
Advanced topics in functional analysis and PDEs

1. | Lp spaces
Topologies of Lp spaces

Definition 1. Let E be a Banach space and (xn)n∈N ∈ E.
We say that (xn)n∈N converges weakly to x ∈ E if ∀f ∈ E∗

we have:
lim

n→∞
f(xn) = f(x)

We denote this by xn ⇀ x.

Definition 2. Let E be a Banach space and (xn)n∈N ∈ E.
We say that (xn)n∈N converges strongly to x ∈ E if we
have:

lim
n→∞

∥xn − x∥ = 0

We denote this by xn → x.

Definition 3. Let E be a Banach space and (Ln)n∈N ∈ E.
Assume E = F ∗, where F is a Banach space. Then, we
say that (Ln)n∈N converges weakly-* to L ∈ E if ∀x ∈ F
we have:

lim
n→∞

Ln(x) = L(x)

We denote this by Ln
∗

⇀ L.

Theorem 4. Let E be a Banach space and (xn)n∈N ∈ E.
Then:

1. If xn → x, then xn ⇀ x.

2. If E is reflexive then weak convergence is equivalent
to weak-* convergence.

3. If xn → x, xn ⇀ x or xn
∗

⇀ x, then (xn) is bounded.

4. Let (Ln)n∈N ∈ E∗. If xn → x in E and Ln
∗

⇀ L in
E∗, then Ln(xn) → L(x) in C.

Proof. We only prove the first and last points.

1. Let L ∈ E∗. Then, ∥L∥ < ∞ and:

|L(xn) − L(x)| ≤ ∥L∥ ∥xn − x∥ → 0

4. Let (Ln) ∈ E∗ converge to L ∈ E∗ weakly-* and let
xn → x in E. Then:

|Ln(xn) − L(x)| ≤ |(Ln − L)(xn)| + |L(xn) − L(x)|
≤ ∥Ln − L∥ ∥xn∥ + ∥L∥ ∥xn − x∥

And the result follows.

□

Theorem 5 (Banach-Alaoglu theorem). Let Ω ⊆ Rd

be a set and 1 < p < ∞. If (fn) is a bounded sequence in
Lp(Ω), then there is a subsequence (fnk

) and f ∈ Lp(Ω)
so that fnk

⇀ f in Lp(Ω). If p = ∞, then there is a
subsequence (fnk

) and f ∈ L∞(Ω) so that fnk

∗
⇀ f in

L∞(Ω).

Lower-semicontinuous functions and convexity

Definition 6. Let E be a Banach space, (xn) ∈ E
and f : E → R. We say that f is strongly lower-
semicontinuous if:

xn → x =⇒ f(x) ≤ lim inf
n→∞

f(xn)

Remark. Analogously, we can define weakly lower-
semicontinuity and weak-* lower-semicontinuity by replac-
ing xn → x by xn ⇀ x and xn

∗
⇀ x respectively.

Theorem 7. Let E be a Banach space and f : E → R be
convex. Then, f is strongly lower-semicontinuous if and
only if f is weakly lower-semicontinuous. In particular,
the map ∥·∥E is weakly lower-semicontinuous.

Proof. We only prove one implication, and also we ad-
mit that if f is convex and strongly lower-semicontinuous,
then there is a continuous linear operator Lx (called sup-
port plane) so that ∀y ∈ E we have:

f(y) ≥ f(x) + Lx(y − x)

In particular, if (xn) ⇀ x, then:

f(xn) ≥ f(x) + Lx(xn − x) =⇒ lim inf
n→∞

f(xn) ≥ f(x)

□

Theorem 8. Let Ω ⊆ Rd be a set and 1 < p < ∞. If
fn ⇀ f in Lp(Ω), then:

∥f∥p ≤ lim inf
n→∞

∥fn∥p

In addition, if ∥f∥p = lim
n→∞

∥fn∥p, then fn → f in Lp(Ω).

Proof. The first point is Theorem 7 in the case E = Lp(Ω).
We only prove the second point for p = 2. If ∥f∥2 =
lim

n→∞
∥fn∥2, then:

∥fn − f∥2
2 = ∥fn∥2

2 + ∥f∥2
2 − 2 Re

ˆ

Ω

fnf

→ ∥f∥2
2 + ∥f∥2

2 − 2 Re
ˆ

Ω

ff

= 0

where the convergence of the integral is due to the weakly
convergence of fn to f . □
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2. | Sobolev spaces
Basic definitions

Definition 9 (Sobolev spaces). Let Ω ⊆ Rd be an open
set, m ∈ N and 1 ≤ p ≤ ∞. We define the Sobolev spaces
W m,p as:

W m,p(Ω):={f ∈ Lp(Ω) : ∀α ∈ Nd, |α| ≤ m, ∂αf ∈ Lp(Ω)}

Moreover we define the associate norm ∥·∥W m,p(Ω) as:

∥f∥W m,p(Ω) :=

 ∑
|α|≤m

∥∂αf∥p
p

1/p

If p = 2, we denote Hm(Ω) := W m,2(Ω).

Theorem 10. Let Ω ⊆ Rd be an open set. Then, for
all m ∈ N and all 1 ≤ p ≤ ∞, (W m,p(Ω), ∥·∥W m,p(Ω))
is Banach. Moreover, if p < ∞, it is separable and if
1 < p < ∞, it is reflexive. Finally, Hm(Ω) is a separable
Hilbert space.

Proof. Let (fj) be a Cauchy sequence in W m,p(Ω). Then,
(fj) is Cauchy in Lp(Ω), and for all |α| ≤ m, (∂αfj)
is Cauchy in Lp(Ω). Since Lp(Ω) is complete, there are
f ∈ Lp(Ω) and fα ∈ Lp(Ω), so that:

fj
Lp

−→ f ∂αfj
Lp

−→ fα

It remains to prove that fα = ∂αf . Since we have con-
vergence in Lp, we also have convergence in the distri-
butional sense, that is fj

D∗

→ f . In particular, we must
have ∂αfj

D∗

→ ∂αf . By uniqueness of the limit in D∗(Ω),
we indeed have fα = ∂αf . This proves that W m,p(Ω) is
complete. Now, the map

W m,p(Ω) −→ (Lp(Ω))N

f 7−→ (∂αf)|α|≤m

with N :=
∣∣{α ∈ Nd : |α| ≤ m}

∣∣ is an isometry. So
W m,p(Ω) can be identified with a closed vector space of
(Lp(Ω))N . In particular, W m,p(Ω) is separable for p < ∞,
and it is reflexive for 1 < p < ∞. □

Definition 11. Let Ω ⊆ Rd be an open set, m ∈ N and
1 ≤ p ≤ ∞. We define the space W m,p

0 (Ω) := C∞
0 (Ω),

where the closure is taken with the norm of W m,p(Ω).
Similarly, we set Hm

0 (Ω) := W m,2
0 (Ω).

Remark. Note that W m,p
0 (Ω) is also Banach (with the

same norm as W m,p(Ω)) because it is a closed subspace in
a Banach space.

Lemma 12. Let 1 ≤ p ≤ ∞ and (ϕε) be an approxima-
tion of identity. For all f ∈ Lp(Rd), we set fε := f ∗ ϕε.
Then:

• fε is smooth.

• fε ∈ Lp(Rd) with ∥fε∥p ≤ ∥f∥p.

• If p < ∞, then ∥fε − f∥p
ε→0−→ 0.

Theorem 13. For 1 ≤ p < ∞ we have that W m,p
0 (Rd) =

W m,p(Rd). In particular, C∞(Rd)∩W m,p(Rd) and C∞
0 (Rd)

are dense in W m,p(Rd) for 1 ≤ p < ∞.

Proof. Let us first prove that C∞(Rd) is dense in
W m,p(Rd). Let f ∈ W m,p(Rd) and set fε := f ∗ jε for an
approximation of identity jε. By Theorem 12, the func-
tions fε are smooth. For all |α| ≤ m, the function ∂αf is
in Lp(Rd), and we have ∂α(fε) = (∂αf) ∗ jε. By ??, we
deduce that ∀|α| ≤ m:

∥∂αf ∗ jε − ∂αf∥p → 0

This already proves that C∞(Rd) ∩ W m,p(Rd) is dense in
W m,p(Rd). For the second part, we take f ∈ C∞(Rd) ∩
W m,p(Rd) and set fn := χ(x/n)f , where χ is a smooth
cut-off function satisfying χ(x) = 1 for |x| ≤ 1. Then,
fn ∈ C∞

0 (Rd). By ?? ??, we have ∥fn − f∥p → 0. More-
over, we have:

∥∇fn − ∇f∥p = ∥∇χf + ∇f [χ(x/n) − 1]∥p

≤ ∥∇χ∥∞ ∥f∥p + ∥∇f [χ(x/n) − 1]∥p

and the last term goes to 0 again by ?? ??. So
∥∇fn − ∇f∥p → 0. We go on with all derivatives, which
proves that ∥∂αfn − ∂αf∥p → 0 for all |α| ≤ m. This
shows that fn → f in W m,p(Rd). □

Theorem 14 (Poincaré’s inequality). Let Ω be a
bounded open set in Rd and let 1 ≤ p < ∞. Then, there
is a constant C = C(Ω, p) so that ∀u ∈ W m,p

0 (Ω) we have:

∥u∥p ≤ C ∥∇u∥p

Remark. 14 Poincaré’s inequality is also valid when Ω is
unbounded in one direction.

Corollary 15. If Ω is bounded, then the constant func-
tion f(x) = C with C ̸= 0 is not in W 1,p

0 . Thus, we cannot
approximate constant functions by C∞

0 (Ω) functions, with
the W 1,p(Ω) norm.

Definition 16. Let Ω be a bounded set. We define the
average of u in Ω as:

 

Ω

u := 1
|Ω|

ˆ

Ω

u

Theorem 17 (Poincaré-Wirtinger’s inequality). Let
Ω ⊆ Rd be a bounded connected open set with C1 bound-
ary, and let 1 ≤ p < ∞. Then, there is a constant
C = C(Ω, p) so that ∀u ∈ W 1,p(Ω) we have:∥∥∥∥∥∥u −

 

Ω

u

∥∥∥∥∥∥
p

≤ C ∥∇u∥p
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Sobolev embeddings
Definition 18. Let E, F be Banach. We say that F is
embedded in E if F ⊆ E and the inclusion map i : F ↪→ E
is continuous. We say that F is compactly embedded in E
if F ⊆ E and the inclusion map i : F ↪→ E is compact.

Theorem 19 (Gagliardo, Nirengerg and Sobolev’s
inequality). For all 1 ≤ p ≤ d

m , there is a constant
C = C(p, m, d) so that ∀u ∈ C∞

0 (Rd) we have:

∥u∥q ≤ C
∑

|α|=m

∥∂αu∥p

where 1
q

= 1
p

− m

d
. That is, we have the continuous em-

bedding W m,p(Rd) ↪→ Lq(Rd). In particular for m = 1,
we have W 1,p(Rd) ↪→ Lp∗(Rd) with 1

p∗ = 1
p

− 1
d

.

Proof. By induction, it suffices to prove the result only for
m = 1. We will prove only the case d = 2. We start with
p = 1. Let u ∈ C∞

0 (R2). We have:

|u(x1, x2)| ≤
x1ˆ

−∞

|∂x1u(s, x2)| ds ≤

≤
ˆ

R

|∂x1u(s, x2)| ds =: v1(x2)

Similarly, |u(x1, x2)| ≤ v2(x1). So:

∥u∥2
2 ≤

ˆ

R2

|v1(x2)||v2(x1)| dx1 dx2 = ∥v1∥1 ∥v2∥1 =

= ∥∂x1u∥1 ∥∂x2u∥1 ≤ ∥∇u∥1
2

For the case 1 ≤ p < 2, we apply the result to the function
ut := |u|t−1

u. This function satisfies |∇ut| = t|u|t−1|∇u|
and so:

∥u∥2t
t = ∥ut∥2 ≤ ∥ut∥1 = t

∥∥∥|u|t−1∇u
∥∥∥ ≤

≤ t
∥∥∥|u|t−1

∥∥∥
p′

∥∇u∥p = t∥u∥(t−1)p′
t−1 ∥∇u∥

where p′ is the Hölder conjugate of p. Now, we choose t
so that 2t = (t − 1)p′, that is, t = p

2−p and so:

∥u∥ 2p
2−p

≤ p

2 − p
∥∇u∥p

□

Definition 20 (Hölder continuity). Let k ∈ N and
0 ≤ θ ≤ 1. We say that a map u : Ω → C is Ck,θ-Hölder
continuous if there is C ≥ 0 such that ∀|α| = k and all
x, y ∈ Ω we have:

|∂αu(x) − ∂αu(y)| ≤ C|x − y|θ

The set of such functions is denoted by Ck,θ(Ω).

Remark. Note that Ck,0(Ω) = Ck(Ω) and that C0,1(Ω) is
the set of Lipschitz continuous functions.

Remark. Note that Ck,θ(Ω) together with the norm

∥u∥Ck,θ(Ω) := sup
x̸=y

sup
|α|=k

|∂αu(x) − ∂αu(y)|
|x − y|θ

is a Banach space.

Theorem 21 (Morrey’s embedding). Let m ≥ 1 and
p > d

m . Then, W m,p(Rd) ⊂ L∞(Rd). In addition, let:

k :=
⌊

m − d

p

⌋
θ := m − d

p
− k ∈ [0, 1)

If θ ̸= 0, then W m,p(Rd) ⊂ Ck,θ(Rd).

Theorem 22. For all 1 ≤ p ≤ ∞, W 1,p(R) ↪→ L∞(R) ∩
C0(R).

Proof. The proof for p > 1 comes from 21 Morrey’s em-
bedding. For p = 1 we have that ∀u ∈ C∞

0 (R) we have:
|u(x)| ≤

´ x

−∞ |u′| ≤ ∥u′∥1. So ∥u∥∞ ≤ ∥u′∥1. By density,
this proves that ∀u ∈ W 1,1(R) we have u ∈ L∞(R). Now,
let (un) ∈ C∞

0 (R) be such that un → u in W 1,1(R). Then,
un → u in L∞(R) and so u is continuous because it is the
uniform limit of continuous functions. □

Extension operators

Definition 23. Let Ω ⊆ Rd be an open set. An exten-
sion of u ∈ W ∈ W m,p(Ω) is a function ũ ∈ W m,p(Rd)
so that ũ

a.e.= u in Ω. An extension operator is a bounded
linear operator E : W m,p(Ω) → W m,p(Rd) so that Eu is
an extension of u ∀u ∈ W m,p(Ω).

Remark. From now on, we will denote Rd
± := Rd−1 × R±

and Rd
0 := Rd−1 × {0}.

Theorem 24. For all m ∈ N and all 1 ≤ p < ∞, C∞(Rd
≥0)

is dense in W m,p(Rd
≥0).

Proof. Let

τh(u)(x1, . . . , xd) := u(x1, . . . , xd−1, xd + h)

be the translation operator and set uε := τε(u)∗ϕε, where
ε > 0 and ϕε is an approximation of identity. Then,
uε ∈ C∞(Rd

≥0) by the properties of the convolution. More-
over:

∥∂αuε − ∂αu∥p ≤ ∥∂αuε − ∂α(τεu)∥p +∥∂α(τεu) − ∂αu∥p

≤ ∥(∂ατεu) ∗ ϕε − ∂α(τεu)∥p + ∥τε(∂αu) − ∂αu∥p

The first term goes to zero by the properties of smoothing
sequences, and the second goes to zero since translations
are continuous in Lp (check ??). □

Remark. The same proof shows that C∞(Ω) is dense in
W m,p(Ω), if Ω is bounded with ∂ Ω of class C1. This time,
one needs to locally translate u along the normal direction.

Theorem 25. For all m ∈ N and all 1 ≤ p < ∞, there is
an extension operator E : W m,p(Rd

≥0) → W m,p(Rd).
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Proof. We only do the proof for d = 1 and m = 1 to high-
light the main ideas. Let u ∈ W 1,p(R≥0). We define the
first order reflection:

ū :=
{

u(x) if x ≥ 0
−3u(−x) + 4u(−x/2) if x < 0

By density, it is enough to prove the result for u ∈
C1(R≥0). An easy check shows that ū ∈ C1(R). More-
over, we have:

∥ū∥W 1,p(R)
p =

ˆ

R

|ū|p + |ū′|p

=
ˆ

R≥0

|u|p+|u′|p+
ˆ

R≤0

[|−3u(−x) + 4u(−x/2)|p+

+ |3u′(−x) − 2u′(−x/2)|p]
≤ C∥u∥W 1,p(R≥0)

p

for some constant C > 0. Thus, E is a bounded extension
operator. □

Remark. The reader can check that the same construction
works on Rd, by setting

ū(x1, . . . , xd) :=


u(x1, . . . , xd) if xd ≥ 0
−3u(x1, . . . , xd−1 − xd)+
+4u(x1, . . . , xd−1 − xd/2)

if xd < 0

The proof for higher derivatives m ≥ 1 needs to add more
terms in order to make the junction smooth enough.

Definition 26. We say that a domain Ω ⊆ Rd has bound-
ary of class Ck if ∀x ∈ ∂ Ω there is a neighborhood ε, δ > 0
and a Ck-diffeomorphism ϕ : B(x, ε) → B(0, δ) so that
ϕ(x) = 0 and ϕ(B(x, ε)∩Ω) = B(0, δ)∩Rd

≥0. Note that in
particular this implies that ϕ(∂ Ω∩B(x, ε)) = B(0, δ)∩Rd

0.

Theorem 27. Let Ω ⊆ Rd be a bounded domain with Ck

boundary. Then, ∀m ≤ k and all 1 ≤ p < ∞, there is an
extension operator E : W m,p(Ω) → W m,p(Rd).

Theorem 28. Let Ω ⊆ Rd be a bounded domain with
Ck boundary. Then, ∀m ≤ k, if 1 ≤ p < d

m , there is an
embedding W m,p(Ω) ↪→ Lq(Ω), where 1

q
= 1

p
− m

d
. If

p > d
m , then W m,p(Ω) ↪→ Cℓ,θ(Ω), where ℓ :=

⌊
m − d

p

⌋
and θ := m − d

p − ℓ ∈ [0, 1).

Theorem 29 (Reillich-Kondrachov’s compactness
theorem). Let Ω ⊆ Rd be a bounded domain with Ck

boundary. Then, ∀m ≤ k we have:

• If 1 ≤ p < d
m , ∀r ∈ [p, q), where 1

q
= 1

p
− m

d
, the

embedding W m,p(Ω) ↪→ Lr(Ω) is compact.

• If p ≥ d
m , then ∀r ∈ [p, ∞), the embedding

W m,p(Ω) ↪→ Lr(Ω) is compact.

• If p > d
m , then the embedding W m,p(Ω) ↪→ C0(Ω) is

compact.

Trace operators

Theorem 30. Let 1 ≤ p < ∞ and u ∈ W 1,p(Rd
≥0). Then,

the function u|Rd
0

: Rd−1 → C belongs to Lp(Rd−1).

Definition 31. We define the trace operator as the map:

Tr : W 1,p(Rd
≥0) −→ Lp(Rd−1)

u 7−→ u|Rd
0

Theorem 32. Let 1 ≤ p < ∞ and u ∈ W 1,p(Rd
≥0). Then,

Tr u = 0 if and only if u ∈ W 1,p
0 (Rd

≥0).

Theorem 33. Let 1 ≤ p < ∞ and Ω ⊂ Rd be a bounded
domain with C1 boundary. Then, the trace operator

Tr : W 1,p(Ω) −→ Lp(∂ Ω)
u 7−→ u|∂ Ω

is bounded. Here we are taking the norm of Lp(∂ Ω) as
∥u∥Lp(∂ Ω)

p :=
´

∂ Ω |u|p. In addition:

• ∀u ∈ W 1,p(Ω), Tr u = 0 if and only if u ∈ W 1,p
0 (Ω).

• For p = 2, Tr is surjective.

Lemma 34. Let Ω ⊆ Rd be an open set and u ∈ W 1,p(Ω)
with 1 ≤ p ≤ ∞. Then, |u| ∈ W 1,p(Ω) and ∥∇|u|∥

a.e.
≤

∥∇u∥.

Proof.

∥2|u|∇|u|∥ =
∥∥∥∇|u|2

∥∥∥ = 2 ∥Re(u∇u)∥ ≤ 2 ∥∇u∥ |u|

On the set {u ̸= 0}, we can divide by 2|u|, which gives
the result. The proof on the set {u = 0} is much difficult.

□
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