Introduction to nonlinear elliptic PDEs

1. | Introduction

Definition 1. Let a;j, b;, ¢, f be known scalar functions
defined on Q C R¢. Usually we will denote A = (a;;) and
b = (b;). A linear second-order PDE is an equation of the
form:

d d
_ Z a;;(x)0%u(x) +ij(x)3ju(x) + e(x)u(x) = f(x)

where u : @ — R is the unknown function. This form is
called non-divergence form. If we write the equation in
the form:

d d

d
_Zai D ai(0)u(x) | + Y bi(x)d5u(x)+

=1 j=1

then we say that the equation is in divergence form. To-
gether with the PDE we usually impose boundary condi-
tions on . The Dirichlet boundary condition is:

U|89 =g

and it is called homogeneous if ¢ = 0. The Neumann
boundary condition is:

(n,AVu)lsa =g

where we have assumed that the boundary of € is smooth
enough to define the normal vector n. The condition is
called homogeneous if g = 0. Note that if A = I, then
the Neumann boundary condition is just O,u = g.

Remark. If the coefficients a;; € C', then we are able to
convert the equation from non-divergence form to diver-
gence form and vice versa.

Definition 2. Let a;j,b;,c be known functions on €2 C
R?. We say that the operator

d d
L=— Z Cl,ijain—Fijaj—FC
j=1

4,J=1

(1)

is uniformly elliptic if there exists 6 > 0 such that for all
z € Q and all p € R? we have:

d d
Q:(p) =P "AX)P =Y _ a;(x)pip; >0 p° =0 Ip|®
inj=1 i=1

Remark. Geometrically speaking, this implies that the sets

Eon ={P €R?: Qu(p) = h}

are ellipsoids.

Definition 3. Consider the problem

Lu=f
DfZZ{ .
u=>0

where L is as in Eq. (1). The weak formulation (or varia-
tional formulation) of the problem is:

in Q
on 0f)

(Vu, Vo), + (b - Vu,v)y+{cu,v), = (f,v), Yve Hy(Q)
A solution of such problem is called a weak solution of Dy.

Definition 4. If the weak solution uy of the problem Dy
is in HJ(Q) N W2P(Q) for some p € [1,00), then uy is
called a strong solution of Dy. If up € C*(Q) N H} (),
then we say that uy is a classical solution of Dy.

Proposition 5. Let H be Hilbert and K : H — H be a
continuous linear operator. Then, the following are equiv-
alent:

1. K is compact.

2. For any bounded sequence (u,) € H, the sequence
(Kuy,) has a convergent subsequence.

3. For any sequence (u,) € H such that u, — u, we

have Ku,, -+ Ku.

2. | Hilbert space methods for diver-
gence form linear PDEs

In this section, we will assume that @ C R? is an open,
bounded subset, a;; = aj; and a;;,b;,c € L=().
Lax-Milgram theorem

Remark. Instead of the usual norm for Hg (), here we
will use the following one:

2 2
[l ) = VUllz2 (o

Definition 6. Let H be a Hilbert space and a : H x H —
R be a bilinear map. We say that a is continuous if 3C' > 0
such that Yu,v € H we have:

|a(u, )| < Cull o]

Definition 7. Let H be a Hilbert space and a : H x H —
R be a bilinear map. We say that a is coercive if Ja > 0
such that Yu € H we have:

a(u,u) = o ul|”

Definition 8. Let H be a Hilbert space and a : H x H —
C be a bilinear map. We say that a is symmetric if
Vu,v € H we have:

a(u,v) = a(v,u)



Theorem 9 (Lax-Milgram theorem). Let H be a
Hilbert space and a : H x H — R be a continuous and
coercive bilinear map. Then, Vf € H* Jluy € H such
that:

a(up,v) = f(v) YweH
In addition, if H is a real Hilbert space and a is symmetric,
then wu is the unique minimizer of:

veH

min {;a(v,v) - f(v)}

Proposition 10. Consider the problem:

Lu=f

u=0
with L = =Y., 9;(a;;0;) and f € L2(Q2). Then, the
problem has a unique weak solution v € H}(Q) and

in Q
on 0f)

lull gy < ClIfll L2
Proof. Consider the bilinear form
d
a(u,v) ::/ Z a;;0;ud;v
Q Hi=l
We check the hypotheses of 9 Lax-Milgram theorem:

1. a is continuous:

d
ja(u, 0)] < 37 llagll o 1Vully 90l

ij=1
< Cllull ga o) 101l g2 @)

2. a is coercive:

d

a(u,w) :/ Z ai;Oudju

o hi=1
d

> 9/Z|a,»u\2
Q =1

2
= HHUHHé(Q)
by the uniform ellipticity of L.

Moreover, since a(u, u) = {f, u), we have that:
2
Ollull g )™ < (Frwdy < IFlle llully < CHFll Tull g o)
by the 77 ?7. n

Abstract Fredholm alternative

Remark. One can check that if we try to apply 9 Lax-
Milgram theorem to the problem:

Lu=f

u=0
. d
with L = ="

i.j=10i(ai;05) + Z?zl b;0;, it fails due to
the coercivity condition.

in Q
on 0f)

Proposition 11. Consider the problem:

Lyu=f
Dlhf:{ "

u=20

in
on 0
with L, = — >0, 8i(ai0;) + Y0_, b;j0; + p. Then, if
u > 0 is large enough, the problem has a unique weak
solution in Hg (£2)

Sketch of the proof. Taking the natural bilinear map a,
the coercivity condition becomes:

2 2
(s 1) 2 0 [[ull s ) = C llull g o) llully + pllully

which for p large enough it is bigger than ¢ HU”?{&(Q) for
some 9§ > 0.

Lemma 12. Let H be Hilbert and K : H — H be a
compact linear operator. Then, dim ker(id — K) < oc.

Proof. If dimker(id — K') = oo, then 3(u,,) € ker(id — K)
orthonormal, and thus bounded. In particular, u, = Ku,
and since K is compact, we have that (Ku,) has a con-
vergent subsequence. But:

0= i [t K
— 1' 2
el ([t = s |
- kh_?;o [, | + [ - ”2
—2
by 77 77, -

Lemma 13. Let H be Hilbert and K : H — H be
a compact linear operator. Then, 3¢ > 0 such that
Vu € ker(id — K)* we have ||u — Kul| > ¢ |ul.

Proof. We proceed by contradiction. Suppose we have a
sequence (uy,) € ker(id — K)* with ||lu,|| = 1 such that
[lwn, — Kuy)| — 0. Since (u,) is bounded, we have that
(uy) has a weakly convergent subsequence (u,, ) tou € H.
Since K is compact, we have that Ku,, — Ku, and thus
by continuity of the norm, v = Ku. Thus u € ker(id — K)
and u € ker(id — K)©, which implies u = 0, a contraction
with ||ul| = 1. O

Lemma 14. Let H be Hilbert and K : H — H be a
compact linear operator. Then, im(id — K) is closed.

Proof. Let (v,) € im(id — K) be such that v, - v € H.
Then, 3(uy) € H such that v, = (id — K)u,. By ?? 77,
we can write u, = uX* + uk | where vk’ € ker(id — K)
and uﬁerl € ker(id — K)*". Thus, v, = (id — K)ulff”rl and
by Theorem 13, we have:

kert  kert

un m

lon = vmll 2 ¢|

Since (vy,) is Cauchy, so it is (ui‘frL ), and thus (ulr‘fﬁ) con-

verges to some u € ker(id — K)J‘. Thus, v = (id — K)u €
im(id — K). 0



Theorem 15 (Abstract Fredholm alternative). Let
H be Hilbert and K : H — H be a compact linear opera-
tor. Then:

1. ker(id — K) and ker(id — K*) are both finite dimen-
sional, and they have the same dimension.

2. im(id — K) = ker(id — K*)*
K) is closed.

. In particular, im(id —

3. Either ker(id—K) # {0} or id—K is an isomorphism.
Proof.

2. From ?? we have that imA = (ker A*)" for any
general operator A between Hilbert spaces. Thus,
im(id — K) = ker(id — K*)© <= im(id — K) is
closed, which reduces to Theorem 14.

3. We first show that ker(id — K) {0} <=
ker(id — K*) = {0}. The argument is symmetric
because K** = K and the fact that K is com-
pact <= K™ is compact. So suppose ker(id —
K) = {0}. Then, id — K is injective. Assume
ker(id — K*) # {0}. Then, im(id — K) = ker(id —
K*)t # H and so im((id — K)?) C im(id — K).
Indeed, if we had equality, then for any v € H,
we would have (id— K)u € im((id — K)?), and
thus Jv € H such that (id— K)u = (id — K)*v
which implies v = (id — K)v because ker(id — K) =
{0}. Now, recursively, we have an infinite sequence
im((id — K)"™') C im((id — K)"), which implies

that Vn Ju, € im((id — K)") N im((id — K)" )+

with [Jun|| = 1. Thus, (up,Um) = dpm. But u, —
Ku, € im((id — K)"™) so, u, — Ku, L u,. This
implies, by ?? 72, that ||[Kun|®> = [Jun — Kun|?

[un|/® > 1, which is a contradiction with the com-

pactness of K because any orthonormal sequence al-
ways converges weakly to zero (and so Ku, — 0).
So either ker(id — K) # {0} or id — K is bijective.
To finish this point, we need to prove that if
ker(id — K) = {0}, then (id — K)™" is a bounded
linear operator. But this is a consequence of The-
orem 13: if u € H, then u € ker(id — K)* and
thus [|(id — K)ul|| > ¢||u||, which implies that ||v|| >
cll(id — K)_lvH taking v = (id — K)u.

1. Assume without loss of generality that dim ker(id —
K) < dimker(id — K*). Then, there exists a linear
injective map A : ker(id — K) — ker(id — K*) =
im(id — K)*. Let K be the operator defined by
Ku = Ku+ Au*", where ©*" is the projection of u
onto ker(id — K). Then, K is compact (because K is
compact and so is A, because it has finite range).
Moreover, if u € ker(id — K), then (id — K)u —
Auker = 0, which since (id — K)u € im(id — K)
and Au**" € im(id — K)* implies that both terms
are zero. So u = u*®* € ker(id — K) and since A is
injective, u = u** = 0. Thus, ker(id — K) = {0}
and by the previous point, id — K is an isomorphism
from H to itself. So, for every w € ker(id — K*),
Ju € H such that w = (id — K)u. Projecting both

sides onto ker(id — K*) = im(id — K)*, we have
w = —Auk®", which implies that A is onto, and so
dimker(id — K) = dimker(id — K*). Theorem 12
finishes the proof.

(1).

Definition 16. Consider the operator L as in Eq.
We define the formal adjoint of L as:

d
Z 0;(a;;0,v) Za-(ij) + cv
1,j=1 j=1
d d
:—Za (lea’U Z -8jv+ C—Zajbj v
,j=1 Jj=1 Jj=1

It satisfies (Lu,v) = (u, L*v) for all u,v € Hg ().

Proposition 17. The homogeneous adjoint problem

L*v =
DS::{ _v 0
v=20

whose weak formulation is

in Q
on 0%

(Vo, V), + (b-Vo,w), =0 Yw € Hj()

has a finite dimensional solution space Wy, the space Vj
of solutions of Dy has also finite dimension and dim Wy =
dim V. Moreover, if f € L?(2), Dy is solvable if and only
it (f,v) =0 for all v € Wj.

Proof. We saw in Theorem 11 that for > g > 0, L, is
an isomorphism. Now we want to bolve Lou = f. Consider
the change of variables u = L, ~'w, with w = L, u €
H~Y(Q). Thus, the equation becomes:

f = (Luo

with K = poL,, '. We claim that K : L?(Q) — L*(Q)
is compact. Note that K = [olH <

— o)Ly rw = w — po L, T rw = (id — K)w

120 Ly, totrac g,
so since LMO_1 and ¢72, -1 are bounded, and we have a
compact embedding H} < L2, we have that K is com-

pact. Finally, one can check that:
(L 0L 71) "=

By 15 Abstract Fredholm alternative, we have that (id —
K)w = f has a solution if and only if (id — K*)h =0 =
(f,h)r2 =0 for all h € L?. But L,,* is an isomorphism,
o (id— K*)h=0 < Ly"h =0. O

id— K* = (id— K)* = (Lu*) ' Lo*

Definition 18. We define the following problem:

Ay =
'/\[f._{auuof
On

and N} = Ny. The weak formulation of the problem is:

in Q
on 0%

(Vu, Vo) = (f,v) Yve H(Q)

Proposition 19. Ny has at least one solution if and only
if for any weak solution v of Ny we have (f,v) = 0.



Spectrum of compact operators

In this section K will denote either R or C.

Definition 20. Let H be a K-Hilbert space and K : H —
H be a bounded operator. We define the resolvent set of
K as:

p(K) ={)\ € K: \id — K is invertible}
and the spectrum of K as:
o(K) =K\ p(K)

Proposition 21. Let H be a K-Hilbert space and T :
H — H be a bounded operator. Then, o(T) is closed.
Proof. Note that p(K) is open because if A\ € p(7T),
then 3¢ € R such that |e| < H()\id—K)_lH. And s0
(A +¢e)id — K is invertible. Thus, o(K) is closed. O

Theorem 22. Let H be an infinite-dimensional separa-
ble Hilbert space and K : H — H be a compact operator.
Then:

1. 0 € o(K).
2. If A€ o(K) \ {0}, then A is an eigenvalue of K.
3. o(K) is closed and at most countable.

4. If o(K)NR is infinite, then o(K)\ {0} is of the form
{An}nen with A, — 0.

5. If A € o(K) \ {0}, then:

dim [ | ker (Aid — K)? | < o0

p=>1

Proof.

1. Assume 0 ¢ o(K). Then, K is bijective and so
id = K o K—! is compact, as it is the composition
of a compact operator and a bounded operator. But
this is a contradiction with ?? 77 because the im-
age of any bounded set under a compact operator is
relatively compact (or precompact).

2. If ker(Aid — K) = {0}, then by 15 Abstract Fred-
holm alternative, Aid — K is an isomorphism, and

thus A € p(K).
O

Lemma 23. Let H be a Hilbert space and T : H — H
be a continuous self-adjoint operator. Then:

1T = P, [(z, T)|
Proof. Clearly a := sup [{(z,Tx)] < ||T||. For the
l=l=1

converse, it suffices to show that |(Tz,y)| < a for all
||l = [lyl| = 1. We have:

(T2,9) = § (T +y),w +9) — (T — y), 2~ y)

(T2 < S (Il + 9l + llz = y)*) = a

I
4

Lemma 24. Let H # {0} be Hilbert and K : H — H be
a compact and self-adjoint operator. Then:

sup (z, Kx) = A
llzll=1

where A is the largest eigenvalue of K.
Proof. Let (xy,) be a maximizing sequence with ||z, | = 1.

After extraction, we can assume that z, — z, and so
Kz, — Kz, Thus, (z,,Kx,) = (z.« Kz,). So z, is

a maximizer. Now, take h L z, and ||h|| = 1. Then,
Xy = 3’% satisfies ||z¢|| = 1 and:

(e, Kxp) = (@4, Kay) + 2t(h, Kx,) + 0 (t) < (24, K2y)

because of the maximality. So we must have (h, Kz,) =0,

L
which implies Kz, € ((z.)")" = (z,). Thus, Kz, = \z,.
0

Regularity theorems for weak solutions of
divergence-form elliptic PDEs

Theorem 25 (Inner regularity). Assume, in addition
to the usual assumptions, that a;; € C'(Q2). Let f € L*(Q)
and u € H*(Q) be a weak solution of Lu = f. Then,
u € HE () and for any compact embedding w CC €,
meaning that @ C ) compact, we have u € H?(w) and:

ltlrs ey < € (12 + lll oo )

Corollary 26. Assume that a;; € C™(Q) for some
m € N, and b;,c € C™(Q). Let f € H™(2) and u € H!
be a weak solution of Lu = f. Then, u € H""*(Q) and
for any w CC Q we have u € H™?(w) and:

gy < C (1 m ey + il )

Corollary 27. Assume a;j,b;,¢, f € C®(Q). Let u €
H'(Q) be a weak solution of Lu = f. Then, u € C>®(1).

Theorem 28 (Regularity up to the boundary). As-
sume that 9 is C? and that a;; € C*(Q), b;,c € L>=().
Let f € L*(Q) and u € H () be a weak solution of Dy.
Then, u € H*(Q) and:

[ull g2y < € (||f||L2(Q) + ||UHL2(Q)>

Corollary 29. Assume that (2 is C™, m € N, and that
ai; € C™THQ), bj,c € C™(Q). Let f € H™(Q) and
u € Hg(Q) be a weak solution of Dy. Then, u € H™2(Q)
and:

el gz < € (11l + el 2y
Corollary 30. Assume that 0 is C* and that

aij,bj e, f € C®(Q). Let u € HL(Q) be a weak solution
of Dy. Then, u € C>°(Q2) and Ym € N:

lull ey < C (1l mcay + il 2oy



Weak maximum principle for weak solutions of
divergence-form elliptic PDEs

Lemma 31. Let Q C R? open and u € H!(Q). Then:

ut = Y T = Y
0 0

are also in H'() and:
.} =Vu
0

.| Vu
0

Corollary 32. Let Q C R? open and v € H'(2). Then,
lu| € H'(Q2) and V|u| = sgn Vu.

ifu<O
ifu<0

ifu>0
fu<0

ifu<O
ifu>0

ifu>0
ifu<0

(0]
@

v (ut) &

V(u*) E

1
Lemma 33. Let (u,) € H*(2) be such that u, Hif) .
1
Then, u,* Hig) ut.

Corollary 34. Let u € H(Q).
(Trag u)i.

Lemma 35. Let Q C R? open with C' boundary, u €
HY(Q) and Tropqu < 0. Then, u™ € H}(Q).

Then, Trpq(u®) =

Theorem 36 (Weak maximum principle). Let Q C

R? open and bounded with C' boundary, a;j = aj;,c €
L>(Q), ¢ ag 0,L=-1 0i(ai;0;) + ¢ be elliptic and

4,J=1

f € L*(Q) with f aﬁe. 0. Let u € HY(Q) be such that:

d
. / Zaijaiuajv—i—cuv :/fv Vv € HE(Q)

Q b=t Q
a.e.
e Traggu <0
a.e.
Then, u < 0.

Proof. Take v = ut € H}(Q) by Theorem 35. Then, we
have:

d
0< 9”Vu+HL22 < Z aijaiuaju—i—cuz = / fu<o

{u>0} =1 {u>0}

where in the second inequality we used the ellipticity of
L. Thus, we must have Vu™ = 0 a.e. in Q, which implies
uT =0 a.e. in 2, because u*|yq = 0. 0

Theorem 37 (Weak maximum principle). Let Q C

R open and bounded with C! boundary, a;; = aj;, b;,c €
a.e.

Lo(Q), ¢ > 0, L ==, 9i(ai;o;) + 30—, b;0; + ¢

4,j=1

be elliptic and f € L2(Q) with f < 0. Let u € H'(R) be

such that:
d d
. Z aijOiud;jv + Z bjvoju+cuv| = /fv
Q

Jj=1

o |ig=1
Vo € HHQ)

a.e.
e Trogqu < 0

Then, u ag 0.

Proof. Let m > 0 and v, = (u—m)"*. Proceeding as in
the previous proof, we have:

2
0<0[VomlLz = dlbll [Vomll Lz l[omll 2

d d
< Z a5 0;u0; U, + Z b;0juvy, + cuvy,
{u>m} hi=1 J=1
= [ um<o
{u>m}

Thus, ||[Von|2 < Cllvml 2, with C independent of m.
Note that since 2 is bounded, lim |[{u >m}| = 0 by
m— oo
7?7 7?7, and so lim suppw,, = 0 as well since supp v,, C
m—r o0
{u > m}. We now continue the proof for d > 3. By ??
7?7 we have a continuous embedding HJ(Q) < L?* with
2 =1 =180, ||lomllp2r <6 VUm| 2. Thus:
_z
[Vumllpe < Cllomlle < C’|suppvm|1 > omllper <

2

< Od|supp vy |~ %

1
VUWLHL2 < ) HVUM||L2

where in the second inequality we used 7?7 77 and the last
one is valid for m > mg large enough. Thus, |Vu,,|[;. =0

for m > mg, which implies u alge' mg. This means that
H{u > mo}| = 0 and that Ve > 0, {u>my—c}| > 0.
Suppose now that mg > 0 and let S; = [{u > mg — €}
Again by 77 77, 611_% S. = 0. But then, proceeding as in

the previous step:
_ 2 1
[V 0mg—cllzz < CO8. "% [ Vumg—cll 2 < = [ Vome—cl 12
L L 2 L

by choosing € small enough. Thus, |[Vv,,,—c||;2 = 0 and

so u < mg — ¢, which is a contradiction. Thus, mg = 0
(because mg > 0 from the beginning) and so u a; 0. 0O
Theorem 38 (Weak minimum principle). Let 2 C
R open and bounded with C! boundary, a;; = aj;, b;,c €
L=(Q), ¢ ag' 0, L = _Z?,jzl 9i(ai;0;) + Z?:1 bj0; + ¢
be elliptic and f € L2(Q) with f = 0. Let u € H'(R) be

such that:
d d
. / Z ai;0;ud;v + Z bjvd;u + cuv = /fv
Q

Q i,j=1 j=1

Vo € HY(Q)
e Troqu &Ze 0

Then, u ag 0.

Sketch of the proof. Apply 37 Weak maximum principle
to u — —u with f— —f. O

Corollary 39. If u is a weak solution of Dy with ¢ > 0,
then u = 0.

Proof. If u is a weak solution of Dy, then w is a super-
(that is, Lu > 0) and sub-solution (that is Lu < 0) of Dy.
Thus, using 37 Weak maximum principle and 38 Weak
minimum principle we conclude that u =" 0. O



Corollary 40. For each f € L?(f2), the problem Dy has
a unique weak solution uy. Moreover, if 9§ € C', then
uy € H2(Q) N HJ(Q) and f +— uy is a bounded linear op-
erator from L?(Q) to H*(Q)NH}(Q). IfaQ e C™ b; €
C™'and f € H™}(Q), then uy € H™(Q) N H} (D)
and f — uy is a bounded linear operator from H™!(Q)
to H™T1(Q) N HL(Q).

Sketch of the proof. 15 Abstract Fredholm alternative ap-
plied to this problem (check Theorem 17) tells us that
either there is a nonzero weak solution to Dy or Dy is
solvable for all f € L?(€2). But the first case is impossible
by Theorem 39. Ol
Theorem 41. Let 1 < p < oo and Q C R? be open
and bounded with C™*! boundary, m > 1. Let a;j €
C™(Q), bj,c € C™1(Q) and Lu = — Y7 ., 9;(ai;05u) +
Z?:l b;j0ju + cu be an elliptic operator. Then, for any
f e Wm=br(Q), if u € H}() is a weak solution of Dy,
then u € WmTLP(Q) and:

el ooy < C (Iflwm-may + Il ey )
If in addition the weak solution of Dy is u = 0, then

s WmtLp(Q) n Wy P() — W™ 1P(Q) is an isomor-
phlsm where W, P () is the closure of C§°(2) in WP ().

3. | Regularity in C"* for non-

divergence form elliptic PDEs

In this section we will still always work in Q@ C R¢ open
and bounded and the elliptic operator L (with ellipticity
constant #) will be in its non-divergence form:

d d
— Z aijafj + ijﬁj +c
j=1

ij=1
with a;; = aj;. Moreover we will not use the usual Holder
norm

k,a - [eY
che() xFy |z -yl
6=k

but the following one:

[llgra = sup |07 u(x)| + sup
e Ie§| | aty |z —y|*
1BI<k |81=F

Remark. Recall that (C**(Q), ||l ok« Q)) is a Banach

space and that if 0 < a; < ay < 1, then CH*2(Q) C
¢ (@)

Schauder estimates

Theorem 42 (Schauder estimates). Let Q C R? be
open and bounded with dQ € C%? for some 0 < o < 1.
In the elliptic operator L assume that a;;,b;,c € o (Q).
Then, 3C > 0 such that if u € C%(Q) N C°(Q) solves
Lu = f, with f € C%%(Q), then u € C>%(Q) and:

lllgz.o @y < € (I o) + lellero))

Moreover we have:

lllgz.o @y < € (I oo @) + lullco))

Corollary 43. Let Q C R? be open and bounded with
90 € Ck*+22 for some 0 < a < 1 and k > 0. In the el-
liptic operator L assume that a;j,b;,c € C**(Q). Then,
Je > 0 such that if u € C¥2(Q) N C*(Q) solves Lu = f,
with f € CH*(Q), then u € C**2:2(Q) and:

lllgnsaa@) < C (Ifllgna + lullernn))

Maximum and comparison principles

Lemma 44. If A, B € M 4(R) are symmetric and A, B >
0, then tr(AB) >0

Theorem 45 (Weak maximum principle). Let u €
C%(Q) be such that Lu < 0. Then:

e If ¢ =0, then maxu = max u.
Q 20

e If ¢ >0, then maxu < r%%xu+.

Q
Proof. Assume first that Lu < 0 and ¢ = 0. Suppose
Jzg € Q such that u(zg) = maxgu. Then, Vu(zg) = 0
and Hu(zg) < 0, that is, Zijzl%&(xo)pim <0
Vp € R On the other hand:
d 0%u

Z ;5 () 48@87:]» (z0)

ig=1
= —Lu(zo) >0

tr(A(zo)Hu(zo)) =

The ellipticity of L implies that A > 0, but this is a con-

tradiction with Theorem 44 because Hu(zg) < 0. If we

now have ¢ > 0, assume that max ut > n(%%x ut. Then,
Q

3o € Q such that u(zg) > 0 and u(x¢) = maxgu™. Sim-

ilarly, we have:

92w
(“)xﬁag

o) + c(zo)u(wo) = 0

tr(A(zo)Hu(xg))

e (@0)

= —Lu(z

which again leads to a contraction. Now assume Lu < 0.
Take u. = u + €e*®', with ¢ > 0 and A > 0 yet to be
chosen. An easy computation shows that:

Lu. < e’ [—/\2a11 + b A+ (]
< e M [=Nay; + bl A+ <0

for A large enough. We do here the case ¢ = 0 (the other is
analogous). From what we have previously seen, Jy. € 9
such that u(x) < u.(z) < ue(y:). And so we can find a
sequence y., that converges to some yy € 9 (because
0 is compact) as €, — 0, which implies u(z) < u(yo).

Theorem 46 (Weak minimum principle). Let u €
C%(2) be such that Lu > 0. Then:

e If ¢ =0, then minu = min u.
Q 0



e If ¢ >0, then minu > —maxu~.
Q [5X9]
Sketch of the proof. Apply 45 Weak maximum principle
to —u using that (—u)* = u~. O

Remark. Nothing can be said if ¢ < 0. For example, con-
sider —u” — u = 0, which has u(z) = sin(z) as a solution,
and take Q = (0, ).

Lemma 47 (Hopf’s lemma). Let u € C?(f2) be such

that Lu < 0 and suppose that the region 2 is con-

nected and that satisfies the interior ball condition: for

any ¢ € 0€) there exists r > 0 and y € Q such that

B(y,r) € Q and B(y,r) N 9Q = {z}. Suppose in addi-

tion that ¢ = 0 and z¢ € 91 is such that u(z¢) = maxu.
Q

Then, either u is constant in €2 or

u(zo) — u(zo + tn)

lim inf >0
t—0+ t
for any vector n of the form n = H;E:ZE 7 with B(yo,r) C Q

and B(yo,r) N0Q = {xo}.

Remark. In particular, if 9Q € C' and u € C'(Q), then
A7 Hopf’s lemma implies that either w is constant in {2 or
Onu(zo) = Vu(zg) -n > 0.

Theorem 48 (Strong maximum principle). Let Q C
R? be open, bounded and connected, and u € C?(2) be
such that Lu < 0. Then:

1. If ¢ = 0 and 3z € Q such that u(zg) > u(z) Vo € Q,
then u = const. in .

2. If ¢ > 0 and Jzg € Q such that u(zg) > 0 and
u(zo) > u(z) Yo € Q, then u = const. in Q.

Proof. Assume ¢ = 0, the other case is similar. Let
M = maxu, C :={u = M} and V := {u < M}. Take

Q
y € V satisfying d(y,C) < d(y,0Q) and let B be the
largest ball with center at y whose interior lies in V. Then,
there exists xg € C with zg € 0 B. Clearly V satisfies the
interior ball condition at xg, whence 47 Hopf’s lemma im-
plies that dnu(xg) > 0. But dnu(zg) = 0 because zg € C,
which is a contradiction. Thus, V = & and so u = const.
in Q. d

Theorem 49 (Strong minimum principle). Let Q C
R? be open, bounded and connected, and u € C%(Q2) be
such that Lu > 0. Then:

1. If ¢ = 0 and 3z € Q such that u(zg) < u(z) Vr € Q,
then u = const. in .

2. If ¢ > 0 and dzg € Q such that u(xzg) < 0 and
u(zo) < u(z) Yo € Q, then u = const. in Q.

Sketch of the proof. Apply 48 Strong maximum principle
to —u. O

Theorem 50 (A priori estimate). Suppose that ¢ >0
and u € C%(Q) is a solution of

Lu=f in
ulpa="h on O

with f € C°(Q2) and h € C°(0Q). Then, Vz € Q:

u(r) < maxh™ 4+ Cmax f+
o0 Q

with C independent of w, f and h. Moreover, we have:

|u| < max |h| + C max | f|
EX9) Q

Proof. Let

w(z) = max R 4+ max f*(cosh(Ar) — cosh(Azy))
)

with 7 = max{|z1| : z € Q}. An easy check shows that for
A = X > 0 large enough we have:

Lw > max f+

Q
maxh™ < w < maxh' + max £t cosh(\or)
CX9) a0 a

Let v = u —w. Then, Lv < 0 and v|sg < 0. Thus, 45
Weak maximum principle implies that v < 0 in Q, that is,
u < w in Q. O

Continuation method

Theorem 51 (Continuation method). Let Q C R? be
open and bounded with 9Q € C%® for some 0 < o < 1.
Consider the problem:

Lu=f in

ulpg=h on O
with f, a;;,b;, ¢ € C%*(Q) and h € C**(9 ). Then, there
exists a solution to this problem in C%%(Q).

Proof. We will do it for h = 0. Let ¢ € [0, 1] and consider

the problem:
D, = Liu=f inQ
ulpa=0 on 90

with Ly = tL — (1 — t)A. We know that Dy has a unique
weak solution ug € Hg(£2). The idea of the continuation
method is that if D; is solvable for all f, then for £ > 0
small enough, D, is solvable for all f too. Rewrite Dy
as:

Liu=f—k(L+Au inQ
{u|39 =0 on 9%
We need to solve the fixed point problem u = ¢(u), with
¢:C> — cre

u — ¢(u) =L, f — kL, N L+ A)u
From 42 Schauder estimates and 50 A priori estimate we
deduce that ||ullce. @) < Cllfllco.e @) So Ve € Coe(Q)
we have ||Lt*1@||027a(§) < C\|<pHCO,a(5) (it can be seen
that the constant does not depend on t). We will show that

¢ is a contraction for k small enough. Let u,v € C>(Q).
Then:

[6() = 6(0)llgaary < CRNL + At = )

< CkJu = lga.cm

So take k < % Repeating this argument a finite number

of times (C' does not depend on t) we conclude that D; is
solvable. O



4. | Existence theorems for nonlinear
elliptic PDEs by fixed point meth-
ods

In this section we will mostly consider almost linear elliptic
PDEs of the form:

Lu = f(z,u)

{ (2)

u|aQ =0

Wlth L either — Zij:l 81'(0,1']'8]‘) + Zj’:l bjaj or
— Z?,jZl aijﬁfj =+ E?:l bj(‘)j, and f OxR—=R.

Method of subsoltions and supersolutions

Theorem 52. Suppose that an operator L is uniformly
elliptic on an open bounded set Q C R? with 9Q € C?,
with ¢ = 0 and either in divergence form (with a;; € C')
or non-divergence form (with a;;,b; € C%“). Suppose that
f € CH(2 xR) and assume that the problem of Fq. (2) has
a bounded subsolution u and a bounded supersolution @
such that u < @. Then, there exists a solution u to Fq. (2)
such that u < u < @, which is in H}(Q) N HZ(Q) if L is in
divergence form and in C*%(Q) if L is in non-divergence
form.

Proof. Let M := max{||ull ., [7] .} and modify f out-
side the set 2 x [— M, M] so that the modified function f is
f f

u u

globally Lipschitz in v and sup < sup

QxR QOx[-M—2,M+2]
1 =: k. Then, the function g(z,t) = f(z,t) + kt is non-
decreasing in ¢, and we can rewrite the problem as:

{(L +k)u = g(a, u)

+

in Q

uloa =0 on 0%

Now we construct a sequence of functions {uy, },en as fol-
lows. Let ugp = u and VYn € NU {0}, u, 11 be the solution

of:
(L +k)u=g(z,un)
ulgo =0

in
on 0%

Take w = u, —un+1. By induction, using the monotonicity
of g we have that w solves:

in

(L+Ekw<0
on 09

wlpo <0

So by the 45 Weak maximum principle we have that w < 0
in Q. Similarly, taking v = u,1 —u we have that v solves
the same problem, so v < 0 in 2. Summarizing, one can
check we have v < u, < upy; < @ for all n € N. So
Ju(x) = nh_>rrolo un (), which is a solution to the problem.

0,a
It suffices to see that u, C—> u because then we’d have

0, 2,
g(z,un) N g(z,u) and 80 upy1 = (L + k)" Lg(z, uy,) N
(L + k)~tg(z,u) = u. But this is clear because u, Y

(because of the compact embedding W?2? C WhP) for all
p < 00, and we have an embedding WP (Q) c C%?(Q) for
p > d and for some particular § =1 — % (see 77 77). Now
given 6 = « choose p according that relation. Ol

Topological fixed point theorems

Theorem 53 (Brower fixed point). Let C' C R™ be a
closed convex bounded set and f : C'— C' be a continuous
function. Then, f has at least a fixed point.

Theorem 54 (Schauder fixed point). Let C be a con-
vex set in a Banach space (E,|||) and f : C — C be
a continuous function. Assume one of the following two
assumptions:

o C is compact for |||
e (' is closed and bounded and f is compact.
Then, f has at least a fixed point.

Proof. We will prove it in a Hilbert space (E,||-||). As-
sume the first assumption. Let ¢ > 0. Then, by
compactness IN. € N and z7,...,25, € C such that
C < Ul B(a5,e). Let Vo = (z%,...,2%,) be the lin-
ear span of these vectors and C. := V.NC. Then, Vz € C
d(z,C:) < e because d(z,z5) < € for some j and z5 € C..
Let p. : E — C. be the nonlinear projection on the
closed convex bounded set C.. For all x € C we have
|z — pe(2)]] < d(x,C.) < e. Now define f. : C. — C. by
fe(x) = pe(f(x)). Then, f. is continuous and by 53 Brower
fixed point we have that f. has a fixed point z. € C..
Thus:

1f (ze) = well = [1f (ze) = pe(f(ze))] < &

By compactness, there is a sequence ¢, — 0 and z € C
such that ||z., — x| — 0. By the continuity of f, x is a
fixed point of f.

Now assume the second hypothesis. Let K = Conv(f(C))
be the closure of the convex hull of f(C), that is the small-
est convex set containing f(C). Then, K is compact and
convex. Moreover, K C C since f(C) C C, C is convex
and closed. Furthermore, f(K) C f(C) C K. So f re-
stricts to a continuous function f|x : K — K. By the

first assumption, f|x has a fixed point z € K C C. O

Theorem 55 (Schaefer fixed point). Let (E,||-||) be
Banach and f : E — E be continuous and compact. Sup-
pose that IM > 0 such that V(\,u) € [0,1] x E with
u = Af(u) we have |lul| < M. Then, f has at least a fixed
point, that lies in B(0, M).

Proof. Take C' = B(0, M). For z € C, let:

F() = {f(x}(z) ifxeC

Myran i (@)l > M

[EECall
An easy check shows that f : C — C is continuous and

compact. So, by 54 Schauder fixed point 3z, € C such
that z. = f(z). If ||z.|| = || f(zs)] > M, then:

@)l
which is absurd. So f(z.) = x. 0




5. | Variational methods for nonlinear
elliptic PDEs

In this section we will solve a PDE Lu = f(z,u, Vu) by
minimizing a certain functional under some constraints.
Linear case

Proposition 56 (Without constraints). Consider the
problem:

{Lu = - Z;‘{j:l 8,»(aij8ju) +cu = f

u|aQ =0

3)

with L elliptic, a;;,c € L*(Q) with a;; = aj;, ¢ > 0, and
f € L?(Q). Then, the problem has a unique weak solution
u € H (), and it minimizes the functional:

s(u) -~ [ fu
Q

where §(u,v) Z /awauﬁ v+/cuv

1,j= IQ Q

I(u) =

Proof. By 7?7 77 (using the scalar product 3, which is pos-
itive definite because ¢ > 0) we have that this problem has
a unique weak solution uy € HJ(£2). Moreover, it mini-
mizes the functional I. Indeed, we have:

T(w) = I(ug) = Blug,u —ug) — /f(u —up)+

1
—uy) = 55(“
if u # ug. U

Lemma 57. Let X be a Banach space and ¢ : X — R
be continuous and convex, then it is weakly sequentially
lower semicontinuous, that is, if u, — u in X, then
®(u) < liminf ®(uy,).

n—oo

1
+§B(u—uf,u —up,u—us) >0

Theorem 58. Let (X,]|-]|) be a reflexive Banach space
and ® : X — R be continuous, convex and such that

| lﬁm ®(u) = +00. Then, ® has a minimizer. This mini-
Ul —o0

mizer is unique if ® is strictly convex.

Proof. Let {un tnen € X be a minimizing sequence. Then,

sup ®(u,) < 00, so by the coercivity property of ® we have
neN
that {u,}nen is bounded, and so {u,}ren has a weakly

convergent subsequence {un, }reny with limit v € X. By
Theorem 57 we have:

D(u) < hm D(up, ) = 12&@( u)

But ®(u) > inﬁ( ®(u), so u is a minimizer. O
ue

Theorem 59 (With constraints). Consider the prob-
lem of Fq. (3). We know that L is invertible with inverse
L7t L2(Q) — H(Q). But H} () is compactly embed-
ded into L2(2) (see 77 ?7?), so:

K : L2(Q) — L*(Q)
fo— L7'f

is compact. Thus, a Hilbert basis (u,) of K with Ku, =
Ui, fn > 0 with p, — 0 as n — co exists (we may as-
sume p, N\, 0). Thus, Lu, = Aju, with A\, = /% N +oo0.
Then:

(L, u) X H}

A1 = min (Lu,u) = mmin
H-1xH} 2
uEHé(Q) 0 UEH&(Q)\{O} ||uHL2(Q)
HUHL2(Q):1
And:
Ak = min (Lu, u)
H—l Hl
u€H(9) *Fo
ue(ul,...,uk,ﬁLLQ

HUHL2(Q):1

(L, u)H,leg

= min 5
u€Hg (2)\{0} ||UHL2(Q)
we(uy,..., ’LL;C,1>LL2
= min max (L, u) -1y
V subspace of Hg(2) u€V\{0} *Ho
dim(V)=k HUHLQ(Q)—l
= max min

(Luy ) gp -1y 1
W subspace of H}(Q) u€W\{0} H~1xH,
codim(W)=k—1 HUHLQ(Q)—l

Proof. We only prove some of them. Recall that H} =

D, en(un)™ and L? = @, (un)”". Take u € HY(Q)\
{0} and write u = ) @nun, which converges in both

L? and H}. We have:

Z Anan? >\ Zan =A1] |u||L2(Q

neN neN

(L, w) - LeHy =

So the first equality holds since the lower bound is at-
tained by v = u;. Now take u L2 (uy,...,ug—1). Then,
a1 =+ =a_1 =0 and so:

= A 2 A Y an® = A Jlullfz )

n>n n>n

<Lu u H-'xH} —

So the third equality holds since the lower bound is at-
tained by u = ug. O

Nonlinear case without constraints

Definition 60. We say that f QxR — R is
Carathéodory if f is measurable in x and continuous in
t.

Theorem 61 (Superposition operator). Let f : Q x
R — R be Carathéodory satisfying the growth condition
1f(z,t)] < C(1+t|°) ¥(x,t) € Q x R with § > 1. Then,
for any 0 < p < oo, the superposition operator

Oy LP(Q) — LP/9(Q)
u — f(ul)

is continuous.

Proof. Let (uy),u € LP(Q) be such uy L w We will
prove that v, := f(-,u,(-)) is precompact in L?/%(Q) (that
is, any subsequence v,,, has a convergent subsequence) and
has only one limit point, which is v := f(-,u(-)). Take
a subsequence (vy,) of (vy,). We know that u,, RN
We know that in this case there exists a subsequence



N 2% w and h with h € LP. Then, by the

Unp

unkj S
a.e.
=

continuity of f, Uny, v and by the growth condition,

/0
vn, < C(L+ |(x)|°) € LP/°. So, by 77 72, v, =

— V.
O

Proposition 62. Let f : Q x R — R be Carathéodory
satisfying the growth condition |f(x t)| < C(1+ |t|9)
V(z,t) € QxRwith1 <0 <2 & =1-1 (ifd>3)and
1 <0 < oo (if d=2). Then, the superposmon operator

Op: HY(Q) — LP/(Q)
u o f(ul)

is continuous for all § < p < 2* (if d > 3) and § < p < o
(it d = 2). Moreover, ®; is compact if § < p < 2* (if
d>3)orf<p<oo (ifd=2).

Definition 63. Let X,Y be normed spaces and T : X —
Y. We say that T is Fréchet differentiable at v € X if
3L € L(X,Y) such that:

IT(u+ h) —T(u) —

17

lim Lhl|
h—0
heX\{0}

=0

In this case, we say that L is the Fréchet derivative of T
at u. We denote it by dT'(u).

Definition 64. Let X,Y be normed spaces and T : X —
Y. We say that T is Gdteaux differentiable at v € X if
3L € L(X,Y) such that Vh € X:

lim T(u+th) — T (u) Ik
t—0 t
10

In this case, we say that L is the Gateaur derivative of T
at u. We denote it by DT (u).

Lemma 65. Let X,Y be normed spacesand T : X — Y.
Then, if the Fréchet and Gateaux derivatives of T at u
exist, they are unique. Moreover we have:

o If T is Frechet differentiable at u, then it is Gateaux
differentiable at u and both differentials coincide.

o If T is Fréchet differentiable at u, T is continuous at
U.

o If T is Gateaux differentiable at v € U and the map

U— L(X,)Y)
u — DT (u)

is continuous, then T is Fréchet differentiable at
and dT'(u) = DT'(u).
Proposition 66. Let f : Q x R — R be Carathéodory
satisfying the growth condition |f(x,t)] < C(1 + |t|6)
V(z,t) € QxR with1 <60 < &2 (ifd > 3)and 1 < < oo
(if d = 2). Let F(z,t) := fo
functional

x,8)ds and consider the

U HY Q) —
u »—>/F(x,u(x))dx

10

Then, ¥ is well-defined on H', it is of class C' and its

differential is given by:

_ /f(x,u@))h

Proof. We will assume d > 3, the case d = 2 is simi-
lar. We have that |F(J:,t)| < C(1+ |t|9+1). Note that
2 <0+1< 2% sotaking p = 0+ 1 in Theorem 62 we have

(x)dx

that
O HY(Q) — LY

U — fou f(z,s)ds
is continuous. Thus, VU is well-defined and continuous. Let
h € HY(Q), t € (—1,1) and consider g(t) = ¥(u+th). We
have:

0

<C (14 (ful+ 1))’) [0l = H
By Theorem 62, we know that (|u|+ |h\)9 € L?'/% and
|h| € L?", so by ?? ?? (since & + & = ZE < 1) we

have that H € L'(Q).
differentiable and:

Thus, by ?? we have that g is

So 3DV (u) and

(@hz/ﬂammmu
Q

where %—&— ; = 1land 2 < p < 2*. To prove that
U e C', it suffices to show that ®; € C(H',L*"). We
have f(z,t) < C(1+ |t|6)7 so ®; : H' — LP/? is contin-
uous for % <p < 2% If pf <p/b, since Q is bounded,
Lp/% < [P is continuous by ?? 7?7. An easy check shows
that if we take p = 2*, and p’ such that % + ﬁ =1, these
inequality hold. 0

) dz = <(I)f (U), h>Lp’ x LP

Theorem 67 (Without constraints). Let f: QxR —
R be Carathéodory satisfying

o |f(z, ) <O+t V(z,t) € QxR with 1 < 6 <
2 (if d > 3) and 1 < 0 < oo (if d = 2).

o f(z,t)sgn(t) < C' V(x,

Let F(z,t) := fo
the functlonal
1
:§/|Vu|2—/F(x,u)dx
Q Q

Then, I € C'(H},R), it is bounded from below and there
is u € H}(Q) such that I(u) = min I(u). Moreover, u

t) € QxR

z,s)ds and for u € H{ () consider

ueH} ()
is a weak solution to the problem:
—Au = f(z,u) in (4)
ulgo =0 on 0f)



l’m()f We saw in Theorem 66 that the map u
fQ ))dx is of class C! and its differential is given
by h s fQ u(x))h(z) dz. Moreover:

/|V (u+ h))? /\Vu\ —2/Vu Vi+o([hl ;)

Since, u — fQ Vu - Vh is linear and continuous, we have
that I is of class C! and its differential is given by:

:/Vu-Vh—/f(%U(x))h
P Q

Integrating the hypothesis on f, we deduce that:

() dax

- [F(z1)| < C(1 + [¢"Y) V(z,t) € Q x R with
1<60<2* (ifd>3)and 1 <0 < o (if d = 2).
o F(x,t) < C'Nt| V(z,t) € Q2 xR.
Thus:
1 2 ! 1 2 "
I(u) 2 IVl 2" = € [ ful 2 SVl = C7ul 2 2
1 - c? 1 2
§IIVUHL2 = ClIVull . = == + 5 (IVull: = )

where we used 7?7 77 in the third inequality.  So

CQ
inf I(u) > ——— > —oo. Thus, I is bounded
u€HL () 2
from below. Moreover, I is coercive in the sense that
lim  I(u) = +o0.

u — 00
el

Now take a minimizing sequence (u,) for I. Then,

sup I(u,) < oo and by the coercivity property we have

neN
1

H}
sup ||unHH1 < oo. After extraction, we have u, — u for

neN
some u € H}(Q) and using Theorem 62 we have a com-

pact embeddlng H}(Q) — LP(Q) for any 1 < p < 27,
SO Up L u. Using the growth property and taking
p/6
p=0+1 < 2* we conclude that F(-,u,(-)) e F(-,u(")).
So, [o F(x,un(zx))de — [, F(z,u(z))dz. On the other
1

hand, since u,, Ho u, we have that ||ul| ;1 < liminf ||u, || 4.

0 n—oo 0

Thus, if m:= min I(u), we have:

u€Hg (Q)

o I(u) <liminf I(u,) =m.

n—oo
e I(u) > m because u € H}(Q).

So u is a minimizer for I. Moreover, this implies that

1
Ja |Vun|2 - J |V@|2, SO U, o w. Since, u is a mini-
mizer for I, we have that the map ¢t — I(u + th) has a
minimum at ¢t = 0. Thus, Vh € H}(Q):

_ / Vu. Vh— / f(z,u@))h(z
Q Q

So u is a weak solution to the problem of Eq. (4). O

)ydz =0

u € W?2Pt and thus v € LT with il =L _ %

Theorem 68 (Bootstrap). Let f : @ x R — R be
Carathéodory satisfying the growth condition |f(z,t)| <
C1 + |t|”) Y(z,t) € Q x R with § > 1. Assume
00 € C? and 1 < p < co. We have an isomorphism
—A : W2P(Q) N WP — [P(Q), meaning that for each
g € LP(Q) there exists a unique strong solution u of

—Au=g
U‘BQ = O

Then, u € C%¥(Q) for 0 < a < 1 and

in Q
on 08

in W2p,

u € ﬂ W2P(Q).

1<p<oo

Proof. Define g(z) = ®y(u)(z) = f(z,u(x)). We have
that u € H}(Q) (because it is a weak solution), so by
Theorem 62 u € L¥ . Thus, g € LP* with p; = % So
(critical
— Q1

P1
Sobolev embedding). Hence, we get g € LP? w1th P2 =
We can repeat this process as long as p, < 5. We study
the sequence a, = pi. In the process we have that if

apn > %, then:

2
Ap4+1 = ean — E@

with ay = g — %. The fixed point is r := d(92€1)' So:

anp =r+60"(a; —r)

But an easy check shows that a; —r < 0, so a,, = —o0,
which is a contradiction since a, > %. Thus, the pro-
cess stops after a finite number of times, and thus, we get
uelh(Q)for0<a<landue m W2P(Q). O

1<p<oo

Nonlinear case with constraints

Theorem 69 (Lagrange multipliers). Let E be a
normed space and I, J € C!(E,R). Assume that:

e For some ¢ € R and all w € E we have that if

J(u) = p, then dJ(u) # 0.
o Ju € E such that J(u) = p and I(u) = mig I(u).
ue
J(u)=p

Then, 3A € R, called Lagrange multiplier, such that
dI(u) = AdJ(u).

Theorem 70 (Lagrange multipliers in several vari-
ables). Let E be a normed space and I,Jq,...,Jn, €
CY(E,R). Assume that:

e For some pi1,...,4m € R and all v € E we have
that if J;(u) = p; for all ¢ = 1,...,m, then
dJi(u),...,dJm,(u) are linearly independent in E*.

o Ju € E such that J;(u)
I(w)= min  I(u).
Ji(u)=

Then, J\q, ...,
that:

=u; foralli=1,...,mand

i Vi
Am € R, called Lagrange multipliers, such

dI(u) =M dJi(uw) + -+ A ddpn (1)



Proposition 71 (Aplication). Let f : @ x R — R be
a Carathéodory function defined by f(z,t) = |¢|® sgn(t),
with 1 <6 < % and define the following functionals in
E = H}(Q):

I(u) = %/|Vu|2 J(u) :/F(w,u)dx
Q Q
with F(z,t) fo ds. Then, @ = u/t is a weak

solution to the problem

{

where v is the minimizer of the problem min 1 (u).
u€HG ()
J(u)=1

Proof. We will solve first a much simpler problem:

{

—Au = f(xau)
uloa =0

in

on 98 5)

in Q
on 08

—Au = \f(x,u)
u|aQ = 0

(6)

with A > 0. Denote by m the minimizer of I under
641
J(u) = 1. Since F(x,t) = ‘QH , under J(u) = 1 we

have that Hu||L9+19Jrl = 6+ 1. Now, since § + 1 < 2%,
we have a continuous embedding H}(Q) — L*1(Q), so
%||Vu||L22 > CHuHLeHz > K > 0. Thus, m > K > 0.

Now, take a minimizing sequence (u,) for I. Since u,
1

is bounded in H(}, after extraction we have wu, — u for

L9+1
some u € H}(2). Moreover, u, — u by compact em-

bedding. Thus, 1 = J(u,) — J(u). So J(u) = 1 and since
m = lirginfl(un) > I(u) and I(u) > m, we have that u
is a minimizer for I under J(u) = 1. Now, we know that
I, J are of class C' on H}(f2) and

dJ(u)hz/\uW*luh

Q

If J(u) =1, then dJ(u)u = 6 +1 # 0. So there is a La-
grange multiplier A € R such that dI(u) = AdJ(u), that

is:
/w- Vh= A/W*l@h
Q Q

Whence u is a weak solution of Eq. (6). Note that taking
h = u we deduce that A > 0.
Now take ¢t = A\~ 7T >0 and @ =t~ 'u. Then:

—Aat) = M0V rat = —Aa= 0’ ta = fz, @)
So @ is a weak solution in HO () of Eq. (5) and @ # 0
because 9%-1 Jo la al’tt = AT > 0. 0

Remark. In general, it suffices to have f : @ x R - R
Carathéodory with:

o |flz, )] <O+t V(z,t) € QxR with 1 < 0 <
442 (if d > 3) and 1 < 0 < oo (if d = 2).

. Stz m1n0+1{|t| 1E°Y V(z,t) € @ x R.
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Remark. If J is not homogeneous we cannot proceed as
in the proof. But in this case we use the Nehari manifold
method.

Proposition 72 (Nehari manifold method). Let f be
as in 71 Aplication with the additional assumptions that:

o t — f(-,t) is C! with a growth condition ’%‘ <
C+t" ).
o fz,t)t < Opf(z, t)t? V¥(z,t) € Q x R*.
Let N := {u € H}(Q)\ {0} : J(u) = 0}, where:
1 2
:§/|Vu| —/F(x,u)dx
J(w) = dI(u )u—/|Vu| —/fxu
Q
Then, if u € N is a minimizer of I under J( 0, then

u) =
(5).

dI(u) = 0 and so u is a weak solution to Fq.

Proof. We have that:

dJ(u)h=2 | Vu-Vh— [ [0uf(x,u)u+ f(z,u)]h
oo |

Q

Thus, if u € N, we have:

dJ(u)u = /[f(a:,u)uf Duf(x,u)u?] <0

Q

because J(u) = 0 and at the end we used one of the ex-
tra hypothesis on f. Now assume uw € N and I(u) =

min I(u). Then, 3\ € R such that dI(u) = AdJ(u).
w€HE(Q)

J(u)=0
Thus:

/[V@Vhff(x, u)h]

Q

Y / 100 f (2, wurt f (2, ) f(z, w)]h
Q

Moreover, [, |Vul* = [, f(z,u)u. So taking h = u we
get:
)\/ fu — 0y fu?]
O

which implies A = 0 because of the extra hypothesis on f.

Mountain pass method

Our goal in this section is again find a nonzero weak solu-
tion in HE(Q) to Eq. (5).

Definition 73. Let E be a Banach space and I €
CY(E,R). We say that I satisfies the Palais-Smale con-
dition at level ¢ if every sequence (u,) in E, such that
I(uy,) — ¢ and dI(u,) — 0 in E*, has a convergent sub-
sequence (that is, is precompact).



Theorem 74 (Ambrosetti-Rabinowitz theorem).
Let E be a Banach space and I € C!(E,R). Assume that
Ja # b € E such that

= inf I > I(a),
¢:= Inf max I(y (t)) > max{I(a)

I(b)}
with

[':={y€C([0,1], E) : 7(0) = a,7(1) = b}

Then, there is a sequence (u,) in E such that I(u,) — ¢
and dI(u,) — 0 in E*. Such a sequence is called a Palais-
Smale sequence.

Corollary 75 (Mountain pass theorem). Let E be a
Banach space and I € C'(E,R). Assume that Ja #b € E
such that

:= inf I(~(t 1
¢:= Inf max (v(t)) > max{I(a),

1(b)}

with

D= {y € C([0,1], B) : 7(0) = a,7(1) = b}

If, moreover, I satisfies the Palais-Smale condition at level
¢, then Ju, € F such that I(u,) = c and dI(u.) = 0.

Proposition 76. Let f : Q x R — R be Carathéodory
satisfying:

o flz,t)t > pF(x,t) V(z,t) € QxR (superquadradicity
condition).

o f(z,t)t < C|t|™* for |t| > 1.

o f(z, t)t > C|t|”* for |t| < 1.

Con-

with 2 < p,p1,p2 < 2* and F(z,t) x,s)ds.

= Jo I
sider the functional:
1
=§/|Vu|2—/F(x
Q Q

Then, Ju € H}(Q) such that I(u)

,u)de

min [(u) and u is
ueH}(Q)

a weak solution to Eq. (5).

Proof. First of all, note that the thrid hypothesis on
f implies that F(z,t) > 0 for |t/ < 1. From the
superquadradicity condition, for ¢t > 0, the function
[t| P F(z,t) is nondecreasing (the derivative is nonnega-
tive). So, for 0 < t < 1 we have F(x,t) < [t|"F(z,1).
Similarly, for —1 < t < 0 the function is nonincreasing
and so we have F(x,t) < [t|’F(x,—1). Using the up-
per estimate we get, for |t| > 1, F(z,t) < C|t/"* and so
|F(z,t)| < C'(J¢” + [t]"*) Vt. So:

/ F(a,u) < C' (Jul%, + [[ullZ,)
< C" (IVul% + [ V4l

)

1 1—
I(w) = | Vul}, (20" [Hwn F 4 | Vul 2})
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(7)

for HUHH(} < r with » > 0 small enough. Now, take
up € Hi(Q)\ {0} and A > 0 to be chosen later. From
the previous reasoning, we have F(x,t) > F(x,1)[t]"
for t > 1 and F(x,t) > F(z,—1)[t|" for t < —1. So,
F(x,t) > K|t|’ > 0 for some K > 0 and all [t| > 1. Now,
since uy # 0 3¢ > 0 such that [, [u1["1qjy >3 > 0. So
for A > 1 we have:

L
2 7 lullzy

/\2
10w) < 5 [Vunlffe = [ P du)Lga s <
Q

)\2
S A S T
Q

A—00

= AN — BN 5 —0

where the first inequality follows from the fact that
F(xz,t) > 0 for |t| < 1. So we may choose A\ = A\; > 0
such that I(Ajuq) < 0 and given the previous r > 0 we
choose u; with ||)\1u1||Hé > 7. Now let

I = {y € C([0,1], Hy() : 7(0) = 0,7(1) = Ayus}
and define ¢ := inf max I(y(t)).

v€l' t€[0,1]
||7(O)||Hé = 0 and ||7(1 )||Hé > r, Jtg € (0,1) such that

||'Y(t0)||Hg =r. So by Eq. (7) we have:

Take v € I'. Since

r2

v(#) = 7 > 0= max{1(0),

¢ = inf max I(y
vET te[0,1]

I(Auy)}
In order to use 75 Mountain pass theorem it’s missing to

check that I satisfies the Palais-Smale condition at level c.
Let (u,) be a Palais-Smale sequence at level c. We then

have: {

The second equation implies that df(uy,) v, — 0 and thus:

/\Vun| —/Fscun dz=c+o0(1)

/|Vun\ /f vt dz = o (I 1)

From here subtracting the first equation (multiplied by p)
to the second one, we have:

I(u
Al (un) 550

n) = C

(1 -= /|Vun\ dx—|—/[pF(x un) — fx,un)u,)da =
Q

—pe+0(1) +0 (llunlly )

By hypothesis the second term is negative, so:

3

1 2
< 1
p)ﬂ/|wn| dw < c+0(1) +0 ()

So 3K > 0 such that ||“n||H5 < K Vn € N. So af-

1

ter extracting a subsequence we have u, — wu for some



u € H}(Q) and by compact embedding u, L% w for all
1 < p < 2*. But f is Carathéodory with growth condition
[f(z,8)] < CL+ ") with 1 < 8 =p —1 < &2, So
flz,un) L flz,u) forall 1 < g < %. Now, by duality,
the continuous embedding H} < L? gives L1 — H~!
with % + 2% = 1. An easy computation shows that:

_ M = 00<2" = (< i
T d—2 q q

LN
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So f(xz,un) oo f(z,u). Now since
dI(un) b = (=Aun = f(z,un), h) g x H}

—1
we have —Au,, = f(z,un) + rn, with r,, = dI(u,) o

_1 1
Thus, —Au, 2 f(z,u) (and so u, Mo, (=A) " f ()
1 -1
and since u, il u implies —Au, N —Au, we have

1
—Au = f(z,u). This implies that in fact u, Ho, 4 and so
I(u) = le I(u,) = c. O
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