Introduction to control theory

1. | Control theory in ODEs
Stability

Definition 1. A function o : R>9 = R3¢ is said to be of

class K if it is continuous, strictly increasing and «(0) = 0.

If, moreover, lim «(s) = oo, then « is said to be of class
S—00

oo

Definition 2. A function 8 : R>¢p X R>o = R is said
to be of class KL if it is continuous, for each fixed ¢t > 0,
the function 5(-,t) is of class K and, for each fixed s > 0,
the function (s, -) is decreasing and tlggo B(s,t) =0.

Remark. An example of a function class K not in K>
is for example a(s) = arctan(s). Examples of functions
of class KL are for instance 3(s,t) = se™! or [(s,t) =
arctan(s/(t 4+ 1)).

Definition 3. Let E C R™ be a neighbourhood of the
origin and V' : E — R>( be a function. We say that V' is
positive definite on E if {V =0} = {0}. We say that V is
negative definite on E if —V is positive definite on E.

Lemma 4. Let E C R"™ be a neighbourhood of the origin
and V : E — R>¢ be positive definite on E. Then, for any
compact set K C E with 0 € Int K, there exists a € K
such that a(]|x||) < V(x) for all x € K.

Remark. If V' is continuous, then it is uniformly continu-
ous on compact sets, and so we have:

V() =Vl <w(x-yl)

where w is a modulus of continuity of V. Then, we can
find oy € K such that a; > w and so we have an upper
bound for V(z) < a1 (||x]]).

Definition 5. Let E C R™ be a neighbourhood of the ori-
gin. We defined the penalized norm on E as the function:

wg: E — R>g
x — |Ixl (1+ a5 )

From now on, we will consider that the system

(1)

has an equilibrium point at the origin. We will denote
by X(xg,t) a solution of the system with initial condition
X(X(),O) =xp € O CR".

Definition 6. The equilibrium X(0,¢) = 0 of Eq. (1) is
said to be:

o stableif 3u > 0 and a € K such that V||xo|| < p any
solution X(xg,-) exists for all ¢ > 0 and satisfies:

X (x0, )| < allxoll) V¢ =>0

o attractive if Ip > 0 such that V||x¢|| < p any solu-
tion X(xg,-) exists for all ¢ > 0 and satisfies:

Jim {1 X (x0, )| = 0

o asymptotically stable if I3p > 0 and S € KL such
that V ||xo|| < p any solution X(xo,-) exists for all
t > 0 and satisfies:

X (%0, t)[| < B(l[x0ll ,£) Vvt =0

o exponentially stable if kA, p > 0 such that
V ||xo|| < p any solution X(xo,-) exists for all ¢ > 0
and satisfies:

IX (0, )| < K [[x0fl €™ VE>0

Moreover, in the last two cases, if 4 can be picked as large
as we want, then the equilibrium is said to satisfy that
property globally.

Remark. Note that exponential stability implies asymp-
totic stability, which implies stability and attractivity.
Moreover, it can be seen that asymptotically stability is
equivalent to stability and attractivity.

Remark. An equivalent definition for stability is the fol-
lowing: Ve > 0 3§ > 0 such that if ||xo]] < J then
[IX(x0,1)|| <e forall t > 0.

Definition 7. The equilibrium X(0,¢) = 0 of Eq. (1) is
said to be unstable if 3¢ > 0 such that V§ > 0 Ixq €
B(0,9) and a solution X(xg, ) such that ||X(xo,t*)|| > ¢
for some t* > 0.

Remark. A solution may be unstable and attractive at the
same time. For example, the system

& =a?(y— ) +y°
v =y*(y — 2x)

exhibits the behaviour shown in Fig. 1.
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Figure 1: Unstable attractor

Definition 8. We define the basin of attraction of the
origin as the set A of all initial conditions xg such that
the solution X(xo,-) exists for all ¢ > 0 and satisfies
lim X(xo,t) = 0.

t—o0



Theorem 9. If the origin is asymptotically stable, then its
basin of attraction is an open set included in O. Besides,
384 € KL such that Vxo € A, any solution X(xg, -) exists
for all ¢ > 0 and satisfies w4 (||X(x0,?)||) < Ba(|lxoll ,?)
for all ¢ > 0, where w4 is the penalized norm of A.

Theorem 10. Assume that £ € C!. Then:

1. The zero solution is exponentially stable if and only
if the zero solution of the system y = Df(0)y is
exponentially stable.

2. If Df(0) has an eigenvalue with positive real part,
then the origin is unstable.

Proof.

1. We only do the <= ) part. So assume the origin
is exponentially stable for the system y = Df(0)y.
Then, 3k, A > 0 such that ||y (0,)| < k|ly,le
for all t > 0, which implies ePf(0)t < ke=? for all
t > 0. Now consider x = f(x) = Df(0)x + Af(x),
with Af(x) := f(x) — Df(0)x. As f € C}, IR > 0
such that % < 3 for all [x| < R. Defin-
ing p := %, then if ||xg]| < p we must have that
the solution X(xg,-) belongs to B(0, R) at least on

[0,T) for certain T' > 0. Thus, Vt € [0,7) we have

[AfX(x0. DIl X
XGo ) = 2k7

constants formula:

and so using the variations of

t

X(xq,t) = Pf@lxy 4 / ePEOE=9) A (X (%, 5))ds
0

Thus:

t
_ A s
X (0, t)|| < ke At||><oH+§/e MX (x0, 8) | ds
0

And so:
\
X o, )] < ol + 5 [ € Ko, ) s
0
Finally, by ?? ?? we have eM||X(xq,t)]| <
ke ||xol|, and so the origin is exponentially stable.

O

Remark. In linear dynamics exponentially stability is
equivalent to global exponentially stability, which in turn
is equivalent to global asymptotic stability which is equiv-
alent to asymptotic stability.

Corollary 11. If f € C! and Df(0) has all its eigenvalues
with negative real part, then the origin is asymptotically
stable.

Theorem 12. Let V : O — R>( be a locally Lipschitz
function which is positive definite on O. Then, if

D;V(x) = lim sup Vix+#(x)) = V()
t—0t t

is non-positive for all x € O, then the origin is stable. The
function V is called a Lyapunov function.

Proof. Since O is a neighbourhood of the origin 3R > 0
such that B(0,R) C O. Then, since V is continuous
and positive definite, Jaq, ag € K such that aq(||x]]) <
V(x) < ag(]|x]|) for all x € B(0,R) (by Theorem 4).
Let pu := as '(a1(R/2)). Then, any solution with ini-
tial conditions ||x¢|| < p belongs to B(0, R) at least for
t € [0,7). Now if we consider v(t) := V(X(x0,t)), then
we have 0(t) = D?V(X(Xo,t)) < 0 for all t > 0. Thus,
Vt € [0, T) we have:

ar([[X(xo, 1)) < V(X(x0,1)) = v(t) < v(0) =
= V(xo) < as([[xoll)

And so | X(x0,t)|| < a7(az(|lx0l))) < R/2 for all t €
[0,T). This mean that in fact T'= co and so the origin is
stable with the function a := a; ' o as. O

Theorem 13. Let V : O — Rx>¢ be a locally Lipschitz
function which is positive definite on O. Then, if

D?V(x) < —w(x), ¥xeO

with w : O — R>( continuous and positive definite, then
the origin is globally asymptotically stable.

Proof. As in the previous proof, we define p :=
a; (a1 (R/2)) and we get o(t) < —w(X(xq,t)). Since
w is continuous and positive definite, daz € K> such
that as(||x|]) < w(x) for all x € B(0,R). Thus, v(t) <
—a3([|[X(x0, 1)) € —az(ay ' (V(X(xo,t)))). Now, in this
case, one can prove that 38 € KL such that v(t) <
B(v(0),t) for all ¢ > 0. But:

ar([[X(xo, 1)) < V(X(x0,1)) = v(t) < B(v(0), 1) =

And thus, || X(xo,1)|| < a7 '(B(az(||x0]), ) for all t > 0,
which implies that the origin is globally asymptotically
stable since the latter function is of class L. U

Theorem 14 (Lasaalle’s invariance principle). Let
K be a compact set contained in O and let V : O — Rxg
be a locally Lipschitz function which is positive definite
on O and such that D}"V(x) < —w(x) for all x € K with
w : O — Ry continuous (not necessarily positive defi-
nite). Then, for any solution X(xg,-) with xg € K and
defined on K for all ¢t > 0, Jv* € R>( such that X(xo,?)
converges to the largest positively invariant set contained
in:

{ye K:V(y)=v" and w(y) = 0}
Remark. If the function V is such that
k%)™ < V(x) < ko [Ix]™

and w such that w(||x||) > k3 ||x||™, for some k1, ko, k3 > 0
and m,n € N, then the origin is globally exponentially sta-
ble.

Theorem 15 (Chetaev’s theorem). Let V : O — Rxq
be a locally Lipschitz function such that:

e 0€0G, with G:={xe€ O0:V(x)=0}.



o There exists a neighbourhood U (called Chetaev sur-
face) of the origin such that D;{V(x) > 0 for all
xeUNG.

Then, the origin is unstable.

Theorem 16. If the origin is asymptotically stable, then
Ve >0 {f(x) : ||x|| < e} is a neighbourhood of the origin.

Theorem 17. If the origin is locally asymptotically
stable with basin of attraction A, then I\ > 0 and
V € C™(A,Rxq) positive definite and proper (that is,

lim V(x) = o00) such that:
d(x,0 A)—0

D;{V(x) <=AV(x) Vxed

Control design and stabilization of equilibrium
points

Definition 18. The system x = f(x,u) is said to be con-
trollable in time T' > 0 if Vx¢,xp € O Ju : [0,T] — R?
such that the solution X (xg, -, u) of the system with initial
condition X(xg,0,u) = xq satisfies X(xo,T,u) = xr.

Definition 19. The origin is said to be asymptotically
stabilizable if there exists ¢ € N, a neighbourhood V C R¢
of the origin and ¢ : RxR"xV — R?, 9 : RxR"xV — RP
both continuous, such that the origin is an asymptotically
stable solution of the system:

x =f(x,u)
u = p(t,x,X) (2)
X = ¢(ta X, X)

The last two equations are called the feedback control laws.
If ¢ = 0, then the feedback control law is called static,
whereas if ¢ > 0 it is called dynamic. Moreover if both ¢
and v are independent of £, then the control law is called
stationary and if 1 and x are independent of x, it is called
open-loop control.

Theorem 20 (Kalmann’s theorem). Consider the lin-
ear system x = Ax + Bu with A € R"*" and B € R"*P.
Then, the system is controllable (or the pair (A,B) is
controllable) if and only if

rank C :=rank (B AB A"'B)=n

The matrix C is called the controllability matriz.

Theorem 21. Let A € R"*™ and B € R"*P. Then, the
pair (A, B) is controllable if and only if VA,..., A\, € C
JK € RP*" such that:
oc(A+BK)={)\,...,\x}

Remark. In practice we pick A1, ..., A\, € {Rez < 0}, and
then we look for K such that o(A + BK) = {\y,..., Ay}
(for example by using the characteristic polynomial). Note
that if p > 1, the solution may not be unique.

Theorem 22. Suppose that there exists ¢ € N, 1 :
R"xR? — RP and ¢ : R® xR? — R? continuous such that

1(0,0) = 0 and ¢(0,0) = 0. Assume, moreover, that the
system

X = QD(X, ¢(X7 X))
admits 0 as an asymptotically stable equilibrium. Then,
Ve > 0, {f(x,u) : ||Ix|| + |Ju|| < e} is a neighbourhood of
the origin.

{x = £(x, P (x, X))

Definition 23. Assume that V is a C' Lyapunov function
for the system x = f(x,u). We say that V is a strictly
control Lyapunov function (SCLF) if Vx # 0 Ju € R?
such that %—‘;f(x, u) < 0. Vis a SCLF continuously at
the origin if Ve > 0 3§ > 0 such that Vx € B(0,4) \ {0}
Ju € B(0,¢) such that ‘g—‘;f(x, u) < 0.

Theorem 24. If V is a SCLF continuously at the ori-
gin, then for any T' > 0, there exists a continuous static
T-periodic feedback control law asymptotically stabilizing
the origin. In addition, if the system is input-affine, that

is
3)

there exists a continuous static stationary feedback control

law asymptotically stabilizing the origin.

Theorem 25 (Sonntag’s theorem). Let V be a SCLF

for an input-affine system (Eq. (3)) Then, a stabilizing

control law is given by:

x = a(x) + b(x)u

0 if LV (x) =0

LaV(x)+/(LaV ()24 Ly V (x)[* T
- |L;,V(x)\2 b va(x)

P =

otherwise

where L,V (x) := %a(x) and LV (x) := %—‘;b(x).

Remark. This ¢ is as smooth as L,V and LV on R™\{0}.
And if V is a SCLF continuously at the origin, then % is
continuous at the origin.

Backstepping

Consider a system of the form:

x =f(x,y)
{. B (4)
y=u
We would like to construct a SCLF for this system, that
is, to find V' such that V(x,y) # (0,0) Ju such that
ov ov
£
I (x,¥)+ 8yu <0

We define 1 such that
9 (x,m(x)) = 0
n(0) =0

Lemma 26. If V is a C? function and 7 is a locally 1/2-
Holder continuous function, then W(x) := V(x,n(x)) is a
SCLF for the system x = f(x, v).

Finally we consider

V(x,y) =V(x,n(x)) +

n

p(x,8)ds

/y
(%)

with ¢ such that p(x,y) =0 <= y = n(x). Then, this
V is a SCLF for the system of Eq. (4).



Remark. Usually we take p(x,y) = y —n(x) and consider

()

In practice, we first look for a SCLF W for the system
% = f(x,v), and then we find v = n(x) such that W < 0.
Finally, we construct V as in Eq. (5). And we could iterate
this process.

Vixy) = Vixn() + 5 ly -0l

Remark. This method is only valid for systems in strict-
feedback form, that is, systems of the form:

1 = fi(x1, z2)

&9 = folx1, 22, 3)

in—l = fn—l(xly cee a‘rn)

:tn = fn(wl,“';xnau)

2. | Control theory in PDEs

From what follows x will denote the state variable whose
values are in a Hilbert space X, and u will denote the
control variable whose values are in a Hilbert space U.

Classical problems

Definition 27 (Exact controllability). Let 7' > 0. The
exact controllability of a system is said to be achieved
if, for any initial condition xy and any final condition
x7, there exists a control u : [0,7] — U such that the
solution X(xg,-,u) of the system with initial condition
X(x0,0,u) = x¢ satisfies X(x¢,7,u) = x7.

Definition 28 (Approximate controllability). Let
T >0, € > 0. The approzimate controllability of a system
is said to be achieved if, for any initial condition x¢ and
any final condition xr, there exists a control u : [0, 7] — U
such that the solution X(xg,-,u) of the system satisfies
IX (%0, T,u) — x| < e.

Definition 29 (Null controllability). Let T > 0. The
null controllability of a system is said to be achieved
if, for any initial condition x¢, there exists a control
u : [0,7] — U such that the solution X(xg,-,u) of the
system satisfies X(x¢,7,u) = 0.

Lemma 30. Consider a linear reversible system x =
Ax + Bu with A € R**™ and B € R"*P, Then, the
system is exactly controllable if and only if it is null con-
trollable.

Proof. The implication to the right is clear. Now assume
it is null controllable. Let T' > 0 and zg,zT € R™. Since
the system is reversible we can first solve for X

X = AX

i(T) = X7
Now we solve the null controllability problem with initial
state xg — X(0). Thus, we find u such that x satisfies

{)'( = Ax+ Bu
x(0) = x¢ — X(0)

and so x(T) = 0. Now consider X := X + x. Then, X

satisfies
X =AX+Bu
)/E(O) = X
X(T) = xr

Definition 31 (Feedback stabilization). Given x =
Ax+Bu, the feedback stabilization process consists in find-
ing an operator K : X — U such that x = Ax + BKx
has a stable (or asymptotically stable) equilibrium at the
origin.

Definition 32 (Optimal control). Let J be a cost func-
tion, J = J(x,u,x(T)). The optimal control problem con-

sists in finding u : [0,7] — U such that J is minimized,
where x satisfies X = Ax + Bu with x(0) = xo.

Interior control for the heat equation

Let 2 C R™ be a bounded regular domain (i.e. connected)
and w C ) be a non-empty open subset. We consider the
control system:

O —Av=1,u in[0,7] x Q
v=20 in [0,7] x 0 (6)
v =1y in Q

Theorem 33 (Strong solutions). Let f € L2((0,7); )
and vg € Hj (). Then, the Cauchy problem

Oow—Av=f in[0,T] xQ
v=20 in [0,T] x 0Q (7)
v = g in Q

has a unique solution
v e C([0,T; Hy () N L*((0,T); H*(2) N Hy ()

Proof. We start from uniqueness. Let (e;);en be a Hilbert
basis of L?(Q2) from the eigenvectors of the Laplacian op-
in Q

erator:
7A61' = )\Z—el—
e;=0 in 09

and ¢ € D((0,T) x Q) be a test function. Then, we have

T T T
pel et

In particular for ¢ = p(t)¢,:(x) with p € D(0,T) and

Ui H e; (here we use the fact that Hl = D(Q)™").
Thus, we arrive at:
T T T
—//vp'ei—k//vaVei://fpei
0 Q 00 00

Decomposing v = ;. vie; and f =),y fiei, we get:

T T T
*/U¢P/+)\¢/pv¢:/f¢p
0 0

0



which in the sense of D*(0,T') gives v} + \jv; =
has solution:

fi s which

¢
vi(t) = e Mt (0) + /e*’\i(tfs)fi(s)ds
)

So we have uniqueness and a formula:

Z e ity (0 )+ Z/

€N i€EN

(E= é)fz (s)ei(z)ds
(8)

v(t,x)

=: v (t, ) + vp(t, x)

For the existence, it suffices to check that the solution in
Fq. (8) belongs to the desired space. We first check that
v € CO([0,T]; H(£2)). We have:

2
HUaHLoo(OTHl(Q)) = SUP v (t 7')HH(}(Q) =

t€[0,T
— sup / e, (0) | Ve, =
t€[0,T) zeZN ’
= sup Z)\e SZ/\HW(O)F:
t€[0,7] 5N ieN

2
= ||U0||H5(Q)

On the other hand:

llvs (2,

=> X\

€N

||H1 Q) —

t
/ NI f(s)ds | =
0

2

t
=S [ [ enevaas | < S IAlE o -

ieN \ ieN
2
= 11122 (0,7):22(0))

where we have used the fact that the penultimate term
can be written as a convolution and then we use 77 7?7
1F 5 gl < 1l lglle with 1/p+1/g = 1+ 1/r, in
the case p = ¢ = 2 and r = oo. Finally, we prove
v € L2((0,T); H3(£2)). Indeed:

T
_ . 2
valt, W20y = [ D Ae M v (0)Pdt =
0 iEN
T
_ Z)\i|vi(0)|2/)\ie‘2mdt < C ol 0
ieN 0

because the latter term in the penultimate equality is
bounded. Moreover:

t 2
lun(t, )% = /ZAQ /_’\i(t_s)fi(s)ds df —
ieN
T 2

/Z/ Ailt=9) £, (s) \ids

o0 t€N

dt <

T

< /Z Hfz‘||2L2(o7T) dt<T ||f||2L2((o,T);L2(Q))

o ieN
again by 77 ?7. O
Theorem 34 (Weak solutions). Let [ €
L2((0,T); H-Y(Q)) and vy € L?(Q2). Then, the Cauchy

problem of Fq. (7) has a unique solution
v € C7((0,7); L*(Q) N L*((0,T); Hy (2))

We consider now the dual problem of Fq. (6):

—90—AO=0 in[0,T]xQ
6=0 in [0,7] x 09 (9)
0(T) = 07 in

Proposition 35. Let u € L2((0,T) x ), vo € L*(Q) and
v the corresponding solution of Eq. (6). Then, the solution
0 of Eq. (9) with O € L?(Q) satisfies:

-] o

Proof. We can suppose that all functions are smooth (oth-
erwise we replace them by a linear combination of e; and
pass to the limit using the fact that (vg, f) — v is contin-
wous from L2(Q) x L2((0,T) x Q) — C°([0,T]; L*(2)) N
L2((0,7); L*(R))). Now, multiplying Fq. (6) by 6 and in-
tegrating we get:

T T T
//1wu0://8t09+//VvV0:
0 Q 0 Q 0 Q
S T
:/vﬂ —
Q

T
//5&01}+//V11V9:/09
Q
Definition 36 (Observability inequality). We will say

0 Q 0 Q
that the dual problem Eq. (9) satisfies the finite-time 0b-
servability inequality if 3C > 0 such that Vo7 € L?(Q2) the

solution 6 satisfies:
/ /7

Proposition 37. If the dual problem Eq. (9) is finite-
time observable, then the control problem Eq. (6) is null
controllable.

(0,v Lz(Q)

O

16(0)]1 725y <

Proof. Note that the null controllability condition is
equivalent to Vo7 € L?(Q) we have (by Theorem 35):

—(0(0),v0) £2(0) Z/T/uQ
0 w

Now let’s define:

B := {1,0 : 0 solution of Fiq. (9) for some 7 € L*(Q)}



A= ELQ((O,T)XLU)
We equip A with the norm |[-[| (g 7 x)- Now consider:

®:L%(Q) — L2(0,T) x w)

GT — ]-wg
Note that im® = A. Now, to any ¢ € im(®) we could a
priori associate several 67, but all of them would generate
the same 6(0) due to the observability condition. So we
may consider the map:

im(®) — L3(Q)

1,0 — 6(0)

which is continuous by the observability condition. Now,
extending the map to A by uniform continuity, we get that

l: A — R
1w0 — 7<9(0),’U0>L2(Q)

is a continuous linear form (by composition). We conclude
now with ?? 7?7 since A is a Hilbert space. (|

Proposition 38 (1D observability inequality). Let
Q=(0,1), w=(a,b) and T > 0. Then, 3C > 0 such that
VOr € L?(0,1) we have:

10Ol 20,1y < C IOl 20,7y xw)

Proof. Let w(t,x) := 6(T — t,x) so that w satisfies:

Ow — Oggw =0 in [0,7] x (0,1)
w(t,0) = w(t,1) =0 (10)
w(0,z) = wo(x) in (0,1)

We want to prove that

[w(T) 20,1y < C lwllp2(0,7)% (a0))

From Theorem 39 between t; and tg we have:

L 1-6 5
||w(t0)HLoc(0,1) < Cefi=ho ||w(t1)HLoc(0,1) ||w(t0)||Lac(a,b)
We repeat that in the interval (t2,%1) and we get:

D(1-6) 2
(o) | o 0,1y < C2 P m T [lw(t) | () -

1-96)0 é
)l oy lw(to) | fee 0y

Repeating the argument we get each time an extra power
1 — ¢ in eP/(nt1=tn)  So we would like to have for exam-
ple ty,y1 —t, = « (1 — g)n Y neN (1 — %)n = % so we let
to=Tand t,41 =t,— %T (1 — %)n We conclude arguing
by induction and passing to the limit:

[w(O)ll L= (0,1) = C l1wll e (0,7 x (a0

Now to prove the L? inequality, for the left hand side we
have [|w(0)(| 29,1 < [[w(0)]| 1o (g,1) and for the right hand
side we use 40 Interior regulariy. Ol

Lemma 39. Using the hypotheses and notation of the
previous proposition, we have that 3C, D > 0 and § > 0
such that Ywgy we have:

1-6 5
Hw(T)HLoo(o,n < CeP/T ||w0||L°<>(o,1) Hw(T)HLoo(a,b)

Lemma 40 (Interior regulariy). Let w be a solu-
tion of the heat equation (w € C°([0,T]; H(0,1)) N
L2((0,T); H*(0,1) N H{(0,1))). Then:

||w||L°°([T/2,T]><[a7b]) <C ||w||L2([T/4,T]><[c,d])
forall0<ec<a<b<d<l

Proof. Let w be a solution. We introduce a cut-off func-
tion 1 € C™ with ¢1 = 0 outside [T/4,T] X [c,d] and
w1 =1in [T/3,T] x [u,v], with e < p < aand b < v < d.
We look at wy := weyi. We have:

0wy — Opaw1 = WOt — 20, W01 — WOzpP1

wi =0 =0

wilp,T)xo0 =0

Let’s study the right hand side. We have:
o [wdipr|l 2 <Cwl 2 = [[WIeprll 2 g1 <Cllw] 2
¢ [wBzwr|| 2 < Cllwll o= [w0apr [l 12 g < Cllwl| 2
¢ [0zwpnll e v < Cllwll L2

By the theorem of existence of weak solutions we get
||w1HL2’Hé < C||lw|| 2. Now we introduce a second cut-
off function o with po = 0 outside [T/3,T] x [u,v] and
wo = 11in [T/2,T] x [a,b]. We define we := wips. We
have similar calculations to the previous ones but with
w € L2([0,T); H*(u,v)) and so:

o |lwdpz| 2 < Cllwll.
¢ Nweep2ll 2 < Cllwll
o [[0cwOzipallp2 < C w2
Using the theorem of existence of weak solutions we get:
w2l oo, i < Cllwll 23,780 (1))
< Cllwll g rya,rym (e ay)

where the last inequality follows from the first step. O

Boundary control for the wave equation

In this section 2 C R” is a bounded regular domain and
3 C 99 is a non-empty open subset. We are interested in
studying the control system:

Opv —Av =20 in [0,7] x Q
v=1yu in [0,7] x 0Q (11)
(v,@tv)|t:0 = (’Uo,vl) in

Theorem 41 (Weak solutions). We consider the prob-
lem

(‘3ttv—Av:f in [O,T] x )
v=0 in [0,7] x 0Q (12)
(v, ) |t=0 = (vo,v1) in Q

with (vg,v1) € HE(Q) x L*(Q) and f € L*((0,T); L?(2)).
Then, the problem has a unique solution v €
([0, T; Hg () N € ([0, T); L*(€)) with:

”vHLOC([O,T];Hé(Q)) 11000 oo (0, 73;22(0)) <

< C (Jlvoll g + ol e + 1o o, ryz2can)



Theorem 42 (Strong solutions). Consider the prob-
lem Eq. (12) with vg € H2(Q) N HE(Q), v1 € H () and
f € LY((0,T); H(Q)). Then, the problem has a unique
solution v € C°([0,T); H2(2) N HL(Q)) NCL([0,T]); H (2))
with:

H’UHL%([O,T];H"’(Q)ﬁHé(Q)) + ||8tv||Loo([o,T];H1(Q)) <

< C (ol sy + Noallg + 17 o ozyiamscan))

Proof. We proceed as for the heat equation. Consider
the Hilbert basis (e;)ien of L2(2) from the eigenvec-
tors of the Laplacian operator of eigenvalues A;. Let
Vo = ZieN ai(t)e;, vi = ZieN bi(t)e; and f = ZieN fiei.
We look for a solution of the form v(t,z) = >,y yi(t)e;.
Taking test functions ¢(t)i(x) and letting ¥ — e; we get
(in the sense of distributions in time):

yi' + Niyi = fi
i(0) = a4, y;(0) = b;

So the solution must be of the form v(t,z) = >, .y vi(t)e;
with:
¢
— in(vAit in(vA;(t—
i) = as coss/Nt-bi smf/\g ) +/SHI(\C)\% S)) fi(s)ds

This gives uniqueness and existence if the sums are finite.
To check that the solution belongs to the desired space we
proceed as in the heat equation case. ]

Theorem 43 (Hidden regularity). For a regular solu-
tion, we have for some C' > 0:

T

2 2 2 2
[ [10a0 <01 [luoliy 4 loalEs 4171 000
00Q

Proof. Suppose v regular. We will use a multiplier
method. Let ¢ : © — R” be a smooth vector field. We
multiply the equation by (q-V)v and integrate (we denote
Q:=10,T] xQ and X7 :=[0,T] x ). On the one hand:

//&tvq Vv—/atvq V)v
= [onta-vn| - [fa-v) -
Q Q
NS

/ ov(q - V)0 =

/&qu V

where in the last equality we have used integration by
parts, the ?? ?? and the fact that vsq = 0. On the
other hand:

é/Av(OLV)v —Zlénv(q.v)vé Vo.V

Notice that since v = 0 on X7, the tangential derivatives
of v are zero, and so on r we have (q-V)v = (q-n)0yv
The second term can be written as:

V)v)

AR CRE
Q
Z//akvﬁqu'3w+/ OpvqiOpiv =
Q@ Q
— zjawakqianré/qiai <(8k11)2) B
://61&)8}&11191-1)—}—//(q-V)”VUH2 =
//8kv8kq18v—// ”V“” // Ivel®,

Finally grouping all terms we get:

é//m-n)(av

/ D00 (q:0r) =
Q

1
:/ 8kv8kqi8»v—§/ IWolf? div a+
Q

/@qu / —/f(Q'V)U<
Q
<a?4a’+ab+b+ac
With a = H/U”LOC([O,T],H[%(Q))’ b = |‘atUHLOQ([07T]7L2(Q)) and
¢ = [|fll11(0,7);12(c2))- Here we used that |[Vv[| = |Oqv],

because v = 0 on Xr. We conclude choosing q a regular
extension of the unit normal vector field to €.

Now, we want to define weak solutions of Eq. (11). To do

so, we take as test functions solutions of:

Ooud — A= f in [0,7] x Q
0=0 in [0,7] x 9Q (13)
(0,0:0)]t=7 = (0,0) in Q

Definition 44  (Transposition solution). Let

(vo,v1,u) € L2(Q) x H1(Q) x L?(Xr). We call transposi-
tion solution of Fq. (11) a function v € C°([0,T]; L*(Q)) N
CY([0,T); H~1(2)) such that for any f € L'((0,T); L*(2))

we have:
—|—/9(0)v1 - /uanﬁ (14)
Q

//vfz —/&G(O)U(O)
Q Q Sr

where 6 is the solution of Eq. (13) associated to f.

Remark. Any regular solution is a transposition solution.

Theorem 45. For any (vg,v1,u) € L2(2) x H71(Q) x
L?(X7), there exists a unique transposition solution of

Eq. (11).

Proof. We would like to prove that the right hand side of
Fq. (14) is a continuous linear form on L((0,7); L?(12)).
If so then v € [L1((0,T); L2(Q))]* = L>([0,T]; L*(2))
such that the equation is true Vf € L1((0,T); L(Q)). We
have that

L'((0,7); L*(22))—C°([0, T]; Hg (2))NC* ([0, T]; L*(R2))
f — 0



is continuous, and so is f — [,30(0)v(0) =
(040(0),v0) 2% 2, because 9;0(0) € L*(Q) and v(0) €
L3(Q). Similarly, since f — 0(0) € H}(Q) is continuous,
then so is f = [, 0(0)v1 = (0(0),v1)p1xp-1- Finally,
by 43 Hidden regularity we have that f — 0nf|s, € L? is
continuous, and so is f +— fET wOnl = (u,0n0) 25 2. [

Proposition 46. Consider a transposition solution v of
Eq. (11), with vy € L%(Q), v, € H Q) and u €
L?((0,T) x ¥). Let 6 be a solution of

8tt0_A0:0 in [O,T] x )
=0 n [0, 7] x99  (15)
(0,0:0)|s=1 = (6%.,0}) inQ

Then:

(O, 0) - xH§ (v, 3t9>L2><L2}

s T
z//u&ﬁ
°© 0%

Proof. Tt is sufficient to prove it for regular solutions and
then pass to the limit using:

1011 oo pz3 + 110601 Lo 12 S HG%HHé + 102l 2
0]l oo Lo oo g2 Slvoll otHlvrll gl ull L2 0,7y <)

Now, multiplying the equation of v by € and integrating

we get:
T s T
0://(8,5,511—Av)9:/8w9 —//8751)8,59—1—
0 Q Q O 0 a
T T s T
+//VvV9=/6tv9 —/v@tﬁ +//uaﬁ9—
0 O Q o9 O 09

T T
—//vA@—}-//v@nH
0 Q

0 0Q

0

Remark. Exact controllability is equivalent to exact con-
trollability starting from (0, 0) (due to superposition prin-
ciple).

Definition 47 (Observability inequality). We say
that Eq. (15) is ezactly observable in time T from X if
3C > 0 such that for any solution 6 of FEq. (15) we have:

16CT)[ g2 + 16:0(T) | L2 < CllOnbl L2,

Remark. Note the difference with the final-time observ-
ability for the dual heat equation:

1600} 2 < ClIOll L2 (0,7 xw)

Proposition 48. If the dual problem Eq. (15) is exactly
observable in time T from 3, then the control problem
Eq. (11) is exactly controllable in time T from X.

Proof. Suppose Eq. (15) is exactly observable. We make
the choice to find u of the form u = 9,0 for some 6 solu-
tion of Eq. (15) (in order to put the problem in the stan-
dard Riesz’s form). Consider now E := H}(Q) x L*(Q)
equipped with the norm ||(60,61)|z = [[0nboll12(5,),
where 6 is the solution of Eq. (15). This is an equivalent
norm to the standard one:

(60,01 g2 HGOHHSHWI |2 (36 Observability inequality)
|(60,61)] 5 < ||t90HH5+||01 || ;2 (43 Hidden regularity)

E is Hilbert with this norm. Now, given (9y,0;) €
E, the left hand side is a continuous linear form on
(0(T),0,0(T)) € E. So 3(00,0) € E such that
with 6 the corresponding solution of Fq. (15) one has:
Y(0(T),0:0(T)) € E with the corresponding solution 6 we
have:

(61,00 ) 15y — (60, 00D}z = [ 0u0u8
Xr

So we take u := 9,0. O

Theorem 49 (Bardos, Lebeau, Rauch). The system
is exactly controllable (or the dual observable) if and only
if any ray of geometrical optics in €2 (at speed 1) intersects
Y between times 0 and 7.

Remark. If ¥ = 0%, then the system is controllable of
T > diam(92).

3. | Abstract systems

Basic definitions

Definition 50. Let X, Y be Banach. A bounded operator
is a couple (D(A), A) where D(A) C X is a subspace and
A : D(A) — Y is a continuous linear operator. An un-
bounded operator is a couple (D(A), A) where D(A) C X
is a subspace and A : D(A) — Y is a linear operator.

Remark. Usually we will omit specifying the domain

D(A).

Remark. Note that bounded operators are also unbounded
operators.

Definition 51. Let A be an unbounded operator between
Banach spaces X and Y. A is densely definedif D(A) = X.
A is closed if graph(A) = {(z,y) € D(A) xY :y = Az} is
closed.

Form now on we will assume X, Y are Hilbert.

Definition 52. Let (D(A), A) be a densely unbounded
operator. We define the adjoint operator (D(A*), A*) by:

D(A*)={y € Y" : 3c> 0 with
[(y, Az)y-xy| < cllzlly Vo € D(A)}
and Yy € D(A*) Voz € D(A), A*y is given in order to

satisfy:
(A%y, 2) xxx = (Y, AT)y = xy



Semigroups
From now on we will assume X =Y.

Definition 53. A one-parameter family of unbounded op-
erators (T'(t));>0 is a semigroup of operators if:

o T(t+s)=T(t)oT(s) Vt,s >0

Definition 54. A semigroup of operators (T'(t));>o is
called

o uniformly continuous if ||T'(¢t) —id|| — 0.
t—0t
o strongly continuous if Vo € X | T(t)x — x| — 0.
t—0t

Definition 55. Let (T'(t))¢>0 be a semigroup of operators.
We call infinitesimal generator of (T'(t))+>o the unbounded
operator (D(A), A) where

t—0+ t

D(A):{xeX:HIim T(t)H”}

and Vo € D(A) we define:

Ay e L LT =T
t—0+ t

Proposition 56. Let (T'(t)):>0 be a strongly continuous
semigroup of operators. Then:

1. Vax € X, t — T(t)x is continuous.

2. Vz e X and all t > 0:

/T(s)xds eD(A) and T(t)x—x=A /T(s)xds
0 0
3. Vz € D(A), $T(t)x = AT (t)x = T(t)Az.

4. Vx € D(A) and all t,s > 0:

¢ ¢
Tt)x —T(s)x = /AT(T)xdr = /T(T)Axdr
5. Ja, C > 0 such that ||T'(¢)| < Ce*t.
Proof.
1. Take z € X, s,t > 0 and y := T'(s)z. Then:

1T = T(s)all = Tt = 5)T(s)x — T(s)a| =
=Tt = s)y—yll — 0

because of the strong continuity of the semigroup
and Theorem 53.
2. We have:

T(h)hid/tT(s)xds = ]11/T(5+h)xds}1l/tT(S)$dS

0 0 0

t+h
T(s)ds —

0
t+h
/ T(s)ds —
t

3. Let x € D(A) then the following limit

0

S

S
S

h—0t

h
/T(s)ds — Tt)x—x
0

lim T+ h)z—T(t)z _
h—0t h

) T(h)r—x
i T —=— =

=T(t)Ax

exists because of x € D(A). Moreover using the
properties of the semigroup we have it is also equal
to AT (t)x. Now assume h — 0~ (so h < 0). Then:

T -T T(— —
im (t+h)x (t)x ~ T+ h) (=h)z —=
h—0~ h —h
which exists and is equal to AT (t)x because = €

D(A).

4. We prove it for s = 0, and then the general case
follows by the linearity of the integral. But then by
Ttem 56-2:

t t

Tt —a— A / T(s)ads = / AT(s)zds

0 0

and the exchange of the limit and the integral is jus-
tified by the existence of both limits.

O
Theorem 57.

1. If A is the infinitesimal generator of a strongly con-
tinuous semigroup, then it is closed and densely de-
fined.

2. If (T(t))e>0, (S(t))i>0 are two strongly continuous
semigroups with the same infinitesimal generator,
then T'(t) = S(t) V¢t > 0.

3. Vxg € D(A), there exists a unique solution z €
C%([0,+00), D(A)) N C}([0,+0), X) of La(t) =
Az(t) with 2(0) = zo, and it is given by:

z(t) =T (t)xo

Moreover, Vf € C1(]0,T], X), there exists a unique
solution = € C°([0,7],D(A)) N C([0,T],X) of
La(t) = Az(t) + f(t) with z(0) = =z, and it is
given by:

t

z(t) = T(t)xo + /T(t —s)f(s)ds
0

This last formula is called the variation of constants
formula or Duhamel’s formula.

Remark. Duhamel’s formula is still valid even if g € X
and f € LY((0,7T), X). In this case, the resulting solution
z(t) is called mild solution. Any mild solution is a limit of
classical solutions.



Theorem 58. Suppose X is reflexive. Then, if (T'(t)):>0
is a strongly continuous semigroup with infinitesimal gen-
erator A, then A* is the infinitesimal generator of the ad-
joint semigroup (T'(¢)*);>o.

Remark. We will denote by T'(t)* also by T*(¢).

Definition 59. A semigroup (T'(¢)):>0 is called contrac-
tion if |T(t)]] <1 V¢ > 0.

Definition 60. Let (D(A), A) be an unbounded opera-
tor. The resolvent set of A is the set p(4) == {A € C:
A — A is bijective}. Given A € p(A), the resolvent opera-
tor is the operator Ry(A) := (A — A)~L.

Theorem 61 (Hille-Yosida). Let (D(A), A) be an op-
erator closed and densely defined. Then, it is the infinites-
imal generator of a contraction semigroup if and only if:

1
(0,00) € p(A) and YA > 0, [RA(A)]] < +
Corollary 62. Let (D(A), A) be an operator closed and
densely defined. (D(A), A) is the infinitesimal generator
of a semigroup (T'(t))¢>o such that || T(¢)|| < e Vt > 0 if
and only if:

1
—c

(¢,0) C p(A) and VA > ¢, ||RA(A)] < 3

Definition 63. An operator (D(A), A) is called dissipa-
tive if Vo € D(A), (Az,x) < 0.

Theorem 64 (Liimmer-Phillips). Let (D(A), A) be an
operator closed and densely defined. Then:

1. If A is dissipative and )¢ > 0 such that im(AgI —
A) = R, then YA > 0, im(A — A) = R and A gener-

ates a semigroup of contractions.

2. If A generates a semigroup of contractions, then
im(AM — A) =X VA > 0.

Corollary 65. Let (D(A), A) be an operator closed and
densely defined. If A and A* are both dissipative, then A
generates a semigroup of contractions.

Applications to control theory

In this section we consider the control system:

Az(t) + Bu(t) in [0,T]

(16)

where A is the infinitesimal generator of a strongly con-
tinuous semigroup (S(t));>0 and B is a bounded operator,
with:

S(t): L*(Q) — L*(Q)  B:L*(w) — L*(Q)

We will first consider the interior control in a region w C €.
We will denote by Fr the operator:

Fr: L2(0,T; L2(w)) — L2(Q)

u — fOT S(T — s)Bu(s)ds
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Remark. Note that exact controllability at time T is equiv-
alent to controllability starting from 0 which in turn is
equivalent to the surjectivity of Frr; approximate control-
lability at time T is equivalent to im Fpr being dense in
L?(Q), and null controllability at time 7' is equivalent to
im Fp 2 im S(T).
Theorem 66. Let S : Hi — H and T : Hy, — H be
bounded linear operators between Hilbert spaces. Then,
im(S) C im(7T) if and only if 3¢ > 0 such that Vo € H,
15|y, <cllT 2| g,
Proof.

=) If im(S) C im(7T), then Vz € H; 3y € ker(T)*

such that Sx = Ty.

o FExistence: for x € Hy, we find y € Hy such
that Sz = Ty and we define 2z := Tye,(1)1 Y,
where Ty 7y is the orthogonal projection

on ker(T)t. Then, z —y € (ker(T)+)+ =
ker(T'), and so T'(z — y) = 0, and thus Tz =
Ty = Sz.

o Uniqueness: if Sx = Ty, = Tys, then

T(y1 —y2) =0, and so y; — y2 € ker(T), but
also 1,y € ker(T)* (by hypothesis). Thus,
Y1 = Y2-

We define G : H; — ker(T)t C Hy such that to
x € Hy we associate the unique y € ker(7)~ such
that Sz = Ty. We have that G is linear. To see
that it is continuous we used the 77 ?7. We need
to prove that if x, Ay 2 and Gz, RiEN y, then
Gz = y. We have that G(x,,) € ker(T)+ ¥n and
ker(T)* is closed, so y € ker(T)+. We have that
T(G(zyn)) = Sz, Vn. Taking the limit and us-
ing the continuity of S and T we get Ty = Sz,
which by uniqueness implies y = Gz. So S = TG,
and thus S* = G*T*, with G* continuous. Thus,
Vo € H:

1% 2l g, = NG T2 g, < NGl £ty 110y 1T,

We will prove that there exists an operator D :
H; — Hjp such that S* = DT*. If y € im(T™),
let x+ € H be such that y = T*x, and then we
define Dy := S*x. This definition is independent
of the choice of x because if 1,22 € H are such
that y = T*x1 = T*xy, then T*(z1 — 23) = 0,
and so (by hypotheses) S*(x; — x2) = 0, and thus
S*xry = S*xg. So D : im(T*) — H; is well-
defined, it is linear and continuous:

1Dyl g, = 115"l g, < el T2l g, = cllyllm,

So D can be uniquely extended as a continu-
ous linear map on im(7*). We decide to set
Dlip(r+)+ = 0 and we get a continuous linear map
D : Hy, — H; such that S* = DT*. Taking ad-
joints we get S = TD*, so im(S) C im(7T).

O

Theorem 67. Let A : Hi — H, be a bounded linear
operator between Hilbert spaces. Then:

1. im(A) is dense <= ker(A*) = {0}.



2. im(A)
1,
Proof.
1. Recall that im(A4)* = ker(A*):
im(A) = Hy <= (im(4)})* = H,
— im(4)* = {0}
< ker(4") = {0}

Hs; <= dc > 0 such that Vo € H,,

<cl|A%| g, -

2. Use Theorem 66 with H; = H and S = idgy.

Proposition 68. The adjoint of Frr is given by:

Fr:L2(Q) —  L*0,T; L*(w))
yr +—— s+ B*S*(T — s)yr

Proof. Let yr € L?(Q) and u € L?(0,T; L?(w)). Then:

(Fryr,u)r20,1502(w)) = [ (B*S™(T' = s)yr, u(s)) r2(w)ds

Oty Tt — g TT—

(S*(T = s)yr, Bu(s)) r2(q)ds

(yr, S(T — s)Bu(s)) 2(a)ds

_ (yzw/S(T — 5)Bu(s)ds) 2 ()

= (yr, Fru) r2(q)
Ol

Theorem 69. Consider the control system Fq. (16) and
its dual system:

{

1. The system Eq. (16) is exactly controllable at time
T if and only if the system Eq. (17) is final time ob-
servable by means of B*, that is, if d¢ > 0 such that
for all solution y of Eq. (17) we have:

(1) = A1)
z(T) = yr

in [0, 7 (17)

Then:

1Yzl < ellB ]l L2 0,12 (w))

. The system Eq. (16) is approximately controllable
at time 7' if and only if the system FEq. (17) satisfies
the unique continuation property, that is, if x solu-
tion of Eq. (17) satisfies B*z(t) = 0 Vt € [0,T] then
yr =0,1ie. 2 =0.

The system FEq. (16) is null controllable at time T if
and only if the system Eq. (17) is initial time observ-
able: dc¢ > 0 such that for all solution = of Eq. (17)
we have:

[2(O)l gz < 1Bl L2 (0,7:12 ()
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4. | Backstepping for boundary control
in PDEs

Backstepping consists in transforming a system into an-
other one, called target system, which has the desired sta-
bility properties. In order to study, we will be considering
the following reaction-diffusion equation:

O = 2., + Az
x(t,0) =0
x(t, 1) = u(t)

in (0,7) x (0,1)
in (0,7)
in (0,7)

(18)

and we assume that A > 0 is large enough such that the
system is unstable (the eigenvalues are of the form A—n?r?
with n € N).

The first step is to choose a target system such that the
origin is exponentially (or asymptotically) stable. We will
consider the following target system:

Ow =w,, in (0,T)x (0,1)
w(t,0)=0 in (0,T) (19)
w(t,1)=0 1in (0,T)

Proposition 70. The system FEq. (19) is exponentially
stable for the L? norm.

Proof. We need to find a Lyapunov functional V' such that
V < —aV for some a > 0. We take V(t) = fol w(t, 2)%dz.

Then:
/1 /1
0 0

V=2 [ w(t,2)w(t,z)dz =2 [ w(t, 2)w..(t, z)dz

1
—Q/wz(t,z)de < —aV
0

for some a > 0, due to 77 ?77. O

Next step is to find a backstepping transformation w =
T(x) and the invertible operator T~!. We will consider
the following transformation:

w(ent) =aet) - [ Kewselnidy  (0)
0
where K is a kernel yet to be determined.
Proposition 71. Let f : [a,b] — C be continuous and

K : [a,b)?> — C be a bounded function. Then, the integral
equation:

b
ﬂﬂ=ﬂﬂ—/K@@ﬂ$®, L€ o]

admits a unique solution ¢ € C([a, b]). Furthermore, there
exists £ : [a,b]? — C bounded such that:

wwzﬂw—/iw@ﬂﬁm, te [,



Thus, our transformation is in Eq. (20) is invertible.
Finally, we need to define our control law. Imposing
w,(1,t) =0 in Eq. (20) we get:

0=w,(1,t)=x,(1,t)— K(1, 1)x(1,t)—/Kz(1,y)x(y,t)dy

u(t)

1 0
K(l,l)x(l,t)—l—/KZ(l,y)x(y,t)dy
0

So, we are left to find if a suitable K exists. Recall that the
condition w(1,t) = 0 is automatically satisfied. We need
to make use of the PDE of w. Using Eq. (20) to compute

wy and w,,, and equating both equations it suffices to find
K such that:

A

24 K(2,2) =X = K(z,2) =32
K..=Ky + K
K(2,00=0
which has a unique solution given by:
(v /A(22 — 92
K(zy) = -y A V)
Az? —y?)

where I; is the modified Bessel function of the first kind
of order 1.
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