Advanced topics in functional analysis and PDEs

1. | LP spaces
Topologies of LP spaces

Definition 1. Let £ be a Banach space and (,,),,.y € E.
We say that (), cy converges weakly to x € EifVf € E*
we have:

lim_f(z,) = f(z)

n—oo

We denote this by x,, — x.

Definition 2. Let E be a Banach space and (,,),,cy € E.
We say that (z,,),cy converges strongly to x € E if we
have:

lim ||z, —z|| =0

n—oo

We denote this by x, — x.

Definition 3. Let E be a Banach space and (L,), oy € E.
Assume F = F*, where F' is a Banach space. Then, we
say that (Ly),cy converges weakly-*to L € E if Vo € F
we have:

lim L, (z) = L(x)

n—r oo

We denote this by L,, — L.

Theorem 4. Let E be a Banach space and (z,,),,cy € E.
Then:

1. If x,, —» x, then x,, — .

2. If F is reflexive then weak convergence is equivalent
to weak-* convergence.

3. Ifz, — x, x, — x or &, — x, then (x,) is bounded.

4. Let (Lp),ey € B*. If 2, - 2 in E and L, = L in
E*, then L, (z,) — L(z) in C.

Proof. We only prove the first and last points.
1. Let L € E*. Then, || L] < oo and:

|L(zn) = L(2)| < [[L] |z — ]| = 0

4. Let (Ly,) € E* converge to L € E* weakly-* and let
T, — « in E. Then:

L () = L(@)| < |(Ln = L)(2n)] + [L(zn) = L(z)]
S = Liflzall + I Ll fl2n — 2]

And the result follows.
O

Theorem 5 (Banach-Alaoglu theorem). Let (2 C R?
be a set and 1 < p < co. If (f,,) is a bounded sequence in
LP(Q)), then there is a subsequence (fy,,) and f € LP(Q)
so that f,, — f in LP(Q). If p = oo, then there is a
subsequence (f,,) and f € L>(Q2) so that f,, — f in
L>(Q).

Lower-semicontinuous functions and convexity

Definition 6. Let E be a Banach space, (z,) € E
and f : F — R. We say that [ is strongly lower-
semicontinuous if:

Tp = = f(z) <liminf f(z,)

n—oo

Remark. Analogously, we can define weakly lower-
semicontinuity and weak-* lower-semicontinuity by replac-
ing =, — « by z, — z and x, — z respectively.

Theorem 7. Let F be a Banach space and f : F — R be
convex. Then, f is strongly lower-semicontinuous if and
only if f is weakly lower-semicontinuous. In particular,
the map ||-|| ; is weakly lower-semicontinuous.

Proof. We only prove one implication, and also we ad-
mit that if f is convex and strongly lower-semicontinuous,
then there is a continuous linear operator L, (called sup-
port plane) so that Yy € E we have:

fy) = f(x) + La(y — @)
In particular, if (z,) — z, then:
flan) = (@) + Lo(zn —2) = liminf f(z,) > f(2)
0

Theorem 8. Let Q@ C R? be a set and 1 < p < oco. If
fn — fin LP(£2), then:

In addition, if [|f||, = lim | f.[|,, then f, — f in LP(Q).
n— 00

Proof. The first point is Theorem 7 in the case E = LP().
We only prove the second point for p = 2. If ||f]|, =
lim || £y, then:

n—oo

Hn—fMQ:wnﬁ+Wﬂ@—2Rg/nf

Q

+nfm2+nﬂ52—2Rg/f?
Q
=0

where the convergence of the integral is due to the weakly
convergence of f, to f. a



2. | Sobolev spaces
Basic definitions

Definition 9 (Sobolev spaces). Let  C R? be an open
set, m € Nand 1 < p < co. We define the Sobolev spaces
W™P as:

WP (Q):={f € L’(Q) : YVa € N |a| <m,0%f € LP(Q)}
Moreover we define the associate norm |[|:||yy ., g, as:

1/p

> o rl,”

la]<m

||f||wm,p(9) =

If p =2, we denote H™(Q) := W™2(Q).

Theorem 10. Let © C R? be an open set. Then, for
allm € Nand all 1 < p < oo, (W"™(Q), |llyyms ()
is Banach. Moreover, if p < oo, it is separable and if
1 < p < oo, it is reflexive. Finally, H™(f) is a separable
Hilbert space.

R
p

Proof. Let (f;) be a Cauchy sequence in W™ (). Then,
(f;) is Cauchy in LP(Q), and for all |a] < m, (0°f;)
is Cauchy in LP(€2). Since LP(Q2) is complete, there are
feLP(Q) and f, € L?(Q), so that:
P o LP
fi—f  0%f —fa
It remains to prove that f, = 0“f. Since we have con-
vergence in LP, we also have convergence in the distri-

butional sense, that is f; EX f. In particular, we must
have 0° f; EN 0% f. By uniqueness of the limit in D*(),
we indeed have f, = 9*f. This proves that W™P(Q) is
complete. Now, the map

WmP(Q) — (LP(Q)Y
f — (6af)|a\§m

with N := [{a € N%:|a| <m}| is an isometry. So
W™P(Q) can be identified with a closed vector space of
(LP(2))N. In particular, W™P() is separable for p < oo,
and it is reflexive for 1 < p < co. O

Definition 11. Let © € R? be an open set, m € N and
1 < p < co. We define the space Wi (Q) := C5°(9),
where the closure is taken with the norm of W™P(Q).
Similarly, we set HZ*(€) := WJ™?(Q).

Remark. Note that Wg"P(Q) is also Banach (with the
same norm as W™P(Q)) because it is a closed subspace in
a Banach space.

Lemma 12. Let 1 < p < co and (¢.) be an approxima-
tion of identity. For all f € LP(RY), we set f. := f * ¢..
Then:

e f. is smooth.
o fe € LP(RY) with || fe]l,, < || fIl,,

e—0

o If p <oo,then || f: — f|, — 0.

Theorem 13. For 1 < p < oo we have that WP (R?) =
WmP(RY). In particular, C>°(RY)NW™P(R?) and C5° (RY)
are dense in W™P(R9) for 1 < p < co.

Proof. Let us first prove that C*°(R?) is dense in
WmP(RY). Let f € W™P(R?) and set f. := f  j. for an
approximation of identity j.. By Theorem 12, the func-
tions f. are smooth. For all |o| < m, the function 0°f is
in LP(R?), and we have 0%(f.) = (0°f) * j.. By 7?7, we
deduce that V]a| < m:

[0%f * je =0 fl, = 0

This already proves that C°°(R?) N W™P(RY) is dense in
WmP(R%). For the second part, we take f € C>(R?) N
WmP(RY) and set f, := x(x/n)f, where x is a smooth
cut-off function satisfying x(x) = 1 for || < 1. Then,
fn € C(RY). By 77 72, we have ||f, — fll, = 0. More-
over, we have:

IV fo = VI, = IVXS + V fix(@/n) = 1],
< IVxllo 1], + 1V FIx(2/n) = 1],

and the last term goes to 0 again by ?? ??7. So
[V fn—Vfl, — 0. We go on with all derivatives, which
proves that [[0%f, —0%f[|, — 0 for all |a] < m. This

shows that f,, — f in W™P(R9). O

Theorem 14 (Poincaré’s inequality). Let Q be a
bounded open set in R? and let 1 < p < co. Then, there
is a constant C' = C(£2, p) so that Vu € Wy (§2) we have:

lull, < CIVul,

Remark. 14 Poincaré’s inequality is also valid when € is
unbounded in one direction.

Corollary 15. If © is bounded, then the constant func-
tion f(x) = C with C' # 0 is not in W **. Thus, we cannot
approximate constant functions by C§°(€2) functions, with
the W1P(Q) norm.

Definition 16. Let € be a bounded set. We define the
average of u in (Q as:

fomm |

U= —— u
i

Q Q

Theorem 17 (Poincaré-Wirtinger’s inequality). Let
Q C R? be a bounded connected open set with C' bound-
ary, and let 1 < p < oo. Then, there is a constant
C = C(Q,p) so that Yu € W1P(Q) we have:

uf][u <C|vul,

Q p



Sobolev embeddings

Definition 18. Let E, F' be Banach. We say that F' is
embedded in F if F C FE and the inclusion map i : F — F
is continuous. We say that F'is compactly embedded in E
if I/ C E and the inclusion map i : F' — F is compact.

Theorem 19 (Gagliardo, Nirengerg and Sobolev’s
inequality). For all 1 < p < 4 there is a constant
C = C(p,m,d) so that Yu € C§° (Rvg) we have:

lull, <C > 110%l,

lor|=m
1 1 m . .
where — = — — T That is, we have the continuous em-
q p
bedding W™P(R?) — LI(R?). In particular for m = 1,

* 1 1 1
we have WHP(RY) — [P" (RY) with — = =~ — —.
p* p d

Proof. By induction, it suffices to prove the result only for
m = 1. We will prove only the case d = 2. We start with
p=1. Let u € C§°(R?). We have:

x

lu(z1, 2)| < / 10, u(s, 22)] ds <

< /|8m1u(s,x2)|ds =: v1(x2)
R

Similarly, |u(z1,z2)] < va(x1). So:

2
[ull, < [ Jvi(ze)|[va(w1)| doy dzg = [lo1||y [lo2|l;, =
RQ

2
= 10z, wlly 10z, ully < [[Vully

For the case 1 < p < 2, we apply the result to the function

g == |u|'""'u. This function satisfies |Vu| = tlul'™"|Vu]
and so:

t t—1
lully,' = lally < Jally = ¢ | Jul ™ W] <

t—1 t—1
<t 1wl = o, 190

where p’ is the Holder conjugate of p. Now, we choose ¢
so that 2t = (t — 1)p/, that is, ¢ = 7% and so:

P
lull 22 < 5= IV,

O

Definition 20 (Holder continuity). Let & € N and
0<60<1. Wesay that a map u : Q — C is CkO_Hélder
continuous if there is C' > 0 such that V|a| = k and all
x,y € ) we have:

0%u(@) = 0%u(y)| < Clo—y|’
The set of such functions is denoted by C*¢().

Remark. Note that C*°(Q) = C¥(Q) and that C%!(Q) is
the set of Lipschitz continuous functions.

Remark. Note that C*?(Q) together with the norm

|0%u(x) — 0%u(y)]

0
|z — y

l[ullgr.o(q = sup sup
wy |a|=k

is a Banach space.

Theorem 21 (Morrey’s embedding). Let m > 1 and
p> L. Then, W™P(R?) C L>(R?). In addition, let:

-l

If 6 # 0, then W™P(R?) c k9 (RY).

9:=m—g—k€[071)
p

Theorem 22. For all 1 < p < oo, WHP(R) — L*®(R) N
Co(R).

Proof. The proof for p > 1 comes from 21 Morrey’s em-
bedding. For p = 1 we have that Yu € C§°(R) we have:
fu(@)] < J7 | < ol So Jull, < /], By density,
this proves that Yu € W1(R) we have u € L>=(R). Now,
let (u,) € C3°(R) be such that u,, — u in WH1(R). Then,
U, — uw in L (R) and so u is continuous because it is the
uniform limit of continuous functions. O

Extension operators

Definition 23. Let Q C R¢ be an open set. An exten-
sion of u € W € W™P(Q) is a function & € W™P(RY)
so that @ = w in Q. An extension operator is a bounded
linear operator E : W™P(Q) — W™P(R?) so that Eu is
an extension of u Yu € W™P(Q).

Remark. From now on, we will denote RY := R4~ x Ry
and R¢ := R4t x {0}.

Theorem 24. Forallm € Nand all 1 < p < oo, COO(R‘éO)
is dense in Wmvp(R‘éO).

Proof. Let

Th(u) (21, ..., 2q) = u(x1,...,xq-1,24 + h)

be the translation operator and set u. := 7. (u) * ¢, where
€ > 0 and ¢, is an approximation of identity. Then,

u. € C*(R<)) by the properties of the convolution. More-
over:

0% ue = 0%ul, < 0%ue — & (o), + 0% (=) — O%ull,
<107 7.0) * 62 — 0° (), + |17 (0%w) — 0%l

The first term goes to zero by the properties of smoothing
sequences, and the second goes to zero since translations
are continuous in LP (check 77). O

Remark. The same proof shows that C*°(Q) is dense in
WmP(Q), if 2 is bounded with 9 Q of class C!. This time,
one needs to locally translate u along the normal direction.

Theorem 25. For all m € N and all 1 < p < oo, there is
an extension operator E : Wm’p(]R‘éo) — WP (RY).



Proof. We only do the proof for d =1 and m = 1 to high-
light the main ideas. Let u € W1P(Rx(). We define the
first order reflection:

ifx>0
ifx <0

U= {u(x)
—3u(—z) + du(—x/2)

By density, it is enough to prove the result for u €

C'(R>p). An easy check shows that @ € C'(R). More-
over, we have:
filly ey’ = [ 127 + 1T
R
= / [u|P +Hu'|P + /[|—3u(—x) + du(—x/2)[P+
R>o R<o

7 30 () — 2 (—z/2))

< CH“lem(Rzo)p

for some constant C' > 0. Thus, F is a bounded extension
operator. O

Remark. The reader can check that the same construction
works on R, by setting

w(ry, ..., xq) ifxg >0
(21, xq) = —3u(T1,...,Tq-1 — Ta)+ 2y <0
+u(xy, ..., x4-1 — x4/2)

The proof for higher derivatives m > 1 needs to add more
terms in order to make the junction smooth enough.

Definition 26. We say that a domain  C R¢ has bound-
ary of class C* if Vo € 9 there is a neighborhood €, § > 0
and a CF-diffeomorphism ¢ : B(z,e) — B(0,6) so that
#(z) = 0 and ¢(B(x,e)NQ) = B(0,6)NRZ,. Note that in
particular this implies that ¢(0 QNB(z,¢)) = B(0,5)NRE.

Theorem 27. Let Q C R? be a bounded domain with C*
boundary. Then, Vm < k and all 1 < p < oo, there is an
extension operator E : WP (Q) — W™P(R9).

Theorem 28. Let Q C R? be a bounded domain with
C* boundary. Then, Ym < k, if 1 < p < %, there is an

1 1
embedding W™P(Q) — L)), where — = — — If
q

p
D> %, then W™P(Q) — C*%(Q), where £ := {m — %J
and@::m—%—fe [0,1).

SE

Theorem 29 (Reillich-Kondrachov’s compactness
theorem). Let Q C R? be a bounded domain with C*
boundary. Then, Vm < k we have:

1 1
. If1§p<%,V7‘E[,q),wheref:f—m,the
p

embedding W™P(QQ) — L"() is compact.

« If p > 2 then Vr € [p,00), the embedding
WP (Q) — L" () is compact.

o Ifp> %, then the embedding W™P () — C°(Q) is
compact.
Trace operators

Theorem 30. Let 1 < p < oo and u € W'P(R%,). Then,
the function ulgg : R4~ — C belongs to LP(R4™1).

Definition 31. We define the trace operator as the map:

Tr: Wl’p(R‘éo) — LP(RIY)
u — ulpg

Theorem 32. Let 1 < p < oo and u € W'P(R%,). Then,
Tru =0 if and only if u € Wol’p(Réo).

Theorem 33. Let 1 < p < oo and Q C R? be a bounded
domain with C! boundary. Then, the trace operator

Tr: WHP(Q) — LP(09Q)
U — ulaq

is bounded. Here we are taking the norm of LP(9()) as
||U||Lp(3Q)p = faQ |ul’. In addition:

o Yue WhP(Q), Tru = 0 if and only if u € WyP(Q).
e For p = 2, Tr is surjective.

Lemma 34. Let Q C R? be an open set and u € W1P(Q)

with 1 < p < co. Then, |u| € WLP(Q) and ||V]ul| <
IV ull.

®

Proof.
12/ul¥ [l = |[V]ul*| = 2 |Re@V)l| < 2| Vu |ul
On the set {u # 0}, we can divide by 2|u|, which gives

the result. The proof on the set {u = 0} is much difficult.
O
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