
Introduction to nonlinear elliptic PDEs

1. | Introduction
Definition 1. Let aij , bj , c, f be known scalar functions
defined on Ω ⊆ Rd. Usually we will denote A = (aij) and
b = (bj). A linear second-order PDE is an equation of the
form:

−
d∑

i,j=1
aij(x)∂2

iju(x) +
d∑

j=1
bj(x)∂ju(x) + c(x)u(x) = f(x)

where u : Ω → R is the unknown function. This form is
called non-divergence form. If we write the equation in
the form:

−
d∑

i=1

∂

∂xi

 d∑
j=1

aij(x)∂ju(x)

 +
d∑

j=1
bj(x)∂ju(x)+

+ c(x)u(x) = f(x)

then we say that the equation is in divergence form. To-
gether with the PDE we usually impose boundary condi-
tions on ∂ Ω. The Dirichlet boundary condition is:

u|∂ Ω = g

and it is called homogeneous if g = 0. The Neumann
boundary condition is:

⟨n, A∇u⟩|∂ Ω = g

where we have assumed that the boundary of Ω is smooth
enough to define the normal vector n. The condition is
called homogeneous if g = 0. Note that if A = Id, then
the Neumann boundary condition is just ∂nu = g.

Remark. If the coefficients aij ∈ C1, then we are able to
convert the equation from non-divergence form to diver-
gence form and vice versa.

Definition 2. Let aij , bj , c be known functions on Ω ⊆
Rd. We say that the operator

L = −
d∑

i,j=1
aij∂2

ij +
d∑

j=1
bj∂j + c (1)

is uniformly elliptic if there exists θ > 0 such that for all
x ∈ Ω and all p ∈ Rd we have:

Qx(p) := pTA(x)p =
d∑

i,j=1
aij(x)pipj ≥ θ

d∑
i=1

pi
2 = θ ∥p∥2

Remark. Geometrically speaking, this implies that the sets

ξx,h = {p ∈ Rd : Qx(p) = h}

are ellipsoids.

Definition 3. Consider the problem

Df :=
{

Lu = f in Ω
u = 0 on ∂ Ω

where L is as in Eq. (1). The weak formulation (or varia-
tional formulation) of the problem is:

⟨∇u, ∇v⟩2 +⟨b · ∇u, v⟩2 +⟨cu, v⟩2 = ⟨f, v⟩2 ∀v ∈ H1
0 (Ω)

A solution of such problem is called a weak solution of Df .

Definition 4. If the weak solution uf of the problem Df

is in H1
0 (Ω) ∩ W 2,p(Ω) for some p ∈ [1, ∞), then uf is

called a strong solution of Df . If uf ∈ C2(Ω) ∩ H1
0 (Ω),

then we say that uf is a classical solution of Df .

Proposition 5. Let H be Hilbert and K : H → H be a
continuous linear operator. Then, the following are equiv-
alent:

1. K is compact.

2. For any bounded sequence (un) ∈ H, the sequence
(Kun) has a convergent subsequence.

3. For any sequence (un) ∈ H such that un ⇀ u, we
have Kun → Ku.

2. | Hilbert space methods for diver-
gence form linear PDEs

In this section, we will assume that Ω ⊂ Rd is an open,
bounded subset, aij = aji and aij , bj , c ∈ L∞(Ω).

Lax-Milgram theorem

Remark. Instead of the usual norm for H1
0 (Ω), here we

will use the following one:

∥u∥2
H1

0 (Ω) = ∥∇u∥2
L2(Ω)

Definition 6. Let H be a Hilbert space and a : H ×H →
R be a bilinear map. We say that a is continuous if ∃C > 0
such that ∀u, v ∈ H we have:

|a(u, v)| ≤ C ∥u∥ ∥v∥

Definition 7. Let H be a Hilbert space and a : H ×H →
R be a bilinear map. We say that a is coercive if ∃α > 0
such that ∀u ∈ H we have:

a(u, u) ≥ α ∥u∥2

Definition 8. Let H be a Hilbert space and a : H ×H →
C be a bilinear map. We say that a is symmetric if
∀u, v ∈ H we have:

a(u, v) = a(v, u)
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Theorem 9 (Lax-Milgram theorem). Let H be a
Hilbert space and a : H × H → R be a continuous and
coercive bilinear map. Then, ∀f ∈ H∗ ∃!uf ∈ H such
that:

a(uf , v) = f(v) ∀v ∈ H

In addition, if H is a real Hilbert space and a is symmetric,
then u is the unique minimizer of:

min
v∈H

{
1
2a(v, v) − f(v)

}
Proposition 10. Consider the problem:{

Lu = f in Ω
u = 0 on ∂ Ω

with L = −
∑d

i,j=1 ∂i(aij∂j) and f ∈ L2(Ω). Then, the
problem has a unique weak solution u ∈ H1

0 (Ω) and

∥u∥H1
0 (Ω) ≤ C ∥f∥L2(Ω)

Proof. Consider the bilinear form

a(u, v) :=
ˆ

Ω

d∑
i,j=1

aij∂iu∂jv

We check the hypotheses of 9 Lax-Milgram theorem:

1. a is continuous:

|a(u, v)| ≤
d∑

i,j=1
∥aij∥∞ ∥∇u∥2 ∥∇v∥2

≤ C ∥u∥H1
0 (Ω) ∥v∥H1

0 (Ω)

2. a is coercive:

a(u, u) =
ˆ

Ω

d∑
i,j=1

aij∂iu∂ju

≥ θ

ˆ

Ω

d∑
i=1

|∂iu|2

= θ∥u∥H1
0 (Ω)

2

by the uniform ellipticity of L.

Moreover, since a(u, u) = ⟨f, u⟩2 we have that:

θ∥u∥H1
0 (Ω)

2 ≤ ⟨f, u⟩2 ≤ ∥f∥2 ∥u∥2 ≤ C ∥f∥2 ∥u∥H1
0 (Ω)

by the ?? ??. □

Abstract Fredholm alternative
Remark. One can check that if we try to apply 9 Lax-
Milgram theorem to the problem:{

Lu = f in Ω
u = 0 on ∂ Ω

with L = −
∑d

i,j=1 ∂i(aij∂j) +
∑d

j=1 bj∂j , it fails due to
the coercivity condition.

Proposition 11. Consider the problem:

Dµ,f :=
{

Lµu = f in Ω
u = 0 on ∂ Ω

with Lµ = −
∑d

i,j=1 ∂i(aij∂j) +
∑d

j=1 bj∂j + µ. Then, if
µ > 0 is large enough, the problem has a unique weak
solution in H1

0 (Ω)

Sketch of the proof. Taking the natural bilinear map a,
the coercivity condition becomes:

aµ(u, u) ≥ θ ∥u∥2
H1

0 (Ω) − C ∥u∥H1
0 (Ω) ∥u∥2 + µ ∥u∥2

2

which for µ large enough it is bigger than δ ∥u∥2
H1

0 (Ω) for
some δ > 0. □

Lemma 12. Let H be Hilbert and K : H → H be a
compact linear operator. Then, dim ker(id − K) < ∞.

Proof. If dim ker(id − K) = ∞, then ∃(un) ∈ ker(id − K)
orthonormal, and thus bounded. In particular, un = Kun

and since K is compact, we have that (Kun) has a con-
vergent subsequence. But:

0 = lim
k→∞

∥∥Kunk
− Kunk+1

∥∥2

= lim
k→∞

∥∥unk
− unk+1

∥∥2

= lim
k→∞

∥unk
∥2 +

∥∥unk+1

∥∥2

= 2

by ?? ??. □

Lemma 13. Let H be Hilbert and K : H → H be
a compact linear operator. Then, ∃c > 0 such that
∀u ∈ ker(id − K)⊥ we have ∥u − Ku∥ ≥ c ∥u∥.

Proof. We proceed by contradiction. Suppose we have a
sequence (un) ∈ ker(id − K)⊥ with ∥un∥ = 1 such that
∥un − Kun∥ → 0. Since (un) is bounded, we have that
(un) has a weakly convergent subsequence (unk

) to u ∈ H.
Since K is compact, we have that Kunk

→ Ku, and thus
by continuity of the norm, u = Ku. Thus u ∈ ker(id − K)
and u ∈ ker(id − K)⊥, which implies u = 0, a contraction
with ∥u∥ = 1. □

Lemma 14. Let H be Hilbert and K : H → H be a
compact linear operator. Then, im(id − K) is closed.

Proof. Let (vn) ∈ im(id − K) be such that vn → v ∈ H.
Then, ∃(un) ∈ H such that vn = (id − K)un. By ?? ??,
we can write un = uker

n + uker⊥

n , where uker
n ∈ ker(id − K)

and uker⊥

n ∈ ker(id − K)⊥. Thus, vn = (id − K)uker⊥

n and
by Theorem 13, we have:

∥vn − vm∥ ≥ c
∥∥∥uker⊥

n − uker⊥

m

∥∥∥
Since (vn) is Cauchy, so it is (uker⊥

n ), and thus (uker⊥

n ) con-
verges to some u ∈ ker(id − K)⊥. Thus, v = (id − K)u ∈
im(id − K). □
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Theorem 15 (Abstract Fredholm alternative). Let
H be Hilbert and K : H → H be a compact linear opera-
tor. Then:

1. ker(id − K) and ker(id − K∗) are both finite dimen-
sional, and they have the same dimension.

2. im(id − K) = ker(id − K∗)⊥. In particular, im(id −
K) is closed.

3. Either ker(id−K) ̸= {0} or id−K is an isomorphism.

Proof.

2. From ?? we have that im A = (ker A∗)⊥ for any
general operator A between Hilbert spaces. Thus,
im(id − K) = ker(id − K∗)⊥ ⇐⇒ im(id − K) is
closed, which reduces to Theorem 14.

3. We first show that ker(id − K) = {0} ⇐⇒
ker(id − K∗) = {0}. The argument is symmetric
because K∗∗ = K and the fact that K is com-
pact ⇐⇒ K∗ is compact. So suppose ker(id −
K) = {0}. Then, id − K is injective. Assume
ker(id − K∗) ̸= {0}. Then, im(id − K) = ker(id −
K∗)⊥ ̸= H and so im((id − K)2) ⊊ im(id − K).
Indeed, if we had equality, then for any u ∈ H,
we would have (id − K)u ∈ im((id − K)2), and
thus ∃v ∈ H such that (id − K)u = (id − K)2

v,
which implies u = (id − K)v because ker(id − K) =
{0}. Now, recursively, we have an infinite sequence
im((id − K)n+1) ⊊ im((id − K)n), which implies
that ∀n ∃un ∈ im((id − K)n) ∩ im((id − K)n+1)⊥

with ∥un∥ = 1. Thus, ⟨un, um⟩ = δn,m. But un −
Kun ∈ im((id − K)n+1) so, un − Kun ⊥ un. This
implies, by ?? ??, that ∥Kun∥2 = ∥un − Kun∥2 +
∥un∥2 ≥ 1, which is a contradiction with the com-
pactness of K because any orthonormal sequence al-
ways converges weakly to zero (and so Kun → 0).
So either ker(id − K) ̸= {0} or id − K is bijective.
To finish this point, we need to prove that if
ker(id − K) = {0}, then (id − K)−1 is a bounded
linear operator. But this is a consequence of The-
orem 13: if u ∈ H, then u ∈ ker (id − K)⊥ and
thus ∥(id − K)u∥ ≥ c ∥u∥, which implies that ∥v∥ ≥
c

∥∥∥(id − K)−1
v
∥∥∥ taking v = (id − K)u.

1. Assume without loss of generality that dim ker(id −
K) < dim ker(id − K∗). Then, there exists a linear
injective map A : ker(id − K) → ker(id − K∗) =
im(id − K)⊥. Let K̃ be the operator defined by
K̃u = Ku + Auker, where uker is the projection of u
onto ker(id−K). Then, K̃ is compact (because K is
compact and so is A, because it has finite range).
Moreover, if u ∈ ker(id − K̃), then (id − K)u −
Auker = 0, which since (id − K)u ∈ im(id − K)
and Auker ∈ im(id − K)⊥ implies that both terms
are zero. So u = uker ∈ ker(id − K) and since A is
injective, u = uker = 0. Thus, ker(id − K̃) = {0}
and by the previous point, id− K̃ is an isomorphism
from H to itself. So, for every w ∈ ker(id − K∗),
∃u ∈ H such that w = (id − K̃)u. Projecting both

sides onto ker(id − K∗) = im(id − K)⊥, we have
w = −Auker, which implies that A is onto, and so
dim ker(id − K) = dim ker(id − K∗). Theorem 12
finishes the proof.

□

Definition 16. Consider the operator L as in Eq. (1).
We define the formal adjoint of L as:

L∗v := −
d∑

i,j=1
∂i(aij∂jv) −

d∑
j=1

∂j(bjv) + cv

= −
d∑

i,j=1
∂i(aij∂jv) −

d∑
j=1

bj∂jv +

c −
d∑

j=1
∂jbj

 v

It satisfies ⟨Lu, v⟩ = ⟨u, L∗v⟩ for all u, v ∈ H1
0 (Ω).

Proposition 17. The homogeneous adjoint problem

D∗
0 :=

{
L∗v = 0 in Ω
v = 0 on ∂ Ω

whose weak formulation is

⟨∇v, ∇w⟩2 + ⟨b · ∇v, w⟩2 = 0 ∀w ∈ H1
0 (Ω)

has a finite dimensional solution space W0, the space V0
of solutions of D0 has also finite dimension and dim W0 =
dim V0. Moreover, if f ∈ L2(Ω), Df is solvable if and only
if ⟨f, v⟩ = 0 for all v ∈ W0.

Proof. We saw in Theorem 11 that for µ ≥ µ0 > 0, Lµ is
an isomorphism. Now we want to solve L0u = f . Consider
the change of variables u = Lµ0

−1w, with w = Lµ0u ∈
H−1(Ω). Thus, the equation becomes:

f = (Lµ0 − µ0)Lµ0
−1w = w − µ0Lµ0

−1w = (id − K)w

with K = µ0Lµ0
−1. We claim that K : L2(Ω) → L2(Ω)

is compact. Note that K = µ0ιH1
0 ↪→L2 ◦ Lµ0

−1 ◦ ιL2↪→H−1 ,
so since Lµ0

−1 and ιL2↪→H−1 are bounded, and we have a
compact embedding H1

0 ↪→ L2, we have that K is com-
pact. Finally, one can check that:

id − K∗ = (id − K)∗ =
(
L0Lµ0

−1)∗ = (Lµ0
∗)−1

L0
∗

By 15 Abstract Fredholm alternative, we have that (id −
K)w = f has a solution if and only if (id − K∗)h = 0 =⇒
⟨f, h⟩L2 = 0 for all h ∈ L2. But Lµ0

∗ is an isomorphism,
so (id − K∗)h = 0 ⇐⇒ L0

∗h = 0. □

Definition 18. We define the following problem:

Nf :=
{

−∆u = f in Ω
∂u
∂n = 0 on ∂ Ω

and N ∗
f = Nf . The weak formulation of the problem is:

⟨∇u, ∇v⟩ = ⟨f, v⟩ ∀v ∈ H1(Ω)

Proposition 19. Nf has at least one solution if and only
if for any weak solution v of N0 we have ⟨f, v⟩ = 0.
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Spectrum of compact operators
In this section K will denote either R or C.
Definition 20. Let H be a K-Hilbert space and K : H →
H be a bounded operator. We define the resolvent set of
K as:

ρ(K) = {λ ∈ K : λid − K is invertible}

and the spectrum of K as:

σ(K) = K \ ρ(K)

Proposition 21. Let H be a K-Hilbert space and T :
H → H be a bounded operator. Then, σ(T ) is closed.
Proof. Note that ρ(K) is open because if λ ∈ ρ(T ),
then ∃ε ∈ R such that |ε| <

∥∥∥(λid − K)−1
∥∥∥. And so

(λ + ε)id − K is invertible. Thus, σ(K) is closed. □

Theorem 22. Let H be an infinite-dimensional separa-
ble Hilbert space and K : H → H be a compact operator.
Then:

1. 0 ∈ σ(K).

2. If λ ∈ σ(K) \ {0}, then λ is an eigenvalue of K.

3. σ(K) is closed and at most countable.

4. If σ(K)∩R is infinite, then σ(K)\{0} is of the form
{λn}n∈N with λn → 0.

5. If λ ∈ σ(K) \ {0}, then:

dim

 ⋃
p≥1

ker (λid − K)p

 < ∞

Proof.
1. Assume 0 /∈ σ(K). Then, K is bijective and so

id = K ◦ K−1 is compact, as it is the composition
of a compact operator and a bounded operator. But
this is a contradiction with ?? ?? because the im-
age of any bounded set under a compact operator is
relatively compact (or precompact).

2. If ker(λid − K) = {0}, then by 15 Abstract Fred-
holm alternative, λid − K is an isomorphism, and
thus λ ∈ ρ(K).

□

Lemma 23. Let H be a Hilbert space and T : H → H
be a continuous self-adjoint operator. Then:

∥T∥ = sup
∥x∥=1

|⟨x, Tx⟩|

Proof. Clearly α := sup
∥x∥=1

|⟨x, Tx⟩| ≤ ∥T∥. For the

converse, it suffices to show that |⟨Tx, y⟩| ≤ α for all
∥x∥ = ∥y∥ = 1. We have:

⟨Tx, y⟩ = 1
4 (⟨T (x + y), x + y⟩ − ⟨T (x − y), x − y⟩)

And then, by ?? ??:

|⟨Tx, y⟩| ≤ α

4

(
∥x + y∥2 + ∥x − y∥2

)
= α

□

Lemma 24. Let H ̸= {0} be Hilbert and K : H → H be
a compact and self-adjoint operator. Then:

sup
∥x∥=1

⟨x, Kx⟩ = λ

where λ is the largest eigenvalue of K.

Proof. Let (xn) be a maximizing sequence with ∥xn∥ = 1.
After extraction, we can assume that xn ⇀ x∗ and so
Kxn → Kx∗. Thus, ⟨xn, Kxn⟩ → ⟨x∗, Kx∗⟩. So x∗ is
a maximizer. Now, take h ⊥ x∗ and ∥h∥ = 1. Then,
xt := x∗+th√

1+t2 satisfies ∥xt∥ = 1 and:

⟨xt, Kxt⟩ = ⟨x∗, Kx∗⟩ + 2t⟨h, Kx∗⟩ + o (t) ≤ ⟨x∗, Kx∗⟩

because of the maximality. So we must have ⟨h, Kx∗⟩ = 0,
which implies Kx∗ ∈ (⟨x∗⟩⊥)

⊥
= ⟨x∗⟩. Thus, Kx∗ = λx∗.

□

Regularity theorems for weak solutions of
divergence-form elliptic PDEs

Theorem 25 (Inner regularity). Assume, in addition
to the usual assumptions, that aij ∈ C1(Ω). Let f ∈ L2(Ω)
and u ∈ H1(Ω) be a weak solution of Lu = f . Then,
u ∈ H2

loc(Ω) and for any compact embedding ω ⊂⊂ Ω,
meaning that ω ⊂ Ω compact, we have u ∈ H2(ω) and:

∥u∥H2(ω) ≤ C
(

∥f∥L2(Ω) + ∥u∥L2(Ω)

)
Corollary 26. Assume that aij ∈ Cm+1(Ω) for some
m ∈ N, and bj , c ∈ Cm(Ω). Let f ∈ Hm(Ω) and u ∈ H1

be a weak solution of Lu = f . Then, u ∈ Hm+2
loc (Ω) and

for any ω ⊂⊂ Ω we have u ∈ Hm+2(ω) and:

∥u∥Hm+2(ω) ≤ C
(

∥f∥Hm(Ω) + ∥u∥L2(Ω)

)
Corollary 27. Assume aij , bj , c, f ∈ C∞(Ω). Let u ∈
H1(Ω) be a weak solution of Lu = f . Then, u ∈ C∞(Ω).

Theorem 28 (Regularity up to the boundary). As-
sume that ∂ Ω is C2 and that aij ∈ C1(Ω), bj , c ∈ L∞(Ω).
Let f ∈ L2(Ω) and u ∈ H1

0 (Ω) be a weak solution of Df .
Then, u ∈ H2(Ω) and:

∥u∥H2(Ω) ≤ C
(

∥f∥L2(Ω) + ∥u∥L2(Ω)

)
Corollary 29. Assume that ∂ Ω is Cm, m ∈ N, and that
aij ∈ Cm+1(Ω), bj , c ∈ Cm(Ω). Let f ∈ Hm(Ω) and
u ∈ H1

0 (Ω) be a weak solution of Df . Then, u ∈ Hm+2(Ω)
and:

∥u∥Hm+2(Ω) ≤ C
(

∥f∥Hm(Ω) + ∥u∥L2(Ω)

)
Corollary 30. Assume that ∂ Ω is C∞ and that
aij , bj , c, f ∈ C∞(Ω). Let u ∈ H1

0 (Ω) be a weak solution
of Df . Then, u ∈ C∞(Ω) and ∀m ∈ N:

∥u∥Hm(Ω) ≤ C
(

∥f∥Hm(Ω) + ∥u∥L2(Ω)

)
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Weak maximum principle for weak solutions of
divergence-form elliptic PDEs

Lemma 31. Let Ω ⊆ Rd open and u ∈ H1(Ω). Then:

u+ :=
{

u if u > 0
0 if u ≤ 0

u− :=
{

−u if u < 0
0 if u ≤ 0

are also in H1(Ω) and:

∇
(
u+) a.e.=

{
∇u if u > 0
0 if u ≤ 0

∇
(
u−) a.e.=

{
−∇u if u < 0
0 if u ≥ 0

Corollary 32. Let Ω ⊆ Rd open and u ∈ H1(Ω). Then,
|u| ∈ H1(Ω) and ∇|u| = sgn ∇u.

Lemma 33. Let (un) ∈ H1(Ω) be such that un
H1(Ω)−→ u.

Then, un
± H1(Ω)−→ u±.

Corollary 34. Let u ∈ H1(Ω). Then, Tr∂ Ω(u±) =
(Tr∂ Ω u)±.

Lemma 35. Let Ω ⊆ Rd open with C1 boundary, u ∈
H1(Ω) and Tr∂ Ω u

a.e.
≤ 0. Then, u+ ∈ H1

0 (Ω).

Theorem 36 (Weak maximum principle). Let Ω ⊆
Rd open and bounded with C1 boundary, aij = aji, c ∈
L∞(Ω), c

a.e.
≥ 0, L = −

∑d
i,j=1 ∂i(aij∂j) + c be elliptic and

f ∈ L2(Ω) with f
a.e.
≤ 0. Let u ∈ H1(Ω) be such that:

•
ˆ

Ω

 d∑
i,j=1

aij∂iu∂jv + cuv

 =
ˆ

Ω

fv ∀v ∈ H1
0 (Ω)

• Tr∂ Ω u
a.e.
≤ 0

Then, u
a.e.
≤ 0.

Proof. Take v = u+ ∈ H1
0 (Ω) by Theorem 35. Then, we

have:

0 ≤ θ
∥∥∇u+∥∥

L2
2 ≤

ˆ

{u>0}

d∑
i,j=1

aij∂iu∂ju+cu2 =
ˆ

{u>0}

fu ≤ 0

where in the second inequality we used the ellipticity of
L. Thus, we must have ∇u+ = 0 a.e. in Ω, which implies
u+ = 0 a.e. in Ω, because u+|∂ Ω = 0. □

Theorem 37 (Weak maximum principle). Let Ω ⊆
Rd open and bounded with C1 boundary, aij = aji, bj , c ∈
L∞(Ω), c

a.e.
≥ 0, L = −

∑d
i,j=1 ∂i(aij∂j) +

∑d
j=1 bj∂j + c

be elliptic and f ∈ L2(Ω) with f
a.e.
≤ 0. Let u ∈ H1(Ω) be

such that:

•
ˆ

Ω

 d∑
i,j=1

aij∂iu∂jv +
d∑

j=1
bjv∂ju + cuv

 =
ˆ

Ω

fv

∀v ∈ H1
0 (Ω)

• Tr∂ Ω u
a.e.
≤ 0

Then, u
a.e.
≤ 0.

Proof. Let m ≥ 0 and vm = (u − m)+. Proceeding as in
the previous proof, we have:

0 ≤ θ ∥∇vm∥2
L2 − d ∥b∥∞ ∥∇vm∥L2 ∥vm∥L2

≤
ˆ

{u>m}

d∑
i,j=1

aij∂iu∂jvm +
d∑

j=1
bj∂juvm + cuvm

=
ˆ

{u>m}

fvm ≤ 0

Thus, ∥∇vm∥L2 ≤ C ∥vm∥L2 , with C independent of m.
Note that since Ω is bounded, lim

m→∞
|{u > m}| = 0 by

?? ??, and so lim
m→∞

supp vm = 0 as well since supp vm ⊆
{u > m}. We now continue the proof for d ≥ 3. By ??
?? we have a continuous embedding H1

0 (Ω) ↪→ L2∗ with
1

2∗ = 1
2 − 1

d . So, ∥vm∥L2∗ ≤ δ ∥∇vm∥L2 . Thus:

∥∇vm∥L2 ≤ C ∥vm∥L2 ≤ C|supp vm|1− 2
2∗ ∥vm∥L2∗ ≤

≤ Cδ|supp vm|1− 2
2∗ ∥∇vm∥L2 ≤ 1

2 ∥∇vm∥L2

where in the second inequality we used ?? ?? and the last
one is valid for m ≥ m0 large enough. Thus, ∥∇vm∥L2 = 0
for m ≥ m0, which implies u

a.e.
≤ m0. This means that

|{u > m0}| = 0 and that ∀ε > 0, |{u ≥ m0 − ε}| > 0.
Suppose now that m0 > 0 and let Sε = |{u > m0 − ε}|.
Again by ?? ??, lim

ε→0
Sε = 0. But then, proceeding as in

the previous step:

∥∇vm0−ε∥L2 ≤ CδSε
1− 2

2∗ ∥∇vm0−ε∥L2 ≤ 1
2 ∥∇vm0−ε∥L2

by choosing ε small enough. Thus, ∥∇vm0−ε∥L2 = 0 and
so u

a.e.
≤ m0 − ε, which is a contradiction. Thus, m0 = 0

(because m0 ≥ 0 from the beginning) and so u
a.e.
≤ 0. □

Theorem 38 (Weak minimum principle). Let Ω ⊆
Rd open and bounded with C1 boundary, aij = aji, bj , c ∈
L∞(Ω), c

a.e.
≥ 0, L = −

∑d
i,j=1 ∂i(aij∂j) +

∑d
j=1 bj∂j + c

be elliptic and f ∈ L2(Ω) with f
a.e.
≥ 0. Let u ∈ H1(Ω) be

such that:

•
ˆ

Ω

 d∑
i,j=1

aij∂iu∂jv +
d∑

j=1
bjv∂ju + cuv

 =
ˆ

Ω

fv

∀v ∈ H1
0 (Ω)

• Tr∂ Ω u
a.e.
≥ 0

Then, u
a.e.
≥ 0.

Sketch of the proof. Apply 37 Weak maximum principle
to u 7→ −u with f 7→ −f . □

Corollary 39. If u is a weak solution of D0 with c ≥ 0,
then u

a.e.= 0.
Proof. If u is a weak solution of D0, then u is a super-
(that is, Lu ≥ 0) and sub-solution (that is Lu ≤ 0) of D0.
Thus, using 37 Weak maximum principle and 38 Weak
minimum principle we conclude that u

a.e.= 0. □
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Corollary 40. For each f ∈ L2(Ω), the problem Df has
a unique weak solution uf . Moreover, if ∂ Ω ∈ C1, then
uf ∈ H2(Ω) ∩ H1

0 (Ω) and f 7→ uf is a bounded linear op-
erator from L2(Ω) to H2(Ω) ∩ H1

0 (Ω). If ∂ Ω ∈ Cm+1, bj ∈
Cm−1 and f ∈ Hm−1(Ω), then uf ∈ Hm+1(Ω) ∩ H1

0 (Ω)
and f 7→ uf is a bounded linear operator from Hm−1(Ω)
to Hm+1(Ω) ∩ H1

0 (Ω).

Sketch of the proof. 15 Abstract Fredholm alternative ap-
plied to this problem (check Theorem 17) tells us that
either there is a nonzero weak solution to D0 or Df is
solvable for all f ∈ L2(Ω). But the first case is impossible
by Theorem 39. □

Theorem 41. Let 1 < p < ∞ and Ω ⊂ Rd be open
and bounded with Cm+1 boundary, m ≥ 1. Let aij ∈
Cm(Ω), bj , c ∈ Cm−1(Ω) and Lu = −

∑d
i,j=1 ∂i(aij∂ju) +∑d

j=1 bj∂ju + cu be an elliptic operator. Then, for any
f ∈ W m−1,p(Ω), if u ∈ H1

0 (Ω) is a weak solution of Df ,
then u ∈ W m+1,p(Ω) and:

∥u∥W m+1,p(Ω) ≤ C
(

∥f∥W m−1,p(Ω) + ∥u∥L2(Ω)

)
If in addition the weak solution of D0 is u = 0, then
L : W m+1,p(Ω) ∩ W 1,p

0 (Ω) → W m−1,p(Ω) is an isomor-
phism, where W 1,p

0 (Ω) is the closure of C∞
0 (Ω) in W 1,p(Ω).

3. | Regularity in Ck,α for non-
divergence form elliptic PDEs

In this section we will still always work in Ω ⊂ Rd open
and bounded and the elliptic operator L (with ellipticity
constant θ) will be in its non-divergence form:

L = −
d∑

i,j=1
aij∂2

ij +
d∑

j=1
bj∂j + c

with aij = aji. Moreover we will not use the usual Hölder
norm

∥u∥Ck,α(Ω) = sup
x̸=y

|β|=k

∣∣∂βu(x) − ∂βu(y)
∣∣

|x − y|α

but the following one:

∥u∥Ck,α(Ω) = sup
x∈Ω

|β|≤k

∣∣∂βu(x)
∣∣ + sup

x̸=y
|β|=k

∣∣∂βu(x) − ∂βu(y)
∣∣

|x − y|α

Remark. Recall that (Ck,α(Ω), ∥·∥Ck,α(Ω)) is a Banach
space and that if 0 < α1 ≤ α2 < 1, then Ck,α2(Ω) ⊆
Ck,α1(Ω)

Schauder estimates

Theorem 42 (Schauder estimates). Let Ω ⊂ Rd be
open and bounded with ∂ Ω ∈ C2,α for some 0 < α < 1.
In the elliptic operator L assume that aij , bj , c ∈ C0,α(Ω).
Then, ∃C > 0 such that if u ∈ C2(Ω) ∩ C0(Ω) solves
Lu = f , with f ∈ C0,α(Ω), then u ∈ C2,α(Ω) and:

∥u∥C2,α(Ω) ≤ C
(

∥f∥C0,α(Ω) + ∥u∥C1,α(Ω)

)

Moreover we have:

∥u∥C2,α(Ω) ≤ C̃
(

∥f∥C0,α(Ω) + ∥u∥C0(Ω)

)
Corollary 43. Let Ω ⊂ Rd be open and bounded with
∂ Ω ∈ Ck+2,α for some 0 < α < 1 and k ≥ 0. In the el-
liptic operator L assume that aij , bj , c ∈ Ck,α(Ω). Then,
∃c > 0 such that if u ∈ Ck+2(Ω) ∩ Ck(Ω) solves Lu = f ,
with f ∈ Ck,α(Ω), then u ∈ Ck+2,α(Ω) and:

∥u∥Ck+2,α(Ω) ≤ C
(

∥f∥Ck,α(Ω) + ∥u∥Ck+1,α(Ω)

)
Maximum and comparison principles
Lemma 44. If A, B ∈ Md(R) are symmetric and A, B ≥
0, then tr(AB) ≥ 0.

Theorem 45 (Weak maximum principle). Let u ∈
C2(Ω) be such that Lu ≤ 0. Then:

• If c = 0, then max
Ω

u = max
∂ Ω

u.

• If c ≥ 0, then max
Ω

u ≤ max
∂ Ω

u+.

Proof. Assume first that Lu < 0 and c = 0. Suppose
∃x0 ∈ Ω such that u(x0) = maxΩ u. Then, ∇u(x0) = 0
and Hu(x0) ≤ 0, that is,

∑d
i,j=1

∂2u
∂xi∂xj

(x0)pipj ≤ 0
∀p ∈ Rd. On the other hand:

tr(A(x0)Hu(x0)) =
d∑

i,j=1
aij(x0) ∂2u

∂xi∂xj
(x0)

= −Lu(x0) > 0

The ellipticity of L implies that A > 0, but this is a con-
tradiction with Theorem 44 because Hu(x0) ≤ 0. If we
now have c ≥ 0, assume that max

Ω
u+ > max

∂ Ω
u+. Then,

∃x0 ∈ Ω such that u(x0) > 0 and u(x0) = maxΩ u+. Sim-
ilarly, we have:

tr(A(x0)Hu(x0)) =
d∑

i,j=1
aij(x0) ∂2u

∂xi∂xj
(x0)

= −Lu(x0) + c(x0)u(x0) ≥ 0

which again leads to a contraction. Now assume Lu ≤ 0.
Take uε = u + εeλx1 , with ε > 0 and λ > 0 yet to be
chosen. An easy computation shows that:

Luε ≤ eλx1 [−λ2a11 + b1λ + c]
≤ eλx1 [−λ2a11 + ∥b∥∞ λ + c] < 0

for λ large enough. We do here the case c = 0 (the other is
analogous). From what we have previously seen, ∃yε ∈ ∂ Ω
such that u(x) ≤ uε(x) ≤ uε(yε). And so we can find a
sequence yεn

that converges to some y0 ∈ ∂ Ω (because
∂ Ω is compact) as εn → 0, which implies u(x) ≤ u(y0).

□

Theorem 46 (Weak minimum principle). Let u ∈
C2(Ω) be such that Lu ≥ 0. Then:

• If c = 0, then min
Ω

u = min
∂ Ω

u.
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• If c ≥ 0, then min
Ω

u ≥ − max
∂ Ω

u−.

Sketch of the proof. Apply 45 Weak maximum principle
to −u using that (−u)+ = u−. □

Remark. Nothing can be said if c < 0. For example, con-
sider −u′′ − u = 0, which has u(x) = sin(x) as a solution,
and take Ω = (0, π).

Lemma 47 (Hopf’s lemma). Let u ∈ C2(Ω) be such
that Lu ≤ 0 and suppose that the region Ω is con-
nected and that satisfies the interior ball condition: for
any x ∈ ∂ Ω there exists r > 0 and y ∈ Ω such that
B(y, r) ⊂ Ω and B(y, r) ∩ ∂ Ω = {x}. Suppose in addi-
tion that c = 0 and x0 ∈ ∂ Ω is such that u(x0) = max

Ω
u.

Then, either u is constant in Ω or

lim inf
t→0+

u(x0) − u(x0 + tn)
t

> 0

for any vector n of the form n = x0−y0
∥x0−y0∥ with B(y0, r) ⊂ Ω

and B(y0, r) ∩ ∂ Ω = {x0}.

Remark. In particular, if ∂ Ω ∈ C1 and u ∈ C1(Ω), then
47 Hopf’s lemma implies that either u is constant in Ω or
∂nu(x0) = ∇u(x0) · n > 0.

Theorem 48 (Strong maximum principle). Let Ω ⊂
Rd be open, bounded and connected, and u ∈ C2(Ω) be
such that Lu ≤ 0. Then:

1. If c = 0 and ∃x0 ∈ Ω such that u(x0) ≥ u(x) ∀x ∈ Ω,
then u = const. in Ω.

2. If c ≥ 0 and ∃x0 ∈ Ω such that u(x0) ≥ 0 and
u(x0) ≥ u(x) ∀x ∈ Ω, then u = const. in Ω.

Proof. Assume c = 0, the other case is similar. Let
M = max

Ω
u, C := {u = M} and V := {u < M}. Take

y ∈ V satisfying d(y, C) < d(y, ∂ Ω) and let B be the
largest ball with center at y whose interior lies in V . Then,
there exists x0 ∈ C with x0 ∈ ∂ B. Clearly V satisfies the
interior ball condition at x0, whence 47 Hopf’s lemma im-
plies that ∂nu(x0) > 0. But ∂nu(x0) = 0 because x0 ∈ C,
which is a contradiction. Thus, V = ∅ and so u = const.
in Ω. □

Theorem 49 (Strong minimum principle). Let Ω ⊂
Rd be open, bounded and connected, and u ∈ C2(Ω) be
such that Lu ≥ 0. Then:

1. If c = 0 and ∃x0 ∈ Ω such that u(x0) ≤ u(x) ∀x ∈ Ω,
then u = const. in Ω.

2. If c ≥ 0 and ∃x0 ∈ Ω such that u(x0) ≤ 0 and
u(x0) ≤ u(x) ∀x ∈ Ω, then u = const. in Ω.

Sketch of the proof. Apply 48 Strong maximum principle
to −u. □

Theorem 50 (A priori estimate). Suppose that c ≥ 0
and u ∈ C2(Ω) is a solution of{

Lu = f in Ω
u|∂ Ω = h on ∂ Ω

with f ∈ C0(Ω) and h ∈ C0(∂ Ω). Then, ∀x ∈ Ω:
u(x) ≤ max

∂ Ω
h+ + C max

Ω
f+

with C independent of u, f and h. Moreover, we have:
|u| ≤ max

∂ Ω
|h| + C max

Ω
|f |

Proof. Let
w(x) = max

∂ Ω
h+ + max

Ω
f+(cosh(λr) − cosh(λx1))

with r = max{|x1| : x ∈ Ω}. An easy check shows that for
λ = λ0 > 0 large enough we have:Lw ≥ max

Ω
f+

max
∂ Ω

h+ ≤ w ≤ max
∂ Ω

h+ + max
Ω

f+ cosh(λ0r)

Let v = u − w. Then, Lv ≤ 0 and v|∂ Ω ≤ 0. Thus, 45
Weak maximum principle implies that v ≤ 0 in Ω, that is,
u ≤ w in Ω. □

Continuation method

Theorem 51 (Continuation method). Let Ω ⊂ Rd be
open and bounded with ∂ Ω ∈ C2,α for some 0 < α < 1.
Consider the problem:{

Lu = f in Ω
u|∂ Ω = h on ∂ Ω

with f, aij , bj , c ∈ C0,α(Ω) and h ∈ C0,α(∂ Ω). Then, there
exists a solution to this problem in C2,α(Ω).
Proof. We will do it for h = 0. Let t ∈ [0, 1] and consider
the problem:

Dt :=
{

Ltu = f in Ω
u|∂ Ω = 0 on ∂ Ω

with Lt = tL − (1 − t)∆. We know that D0 has a unique
weak solution u0 ∈ H1

0 (Ω). The idea of the continuation
method is that if Dt is solvable for all f , then for k > 0
small enough, Dt+k is solvable for all f too. Rewrite Dt+k

as: {
Ltu = f − k(L + ∆)u in Ω
u|∂ Ω = 0 on ∂ Ω

We need to solve the fixed point problem u = ϕ(u), with
ϕ : C2,α −→ C2,α

u 7−→ ϕ(u) = Lt
−1f − kLt

−1(L + ∆)u
From 42 Schauder estimates and 50 A priori estimate we
deduce that ∥u∥C2,α(Ω) ≤ C ∥f∥C0,α(Ω). So ∀φ ∈ C0,α(Ω)
we have

∥∥Lt
−1φ

∥∥
C2,α(Ω) ≤ C ∥φ∥C0,α(Ω) (it can be seen

that the constant does not depend on t). We will show that
ϕ is a contraction for k small enough. Let u, v ∈ C2,α(Ω).
Then:

∥ϕ(u) − ϕ(v)∥C2,α(Ω) ≤ Ck ∥(L + ∆)(u − v)∥C0,α(Ω)

≤ C̃k ∥u − v∥C2,α(Ω)

So take k ≤ 1
2C̃

. Repeating this argument a finite number
of times (C̃ does not depend on t) we conclude that D1 is
solvable. □
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4. | Existence theorems for nonlinear
elliptic PDEs by fixed point meth-
ods

In this section we will mostly consider almost linear elliptic
PDEs of the form: {

Lu = f(x, u)
u|∂ Ω = 0

(2)

with L either −
∑d

i,j=1 ∂i(aij∂j) +
∑d

j=1 bj∂j or
−

∑d
i,j=1 aij∂2

ij +
∑d

j=1 bj∂j , and f : Ω × R → R.

Method of subsoltions and supersolutions
Theorem 52. Suppose that an operator L is uniformly
elliptic on an open bounded set Ω ⊂ Rd with ∂ Ω ∈ C2,
with c = 0 and either in divergence form (with aij ∈ C1)
or non-divergence form (with aij , bj ∈ C0,α). Suppose that
f ∈ C1(Ω×R) and assume that the problem of Eq. (2) has
a bounded subsolution u and a bounded supersolution u
such that u ≤ u. Then, there exists a solution u to Eq. (2)
such that u ≤ u ≤ u, which is in H1

0 (Ω) ∩ H2
0 (Ω) if L is in

divergence form and in C2,α(Ω) if L is in non-divergence
form.

Proof. Let M := max{∥u∥∞ , ∥u∥∞} and modify f out-
side the set Ω×[−M, M ] so that the modified function f̃ is

globally Lipschitz in u and sup
Ω×R

∣∣∣∣ f̃

u

∣∣∣∣ ≤ sup
Ω×[−M−2,M+2]

∣∣∣∣f

u

∣∣∣∣+
1 =: k. Then, the function g(x, t) = f̃(x, t) + kt is non-
decreasing in t, and we can rewrite the problem as:{

(L + k)u = g(x, u) in Ω
u|∂ Ω = 0 on ∂ Ω

Now we construct a sequence of functions {un}n∈N as fol-
lows. Let u0 = u and ∀n ∈ N ∪ {0}, un+1 be the solution
of: {

(L + k)u = g(x, un) in Ω
u|∂ Ω = 0 on ∂ Ω

Take w = un−un+1. By induction, using the monotonicity
of g we have that w solves:{

(L + k)w ≤ 0 in Ω
w|∂ Ω ≤ 0 on ∂ Ω

So by the 45 Weak maximum principle we have that w ≤ 0
in Ω. Similarly, taking v = un+1 − u we have that v solves
the same problem, so v ≤ 0 in Ω. Summarizing, one can
check we have u ≤ un ≤ un+1 ≤ u for all n ∈ N. So
∃u(x) := lim

n→∞
un(x), which is a solution to the problem.

It suffices to see that un
C0,α

−→ u because then we’d have
g(x, un) C0,α

−→ g(x, u) and so un+1 = (L + k)−1g(x, un) C2,α

−→
(L + k)−1g(x, u) = u. But this is clear because un

W 1,p

−→ u
(because of the compact embedding W 2,p ⊂ W 1,p) for all
p < ∞, and we have an embedding W 1,p(Ω) ⊂ C0,θ(Ω) for
p > d and for some particular θ = 1 − d

p (see ?? ??). Now
given θ = α choose p according that relation. □

Topological fixed point theorems

Theorem 53 (Brower fixed point). Let C ⊂ Rn be a
closed convex bounded set and f : C → C be a continuous
function. Then, f has at least a fixed point.

Theorem 54 (Schauder fixed point). Let C be a con-
vex set in a Banach space (E, ∥·∥) and f : C → C be
a continuous function. Assume one of the following two
assumptions:

• C is compact for ∥·∥.

• C is closed and bounded and f is compact.

Then, f has at least a fixed point.

Proof. We will prove it in a Hilbert space (E, ∥·∥). As-
sume the first assumption. Let ε > 0. Then, by
compactness ∃Nε ∈ N and xε

1, . . . , xε
Nε

∈ C such that
C ⊂

⋃Nε

i=1 B(xε
i , ε). Let Vε = ⟨xε

1, . . . , xε
Nε

⟩ be the lin-
ear span of these vectors and Cε := Vε ∩ C. Then, ∀x ∈ C
d(x, Cε) < ε because d(x, xε

j) < ε for some j and xε
j ∈ Cε.

Let pε : E → Cε be the nonlinear projection on the
closed convex bounded set Cε. For all x ∈ C we have
∥x − pε(x)∥ ≤ d(x, Cε) < ε. Now define fε : Cε → Cε by
fε(x) = pε(f(x)). Then, fε is continuous and by 53 Brower
fixed point we have that fε has a fixed point xε ∈ Cε.
Thus:

∥f(xε) − xε∥ = ∥f(xε) − pε(f(xε))∥ < ε

By compactness, there is a sequence εn → 0 and x ∈ C
such that ∥xεn

− x∥ → 0. By the continuity of f , x is a
fixed point of f .
Now assume the second hypothesis. Let K = Conv(f(C))
be the closure of the convex hull of f(C), that is the small-
est convex set containing f(C). Then, K is compact and
convex. Moreover, K ⊆ C since f(C) ⊆ C, C is convex
and closed. Furthermore, f(K) ⊆ f(C) ⊆ K. So f re-
stricts to a continuous function f |K : K → K. By the
first assumption, f |K has a fixed point x ∈ K ⊆ C. □

Theorem 55 (Schaefer fixed point). Let (E, ∥·∥) be
Banach and f : E → E be continuous and compact. Sup-
pose that ∃M > 0 such that ∀(λ, u) ∈ [0, 1] × E with
u = λf(u) we have ∥u∥ < M . Then, f has at least a fixed
point, that lies in B(0, M).

Proof. Take C = B(0, M). For x ∈ C, let:

f̃(x) :=
{

f(x) if x ∈ C

M f(x)
∥f(x)∥ if ∥f(x)∥ > M

An easy check shows that f : C → C is continuous and
compact. So, by 54 Schauder fixed point ∃x∗ ∈ C such
that x∗ = f̃(x∗). If ∥x∗∥ = ∥f(x∗)∥ > M , then:

∥x∗∥ = M
∥f(x∗)∥
∥f(x∗)∥ = M

which is absurd. So f(x∗) = x∗. □
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5. | Variational methods for nonlinear
elliptic PDEs

In this section we will solve a PDE Lu = f(x, u, ∇u) by
minimizing a certain functional under some constraints.

Linear case
Proposition 56 (Without constraints). Consider the
problem:{

Lu := −
∑d

i,j=1 ∂i(aij∂ju) + cu = f

u|∂ Ω = 0
(3)

with L elliptic, aij , c ∈ L∞(Ω) with aij = aji, c ≥ 0, and
f ∈ L2(Ω). Then, the problem has a unique weak solution
u ∈ H1

0 (Ω), and it minimizes the functional:

I(u) = 1
2β(u, u) −

ˆ

Ω

fu

where β(u, v) =
d∑

i,j=1

ˆ

Ω

aij∂iu∂jv +
ˆ

Ω

cuv.

Proof. By ?? ?? (using the scalar product β, which is pos-
itive definite because c ≥ 0) we have that this problem has
a unique weak solution uf ∈ H1

0 (Ω). Moreover, it mini-
mizes the functional I. Indeed, we have:

I(u) − I(uf ) = β(uf , u − uf ) −
ˆ

f(u − uf )+

+ 1
2β(u − uf , u − uf ) = 1

2β(u − uf , u − uf ) > 0

if u ̸= uf . □

Lemma 57. Let X be a Banach space and Φ : X → R
be continuous and convex, then it is weakly sequentially
lower semicontinuous, that is, if un ⇀ u in X, then
Φ(u) ≤ lim inf

n→∞
Φ(un).

Theorem 58. Let (X, ∥·∥) be a reflexive Banach space
and Φ : X → R be continuous, convex and such that

lim
∥u∥→∞

Φ(u) = +∞. Then, Φ has a minimizer. This mini-
mizer is unique if Φ is strictly convex.

Proof. Let {un}n∈N ⊂ X be a minimizing sequence. Then,
sup
n∈N

Φ(un) < ∞, so by the coercivity property of Φ we have

that {un}n∈N is bounded, and so {un}n∈N has a weakly
convergent subsequence {unk

}k∈N with limit u ∈ X. By
Theorem 57 we have:

Φ(u) ≤ lim
k→∞

Φ(unk
) = inf

u∈X
Φ(u)

But Φ(u) ≥ inf
u∈X

Φ(u), so u is a minimizer. □

Theorem 59 (With constraints). Consider the prob-
lem of Eq. (3). We know that L is invertible with inverse
L−1 : L2(Ω) → H1

0 (Ω). But H1
0 (Ω) is compactly embed-

ded into L2(Ω) (see ?? ??), so:

K : L2(Ω) −→ L2(Ω)
f 7−→ L−1f

is compact. Thus, a Hilbert basis (un) of K with Kun =
µnun, µn > 0 with µn → 0 as n → ∞ exists (we may as-
sume µn ↘ 0). Thus, Lun = λnun with λn = 1

µn
↗ +∞.

Then:

λ1 = min
u∈H1

0 (Ω)
∥u∥L2(Ω)=1

⟨Lu, u⟩H−1×H1
0

= min
u∈H1

0 (Ω)\{0}

⟨Lu, u⟩H−1×H1
0

∥u∥2
L2(Ω)

And:

λk = min
u∈H1

0 (Ω)
u∈⟨u1,...,uk−1⟩⊥

L2

∥u∥L2(Ω)=1

⟨Lu, u⟩H−1×H1
0

= min
u∈H1

0 (Ω)\{0}
u∈⟨u1,...,uk−1⟩⊥

L2

⟨Lu, u⟩H−1×H1
0

∥u∥2
L2(Ω)

= min
V subspace of H1

0 (Ω)
dim(V )=k

max
u∈V \{0}

∥u∥L2(Ω)=1

⟨Lu, u⟩H−1×H1
0

= max
W subspace of H1

0 (Ω)
codim(W )=k−1

min
u∈W \{0}

∥u∥L2(Ω)=1

⟨Lu, u⟩H−1×H1
0

Proof. We only prove some of them. Recall that H1
0 =⊕

n∈N⟨un⟩H1
0 and L2 =

⊕
n∈N⟨un⟩L2 . Take u ∈ H1

0 (Ω) \
{0} and write u =

∑
n∈N αnun, which converges in both

L2 and H1
0 . We have:

⟨Lu, u⟩H−1×H1
0

=
∑
n∈N

λnαn
2 ≥ λ1

∑
n∈N

αn
2 = λ1 ∥u∥2

L2(Ω)

So the first equality holds since the lower bound is at-
tained by u = u1. Now take u ⊥L2 ⟨u1, . . . , uk−1⟩. Then,
α1 = · · · = αk−1 = 0 and so:

⟨Lu, u⟩H−1×H1
0

=
∑
n≥n

λnαn
2 ≥ λn

∑
n≥n

αn
2 = λn ∥u∥2

L2(Ω)

So the third equality holds since the lower bound is at-
tained by u = uk. □

Nonlinear case without constraints
Definition 60. We say that f : Ω × R → R is
Carathéodory if f is measurable in x and continuous in
t.

Theorem 61 (Superposition operator). Let f : Ω ×
R → R be Carathéodory satisfying the growth condition
|f(x, t)| ≤ C(1 + |t|θ) ∀(x, t) ∈ Ω × R with θ ≥ 1. Then,
for any θ ≤ p < ∞, the superposition operator

Φf : Lp(Ω) −→ Lp/θ(Ω)
u 7−→ f(·, u(·))

is continuous.

Proof. Let (un), u ∈ Lp(Ω) be such un
Lp

−→ u. We will
prove that vn := f(·, un(·)) is precompact in Lp/θ(Ω) (that
is, any subsequence vnk

has a convergent subsequence) and
has only one limit point, which is v := f(·, u(·)). Take
a subsequence (vnk

) of (vn). We know that unk

Lp

−→ u.
We know that in this case there exists a subsequence

9



unkj

a.e.→ u and
∣∣∣unkj

∣∣∣ ≤ h with h ∈ Lp. Then, by the
continuity of f , vnkj

a.e.→ v and by the growth condition,

vnkj
≤ C(1 + |h(x)|θ) ∈ Lp/θ. So, by ?? ??, vnkj

Lp/θ

−→ v.
□

Proposition 62. Let f : Ω × R → R be Carathéodory
satisfying the growth condition |f(x, t)| ≤ C(1 + |t|θ)
∀(x, t) ∈ Ω×R with 1 ≤ θ ≤ 2∗, 1

2∗ = 1
2 − 1

d , (if d ≥ 3) and
1 ≤ θ < ∞ (if d = 2). Then, the superposition operator

Φf : H1(Ω) −→ Lp/θ(Ω)
u 7−→ f(·, u(·))

is continuous for all θ ≤ p ≤ 2∗ (if d ≥ 3) and θ ≤ p < ∞
(if d = 2). Moreover, Φf is compact if θ < p < 2∗ (if
d ≥ 3) or θ < p < ∞ (if d = 2).

Definition 63. Let X, Y be normed spaces and T : X →
Y . We say that T is Fréchet differentiable at u ∈ X if
∃L ∈ L(X, Y ) such that:

lim
h→0

h∈X\{0}

∥T (u + h) − T (u) − Lh∥
∥h∥

= 0

In this case, we say that L is the Fréchet derivative of T
at u. We denote it by dT (u).

Definition 64. Let X, Y be normed spaces and T : X →
Y . We say that T is Gâteaux differentiable at u ∈ X if
∃L ∈ L(X, Y ) such that ∀h ∈ X:

lim
t→0
t̸=0

T (u + th) − T (u)
t

= Lh

In this case, we say that L is the Gâteaux derivative of T
at u. We denote it by DT (u).

Lemma 65. Let X, Y be normed spaces and T : X → Y .
Then, if the Fréchet and Gâteaux derivatives of T at u
exist, they are unique. Moreover we have:

• If T is Fŕechet differentiable at u, then it is Gâteaux
differentiable at u and both differentials coincide.

• If T is Fréchet differentiable at u, T is continuous at
u.

• If T is Gâteaux differentiable at u ∈ U and the map

U −→ L(X, Y )
u 7−→ DT (u)

is continuous, then T is Fréchet differentiable at u
and dT (u) = DT (u).

Proposition 66. Let f : Ω × R → R be Carathéodory
satisfying the growth condition |f(x, t)| ≤ C(1 + |t|θ)
∀(x, t) ∈ Ω×R with 1 ≤ θ ≤ d+2

d−2 (if d ≥ 3) and 1 ≤ θ < ∞
(if d = 2). Let F (x, t) :=

´ t

0 f(x, s) ds and consider the
functional

Ψ : H1(Ω) −→ R

u 7−→
ˆ

Ω

F (x, u(x)) dx

Then, Ψ is well-defined on H1, it is of class C1 and its
differential is given by:

dΨ(u) h =
ˆ

Ω

f(x, u(x))h(x) dx

Proof. We will assume d ≥ 3, the case d = 2 is simi-
lar. We have that |F (x, t)| ≤ C̃(1 + |t|θ+1). Note that
2 ≤ θ +1 ≤ 2∗, so taking p = θ +1 in Theorem 62 we have
that

ΦF : H1(Ω) −→ L1(Ω)
u 7−→

´ u

0 f(x, s) ds

is continuous. Thus, Ψ is well-defined and continuous. Let
h ∈ H1(Ω), t ∈ (−1, 1) and consider g(t) = Ψ(u + th). We
have:∣∣∣∣ ∂

∂t
F (x, u + th)

∣∣∣∣ = |f(x, u + th)h(x)|

≤ C
(

1 + (|u| + |h|)θ
)

|h| =: H

By Theorem 62, we know that (|u| + |h|)θ ∈ L2∗/θ and
|h| ∈ L2∗ , so by ?? ?? (since 1

2∗ + θ
2∗ = θ+1

2∗ ≤ 1) we
have that H ∈ L1(Ω). Thus, by ?? we have that g is
differentiable and:

g′(0) =
ˆ

Ω

f(x, u(x))h(x) dx

So ∃DΨ(u) and

DΨ(u)h =
ˆ

Ω

f(x, u(x))h(x) dx = ⟨Φf (u), h⟩Lp′ ×Lp

where 1
p + 1

p′ = 1 and 2 ≤ p ≤ 2∗. To prove that
Ψ ∈ C1, it suffices to show that Φf ∈ C(H1, Lp′). We
have f(x, t) ≤ C(1 + |t|θ), so Φf : H1 → Lp/θ is contin-
uous for d+2

d−2 ≤ p ≤ 2∗. If p′ ≤ p/θ, since Ω is bounded,
Lp/θ ↪→ Lp′ is continuous by ?? ??. An easy check shows
that if we take p = 2∗, and p′ such that 1

p + 1
p′ = 1, these

inequality hold. □

Theorem 67 (Without constraints). Let f : Ω ×R →
R be Carathéodory satisfying

• |f(x, t)| ≤ C(1 + |t|θ) ∀(x, t) ∈ Ω × R with 1 ≤ θ ≤
d+2
d−2 (if d ≥ 3) and 1 ≤ θ < ∞ (if d = 2).

• f(x, t) sgn(t) ≤ C ′ ∀(x, t) ∈ Ω × R.

Let F (x, t) :=
´ t

0 f(x, s) ds and for u ∈ H1
0 (Ω) consider

the functional:

I(u) = 1
2

ˆ

Ω

|∇u|2 −
ˆ

Ω

F (x, u) dx

Then, I ∈ C1(H1
0 ,R), it is bounded from below and there

is u ∈ H1
0 (Ω) such that I(u) = min

u∈H1
0 (Ω)

I(u). Moreover, u

is a weak solution to the problem:{
−∆u = f(x, u) in Ω
u|∂ Ω = 0 on ∂ Ω

(4)
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Proof. We saw in Theorem 66 that the map u 7→´
Ω F (x, u(x)) dx is of class C1 and its differential is given

by h 7→
´

Ω f(x, u(x))h(x) dx. Moreover:
ˆ

Ω

|∇(u + h)|2 −
ˆ

Ω

|∇u|2 = 2
ˆ

Ω

∇u · ∇h + o
(

∥h∥H1
0

)

Since, u 7→
´

Ω ∇u · ∇h is linear and continuous, we have
that I is of class C1 and its differential is given by:

dI(u) h =
ˆ

Ω

∇u · ∇h −
ˆ

Ω

f(x, u(x))h(x) dx

Integrating the hypothesis on f , we deduce that:

• |F (x, t)| ≤ C̃(1 + |t|θ+1) ∀(x, t) ∈ Ω × R with
1 ≤ θ ≤ 2∗ (if d ≥ 3) and 1 ≤ θ < ∞ (if d = 2).

• F (x, t) ≤ C ′|t| ∀(x, t) ∈ Ω × R.

Thus:

I(u) ≥ 1
2∥∇u∥L2

2 − C ′
ˆ

|u| ≥ 1
2∥∇u∥L2

2 − C ′′∥u∥L2 ≥

≥ 1
2∥∇u∥L2

2 − C̄∥∇u∥L2 = − C̄2

2 + 1
2

(
∥∇u∥L2 − C̄

)2

where we used ?? ?? in the third inequality. So

inf
u∈H1

0 (Ω)
I(u) ≥ − C̄2

2 > −∞. Thus, I is bounded

from below. Moreover, I is coercive in the sense that
lim

∥u∥H1
0

→∞
I(u) = +∞.

Now take a minimizing sequence (un) for I. Then,
sup
n∈N

I(un) < ∞ and by the coercivity property we have

sup
n∈N

∥un∥H1
0

< ∞. After extraction, we have un
H1

0⇀ u for

some u ∈ H1
0 (Ω) and using Theorem 62 we have a com-

pact embedding H1
0 (Ω) ↪→ Lp(Ω) for any 1 < p < 2∗,

so un
Lp

→ u. Using the growth property and taking
p = θ + 1 < 2∗ we conclude that F (·, un(·)) Lp/θ

→ F (·, u(·)).
So,
´

Ω F (x, un(x)) dx →
´

Ω F (x, u(x)) dx. On the other

hand, since un
H1

0⇀ u, we have that ∥u∥H1
0

≤ lim inf
n→∞

∥un∥H1
0
.

Thus, if m := min
u∈H1

0 (Ω)
I(u), we have:

• I(u) ≤ lim inf
n→∞

I(un) = m.

• I(u) ≥ m because u ∈ H1
0 (Ω).

So u is a minimizer for I. Moreover, this implies that´
Ω |∇un|2 →

´
Ω |∇u|2, so un

H1
0→ u. Since, u is a mini-

mizer for I, we have that the map t 7→ I(u + th) has a
minimum at t = 0. Thus, ∀h ∈ H1

0 (Ω):

dI(u) h =
ˆ

Ω

∇u · ∇h −
ˆ

Ω

f(x, u(x))h(x) dx = 0

So u is a weak solution to the problem of Eq. (4). □

Theorem 68 (Bootstrap). Let f : Ω × R → R be
Carathéodory satisfying the growth condition |f(x, t)| ≤
C(1 + |t|θ) ∀(x, t) ∈ Ω × R with θ ≥ 1. Assume
∂ Ω ∈ C2 and 1 ≤ p < ∞. We have an isomorphism
−∆ : W 2,p(Ω) ∩ W 1,p → Lp(Ω), meaning that for each
g ∈ Lp(Ω) there exists a unique strong solution u of{

−∆u = g in Ω
u|∂ Ω = 0 on ∂ Ω

in W 2,p. Then, u ∈ C0,α(Ω) for 0 < α < 1 and
u ∈

⋂
1≤p<∞

W 2,p(Ω).

Proof. Define g(x) = Φf (u)(x) = f(x, u(x)). We have
that u ∈ H1

0 (Ω) (because it is a weak solution), so by
Theorem 62 u ∈ L2∗ . Thus, g ∈ Lp1 with p1 = 2∗

θ . So
u ∈ W 2,p1 and thus u ∈ Lq1 with 1

q1
= 1

p1
− 2

d (critical
Sobolev embedding). Hence, we get g ∈ Lp2 with p2 = q1

θ .
We can repeat this process as long as pn < d

2 . We study
the sequence an = 1

pn
. In the process we have that if

an > 2
d , then:

an+1 = θan − 2
d

θ

with a1 = θ
2 − θ

d . The fixed point is r := 2θ
d(θ−1) . So:

an = r + θn(a1 − r)

But an easy check shows that a1 − r < 0, so an → −∞,
which is a contradiction since an > 2

d . Thus, the pro-
cess stops after a finite number of times, and thus, we get
u ∈ C0,α(Ω) for 0 < α < 1 and u ∈

⋂
1≤p<∞

W 2,p(Ω). □

Nonlinear case with constraints
Theorem 69 (Lagrange multipliers). Let E be a
normed space and I, J ∈ C1(E,R). Assume that:

• For some µ ∈ R and all u ∈ E we have that if
J(u) = µ, then dJ(u) ̸= 0.

• ∃u ∈ E such that J(u) = µ and I(u) = min
u∈E

J(u)=µ

I(u).

Then, ∃λ ∈ R, called Lagrange multiplier, such that
dI(u) = λ dJ(u).

Theorem 70 (Lagrange multipliers in several vari-
ables). Let E be a normed space and I, J1, . . . , Jm ∈
C1(E,R). Assume that:

• For some µ1, . . . , µm ∈ R and all u ∈ E we have
that if Ji(u) = µi for all i = 1, . . . , m, then
dJ1(u) , . . . , dJm(u) are linearly independent in E∗.

• ∃u ∈ E such that Ji(u) = µi for all i = 1, . . . , m and
I(u) = min

u∈E
Ji(u)=µi ∀i

I(u).

Then, ∃λ1, . . . , λm ∈ R, called Lagrange multipliers, such
that:

dI(u) = λ1 dJ1(u) + · · · + λm dJm(u)
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Proposition 71 (Aplication). Let f : Ω × R → R be
a Carathéodory function defined by f(x, t) = |t|θ sgn(t),
with 1 ≤ θ ≤ d+2

d−2 and define the following functionals in
E = H1

0 (Ω):

I(u) = 1
2

ˆ

Ω

|∇u|2 J(u) =
ˆ

Ω

F (x, u) dx

with F (x, t) =
´ t

0 f(x, s) ds. Then, ũ = u/t is a weak
solution to the problem:{

−∆u = f(x, u) in Ω
u|∂ Ω = 0 on ∂ Ω

(5)

where u is the minimizer of the problem min
u∈H1

0 (Ω)
J(u)=1

I(u).

Proof. We will solve first a much simpler problem:{
−∆u = λf(x, u) in Ω
u|∂ Ω = 0 on ∂ Ω

(6)

with λ > 0. Denote by m the minimizer of I under
J(u) = 1. Since F (x, t) = |t|θ+1

θ+1 , under J(u) = 1 we
have that ∥u∥Lθ+1

θ+1 = θ + 1. Now, since θ + 1 ≤ 2∗,
we have a continuous embedding H1

0 (Ω) ↪→ Lθ+1(Ω), so
1
2 ∥∇u∥L2

2 ≥ C∥u∥Lθ+1
2 ≥ K > 0. Thus, m ≥ K > 0.

Now, take a minimizing sequence (un) for I. Since un

is bounded in H1
0 , after extraction we have un

H1
0⇀ u for

some u ∈ H1
0 (Ω). Moreover, un

Lθ+1

→ u by compact em-
bedding. Thus, 1 = J(un) → J(u). So J(u) = 1 and since
m = lim inf

n→∞
I(un) ≥ I(u) and I(u) ≥ m, we have that u

is a minimizer for I under J(u) = 1. Now, we know that
I, J are of class C1 on H1

0 (Ω) and

dJ(u) h =
ˆ

Ω

|u|θ−1
uh

If J(u) = 1, then dJ(u) u = θ + 1 ̸= 0. So there is a La-
grange multiplier λ ∈ R such that dI(u) = λ dJ(u), that
is: ˆ

Ω

∇u · ∇h = λ

ˆ

Ω

|u|θ−1
uh

Whence u is a weak solution of Eq. (6). Note that taking
h = u we deduce that λ > 0.
Now take t = λ− 1

θ−1 > 0 and ũ = t−1u. Then:

−∆(ũt) = λtθ−1|ũ|θ−1
ũt ⇐⇒ −∆ũ = |ũ|θ−1

ũ = f(x, ũ)

So ũ is a weak solution in H1
0 (Ω) of Eq. (5) and ũ ̸= 0

because 1
θ+1
´

Ω |ũ|θ+1 = λ
θ+1
θ−1 > 0. □

Remark. In general, it suffices to have f : Ω × R → R
Carathéodory with:

• |f(x, t)| ≤ C(1 + |t|θ) ∀(x, t) ∈ Ω × R with 1 ≤ θ ≤
d+2
d−2 (if d ≥ 3) and 1 ≤ θ < ∞ (if d = 2).

• f(x, t)t ≥ C ′ min
2≤α,β≤θ+1

{|t|α, |t|β} ∀(x, t) ∈ Ω × R.

Remark. If J is not homogeneous we cannot proceed as
in the proof. But in this case we use the Nehari manifold
method.

Proposition 72 (Nehari manifold method). Let f be
as in 71 Aplication with the additional assumptions that:

• t 7→ f(·, t) is C1 with a growth condition
∣∣∣ ∂f

∂t

∣∣∣ ≤

C(1 + |t|θ−1).

• f(x, t)t < ∂tf(x, t)t2 ∀(x, t) ∈ Ω × R∗.

Let N := {u ∈ H1
0 (Ω) \ {0} : J(u) = 0}, where:

I(u) = 1
2

ˆ

Ω

|∇u|2 −
ˆ

Ω

F (x, u) dx

J(u) = dI(u) u =
ˆ

Ω

|∇u|2 −
ˆ

Ω

f(x, u)u

Then, if u ∈ N is a minimizer of I under J(u) = 0, then
dI(u) = 0 and so u is a weak solution to Eq. (5).

Proof. We have that:

dJ(u) h = 2
ˆ

Ω

∇u · ∇h −
ˆ

Ω

[∂uf(x, u)u + f(x, u)]h

Thus, if u ∈ N , we have:

dJ(u) u =
ˆ

Ω

[f(x, u)u − ∂uf(x, u)u2] < 0

because J(u) = 0 and at the end we used one of the ex-
tra hypothesis on f . Now assume u ∈ N and I(u) =

min
u∈H1

0 (Ω)
J(u)=0

I(u). Then, ∃λ ∈ R such that dI(u) = λ dJ(u).

Thus:
ˆ

Ω

[∇u·∇h−f(x, u)h] = λ

ˆ

Ω

[∂uf(x, u)u+f(x, u)−f(x, u)]h

Moreover,
´

Ω |∇u|2 =
´

Ω f(x, u)u. So taking h = u we
get:

0 = λ

ˆ

Ω

[fu − ∂ufu2]

which implies λ = 0 because of the extra hypothesis on f .
□

Mountain pass method

Our goal in this section is again find a nonzero weak solu-
tion in H1

0 (Ω) to Eq. (5).

Definition 73. Let E be a Banach space and I ∈
C1(E,R). We say that I satisfies the Palais-Smale con-
dition at level c if every sequence (un) in E, such that
I(un) → c and dI(un) → 0 in E∗, has a convergent sub-
sequence (that is, is precompact).
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Theorem 74 (Ambrosetti-Rabinowitz theorem).
Let E be a Banach space and I ∈ C1(E,R). Assume that
∃a ̸= b ∈ E such that

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > max{I(a), I(b)}

with

Γ := {γ ∈ C([0, 1], E) : γ(0) = a, γ(1) = b}

Then, there is a sequence (un) in E such that I(un) → c
and dI(un) → 0 in E∗. Such a sequence is called a Palais-
Smale sequence.

Corollary 75 (Mountain pass theorem). Let E be a
Banach space and I ∈ C1(E,R). Assume that ∃a ̸= b ∈ E
such that

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > max{I(a), I(b)}

with

Γ := {γ ∈ C([0, 1], E) : γ(0) = a, γ(1) = b}

If, moreover, I satisfies the Palais-Smale condition at level
c, then ∃u∗ ∈ E such that I(u∗) = c and dI(u∗) = 0.

Proposition 76. Let f : Ω × R → R be Carathéodory
satisfying:

• f(x, t)t ≥ pF (x, t) ∀(x, t) ∈ Ω×R (superquadradicity
condition).

• f(x, t)t ≤ C|t|p1 for |t| ≥ 1.

• f(x, t)t ≥ C|t|p2 for |t| ≤ 1.

with 2 < p, p1, p2 < 2∗ and F (x, t) =
´ t

0 f(x, s) ds. Con-
sider the functional:

I(u) = 1
2

ˆ

Ω

|∇u|2 −
ˆ

Ω

F (x, u) dx

Then, ∃u ∈ H1
0 (Ω) such that I(u) = min

u∈H1
0 (Ω)

I(u) and u is

a weak solution to Eq. (5).

Proof. First of all, note that the thrid hypothesis on
f implies that F (x, t) ≥ 0 for |t| ≤ 1. From the
superquadradicity condition, for t > 0, the function
|t|−p

F (x, t) is nondecreasing (the derivative is nonnega-
tive). So, for 0 ≤ t ≤ 1 we have F (x, t) ≤ |t|pF (x, 1).
Similarly, for −1 ≤ t ≤ 0 the function is nonincreasing
and so we have F (x, t) ≤ |t|pF (x, −1). Using the up-
per estimate we get, for |t| ≥ 1, F (x, t) ≤ C|t|p1 and so
|F (x, t)| ≤ C ′(|t|p + |t|p1) ∀t. So:

ˆ

Ω

F (x, u) ≤ C ′ (∥u∥p
Lp + ∥u∥p1

Lp1 )

≤ C ′′ (
∥∇u∥p

L2 + ∥∇u∥p1
L2

)
by ?? ?? and ?????. And thus:

I(u) ≥ ∥∇u∥2
L2

(
1
2 − C ′′

[
∥∇u∥p−2

L2 + ∥∇u∥p1−2
L2

])

≥ 1
4 ∥u∥2

H1
0

(7)

for ∥u∥H1
0

≤ r with r > 0 small enough. Now, take
u1 ∈ H1

0 (Ω) \ {0} and λ > 0 to be chosen later. From
the previous reasoning, we have F (x, t) ≥ F (x, 1)|t|p
for t ≥ 1 and F (x, t) ≥ F (x, −1)|t|p for t ≤ −1. So,
F (x, t) ≥ K|t|p ≥ 0 for some K > 0 and all |t| ≥ 1. Now,
since u1 ̸= 0 ∃ε > 0 such that

´
Ω |u1|p1{|u1|≥ε} > 0. So

for λ ≥ 1
ε we have:

I(λu1) ≤ λ2

2 ∥∇u1∥2
L2 −

ˆ

Ω

F (x, λu1)1{|u1|≥ε} ≤

≤ λ2

2 ∥∇u1∥2
L2 − Kλp

ˆ

Ω

|u1|p1{|u1|≥ε} =

= Aλ2 − Bλp λ→∞−→ −∞

where the first inequality follows from the fact that
F (x, t) ≥ 0 for |t| ≤ 1. So we may choose λ = λ1 > 0
such that I(λ1u1) ≤ 0 and given the previous r > 0 we
choose u1 with ∥λ1u1∥H1

0
> r. Now let

Γ := {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = λ1u1}

and define c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)). Take γ ∈ Γ. Since

∥γ(0)∥H1
0

= 0 and ∥γ(1)∥H1
0

> r, ∃t0 ∈ (0, 1) such that
∥γ(t0)∥H1

0
= r. So by Eq. (7) we have:

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ r2

4 > 0 = max{I(0), I(λ1u1)}

In order to use 75 Mountain pass theorem it’s missing to
check that I satisfies the Palais-Smale condition at level c.
Let (un) be a Palais-Smale sequence at level c. We then
have: {

I(un) → c

dI(un) H−1

−→ 0
The second equation implies that dI(un) un → 0 and thus:

1
2

ˆ

Ω

|∇un|2 −
ˆ

Ω

F (x, un) dx = c + o (1)
ˆ

Ω

|∇un|2 −
ˆ

Ω

f(x, un)un dx = o
(

∥un∥H1
0

)
From here subtracting the first equation (multiplied by p)
to the second one, we have:(

1 − p

2

)ˆ
Ω

|∇un|2 dx +
ˆ

Ω

[pF (x, un) − f(x, un)un] dx =

= −pc + o (1) + o
(

∥un∥H1
0

)
By hypothesis the second term is negative, so:(

1
2 − 1

p

)ˆ
Ω

|∇un|2 dx ≤ c + o (1) + o
(

∥un∥H1
0

)
So ∃K > 0 such that ∥un∥H1

0
≤ K ∀n ∈ N. So af-

ter extracting a subsequence we have un
H1

0⇀ u for some

13



u ∈ H1
0 (Ω) and by compact embedding un

Lp

−→ u for all
1 ≤ p < 2∗. But f is Carathéodory with growth condition
|f(x, t)| ≤ C(1 + |t|θ) with 1 ≤ θ = p1 − 1 < d+2

d−2 . So
f(x, un) Lq

−→ f(x, u) for all 1 ≤ q < 2∗

θ . Now, by duality,
the continuous embedding H1

0 ↪→ L2∗ gives Lq̂ ↪→ H−1

with 1
q̂ + 1

2∗ = 1. An easy computation shows that:

q̂ = 2d

d − 2 =⇒ θq̂ < 2∗ =⇒ q̂ <
2∗

θ

So f(x, un) H−1

−→ f(x, u). Now since

dI(un) h = ⟨−∆un − f(x, un), h⟩H−1×H1
0

we have −∆un = f(x, un) + rn with rn = dI(un) H−1

−→ 0.
Thus, −∆un

H−1

−→ f(x, u) (and so un
H1

0−→ (−∆)−1
f(x, u))

and since un
H1

0⇀ u implies −∆un
H−1

⇀ −∆u, we have
−∆u = f(x, u). This implies that in fact un

H1
0−→ u and so

I(u) = lim
n→∞

I(un) = c. □
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