
Introduction to control theory

1. | Control theory in ODEs
Stability
Definition 1. A function α : R≥0 → R≥0 is said to be of
class K if it is continuous, strictly increasing and α(0) = 0.
If, moreover, lim

s→∞
α(s) = ∞, then α is said to be of class

K∞.

Definition 2. A function β : R≥0 × R≥0 → R≥0 is said
to be of class KL if it is continuous, for each fixed t ≥ 0,
the function β(·, t) is of class K and, for each fixed s ≥ 0,
the function β(s, ·) is decreasing and lim

t→∞
β(s, t) = 0.

Remark. An example of a function class K not in K∞

is for example α(s) = arctan(s). Examples of functions
of class KL are for instance β(s, t) = se−t or β(s, t) =
arctan(s/(t+ 1)).

Definition 3. Let E ⊆ Rn be a neighbourhood of the
origin and V : E → R≥0 be a function. We say that V is
positive definite on E if {V = 0} = {0}. We say that V is
negative definite on E if −V is positive definite on E.

Lemma 4. Let E ⊆ Rn be a neighbourhood of the origin
and V : E → R≥0 be positive definite on E. Then, for any
compact set K ⊆ E with 0 ∈ IntK, there exists α ∈ K
such that α(∥x∥) ≤ V (x) for all x ∈ K.

Remark. If V is continuous, then it is uniformly continu-
ous on compact sets, and so we have:

|V (x) − V (y)| ≤ ω(∥x − y∥)

where ω is a modulus of continuity of V . Then, we can
find α1 ∈ K∞ such that α1 ≥ ω and so we have an upper
bound for V (x) ≤ α1(∥x∥).

Definition 5. Let E ⊆ Rn be a neighbourhood of the ori-
gin. We defined the penalized norm on E as the function:

ωE : E −→ R≥0

x 7−→ ∥x∥
(

1 + 1
d(x,∂ E)

)
From now on, we will consider that the system{

ẋ = f(x)
x(0) = x0

(1)

has an equilibrium point at the origin. We will denote
by X(x0, t) a solution of the system with initial condition
X(x0, 0) = x0 ∈ O ⊆ Rn.

Definition 6. The equilibrium X(0, t) = 0 of Eq. (1) is
said to be:

• stable if ∃µ > 0 and α ∈ K such that ∀ ∥x0∥ < µ any
solution X(x0, ·) exists for all t ≥ 0 and satisfies:

∥X(x0, t)∥ ≤ α(∥x0∥) ∀t ≥ 0

• attractive if ∃µ > 0 such that ∀ ∥x0∥ < µ any solu-
tion X(x0, ·) exists for all t ≥ 0 and satisfies:

lim
t→∞

∥X(x0, t)∥ = 0

• asymptotically stable if ∃µ > 0 and β ∈ KL such
that ∀ ∥x0∥ < µ any solution X(x0, ·) exists for all
t ≥ 0 and satisfies:

∥X(x0, t)∥ ≤ β(∥x0∥ , t) ∀t ≥ 0

• exponentially stable if ∃k, λ, µ > 0 such that
∀ ∥x0∥ < µ any solution X(x0, ·) exists for all t ≥ 0
and satisfies:

∥X(x0, t)∥ ≤ k ∥x0∥ e−λt ∀t ≥ 0

Moreover, in the last two cases, if µ can be picked as large
as we want, then the equilibrium is said to satisfy that
property globally.

Remark. Note that exponential stability implies asymp-
totic stability, which implies stability and attractivity.
Moreover, it can be seen that asymptotically stability is
equivalent to stability and attractivity.

Remark. An equivalent definition for stability is the fol-
lowing: ∀ε > 0 ∃δ > 0 such that if ∥x0∥ < δ then
∥X(x0, t)∥ < ε for all t ≥ 0.

Definition 7. The equilibrium X(0, t) = 0 of Eq. (1) is
said to be unstable if ∃ε > 0 such that ∀δ > 0 ∃x0 ∈
B(0, δ) and a solution X(x0, ·) such that ∥X(x0, t

∗)∥ ≥ ε
for some t∗ ≥ 0.

Remark. A solution may be unstable and attractive at the
same time. For example, the system{

ẋ = x2(y − x) + y5

ẏ = y2(y − 2x)

exhibits the behaviour shown in Fig. 1.
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Figure 1: Unstable attractor

Definition 8. We define the basin of attraction of the
origin as the set A of all initial conditions x0 such that
the solution X(x0, ·) exists for all t ≥ 0 and satisfies
lim

t→∞
X(x0, t) = 0.

1



Theorem 9. If the origin is asymptotically stable, then its
basin of attraction is an open set included in O. Besides,
∃βA ∈ KL such that ∀x0 ∈ A, any solution X(x0, ·) exists
for all t ≥ 0 and satisfies ωA(∥X(x0, t)∥) ≤ βA(∥x0∥ , t)
for all t ≥ 0, where ωA is the penalized norm of A.

Theorem 10. Assume that f ∈ C1. Then:

1. The zero solution is exponentially stable if and only
if the zero solution of the system ẏ = Df(0)y is
exponentially stable.

2. If Df(0) has an eigenvalue with positive real part,
then the origin is unstable.

Proof.

1. We only do the ⇐= ) part. So assume the origin
is exponentially stable for the system ẏ = Df(0)y.
Then, ∃k, λ > 0 such that ∥y(0, t)∥ ≤ k ∥y0∥ e−λt

for all t ≥ 0, which implies eDf(0)t ≤ ke−λt for all
t ≥ 0. Now consider ẋ = f(x) = Df(0)x + ∆f(x),
with ∆f(x) := f(x) − Df(0)x. As f ∈ C1, ∃R > 0
such that ∥∆f(x)∥

∥x∥ ≤ λ
2k for all ∥x∥ ≤ R. Defin-

ing µ := R
2k , then if ∥x0∥ ≤ µ we must have that

the solution X(x0, ·) belongs to B(0, R) at least on
[0, T ) for certain T > 0. Thus, ∀t ∈ [0, T ) we have
∥∆f(X(x0,t))∥

∥X(x0,t)∥ ≤ λ
2k , and so using the variations of

constants formula:

X(x0, t) = eDf(0)tx0 +
tˆ

0

eDf(0)(t−s)∆f(X(x0, s))ds

Thus:

∥X(x0, t)∥ ≤ ke−λt∥x0∥+ λ

2

tˆ

0

e−λ(t−s)∥X(x0, s)∥ ds

And so:

eλt ∥X(x0, t)∥ ≤ k ∥x0∥ + λ

2

tˆ

0

eλs ∥X(x0, s)∥ ds

Finally, by ?? ?? we have eλt ∥X(x0, t)∥ ≤
ke λ

2 t ∥x0∥, and so the origin is exponentially stable.

□

Remark. In linear dynamics exponentially stability is
equivalent to global exponentially stability, which in turn
is equivalent to global asymptotic stability which is equiv-
alent to asymptotic stability.

Corollary 11. If f ∈ C1 and Df(0) has all its eigenvalues
with negative real part, then the origin is asymptotically
stable.

Theorem 12. Let V : O → R≥0 be a locally Lipschitz
function which is positive definite on O. Then, if

D+
f V (x) = lim sup

t→0+

V (x + tf(x)) − V (x)
t

is non-positive for all x ∈ O, then the origin is stable. The
function V is called a Lyapunov function.

Proof. Since O is a neighbourhood of the origin ∃R > 0
such that B(0, R) ⊆ O. Then, since V is continuous
and positive definite, ∃α1, α2 ∈ K∞ such that α1(∥x∥) ≤
V (x) ≤ α2(∥x∥) for all x ∈ B(0, R) (by Theorem 4).
Let µ := α2

−1(α1(R/2)). Then, any solution with ini-
tial conditions ∥x0∥ < µ belongs to B(0, R) at least for
t ∈ [0, T ). Now if we consider v(t) := V (X(x0, t)), then
we have v̇(t) = D+

f V (X(x0, t)) ≤ 0 for all t ≥ 0. Thus,
∀t ∈ [0, T ) we have:

α1(∥X(x0, t)∥) ≤ V (X(x0, t)) = v(t) ≤ v(0) =
= V (x0) ≤ α2(∥x0∥)

And so ∥X(x0, t)∥ ≤ α−1
1 (α2(∥x0∥)) ≤ R/2 for all t ∈

[0, T ). This mean that in fact T = ∞ and so the origin is
stable with the function α := α−1

1 ◦ α2. □

Theorem 13. Let V : O → R≥0 be a locally Lipschitz
function which is positive definite on O. Then, if

D+
f V (x) ≤ −w(x), ∀x ∈ O

with w : O → R≥0 continuous and positive definite, then
the origin is globally asymptotically stable.

Proof. As in the previous proof, we define µ :=
α−1

2 (α1(R/2)) and we get v̇(t) ≤ −w(X(x0, t)). Since
w is continuous and positive definite, ∃α3 ∈ K∞ such
that α3(∥x∥) ≤ w(x) for all x ∈ B(0, R). Thus, v̇(t) ≤
−α3(∥X(x0, t)∥) ≤ −α3(α−1

2 (V (X(x0, t)))). Now, in this
case, one can prove that ∃β ∈ KL such that v(t) ≤
β(v(0), t) for all t ≥ 0. But:

α1(∥X(x0, t)∥) ≤ V (X(x0, t)) = v(t) ≤ β(v(0), t) =
= β(V (x0), t) ≤ β(α2(∥x0∥), t)

And thus, ∥X(x0, t)∥ ≤ α−1
1 (β(α2(∥x0∥), t)) for all t ≥ 0,

which implies that the origin is globally asymptotically
stable since the latter function is of class KL. □

Theorem 14 (Lasaalle’s invariance principle). Let
K be a compact set contained in O and let V : O → R≥0
be a locally Lipschitz function which is positive definite
on O and such that D+

f V (x) ≤ −w(x) for all x ∈ K with
w : O → R≥0 continuous (not necessarily positive defi-
nite). Then, for any solution X(x0, ·) with x0 ∈ K and
defined on K for all t ≥ 0, ∃v∗ ∈ R≥0 such that X(x0, t)
converges to the largest positively invariant set contained
in:

{y ∈ K : V (y) = v∗ and w(y) = 0}

Remark. If the function V is such that

k1 ∥x∥n ≤ V (x) ≤ k2 ∥x∥m

and w such that w(∥x∥) ≥ k3 ∥x∥m, for some k1, k2, k3 > 0
and m,n ∈ N, then the origin is globally exponentially sta-
ble.

Theorem 15 (Chetaev’s theorem). Let V : O → R≥0
be a locally Lipschitz function such that:

• 0 ∈ ∂ G, with G := {x ∈ O : V (x) = 0}.
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• There exists a neighbourhood U (called Chetaev sur-
face) of the origin such that D+

f V (x) > 0 for all
x ∈ U ∩G.

Then, the origin is unstable.

Theorem 16. If the origin is asymptotically stable, then
∀ε > 0 {f(x) : ∥x∥ ≤ ε} is a neighbourhood of the origin.

Theorem 17. If the origin is locally asymptotically
stable with basin of attraction A, then ∃λ > 0 and
V ∈ C∞(A,R≥0) positive definite and proper (that is,

lim
d(x,∂ A)→0

V (x) = ∞) such that:

D+
f V (x) ≤ −λV (x) ∀x ∈ A

Control design and stabilization of equilibrium
points

Definition 18. The system ẋ = f(x,u) is said to be con-
trollable in time T > 0 if ∀x0,xT ∈ O ∃u : [0, T ] → Rp

such that the solution X(x0, ·,u) of the system with initial
condition X(x0, 0,u) = x0 satisfies X(x0, T,u) = xT .

Definition 19. The origin is said to be asymptotically
stabilizable if there exists q ∈ N, a neighbourhood V ⊆ Rq

of the origin and φ : R×Rn×V → Rq, ψ : R×Rn×V → Rp

both continuous, such that the origin is an asymptotically
stable solution of the system:

ẋ = f(x,u)
u̇ = φ(t,x,χ)
χ̇ = ψ(t,x,χ)

(2)

The last two equations are called the feedback control laws.
If q = 0, then the feedback control law is called static,
whereas if q > 0 it is called dynamic. Moreover if both φ
and ψ are independent of t, then the control law is called
stationary and if ψ and χ are independent of x, it is called
open-loop control.

Theorem 20 (Kalmann’s theorem). Consider the lin-
ear system ẋ = Ax + Bu with A ∈ Rn×n and B ∈ Rn×p.
Then, the system is controllable (or the pair (A,B) is
controllable) if and only if

rank C := rank
(
B AB · · · An−1B

)
= n

The matrix C is called the controllability matrix.

Theorem 21. Let A ∈ Rn×n and B ∈ Rn×p. Then, the
pair (A,B) is controllable if and only if ∀λ1, . . . , λn ∈ C
∃K ∈ Rp×n such that:

σ(A + BK) = {λ1, . . . , λn}

Remark. In practice we pick λ1, . . . , λn ∈ {Re z < 0}, and
then we look for K such that σ(A + BK) = {λ1, . . . , λn}
(for example by using the characteristic polynomial). Note
that if p > 1, the solution may not be unique.

Theorem 22. Suppose that there exists q ∈ N, ψ :
Rn ×Rq → Rp and φ : Rn ×Rq → Rq continuous such that

ψ(0,0) = 0 and φ(0,0) = 0. Assume, moreover, that the
system {

ẋ = f(x,ψ(x,χ))
χ̇ = φ(x,ψ(x,χ))

admits 0 as an asymptotically stable equilibrium. Then,
∀ε > 0, {f(x,u) : ∥x∥ + ∥u∥ ≤ ε} is a neighbourhood of
the origin.
Definition 23. Assume that V is a C1 Lyapunov function
for the system ẋ = f(x,u). We say that V is a strictly
control Lyapunov function (SCLF) if ∀x ̸= 0 ∃u ∈ Rp

such that ∂V
∂x f(x,u) < 0. V is a SCLF continuously at

the origin if ∀ε > 0 ∃δ > 0 such that ∀x ∈ B(0, δ) \ {0}
∃u ∈ B(0, ε) such that ∂V

∂x f(x,u) < 0.
Theorem 24. If V is a SCLF continuously at the ori-
gin, then for any T > 0, there exists a continuous static
T -periodic feedback control law asymptotically stabilizing
the origin. In addition, if the system is input-affine, that
is

ẋ = a(x) + b(x)u (3)
there exists a continuous static stationary feedback control
law asymptotically stabilizing the origin.
Theorem 25 (Sonntag’s theorem). Let V be a SCLF
for an input-affine system (Eq. (3)) Then, a stabilizing
control law is given by:

ψ =

0 if LbV (x) = 0

− LaV (x)+
√

(LaV (x))2+|LbV (x)|4

|LbV (x)|2 LbV (x)T otherwise

where LaV (x) := ∂V
∂x a(x) and LbV (x) := ∂V

∂x b(x).
Remark. This ψ is as smooth as LaV and LbV on Rn\{0}.
And if V is a SCLF continuously at the origin, then ψ is
continuous at the origin.

Backstepping
Consider a system of the form:{

ẋ = f(x,y)
ẏ = u

(4)

We would like to construct a SCLF for this system, that
is, to find V such that ∀(x,y) ̸= (0,0) ∃u such that

∂V

∂x f(x,y) + ∂V

∂y u < 0

We define η such that{
∂V
∂y (x,η(x)) = 0
η(0) = 0

Lemma 26. If V is a C2 function and η is a locally 1/2-
Hölder continuous function, then W (x) := V (x,η(x)) is a
SCLF for the system ẋ = f(x,v).
Finally we consider

V (x,y) = V (x,η(x)) +
ŷ

η(x)

φ(x, s)ds

with φ such that φ(x,y) = 0 ⇐⇒ y = η(x). Then, this
V is a SCLF for the system of Eq. (4).
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Remark. Usually we take φ(x,y) = y−η(x) and consider

V (x,y) = V (x,η(x)) + 1
2 ∥y − η(x)∥2 (5)

In practice, we first look for a SCLF W for the system
ẋ = f(x,v), and then we find v = η(x) such that Ẇ < 0.
Finally, we construct V as in Eq. (5). And we could iterate
this process.

Remark. This method is only valid for systems in strict-
feedback form, that is, systems of the form:

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2, x3)

...
ẋn−1 = fn−1(x1, . . . , xn)
ẋn = fn(x1, . . . , xn, u)

2. | Control theory in PDEs
From what follows x will denote the state variable whose
values are in a Hilbert space X , and u will denote the
control variable whose values are in a Hilbert space U .

Classical problems
Definition 27 (Exact controllability). Let T > 0. The
exact controllability of a system is said to be achieved
if, for any initial condition x0 and any final condition
xT , there exists a control u : [0, T ] → U such that the
solution X(x0, ·,u) of the system with initial condition
X(x0, 0,u) = x0 satisfies X(x0, T,u) = xT .

Definition 28 (Approximate controllability). Let
T > 0, ε > 0. The approximate controllability of a system
is said to be achieved if, for any initial condition x0 and
any final condition xT , there exists a control u : [0, T ] → U
such that the solution X(x0, ·,u) of the system satisfies
∥X(x0, T,u) − xT ∥ < ε.

Definition 29 (Null controllability). Let T > 0. The
null controllability of a system is said to be achieved
if, for any initial condition x0, there exists a control
u : [0, T ] → U such that the solution X(x0, ·,u) of the
system satisfies X(x0, T,u) = 0.

Lemma 30. Consider a linear reversible system ẋ =
Ax + Bu with A ∈ Rn×n and B ∈ Rn×p. Then, the
system is exactly controllable if and only if it is null con-
trollable.

Proof. The implication to the right is clear. Now assume
it is null controllable. Let T > 0 and x0, xT ∈ Rn. Since
the system is reversible we can first solve for x{

ẋ = Ax
x(T ) = xT

Now we solve the null controllability problem with initial
state x0 − x(0). Thus, we find u such that x satisfies{

ẋ = Ax + Bu
x(0) = x0 − x(0)

and so x(T ) = 0. Now consider x̂ := x + x. Then, x̂
satisfies 

˙̂x = Ax̂ + Bu
x̂(0) = x0

x̂(T ) = xT

□

Definition 31 (Feedback stabilization). Given ẋ =
Ax+Bu, the feedback stabilization process consists in find-
ing an operator K : X → U such that ẋ = Ax + BKx
has a stable (or asymptotically stable) equilibrium at the
origin.

Definition 32 (Optimal control). Let J be a cost func-
tion, J = J(x,u,x(T )). The optimal control problem con-
sists in finding u : [0, T ] → U such that J is minimized,
where x satisfies ẋ = Ax + Bu with x(0) = x0.

Interior control for the heat equation
Let Ω ⊆ Rn be a bounded regular domain (i.e. connected)
and ω ⊆ Ω be a non-empty open subset. We consider the
control system:

∂tv − ∆v = 1ωu in [0, T ] × Ω
v = 0 in [0, T ] × ∂ Ω
v = v0 in Ω

(6)

Theorem 33 (Strong solutions). Let f ∈ L2((0, T ); Ω)
and v0 ∈ H1

0 (Ω). Then, the Cauchy problem
∂tv − ∆v = f in [0, T ] × Ω
v = 0 in [0, T ] × ∂ Ω
v = v0 in Ω

(7)

has a unique solution

v ∈ C0([0, T ];H1
0 (Ω)) ∩ L2((0, T );H2(Ω) ∩H1

0 (Ω))

Proof. We start from uniqueness. Let (ei)i∈N be a Hilbert
basis of L2(Ω) from the eigenvectors of the Laplacian op-
erator: {

−∆ei = λiei in Ω
ei = 0 in ∂ Ω

and φ ∈ D((0, T ) × Ω) be a test function. Then, we have

−
T̂

0

ˆ

Ω

v∂tφ+
T̂

0

ˆ

Ω

∇v∇φ =
T̂

0

ˆ

Ω

fφ

In particular for φ = ρ(t)ψn,i(x) with ρ ∈ D(0, T ) and
ψn,i

H1

→ ei (here we use the fact that H1
0 = D(Ω)H1 ).

Thus, we arrive at:

−
T̂

0

ˆ

Ω

vρ′ei +
T̂

0

ˆ

Ω

ρ∇v∇ei =
T̂

0

ˆ

Ω

fρei

Decomposing v =
∑

i∈N viei and f =
∑

i∈N fiei, we get:

−
T̂

0

viρ
′ + λi

T̂

0

ρvi =
T̂

0

fiρ
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which in the sense of D∗(0, T ) gives v′
i + λivi = fi, which

has solution:

vi(t) = e−λitvi(0) +
tˆ

0

e−λi(t−s)fi(s)ds

So we have uniqueness and a formula:

v(t, x) =
∑
i∈N

e−λitvi(0)ei(x) +
∑
i∈N

tˆ

0

e−λi(t−s)fi(s)ei(x)ds

(8)
=: va(t, x) + vb(t, x)

For the existence, it suffices to check that the solution in
Eq. (8) belongs to the desired space. We first check that
v ∈ C0([0, T ];H1

0 (Ω)). We have:

∥va∥2
L∞(0,T ;H1

0 (Ω)) = sup
t∈[0,T ]

∥va(t, ·)∥2
H1

0 (Ω) =

= sup
t∈[0,T ]

ˆ

Ω

∑
i∈N

e−2λit|vi(0)|2 ∥∇ei∥2 =

= sup
t∈[0,T ]

∑
i∈N

λie−2λit|vi(0)|2 ≤
∑
i∈N

λi|vi(0)|2 =

= ∥v0∥2
H1

0 (Ω)

On the other hand:

∥vb(t, ·)∥2
H1

0 (Ω) =
∑
i∈N

λi

 tˆ

0

e−λi(t−s)fi(s)ds

2

=

=
∑
i∈N

 tˆ

0

e−λi(t−s)fi(s)
√
λids

2

≤
∑
i∈N

∥fi∥2
L2(0,T ) =

= ∥f∥2
L2((0,T );L2(Ω))

where we have used the fact that the penultimate term
can be written as a convolution and then we use ?? ??
∥f ∗ g∥Lr ≤ ∥f∥Lp ∥g∥Lq with 1/p + 1/q = 1 + 1/r, in
the case p = q = 2 and r = ∞. Finally, we prove
v ∈ L2((0, T );H2(Ω)). Indeed:

∥va(t, ·)∥2
L2(0,T ;H2) =

T̂

0

∑
i∈N

λ2
i e−2λit|vi(0)|2dt =

=
∑
i∈N

λi|vi(0)|2
T̂

0

λie−2λitdt ≤ C ∥v0∥2
H1

0 (Ω)

because the latter term in the penultimate equality is
bounded. Moreover:

∥vb(t, ·)∥2
H1

0
=

T̂

0

∑
i∈N

λ2
i

 tˆ

0

e−λi(t−s)fi(s)ds

2

dt =

=
T̂

0

∑
i∈N

 tˆ

0

e−λi(t−s)fi(s)λids

2

dt ≤

≤
T̂

0

∑
i∈N

∥fi∥2
L2(0,T ) dt ≤ T ∥f∥2

L2((0,T );L2(Ω))

again by ?? ??. □

Theorem 34 (Weak solutions). Let f ∈
L2((0, T );H−1(Ω)) and v0 ∈ L2(Ω). Then, the Cauchy
problem of Eq. (7) has a unique solution

v ∈ C0((0, T );L2(Ω)) ∩ L2((0, T );H1
0 (Ω))

We consider now the dual problem of Eq. (6):
−∂tθ − ∆θ = 0 in [0, T ] × Ω
θ = 0 in [0, T ] × ∂ Ω
θ(T ) = θT in Ω

(9)

Proposition 35. Let u ∈ L2((0, T ) × Ω), v0 ∈ L2(Ω) and
v the corresponding solution of Eq. (6). Then, the solution
θ of Eq. (9) with θT ∈ L2(Ω) satisfies:

⟨θ, v⟩L2(Ω)

∣∣∣∣T

0
=

T̂

0

ˆ

Ω

1ωuθ

Proof. We can suppose that all functions are smooth (oth-
erwise we replace them by a linear combination of ei and
pass to the limit using the fact that (v0, f) 7→ v is contin-
uous from L2(Ω) × L2((0, T ) × Ω) → C0([0, T ];L2(Ω)) ∩
L2((0, T );L2(Ω))). Now, multiplying Eq. (6) by θ and in-
tegrating we get:

T̂

0

ˆ

Ω

1ωuθ =
T̂

0

ˆ

Ω

∂tvθ +
T̂

0

ˆ

Ω

∇v∇θ =

=
ˆ

Ω

vθ

∣∣∣∣T

0
−

T̂

0

ˆ

Ω

∂tθv +
T̂

0

ˆ

Ω

∇v∇θ =
ˆ

Ω

vθ

∣∣∣∣T

0

□

Definition 36 (Observability inequality). We will say
that the dual problem Eq. (9) satisfies the finite-time ob-
servability inequality if ∃C > 0 such that ∀θT ∈ L2(Ω) the
solution θ satisfies:

∥θ(0)∥2
L2(Ω) ≤ C

T̂

0

ˆ

ω

θ2

Proposition 37. If the dual problem Eq. (9) is finite-
time observable, then the control problem Eq. (6) is null
controllable.

Proof. Note that the null controllability condition is
equivalent to ∀θT ∈ L2(Ω) we have (by Theorem 35):

−⟨θ(0), v0⟩L2(Ω) =
T̂

0

ˆ

ω

uθ

Now let’s define:

B := {1ωθ : θ solution of Eq. (9) for some θT ∈ L2(Ω)}
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A := BL2((0,T )×ω)

We equip A with the norm ∥·∥L2((0,T )×ω). Now consider:

Φ : L2(Ω) −→ L2((0, T ) × ω)
θT 7−→ 1ωθ

Note that im Φ = A. Now, to any ϕ ∈ im(Φ) we could a
priori associate several θT , but all of them would generate
the same θ(0) due to the observability condition. So we
may consider the map:

im(Φ) −→ L2(Ω)
1ωθ 7−→ θ(0)

which is continuous by the observability condition. Now,
extending the map to A by uniform continuity, we get that

ℓ : A −→ R
1ωθ 7−→ −⟨θ(0), v0⟩L2(Ω)

is a continuous linear form (by composition). We conclude
now with ?? ?? since A is a Hilbert space. □

Proposition 38 (1D observability inequality). Let
Ω = (0, 1), ω = (a, b) and T > 0. Then, ∃C > 0 such that
∀θT ∈ L2(0, 1) we have:

∥θ(0)∥L2(0,1) ≤ C ∥θ∥L2((0,T )×ω)

Proof. Let w(t, x) := θ(T − t, x) so that w satisfies:
∂tw − ∂xxw = 0 in [0, T ] × (0, 1)
w(t, 0) = w(t, 1) = 0
w(0, x) = w0(x) in (0, 1)

(10)

We want to prove that

∥w(T )∥L2(0,1) ≤ C ∥w∥L2((0,T )×(a,b))

From Theorem 39 between t1 and t0 we have:

∥w(t0)∥L∞(0,1) ≤ Ce
D

t1−t0 ∥w(t1)∥1−δ
L∞(0,1) ∥w(t0)∥δ

L∞(a,b)

We repeat that in the interval (t2, t1) and we get:

∥w(t0)∥L∞(0,1) ≤ C2−δe
D

t1−t0
+ D(1−δ)

t2−t1 ∥w(t2)∥(1−δ)2

L∞(0,1) ·

· ∥w(t1)∥(1−δ)δ
L∞(0,1) ∥w(t0)∥δ

L∞(a,b)

Repeating the argument we get each time an extra power
1 − δ in eD/(tn+1−tn). So we would like to have for exam-
ple tn+1 − tn = α

(
1 − δ

2
)n ∑

n∈N
(
1 − δ

2
)n = 2

δ so we let
t0 = T and tn+1 = tn − δ

2T
(
1 − δ

2
)n. We conclude arguing

by induction and passing to the limit:

∥w(0)∥L∞(0,1) ≤ C ∥w∥L∞((0,T )×(a,b))

Now to prove the L2 inequality, for the left hand side we
have ∥w(0)∥L2(0,1) ≤ ∥w(0)∥L∞(0,1) and for the right hand
side we use 40 Interior regulariy. □

Lemma 39. Using the hypotheses and notation of the
previous proposition, we have that ∃C,D > 0 and δ > 0
such that ∀w0 we have:

∥w(T )∥L∞(0,1) ≤ CeD/T ∥w0∥1−δ
L∞(0,1) ∥w(T )∥δ

L∞(a,b)

Lemma 40 (Interior regulariy). Let w be a solu-
tion of the heat equation (w ∈ C0([0, T ];H1

0 (0, 1)) ∩
L2((0, T );H2(0, 1) ∩H1

0 (0, 1))). Then:

∥w∥L∞([T/2,T ]×[a,b]) ≤ C ∥w∥L2([T/4,T ]×[c,d])

for all 0 < c < a < b < d < 1.
Proof. Let w be a solution. We introduce a cut-off func-
tion φ1 ∈ C∞ with φ1 = 0 outside [T/4, T ] × [c, d] and
φ1 = 1 in [T/3, T ] × [µ, ν], with c < µ < a and b < ν < d.
We look at w1 := wφ1. We have:

∂tw1 − ∂xxw1 = w∂tφ1 − 2∂xw∂xφ1 − w∂xxφ1

w1|t=0 = 0
w1|[0,T ]×∂ Ω = 0

Let’s study the right hand side. We have:
• ∥w∂tφ1∥L2 ≤C ∥w∥L2 =⇒ ∥w∂tφ1∥L2,H−1 ≤C ∥w∥L2

• ∥w∂xxφ1∥L2≤C∥w∥L2=⇒∥w∂xxφ1∥L2,H−1≤C∥w∥L2

• ∥∂xw∂xφ1∥L2,H−1 ≤ C ∥w∥L2

By the theorem of existence of weak solutions we get
∥w1∥L2,H1

0
≤ C ∥w∥L2 . Now we introduce a second cut-

off function φ2 with φ2 = 0 outside [T/3, T ] × [µ, ν] and
φ2 = 1 in [T/2, T ] × [a, b]. We define w2 := w1φ2. We
have similar calculations to the previous ones but with
w ∈ L2([0, T );H1(µ, ν)) and so:

• ∥w∂tφ2∥L2 ≤ C ∥w∥L2

• ∥w∂xxφ2∥L2 ≤ C ∥w∥L2

• ∥∂xw∂xφ2∥L2 ≤ C ∥w∥L2

Using the theorem of existence of weak solutions we get:

∥w2∥L∞;H1 ≤ C ∥w∥L2([T/3,T ];H1(µ,ν))

≤ C ∥w∥L2([T/4,T ];H1(c,d))

where the last inequality follows from the first step. □

Boundary control for the wave equation
In this section Ω ⊆ Rn is a bounded regular domain and
Σ ⊆ ∂ Ω is a non-empty open subset. We are interested in
studying the control system:

∂ttv − ∆v = 0 in [0, T ] × Ω
v = 1Σu in [0, T ] × ∂ Ω
(v, ∂tv)|t=0 = (v0, v1) in Ω

(11)

Theorem 41 (Weak solutions). We consider the prob-
lem 

∂ttv − ∆v = f in [0, T ] × Ω
v = 0 in [0, T ] × ∂ Ω
(v, ∂tv)|t=0 = (v0, v1) in Ω

(12)

with (v0, v1) ∈ H1
0 (Ω) × L2(Ω) and f ∈ L1((0, T );L2(Ω)).

Then, the problem has a unique solution v ∈
C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) with:

∥v∥L∞([0,T ];H1
0 (Ω)) + ∥∂tv∥L∞([0,T ];L2(Ω)) ≤

≤ C
(

∥v0∥H1
0

+ ∥v1∥L2 + ∥f∥L2((0,T );L2(Ω))

)
6



Theorem 42 (Strong solutions). Consider the prob-
lem Eq. (12) with v0 ∈ H2(Ω) ∩ H1

0 (Ω), v1 ∈ H1
0 (Ω) and

f ∈ L1((0, T );H1(Ω)). Then, the problem has a unique
solution v ∈ C0([0, T ];H2(Ω) ∩H1

0 (Ω)) ∩ C1([0, T ];H1
0 (Ω))

with:

∥v∥L∞([0,T ];H2(Ω)∩H1
0 (Ω)) + ∥∂tv∥L∞([0,T ];H1(Ω)) ≤

≤ C
(

∥v0∥H2∩H1
0

+ ∥v1∥H1
0

+ ∥f∥L1((0,T );H1(Ω))

)
Proof. We proceed as for the heat equation. Consider
the Hilbert basis (ei)i∈N of L2(Ω) from the eigenvec-
tors of the Laplacian operator of eigenvalues λi. Let
v0 =

∑
i∈N ai(t)ei, v1 =

∑
i∈N bi(t)ei and f =

∑
i∈N fiei.

We look for a solution of the form v(t, x) =
∑

i∈N yi(t)ei.
Taking test functions φ(t)ψ(x) and letting ψ → ei we get
(in the sense of distributions in time):{

y′′
i + λiyi = fi

yi(0) = ai, y
′
i(0) = bi

So the solution must be of the form v(t, x) =
∑

i∈N yi(t)ei

with:

yi(t)=ai cos
√
λit+bi

sin
(√
λit

)
√
λi

+
tˆ

0

sin
(√
λi(t−s)

)
√
λi

fi(s)ds

This gives uniqueness and existence if the sums are finite.
To check that the solution belongs to the desired space we
proceed as in the heat equation case. □

Theorem 43 (Hidden regularity). For a regular solu-
tion, we have for some C > 0:

T̂

0

ˆ

∂ Ω

|∂nv|2 ≤C(1+T )
[
∥v0∥2

H1
0
+∥v1∥2

L2 +∥f∥2
L1(0,T ;L2(Ω))

]
Proof. Suppose v regular. We will use a multiplier
method. Let q : Ω → Rn be a smooth vector field. We
multiply the equation by (q ·∇)v and integrate (we denote
Q := [0, T ] × Ω and ΣT := [0, T ] × ∂ Ω). On the one hand:
¨

Q

∂ttv(q · ∇)v =
ˆ

Ω

∂tv(q · ∇)v
∣∣∣∣T

0
−
¨

Q

∂tv(q · ∇)∂tv =

=
ˆ

Ω

∂tv(q · ∇)v
∣∣∣∣T

0
−
¨

Q

(q · ∇) (∂tv)2

2 =

=
ˆ

Ω

∂tv(q · ∇)v
∣∣∣∣T

0
+
¨

Q

(∂tv)2

2 div q

where in the last equality we have used integration by
parts, the ?? ?? and the fact that vt|∂ Ω = 0. On the
other hand:
¨

Q

∆v(q · ∇)v =
ˆ

ΣT

∂nv(q · ∇)v −
¨

Q

∇v · ∇((q · ∇)v)

Notice that since v = 0 on ΣT , the tangential derivatives
of v are zero, and so on ΣT we have (q · ∇)v = (q · n)∂nv.
The second term can be written as:

¨

Q

∇v · ∇((q · ∇)v) =
¨

Q

∂kv∂k(qi∂iv) =

=
¨

Q

∂kv∂kqi∂iv +
¨

Q

∂kvqi∂kiv =

=
¨

Q

∂kv∂kqi∂iv +
¨

Q

qi∂i

(
(∂kv)2

2

)
=

=
¨

Q

∂kv∂kqi∂iv +
¨

Q

(q · ∇)∥∇v∥2

2 =

=
¨

Q

∂kv∂kqi∂iv −
¨

Q

∥∇v∥2

2 div q +
¨

ΣT

∥∇v∥2

2 q · n

Finally grouping all terms we get:

1
2

¨

ΣT

(q · n)(∂nv)2 =
¨

Q

∂kv∂kqi∂iv− 1
2

¨

Q

∥∇v∥2 div q+

+
ˆ

Ω

∂tv(q · ∇)v
∣∣∣∣T

0
+
¨

Q

(∂tv)2

2 div q −
¨

Q

f(q · ∇)v ≲

≲ a2 + a2 + ab+ b+ ac

with a := ∥v∥L∞([0,T ];H1
0 (Ω)), b := ∥∂tv∥L∞([0,T ];L2(Ω)) and

c := ∥f∥L1((0,T );L2(Ω)). Here we used that ∥∇v∥ = |∂nv|,
because v = 0 on ΣT . We conclude choosing q a regular
extension of the unit normal vector field to Ω. □

Now, we want to define weak solutions of Eq. (11). To do
so, we take as test functions solutions of:

∂ttθ − ∆θ = f in [0, T ] × Ω
θ = 0 in [0, T ] × ∂ Ω
(θ, ∂tθ)|t=T = (0, 0) in Ω

(13)

Definition 44 (Transposition solution). Let
(v0, v1, u) ∈ L2(Ω)×H−1(Ω)×L2(ΣT ). We call transposi-
tion solution of Eq. (11) a function v ∈ C0([0, T ];L2(Ω)) ∩
C1([0, T ];H−1(Ω)) such that for any f ∈ L1((0, T );L2(Ω))
we have:¨

Q

vf = −
ˆ

Ω

∂tθ(0)v(0) +
ˆ

Ω

θ(0)v1 −
ˆ

ΣT

u∂nθ (14)

where θ is the solution of Eq. (13) associated to f .

Remark. Any regular solution is a transposition solution.

Theorem 45. For any (v0, v1, u) ∈ L2(Ω) × H−1(Ω) ×
L2(ΣT ), there exists a unique transposition solution of
Eq. (11).

Proof. We would like to prove that the right hand side of
Eq. (14) is a continuous linear form on L1((0, T );L2(Ω)).
If so then ∃!v ∈ [L1((0, T );L2(Ω))]∗ = L∞([0, T ];L2(Ω))
such that the equation is true ∀f ∈ L1((0, T );L2(Ω)). We
have that

L1((0, T );L2(Ω))−→C0([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

f 7−→ θ
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is continuous, and so is f 7→
´

Ω ∂tθ(0)v(0) =
⟨∂tθ(0), v0⟩L2×L2 , because ∂tθ(0) ∈ L2(Ω) and v(0) ∈
L2(Ω). Similarly, since f → θ(0) ∈ H1

0 (Ω) is continuous,
then so is f 7→

´
Ω θ(0)v1 = ⟨θ(0), v1⟩H1

0 ×H−1 . Finally,
by 43 Hidden regularity we have that f 7→ ∂nθ|ΣT

∈ L2 is
continuous, and so is f 7→

´
ΣT

u∂nθ = ⟨u, ∂nθ⟩L2×L2 . □

Proposition 46. Consider a transposition solution v of
Eq. (11), with v0 ∈ L2(Ω), v1 ∈ H−1(Ω) and u ∈
L2((0, T ) × Σ). Let θ be a solution of

∂ttθ − ∆θ = 0 in [0, T ] × Ω
θ = 0 in [0, T ] × ∂ Ω
(θ, ∂tθ)|t=T = (θ0

T , θ
1
T ) in Ω

(15)

Then:

[
⟨∂tv, θ⟩H−1×H1

0
− ⟨v, ∂tθ⟩L2×L2

] ∣∣∣∣T

0
=

T̂

0

ˆ

Σ

u∂nθ

Proof. It is sufficient to prove it for regular solutions and
then pass to the limit using:

∥θ∥L∞,H1
0

+ ∥∂tθ∥L∞,L2 ≲
∥∥θ0

T

∥∥
H1

0
+

∥∥θ1
T

∥∥
L2

∥v∥L∞,L2+∥∂tv∥L∞,H−1≲∥v0∥L2+∥v1∥H−1+∥u∥L2((0,T )×Σ)

Now, multiplying the equation of v by θ and integrating
we get:

0 =
T̂

0

ˆ

Ω

(∂ttv − ∆v)θ =
ˆ

Ω

∂tvθ

∣∣∣∣T

0
−

T̂

0

ˆ

Ω

∂tv∂tθ+

+
T̂

0

ˆ

Ω

∇v∇θ =
ˆ

Ω

∂tvθ

∣∣∣∣T

0
−
ˆ

Ω

v∂tθ

∣∣∣∣T

0
+

T̂

0

ˆ

Ω

v∂ttθ−

−
T̂

0

ˆ

Ω

v∆θ +
T̂

0

ˆ

∂ Ω

v∂nθ

□

Remark. Exact controllability is equivalent to exact con-
trollability starting from (0, 0) (due to superposition prin-
ciple).

Definition 47 (Observability inequality). We say
that Eq. (15) is exactly observable in time T from Σ if
∃C > 0 such that for any solution θ of Eq. (15) we have:

∥θ(T )∥H1
0

+ ∥∂tθ(T )∥L2 ≤ C ∥∂nθ∥L2(ΣT )

Remark. Note the difference with the final-time observ-
ability for the dual heat equation:

∥θ(0)∥L2 ≤ C ∥θ∥L2((0,T )×ω)

Proposition 48. If the dual problem Eq. (15) is exactly
observable in time T from Σ, then the control problem
Eq. (11) is exactly controllable in time T from Σ.

Proof. Suppose Eq. (15) is exactly observable. We make
the choice to find u of the form u = ∂nθ̃ for some θ̃ solu-
tion of Eq. (15) (in order to put the problem in the stan-
dard Riesz’s form). Consider now E := H1

0 (Ω) × L2(Ω)
equipped with the norm ∥(θ0, θ1)∥E := ∥∂nθ0∥L2(ΣT ),
where θ is the solution of Eq. (15). This is an equivalent
norm to the standard one:

∥(θ0, θ1)∥E ≳∥θ0∥H1
0
+∥θ1∥L2 (36 Observability inequality)

∥(θ0, θ1)∥E ≲∥θ0∥H1
0
+∥θ1∥L2 (43 Hidden regularity)

E is Hilbert with this norm. Now, given (v̂0, v̂1) ∈
E, the left hand side is a continuous linear form on
(θ(T ), ∂tθ(T )) ∈ E. So ∃(θ0, θ1) ∈ E such that
with θ the corresponding solution of Eq. (15) one has:
∀(θ(T ), ∂tθ(T )) ∈ E with the corresponding solution θ we
have:

⟨v̂1, θ(T )⟩H−1×H1
0

− ⟨v̂0, ∂tθ(T )⟩L2×L2 =
ˆ

ΣT

∂nθ∂nθ

So we take u := ∂nθ. □

Theorem 49 (Bardos, Lebeau, Rauch). The system
is exactly controllable (or the dual observable) if and only
if any ray of geometrical optics in Ω (at speed 1) intersects
Σ between times 0 and T .

Remark. If Σ = ∂ Ω, then the system is controllable of
T > diam(Ω).

3. | Abstract systems
Basic definitions
Definition 50. Let X, Y be Banach. A bounded operator
is a couple (D(A), A) where D(A) ⊆ X is a subspace and
A : D(A) → Y is a continuous linear operator. An un-
bounded operator is a couple (D(A), A) where D(A) ⊆ X
is a subspace and A : D(A) → Y is a linear operator.

Remark. Usually we will omit specifying the domain
D(A).

Remark. Note that bounded operators are also unbounded
operators.

Definition 51. Let A be an unbounded operator between
Banach spacesX and Y . A is densely defined ifD(A) = X.
A is closed if graph(A) = {(x, y) ∈ D(A) × Y : y = Ax} is
closed.

Form now on we will assume X, Y are Hilbert.

Definition 52. Let (D(A), A) be a densely unbounded
operator. We define the adjoint operator (D(A∗), A∗) by:

D(A∗) = {y ∈ Y ∗ : ∃c > 0 with
|⟨y,Ax⟩Y ∗×Y | ≤ c ∥x∥X ∀x ∈ D(A)}

and ∀y ∈ D(A∗) ∀x ∈ D(A), A∗y is given in order to
satisfy:

⟨A∗y, x⟩X∗×X = ⟨y,Ax⟩Y ∗×Y
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Semigroups
From now on we will assume X = Y .

Definition 53. A one-parameter family of unbounded op-
erators (T (t))t≥0 is a semigroup of operators if:

• T (0) = id

• T (t+ s) = T (t) ◦ T (s) ∀t, s ≥ 0

Definition 54. A semigroup of operators (T (t))t≥0 is
called

• uniformly continuous if ∥T (t) − id∥ −→
t→0+

0.

• strongly continuous if ∀x ∈ X ∥T (t)x− x∥ −→
t→0+

0.

Definition 55. Let (T (t))t≥0 be a semigroup of operators.
We call infinitesimal generator of (T (t))t≥0 the unbounded
operator (D(A), A) where

D(A) =
{
x ∈ X : ∃ lim

t→0+

T (t)x− x

t

}
and ∀x ∈ D(A) we define:

Ax := lim
t→0+

T (t)x− x

t

Proposition 56. Let (T (t))t≥0 be a strongly continuous
semigroup of operators. Then:

1. ∀x ∈ X, t 7→ T (t)x is continuous.

2. ∀x ∈ X and all t ≥ 0:
tˆ

0

T (s)xds ∈D(A) and T (t)x−x = A

 tˆ

0

T (s)xds


3. ∀x ∈ D(A), d

dtT (t)x = AT (t)x = T (t)Ax.

4. ∀x ∈ D(A) and all t, s ≥ 0:

T (t)x− T (s)x =
tˆ

s

AT (r)xdr =
tˆ

s

T (r)Axdr

5. ∃α,C > 0 such that ∥T (t)∥ ≤ Ceαt.

Proof.

1. Take x ∈ X, s, t ≥ 0 and y := T (s)x. Then:

∥T (t)x− T (s)x∥ = ∥T (t− s)T (s)x− T (s)x∥ =
= ∥T (t− s)y − y∥ −→

t→s+
0

because of the strong continuity of the semigroup
and Theorem 53.

2. We have:

T (h) − id
h

tˆ

0

T (s)xds = 1
h

tˆ

0

T (s+h)xds− 1
h

tˆ

0

T (s)xds

= 1
h

t+hˆ

0

T (s) ds− 1
h

tˆ

0

T (s)ds =

= 1
h

t+hˆ

t

T (s)ds− 1
h

hˆ

0

T (s)ds −→
h→0+

T (t)x− x

3. Let x ∈ D(A) then the following limit

lim
h→0+

T (t+ h)x− T (t)x
h

= lim
h→0+

T (t)T (h)x− x

h
=

= T (t)Ax

exists because of x ∈ D(A). Moreover using the
properties of the semigroup we have it is also equal
to AT (t)x. Now assume h → 0− (so h < 0). Then:

lim
h→0−

T (t+ h)x− T (t)x
h

= T (t+ h)T (−h)x− x

−h
which exists and is equal to AT (t)x because x ∈
D(A).

4. We prove it for s = 0, and then the general case
follows by the linearity of the integral. But then by
Item 56-2:

T (t)x− x = A

tˆ

0

T (s)xds =
tˆ

0

AT (s)xds

and the exchange of the limit and the integral is jus-
tified by the existence of both limits.

□

Theorem 57.

1. If A is the infinitesimal generator of a strongly con-
tinuous semigroup, then it is closed and densely de-
fined.

2. If (T (t))t≥0, (S(t))t≥0 are two strongly continuous
semigroups with the same infinitesimal generator,
then T (t) = S(t) ∀t ≥ 0.

3. ∀x0 ∈ D(A), there exists a unique solution x ∈
C0([0,+∞), D(A)) ∩ C1([0,+∞), X) of d

dtx(t) =
Ax(t) with x(0) = x0, and it is given by:

x(t) = T (t)x0

Moreover, ∀f ∈ C1([0, T ], X), there exists a unique
solution x ∈ C0([0, T ], D(A)) ∩ C1([0, T ], X) of
d
dtx(t) = Ax(t) + f(t) with x(0) = x0, and it is
given by:

x(t) = T (t)x0 +
tˆ

0

T (t− s)f(s)ds

This last formula is called the variation of constants
formula or Duhamel’s formula.

Remark. Duhamel’s formula is still valid even if x0 ∈ X
and f ∈ L1((0, T ), X). In this case, the resulting solution
x(t) is called mild solution. Any mild solution is a limit of
classical solutions.
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Theorem 58. Suppose X is reflexive. Then, if (T (t))t≥0
is a strongly continuous semigroup with infinitesimal gen-
erator A, then A∗ is the infinitesimal generator of the ad-
joint semigroup (T (t)∗)t≥0.

Remark. We will denote by T (t)∗ also by T ∗(t).

Definition 59. A semigroup (T (t))t≥0 is called contrac-
tion if ∥T (t)∥ ≤ 1 ∀t ≥ 0.

Definition 60. Let (D(A), A) be an unbounded opera-
tor. The resolvent set of A is the set ρ(A) := {λ ∈ C :
λI −A is bijective}. Given λ ∈ ρ(A), the resolvent opera-
tor is the operator Rλ(A) := (λI −A)−1.

Theorem 61 (Hille-Yosida). Let (D(A), A) be an op-
erator closed and densely defined. Then, it is the infinites-
imal generator of a contraction semigroup if and only if:

(0,∞) ⊆ ρ(A) and ∀λ > 0, ∥Rλ(A)∥ ≤ 1
λ

Corollary 62. Let (D(A), A) be an operator closed and
densely defined. (D(A), A) is the infinitesimal generator
of a semigroup (T (t))t≥0 such that ∥T (t)∥ ≤ ect ∀t ≥ 0 if
and only if:

(c,∞) ⊆ ρ(A) and ∀λ > c, ∥Rλ(A)∥ ≤ 1
λ− c

Definition 63. An operator (D(A), A) is called dissipa-
tive if ∀x ∈ D(A), ⟨Ax, x⟩ ≤ 0.

Theorem 64 (Lümmer-Phillips). Let (D(A), A) be an
operator closed and densely defined. Then:

1. If A is dissipative and ∃λ0 > 0 such that im(λ0I −
A) = R, then ∀λ > 0, im(λI −A) = R and A gener-
ates a semigroup of contractions.

2. If A generates a semigroup of contractions, then
im(λI −A) = X ∀λ > 0.

Corollary 65. Let (D(A), A) be an operator closed and
densely defined. If A and A∗ are both dissipative, then A
generates a semigroup of contractions.

Applications to control theory

In this section we consider the control system:{
ẋ(t) = Ax(t) +Bu(t) in [0, T ]
x(0) = x0

(16)

where A is the infinitesimal generator of a strongly con-
tinuous semigroup (S(t))t≥0 and B is a bounded operator,
with:

S(t) : L2(Ω) → L2(Ω) B : L2(ω) → L2(Ω)

We will first consider the interior control in a region ω ⊆ Ω.
We will denote by FT the operator:

FT : L2(0, T ;L2(ω)) −→ L2(Ω)
u 7−→

´ T

0 S(T − s)Bu(s)ds

Remark. Note that exact controllability at time T is equiv-
alent to controllability starting from 0 which in turn is
equivalent to the surjectivity of FT ; approximate control-
lability at time T is equivalent to imFT being dense in
L2(Ω), and null controllability at time T is equivalent to
imFT ⊇ imS(T ).
Theorem 66. Let S : H1 → H and T : H2 → H be
bounded linear operators between Hilbert spaces. Then,
im(S) ⊆ im(T ) if and only if ∃c > 0 such that ∀x ∈ H,
∥S∗x∥H1

≤ c ∥T ∗x∥H2
.

Proof.
=⇒) If im(S) ⊆ im(T ), then ∀x ∈ H1 ∃!y ∈ ker(T )⊥

such that Sx = Ty.

• Existence: for x ∈ H1, we find y ∈ H2 such
that Sx = Ty and we define z := πker(T )⊥y,
where πker(T )⊥ is the orthogonal projection
on ker(T )⊥. Then, z − y ∈ (ker(T )⊥)⊥ =
ker(T ), and so T (z − y) = 0, and thus Tz =
Ty = Sx.

• Uniqueness: if Sx = Ty1 = Ty2, then
T (y1 − y2) = 0, and so y1 − y2 ∈ ker(T ), but
also y1, y2 ∈ ker(T )⊥ (by hypothesis). Thus,
y1 = y2.

We define G : H1 → ker(T )⊥ ⊂ H2 such that to
x ∈ H1 we associate the unique y ∈ ker(T )⊥ such
that Sx = Ty. We have that G is linear. To see
that it is continuous we used the ?? ??. We need
to prove that if xn

H1−→ x and Gxn
H2−→ y, then

Gx = y. We have that G(xn) ∈ ker(T )⊥ ∀n and
ker(T )⊥ is closed, so y ∈ ker(T )⊥. We have that
T (G(xn)) = Sxn ∀n. Taking the limit and us-
ing the continuity of S and T we get Ty = Sx,
which by uniqueness implies y = Gx. So S = TG,
and thus S∗ = G∗T ∗, with G∗ continuous. Thus,
∀x ∈ H:

∥S∗x∥H1
= ∥G∗T ∗x∥H1

≤ ∥G∗∥L(H2,H1) ∥T ∗x∥H2

⇐=) We will prove that there exists an operator D :
H2 → H1 such that S∗ = DT ∗. If y ∈ im(T ∗),
let x ∈ H be such that y = T ∗x, and then we
define Dy := S∗x. This definition is independent
of the choice of x because if x1, x2 ∈ H are such
that y = T ∗x1 = T ∗x2, then T ∗(x1 − x2) = 0,
and so (by hypotheses) S∗(x1 − x2) = 0, and thus
S∗x1 = S∗x2. So D : im(T ∗) → H1 is well-
defined, it is linear and continuous:

∥Dy∥H1
= ∥S∗x∥H1

≤ c ∥T ∗x∥H2
= c ∥y∥H2

So D can be uniquely extended as a continu-
ous linear map on im(T ∗). We decide to set
D|im(T ∗)⊥ = 0 and we get a continuous linear map
D : H2 → H1 such that S∗ = DT ∗. Taking ad-
joints we get S = TD∗, so im(S) ⊆ im(T ).

□

Theorem 67. Let A : H1 → H2 be a bounded linear
operator between Hilbert spaces. Then:

1. im(A) is dense ⇐⇒ ker(A∗) = {0}.
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2. im(A) = H2 ⇐⇒ ∃c > 0 such that ∀x ∈ H2,
∥x∥H2

≤ c ∥A∗x∥H1
.

Proof.

1. Recall that im(A)⊥ = ker(A∗):

im(A) = H2 ⇐⇒ (im(A)⊥)⊥ = H2

⇐⇒ im(A)⊥ = {0}
⇐⇒ ker(A∗) = {0}

2. Use Theorem 66 with H1 = H and S = idH .

□

Proposition 68. The adjoint of FT is given by:

F ∗
T : L2(Ω) −→ L2(0, T ;L2(ω))

yT 7−→ s 7→ B∗S∗(T − s)yT

Proof. Let yT ∈ L2(Ω) and u ∈ L2(0, T ;L2(ω)). Then:

⟨F ∗
T yT , u⟩L2(0,T ;L2(ω)) =

T̂

0

⟨B∗S∗(T − s)yT , u(s)⟩L2(ω)ds

=
T̂

0

⟨S∗(T − s)yT , Bu(s)⟩L2(Ω)ds

=
T̂

0

⟨yT , S(T − s)Bu(s)⟩L2(Ω)ds

= ⟨yT ,

T̂

0

S(T − s)Bu(s)ds⟩L2(Ω)

= ⟨yT , FTu⟩L2(Ω)

□

Theorem 69. Consider the control system Eq. (16) and
its dual system:{

−ẋ(t) = A∗x(t) in [0, T ]
x(T ) = yT

(17)

Then:

1. The system Eq. (16) is exactly controllable at time
T if and only if the system Eq. (17) is final time ob-
servable by means of B∗, that is, if ∃c > 0 such that
for all solution y of Eq. (17) we have:

∥yT ∥H ≤ c ∥B∗x∥L2(0,T ;L2(ω))

2. The system Eq. (16) is approximately controllable
at time T if and only if the system Eq. (17) satisfies
the unique continuation property, that is, if x solu-
tion of Eq. (17) satisfies B∗x(t) = 0 ∀t ∈ [0, T ] then
yT = 0, i.e. x = 0.

3. The system Eq. (16) is null controllable at time T if
and only if the system Eq. (17) is initial time observ-
able: ∃c > 0 such that for all solution x of Eq. (17)
we have:

∥x(0)∥H ≤ c ∥B∗x∥L2(0,T ;L2(ω))

4. | Backstepping for boundary control
in PDEs

Backstepping consists in transforming a system into an-
other one, called target system, which has the desired sta-
bility properties. In order to study, we will be considering
the following reaction-diffusion equation:

∂tx = xzz + λx in (0, T ) × (0, 1)
x(t, 0) = 0 in (0, T )
x(t, 1) = u(t) in (0, T )

(18)

and we assume that λ > 0 is large enough such that the
system is unstable (the eigenvalues are of the form λ−n2π2

with n ∈ N).
The first step is to choose a target system such that the
origin is exponentially (or asymptotically) stable. We will
consider the following target system:

∂tw = wzz in (0, T ) × (0, 1)
w(t, 0) = 0 in (0, T )
w(t, 1) = 0 in (0, T )

(19)

Proposition 70. The system Eq. (19) is exponentially
stable for the L2 norm.

Proof. We need to find a Lyapunov functional V such that
V̇ ≤ −αV for some α > 0. We take V (t) =

´ 1
0 w(t, z)2dz.

Then:

V̇ = 2
1ˆ

0

w(t, z)wt(t, z)dz = 2
1ˆ

0

w(t, z)wzz(t, z)dz

= −2
1ˆ

0

wz(t, z)2dz ≤ −αV

for some α > 0, due to ?? ??. □

Next step is to find a backstepping transformation w =
T (x) and the invertible operator T−1. We will consider
the following transformation:

w(z, t) = x(z, t) −
zˆ

0

K(z, y)x(y, t)dy (20)

where K is a kernel yet to be determined.

Proposition 71. Let f : [a, b] → C be continuous and
K : [a, b]2 → C be a bounded function. Then, the integral
equation:

f(t) = φ(t) −
bˆ

a

K(t, s)φ(s)ds, t ∈ [a, b]

admits a unique solution φ ∈ C([a, b]). Furthermore, there
exists ℓ : [a, b]2 → C bounded such that:

φ(t) = f(t) −
tˆ

a

ℓ(t, s)f(s)ds, t ∈ [a, b]
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Thus, our transformation is in Eq. (20) is invertible.
Finally, we need to define our control law. Imposing
wz(1, t) = 0 in Eq. (20) we get:

0=wz(1, t)=xz(1, t)−K(1, 1)x(1, t)−
1ˆ

0

Kz(1, y)x(y, t)dy

u(t) = K(1, 1)x(1, t) +
1ˆ

0

Kz(1, y)x(y, t)dy

So, we are left to find if a suitable K exists. Recall that the
condition w(1, t) = 0 is automatically satisfied. We need
to make use of the PDE of w. Using Eq. (20) to compute

wt and wzz, and equating both equations it suffices to find
K such that:

−2 d
dzK(z, z) = λ =⇒ K(z, z) = − λ

2 z

Kzz = Kyy + λK

K(z, 0) = 0

which has a unique solution given by:

K(z, y) = −λy
I1(

√
λ(z2 − y2))√
λ(z2 − y2)

where I1 is the modified Bessel function of the first kind
of order 1.
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