Advanced topics in functional analysis and PDEs

1. L^p spaces

Topologies of L^p spaces

Definition 1. Let E be a Banach space and $(x_n)_{n\in\mathbb{N}} \in E$. We say that $(x_n)_{n\in\mathbb{N}}$ converges weakly to $x\in E$ if $\forall f\in E^*$ we have:

$$\lim_{n \to \infty} f(x_n) = f(x)$$

We denote this by $x_n \rightharpoonup x$.

Definition 2. Let E be a Banach space and $(x_n)_{n\in\mathbb{N}}\in E$. We say that $(x_n)_{n\in\mathbb{N}}$ converges strongly to $x\in E$ if we have:

$$\lim_{n \to \infty} ||x_n - x|| = 0$$

We denote this by $x_n \to x$.

Definition 3. Let E be a Banach space and $(L_n)_{n\in\mathbb{N}}\in E$. Assume $E=F^*$, where F is a Banach space. Then, we say that $(L_n)_{n\in\mathbb{N}}$ converges weakly-* to $L\in E$ if $\forall x\in F$ we have:

$$\lim_{n \to \infty} L_n(x) = L(x)$$

We denote this by $L_n \stackrel{*}{\rightharpoonup} L$.

Theorem 4. Let E be a Banach space and $(x_n)_{n\in\mathbb{N}}\in E$. Then:

- 1. If $x_n \to x$, then $x_n \rightharpoonup x$.
- 2. If E is reflexive then weak convergence is equivalent to weak-* convergence.
- 3. If $x_n \to x$, $x_n \rightharpoonup x$ or $x_n \stackrel{*}{\rightharpoonup} x$, then (x_n) is bounded.
- 4. Let $(L_n)_{n\in\mathbb{N}}\in E^*$. If $x_n\to x$ in E and $L_n\stackrel{*}{\rightharpoonup} L$ in E^* , then $L_n(x_n)\to L(x)$ in \mathbb{C} .

Proof. We only prove the first and last points.

1. Let $L \in E^*$. Then, $||L|| < \infty$ and:

$$|L(x_n) - L(x)| \le ||L|| ||x_n - x|| \to 0$$

4. Let $(L_n) \in E^*$ converge to $L \in E^*$ weakly-* and let $x_n \to x$ in E. Then:

$$|L_n(x_n) - L(x)| \le |(L_n - L)(x_n)| + |L(x_n) - L(x)|$$

$$\le ||L_n - L|| ||x_n|| + ||L|| ||x_n - x||$$

And the result follows.

Theorem 5 (Banach-Alaoglu theorem). Let $\Omega \subseteq \mathbb{R}^d$ be a set and $1 . If <math>(f_n)$ is a bounded sequence in $L^p(\Omega)$, then there is a subsequence (f_{n_k}) and $f \in L^p(\Omega)$ so that $f_{n_k} \rightharpoonup f$ in $L^p(\Omega)$. If $p = \infty$, then there is a subsequence (f_{n_k}) and $f \in L^\infty(\Omega)$ so that $f_{n_k} \stackrel{*}{\rightharpoonup} f$ in $L^\infty(\Omega)$.

Lower-semicontinuous functions and convexity

Definition 6. Let E be a Banach space, $(x_n) \in E$ and $f: E \to \mathbb{R}$. We say that f is strongly lower-semicontinuous if:

$$x_n \to x \implies f(x) \le \liminf_{n \to \infty} f(x_n)$$

Remark. Analogously, we can define weakly lower-semicontinuity and weak-* lower-semicontinuity by replacing $x_n \to x$ by $x_n \rightharpoonup x$ and $x_n \stackrel{*}{\rightharpoonup} x$ respectively.

Theorem 7. Let E be a Banach space and $f: E \to \mathbb{R}$ be convex. Then, f is strongly lower-semicontinuous if and only if f is weakly lower-semicontinuous. In particular, the map $\|\cdot\|_E$ is weakly lower-semicontinuous.

Proof. We only prove one implication, and also we admit that if f is convex and strongly lower-semicontinuous, then there is a continuous linear operator L_x (called *support plane*) so that $\forall y \in E$ we have:

$$f(y) \ge f(x) + L_x(y - x)$$

In particular, if $(x_n) \rightharpoonup x$, then:

$$f(x_n) \ge f(x) + L_x(x_n - x) \implies \liminf_{n \to \infty} f(x_n) \ge f(x)$$

Theorem 8. Let $\Omega \subseteq \mathbb{R}^d$ be a set and $1 . If <math>f_n \rightharpoonup f$ in $L^p(\Omega)$, then:

$$||f||_p \le \liminf_{n \to \infty} ||f_n||_p$$

In addition, if $||f||_p = \lim_{n \to \infty} ||f_n||_p$, then $f_n \to f$ in $L^p(\Omega)$.

Proof. The first point is Theorem 7 in the case $E = L^p(\Omega)$. We only prove the second point for p = 2. If $||f||_2 = \lim_{n \to \infty} ||f_n||_2$, then:

$$||f_n - f||_2^2 = ||f_n||_2^2 + ||f||_2^2 - 2\operatorname{Re} \int_{\Omega} f_n \overline{f}$$

$$\to ||f||_2^2 + ||f||_2^2 - 2\operatorname{Re} \int_{\Omega} f \overline{f}$$

$$= 0$$

where the convergence of the integral is due to the weakly convergence of f_n to f.

2. | Sobolev spaces

Basic definitions

Definition 9 (Sobolev spaces). Let $\Omega \subseteq \mathbb{R}^d$ be an open set, $m \in \mathbb{N}$ and $1 \leq p \leq \infty$. We define the *Sobolev spaces* $W^{m,p}$ as:

$$W^{m,p}(\Omega) := \{ f \in L^p(\Omega) : \forall \alpha \in \mathbb{N}^d, |\alpha| \le m, \partial^{\alpha} f \in L^p(\Omega) \}$$

Moreover we define the associate norm $\|\cdot\|_{W^{m,p}(\Omega)}$ as:

$$||f||_{W^{m,p}(\Omega)} := \left(\sum_{|\alpha| \le m} ||\partial^{\alpha} f||_{p}\right)^{1/p}$$

If p=2, we denote $H^m(\Omega):=W^{m,2}(\Omega)$.

Theorem 10. Let $\Omega \subseteq \mathbb{R}^d$ be an open set. Then, for all $m \in \mathbb{N}$ and all $1 \leq p \leq \infty$, $(W^{m,p}(\Omega), \|\cdot\|_{W^{m,p}(\Omega)})$ is Banach. Moreover, if $p < \infty$, it is separable and if $1 , it is reflexive. Finally, <math>H^m(\Omega)$ is a separable Hilbert space.

Proof. Let (f_j) be a Cauchy sequence in $W^{m,p}(\Omega)$. Then, (f_j) is Cauchy in $L^p(\Omega)$, and for all $|\alpha| \leq m$, $(\partial^{\alpha} f_j)$ is Cauchy in $L^p(\Omega)$. Since $L^p(\Omega)$ is complete, there are $f \in L^p(\Omega)$ and $f_{\alpha} \in L^p(\Omega)$, so that:

$$f_j \xrightarrow{L^p} f \qquad \partial^{\alpha} f_j \xrightarrow{L^p} f_{\alpha}$$

It remains to prove that $f_{\alpha}=\partial^{\alpha}f$. Since we have convergence in L^{p} , we also have convergence in the distributional sense, that is $f_{j} \stackrel{\mathcal{D}^{*}}{\longrightarrow} f$. In particular, we must have $\partial^{\alpha}f_{j} \stackrel{\mathcal{D}^{*}}{\longrightarrow} \partial^{\alpha}f$. By uniqueness of the limit in $\mathcal{D}^{*}(\Omega)$, we indeed have $f_{\alpha}=\partial^{\alpha}f$. This proves that $W^{m,p}(\Omega)$ is complete. Now, the map

$$W^{m,p}(\Omega) \longrightarrow (L^p(\Omega))^N$$
$$f \longmapsto (\partial^{\alpha} f)_{|\alpha| \le m}$$

with $N:=\left|\{\alpha\in\mathbb{N}^d: |\alpha|\leq m\}\right|$ is an isometry. So $W^{m,p}(\Omega)$ can be identified with a closed vector space of $(L^p(\Omega))^N$. In particular, $W^{m,p}(\Omega)$ is separable for $p<\infty$, and it is reflexive for $1< p<\infty$.

Definition 11. Let $\Omega \subseteq \mathbb{R}^d$ be an open set, $m \in \mathbb{N}$ and $1 \leq p \leq \infty$. We define the space $W_0^{m,p}(\Omega) := \overline{\mathcal{C}_0^{\infty}(\Omega)}$, where the closure is taken with the norm of $W^{m,p}(\Omega)$. Similarly, we set $H_0^m(\Omega) := W_0^{m,2}(\Omega)$.

Remark. Note that $W_0^{m,p}(\Omega)$ is also Banach (with the same norm as $W^{m,p}(\Omega)$) because it is a closed subspace in a Banach space.

Lemma 12. Let $1 \leq p \leq \infty$ and (ϕ_{ε}) be an approximation of identity. For all $f \in L^p(\mathbb{R}^d)$, we set $f_{\varepsilon} := f * \phi_{\varepsilon}$. Then:

- f_{ε} is smooth.
- $f_{\varepsilon} \in L^p(\mathbb{R}^d)$ with $||f_{\varepsilon}||_p \le ||f||_p$.
- If $p < \infty$, then $||f_{\varepsilon} f||_{p} \stackrel{\varepsilon \to 0}{\longrightarrow} 0$.

Theorem 13. For $1 \leq p < \infty$ we have that $W_0^{m,p}(\mathbb{R}^d) = W^{m,p}(\mathbb{R}^d)$. In particular, $C^{\infty}(\mathbb{R}^d) \cap W^{m,p}(\mathbb{R}^d)$ and $C_0^{\infty}(\mathbb{R}^d)$ are dense in $W^{m,p}(\mathbb{R}^d)$ for $1 \leq p < \infty$.

Proof. Let us first prove that $C^{\infty}(\mathbb{R}^d)$ is dense in $W^{m,p}(\mathbb{R}^d)$. Let $f \in W^{m,p}(\mathbb{R}^d)$ and set $f_{\varepsilon} := f * j_{\varepsilon}$ for an approximation of identity j_{ε} . By Theorem 12, the functions f_{ε} are smooth. For all $|\alpha| \leq m$, the function $\partial^{\alpha} f$ is in $L^p(\mathbb{R}^d)$, and we have $\partial^{\alpha}(f_{\varepsilon}) = (\partial^{\alpha} f) * j_{\varepsilon}$. By ??, we deduce that $\forall |\alpha| \leq m$:

$$\|\partial^{\alpha} f * j_{\varepsilon} - \partial^{\alpha} f\|_{p} \to 0$$

This already proves that $\mathcal{C}^{\infty}(\mathbb{R}^d) \cap W^{m,p}(\mathbb{R}^d)$ is dense in $W^{m,p}(\mathbb{R}^d)$. For the second part, we take $f \in \mathcal{C}^{\infty}(\mathbb{R}^d) \cap W^{m,p}(\mathbb{R}^d)$ and set $f_n := \chi(x/n)f$, where χ is a smooth cut-off function satisfying $\chi(x) = 1$ for $|x| \leq 1$. Then, $f_n \in \mathcal{C}^{\infty}_0(\mathbb{R}^d)$. By ?? ??, we have $||f_n - f||_p \to 0$. Moreover, we have:

$$\|\nabla f_n - \nabla f\|_p = \|\nabla \chi f + \nabla f[\chi(x/n) - 1]\|_p$$

$$\leq \|\nabla \chi\|_{\infty} \|f\|_p + \|\nabla f[\chi(x/n) - 1]\|_p$$

and the last term goes to 0 again by ?? ??. So $\|\nabla f_n - \nabla f\|_p \to 0$. We go on with all derivatives, which proves that $\|\partial^{\alpha} f_n - \partial^{\alpha} f\|_p \to 0$ for all $|\alpha| \leq m$. This shows that $f_n \to f$ in $W^{m,p}(\mathbb{R}^d)$.

Theorem 14 (Poincaré's inequality). Let Ω be a bounded open set in \mathbb{R}^d and let $1 \leq p < \infty$. Then, there is a constant $C = C(\Omega, p)$ so that $\forall u \in W_0^{m,p}(\Omega)$ we have:

$$\|u\|_p \le C \|\nabla u\|_p$$

Remark. 14 Poincaré's inequality is also valid when Ω is unbounded in one direction.

Corollary 15. If Ω is bounded, then the constant function f(x) = C with $C \neq 0$ is not in $W_0^{1,p}$. Thus, we cannot approximate constant functions by $C_0^{\infty}(\Omega)$ functions, with the $W^{1,p}(\Omega)$ norm.

Definition 16. Let Ω be a bounded set. We define the average of u in Ω as:

$$\int_{\Omega} u := \frac{1}{|\Omega|} \int_{\Omega} u$$

Theorem 17 (Poincaré-Wirtinger's inequality). Let $\Omega \subseteq \mathbb{R}^d$ be a bounded connected open set with \mathcal{C}^1 boundary, and let $1 \leq p < \infty$. Then, there is a constant $C = C(\Omega, p)$ so that $\forall u \in W^{1,p}(\Omega)$ we have:

$$\left\| u - \int_{\Omega} u \right\|_{p} \le C \left\| \nabla u \right\|_{p}$$

Sobolev embeddings

Definition 18. Let E, F be Banach. We say that F is embedded in E if $F \subseteq E$ and the inclusion map $i: F \hookrightarrow E$ is continuous. We say that F is $compactly\ embedded$ in E if $F \subseteq E$ and the inclusion map $i: F \hookrightarrow E$ is compact.

Theorem 19 (Gagliardo, Nirengerg and Sobolev's inequality). For all $1 \leq p \leq \frac{d}{m}$, there is a constant C = C(p, m, d) so that $\forall u \in C_0^{\infty}(\mathbb{R}^d)$ we have:

$$\|u\|_q \le C \sum_{|\alpha|=m} \|\partial^{\alpha} u\|_p$$

where $\frac{1}{q} = \frac{1}{p} - \frac{m}{d}$. That is, we have the continuous embedding $W^{m,p}(\mathbb{R}^d) \hookrightarrow L^q(\mathbb{R}^d)$. In particular for m=1, we have $W^{1,p}(\mathbb{R}^d) \hookrightarrow L^{p^*}(\mathbb{R}^d)$ with $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{d}$.

Proof. By induction, it suffices to prove the result only for m=1. We will prove only the case d=2. We start with p=1. Let $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^2)$. We have:

$$\begin{aligned} |u(x_1, x_2)| &\leq \int\limits_{-\infty}^{x_1} |\partial_{x_1} u(s, x_2)| \, \mathrm{d} s \leq \\ &\leq \int\limits_{\mathbb{T}} |\partial_{x_1} u(s, x_2)| \, \mathrm{d} s =: v_1(x_2) \end{aligned}$$

Similarly, $|u(x_1, x_2)| \le v_2(x_1)$. So:

$$\|u\|_{2}^{2} \le \int_{\mathbb{R}^{2}} |v_{1}(x_{2})||v_{2}(x_{1})| dx_{1} dx_{2} = \|v_{1}\|_{1} \|v_{2}\|_{1} =$$

$$= \|\partial_{x_1} u\|_1 \|\partial_{x_2} u\|_1 \le \|\nabla u\|_1^2$$

For the case $1 \le p < 2$, we apply the result to the function $u_t := |u|^{t-1}u$. This function satisfies $|\nabla u_t| = t|u|^{t-1}|\nabla u|$ and so:

$$||u||_{2t}^{t} = ||u_{t}||_{2} \le ||u_{t}||_{1} = t ||u|^{t-1} \nabla u|| \le$$

$$\le t ||u|^{t-1}||_{p'} ||\nabla u||_{p} = t ||u||_{(t-1)p'}^{t-1} ||\nabla u||$$

where p' is the Hölder conjugate of p. Now, we choose t so that 2t=(t-1)p', that is, $t=\frac{p}{2-p}$ and so:

$$\|u\|_{\frac{2p}{2-p}} \le \frac{p}{2-p} \left\| \nabla u \right\|_p$$

Definition 20 (Hölder continuity). Let $k \in \mathbb{N}$ and $0 \le \theta \le 1$. We say that a map $u : \Omega \to \mathbb{C}$ is $C^{k,\theta}$ -Hölder continuous if there is $C \ge 0$ such that $\forall |\alpha| = k$ and all $x, y \in \Omega$ we have:

$$|\partial^{\alpha} u(x) - \partial^{\alpha} u(y)| < C|x - y|^{\theta}$$

The set of such functions is denoted by $C^{k,\theta}(\Omega)$.

Remark. Note that $C^{k,0}(\Omega) = C^k(\Omega)$ and that $C^{0,1}(\Omega)$ is the set of Lipschitz continuous functions.

Remark. Note that $C^{k,\theta}(\Omega)$ together with the norm

$$\|u\|_{\mathcal{C}^{k,\theta}(\Omega)} := \sup_{x \neq y} \sup_{|\alpha| = k} \frac{\left|\partial^{\alpha} u(x) - \partial^{\alpha} u(y)\right|}{\left|x - y\right|^{\theta}}$$

is a Banach space.

Theorem 21 (Morrey's embedding). Let $m \geq 1$ and $p > \frac{d}{m}$. Then, $W^{m,p}(\mathbb{R}^d) \subset L^{\infty}(\mathbb{R}^d)$. In addition, let:

$$k := \left| m - \frac{d}{p} \right| \qquad \theta := m - \frac{d}{p} - k \in [0, 1)$$

If $\theta \neq 0$, then $W^{m,p}(\mathbb{R}^d) \subset \mathcal{C}^{k,\theta}(\mathbb{R}^d)$.

Theorem 22. For all $1 \leq p \leq \infty$, $W^{1,p}(\mathbb{R}) \hookrightarrow L^{\infty}(\mathbb{R}) \cap \mathcal{C}^{0}(\mathbb{R})$.

Proof. The proof for p > 1 comes from 21 Morrey's embedding. For p = 1 we have that $\forall u \in C_0^{\infty}(\mathbb{R})$ we have: $|u(x)| \leq \int_{-\infty}^{x} |u'| \leq ||u'||_1$. So $||u||_{\infty} \leq ||u'||_1$. By density, this proves that $\forall u \in W^{1,1}(\mathbb{R})$ we have $u \in L^{\infty}(\mathbb{R})$. Now, let $(u_n) \in C_0^{\infty}(\mathbb{R})$ be such that $u_n \to u$ in $W^{1,1}(\mathbb{R})$. Then, $u_n \to u$ in $L^{\infty}(\mathbb{R})$ and so u is continuous because it is the uniform limit of continuous functions.

Extension operators

Definition 23. Let $\Omega \subseteq \mathbb{R}^d$ be an open set. An extension of $u \in W \in W^{m,p}(\Omega)$ is a function $\tilde{u} \in W^{m,p}(\mathbb{R}^d)$ so that $\tilde{u} \stackrel{\text{a.e.}}{=} u$ in Ω . An extension operator is a bounded linear operator $E: W^{m,p}(\Omega) \to W^{m,p}(\mathbb{R}^d)$ so that Eu is an extension of $u \ \forall u \in W^{m,p}(\Omega)$.

Remark. From now on, we will denote $\mathbb{R}^d_{\pm} := \mathbb{R}^{d-1} \times \mathbb{R}_{\pm}$ and $\mathbb{R}^d_0 := \mathbb{R}^{d-1} \times \{0\}$.

Theorem 24. For all $m \in \mathbb{N}$ and all $1 \leq p < \infty$, $C^{\infty}(\overline{\mathbb{R}^d_{\geq 0}})$ is dense in $W^{m,p}(\mathbb{R}^d_{\geq 0})$.

Proof. Let

$$\tau_h(u)(x_1,\ldots,x_d) := u(x_1,\ldots,x_{d-1},x_d+h)$$

be the translation operator and set $u_{\varepsilon} := \tau_{\varepsilon}(u) * \phi_{\varepsilon}$, where $\varepsilon > 0$ and ϕ_{ε} is an approximation of identity. Then, $u_{\varepsilon} \in \mathcal{C}^{\infty}(\overline{\mathbb{R}^{d}_{\geq 0}})$ by the properties of the convolution. Moreover:

$$\begin{split} \|\partial^{\alpha}u_{\varepsilon} - \partial^{\alpha}u\|_{p} &\leq \|\partial^{\alpha}u_{\varepsilon} - \partial^{\alpha}(\tau_{\varepsilon}u)\|_{p} + \|\partial^{\alpha}(\tau_{\varepsilon}u) - \partial^{\alpha}u\|_{p} \\ &\leq \|(\partial^{\alpha}\tau_{\varepsilon}u) * \phi_{\varepsilon} - \partial^{\alpha}(\tau_{\varepsilon}u)\|_{p} + \|\tau_{\varepsilon}(\partial^{\alpha}u) - \partial^{\alpha}u\|_{p} \end{split}$$

The first term goes to zero by the properties of smoothing sequences, and the second goes to zero since translations are continuous in L^p (check ??).

Remark. The same proof shows that $\mathcal{C}^{\infty}(\overline{\Omega})$ is dense in $W^{m,p}(\Omega)$, if Ω is bounded with $\partial \Omega$ of class \mathcal{C}^1 . This time, one needs to locally translate u along the normal direction.

Theorem 25. For all $m \in \mathbb{N}$ and all $1 \leq p < \infty$, there is an extension operator $E: W^{m,p}(\mathbb{R}^d_{\geq 0}) \to W^{m,p}(\mathbb{R}^d)$.

Proof. We only do the proof for d=1 and m=1 to highlight the main ideas. Let $u \in W^{1,p}(\mathbb{R}_{\geq 0})$. We define the first order reflection:

$$\bar{u} := \begin{cases} u(x) & \text{if } x \ge 0 \\ -3u(-x) + 4u(-x/2) & \text{if } x < 0 \end{cases}$$

By density, it is enough to prove the result for $u \in \mathcal{C}^1(\mathbb{R}_{\geq 0})$. An easy check shows that $\bar{u} \in \mathcal{C}^1(\mathbb{R})$. Moreover, we have:

$$\begin{split} \|\bar{u}\|_{W^{1,p}(\mathbb{R})}^{\ p} &= \int\limits_{\mathbb{R}} |\bar{u}|^p + |\bar{u}'|^p \\ &= \int\limits_{\mathbb{R}_{\geq 0}} |u|^p + |u'|^p + \int\limits_{\mathbb{R}_{\leq 0}} [|-3u(-x) + 4u(-x/2)|^p + \\ &\quad + |3u'(-x) - 2u'(-x/2)|^p] \\ &\leq C \|u\|_{W^{1,p}(\mathbb{R}_{\geq 0})}^{\ p} \end{split}$$

for some constant C>0. Thus, E is a bounded extension operator. \Box

Remark. The reader can check that the same construction works on \mathbb{R}^d , by setting

$$\bar{u}(x_1, \dots, x_d) := \begin{cases} u(x_1, \dots, x_d) & \text{if } x_d \ge 0 \\ -3u(x_1, \dots, x_{d-1} - x_d) + \\ +4u(x_1, \dots, x_{d-1} - x_d/2) & \text{if } x_d < 0 \end{cases}$$

The proof for higher derivatives $m \ge 1$ needs to add more terms in order to make the junction smooth enough.

Definition 26. We say that a domain $\Omega \subseteq \mathbb{R}^d$ has boundary of class \mathcal{C}^k if $\forall x \in \partial \Omega$ there is a neighborhood $\varepsilon, \delta > 0$ and a \mathcal{C}^k -diffeomorphism $\phi : B(x, \varepsilon) \to B(0, \delta)$ so that $\phi(x) = 0$ and $\phi(B(x, \varepsilon) \cap \Omega) = B(0, \delta) \cap \mathbb{R}^d_{\geq 0}$. Note that in particular this implies that $\phi(\partial \Omega \cap B(x, \varepsilon)) = B(0, \delta) \cap \mathbb{R}^d_0$.

Theorem 27. Let $\Omega \subseteq \mathbb{R}^d$ be a bounded domain with \mathcal{C}^k boundary. Then, $\forall m \leq k$ and all $1 \leq p < \infty$, there is an extension operator $E: W^{m,p}(\Omega) \to W^{m,p}(\mathbb{R}^d)$.

Theorem 28. Let $\Omega \subseteq \mathbb{R}^d$ be a bounded domain with \mathcal{C}^k boundary. Then, $\forall m \leq k$, if $1 \leq p < \frac{d}{m}$, there is an embedding $W^{m,p}(\Omega) \hookrightarrow L^q(\Omega)$, where $\frac{1}{q} = \frac{1}{p} - \frac{m}{d}$. If $p > \frac{d}{m}$, then $W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^{\ell,\theta}(\overline{\Omega})$, where $\ell := \left\lfloor m - \frac{d}{p} \right\rfloor$ and $\theta := m - \frac{d}{p} - \ell \in [0,1)$.

Theorem 29 (Reillich-Kondrachov's compactness theorem). Let $\Omega \subseteq \mathbb{R}^d$ be a bounded domain with \mathcal{C}^k boundary. Then, $\forall m \leq k$ we have:

- If $1 \leq p < \frac{d}{m}$, $\forall r \in [p,q)$, where $\frac{1}{q} = \frac{1}{p} \frac{m}{d}$, the embedding $W^{m,p}(\Omega) \hookrightarrow L^r(\Omega)$ is compact.
- If $p \ge \frac{d}{m}$, then $\forall r \in [p, \infty)$, the embedding $W^{m,p}(\Omega) \hookrightarrow L^r(\Omega)$ is compact.
- If $p > \frac{d}{m}$, then the embedding $W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^0(\overline{\Omega})$ is compact.

Trace operators

Theorem 30. Let $1 \leq p < \infty$ and $u \in W^{1,p}(\mathbb{R}^d_{\geq 0})$. Then, the function $u|_{\mathbb{R}^d_0} : \mathbb{R}^{d-1} \to \mathbb{C}$ belongs to $L^p(\mathbb{R}^{d-1})$.

Definition 31. We define the *trace operator* as the map:

$$\operatorname{Tr}: W^{1,p}(\mathbb{R}^d_{\geq 0}) \longrightarrow L^p(\mathbb{R}^{d-1})$$

$$u \longmapsto u|_{\mathbb{R}^d_0}$$

Theorem 32. Let $1 \leq p < \infty$ and $u \in W^{1,p}(\mathbb{R}^d_{\geq 0})$. Then, $\operatorname{Tr} u = 0$ if and only if $u \in W_0^{1,p}(\mathbb{R}^d_{\geq 0})$.

Theorem 33. Let $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^d$ be a bounded domain with C^1 boundary. Then, the trace operator

$$\operatorname{Tr}: W^{1,p}(\Omega) \longrightarrow L^p(\partial \Omega)$$

$$u \longmapsto u|_{\partial \Omega}$$

is bounded. Here we are taking the norm of $L^p(\partial\Omega)$ as $\|u\|_{L^p(\partial\Omega)}^p:=\int_{\partial\Omega}|u|^p$. In addition:

- $\forall u \in W^{1,p}(\Omega)$, $\operatorname{Tr} u = 0$ if and only if $u \in W_0^{1,p}(\Omega)$.
- For p = 2, Tr is surjective.

Lemma 34. Let $\Omega \subseteq \mathbb{R}^d$ be an open set and $u \in W^{1,p}(\Omega)$ with $1 \leq p \leq \infty$. Then, $|u| \in W^{1,p}(\Omega)$ and $\|\nabla u\| \leq \|\nabla u\|$.

Proof.

$$||2|u|\nabla|u|| = ||\nabla|u||^2|| = 2 ||\operatorname{Re}(\overline{u}\nabla u)|| \le 2 ||\nabla u|| |u|$$

On the set $\{u \neq 0\}$, we can divide by 2|u|, which gives the result. The proof on the set $\{u=0\}$ is much difficult.