéodory with growth condition $|f(x,t)|\leq C(1+|t|^\theta)$ with $1\leq \theta=p_1-1<\frac{d+2}{d-2}$. So $f(x,u_n)\stackrel{L^q}{\longrightarrow} f(x,u)$ for all $1\leq q<\frac{2^*}{\theta}$. Now, by duality, the continuous embedding $H^1_0\hookrightarrow L^{2^*}$ gives $L^{\hat{q}}\hookrightarrow H^{-1}$ with $\frac{1}{\hat{q}}+\frac{1}{2^*}=1$. An easy computation shows that:

$$\hat{q} = \frac{2d}{d-2} \implies \theta \hat{q} < 2^* \implies \hat{q} < \frac{2^*}{\theta}$$

So
$$f(x, u_n) \xrightarrow{H^{-1}} f(x, u)$$
. Now since
$$dI(u_n) h = \langle -\Delta u_n - f(x, u_n), h \rangle_{H^{-1} \times H_0^1}$$

we have
$$-\Delta u_n = f(x, u_n) + r_n$$
 with $r_n = \mathrm{d}I(u_n) \stackrel{H^{-1}}{\longrightarrow} 0$.
Thus, $-\Delta u_n \stackrel{H^{-1}}{\longrightarrow} f(x, u)$ (and so $u_n \stackrel{H^1_0}{\longrightarrow} (-\Delta)^{-1} f(x, u)$) and since $u_n \stackrel{H^1_0}{\longrightarrow} u$ implies $-\Delta u_n \stackrel{H^{-1}}{\longrightarrow} -\Delta u$, we have $-\Delta u = f(x, u)$. This implies that in fact $u_n \stackrel{H^1_0}{\longrightarrow} u$ and so $I(u) = \lim_{n \to \infty} I(u_n) = c$.