
Advanced probability

These summaries aims to review the basic notions of prob-
ability theory in a more abstract setting. We will not prove
any result here as most of them are from previous courses.
Furthermore, we will skip some elementary definitions al-
ready defined in other summaries.

1. | Basics of measure theory and inte-
gration

Definition 1 (σ-algebra). Let E be a set. A σ-algebra
E on E is a collection of subsets of E such that:

1. ∅ ∈ E .

2. ∀A ∈ E , Ac ∈ E .

3. ∀(An)n∈N ⊆ E ,
⋃

n∈N An ∈ E .

The pair (E, E) is called a measurable space.

Definition 2. Let E be a set and F be a collection of sub-
sets of E. The σ-algebra generated by F is the smallest
σ-algebra containing F , i.e.:

σ(F) :=
⋂

E is a σ-algebra
F⊆E

E

Definition 3. Let (E, E), (F, F) be measurable spaces.
A function f : E → F is said to be measurable if ∀A ∈ F ,
f−1(A) ∈ E .

Definition 4 (Measure). Let (E, E) be a measurable
space. A function µ : E → [0, ∞] is said to be a measure
if:

1. µ(∅) = 0.

2. µ is σ-additive, i.e. ∀(An)n∈N ⊆ E pairwise disjoint,
we have:

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An)

The triple (E, E , µ) is called a measure space.

Definition 5. Let (E, E , µ) be a measurable space and
f : E → [0, ∞] be a measurable function. We define the
integral of f with respect to µ as:

ˆ

E

f dµ := sup


ˆ

E

g dµ : g ≤ f, g simple


Definition 6. Let (E, E , µ) be a measurable space and
f : E → R be a measurable function. Suppose that´

E
|f | dµ < ∞. Then, we define the integral of f with

respect to µ as:
ˆ

E

f dµ :=
ˆ

E

f+ dµ −
ˆ

E

f− dµ

Theorem 7 (Monotone convergence theorem). Let
(E, E , µ) be a measurable space and (fn)n∈N be a sequence
of measurable functions fn : E → [0, ∞] such that ∀n ∈ N,
fn ≤ fn+1. Then:ˆ

E

lim
n→∞

fn dµ = lim
n→∞

ˆ

E

fn dµ

Theorem 8 (Fatou’s lemma). Let (E, E , µ) be a mea-
surable space and (fn)n∈N be a sequence of measurable
functions fn : E → [0, ∞]. Then:ˆ

E

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

ˆ

E

fn dµ

Theorem 9 (Dominated convergence theorem). Let
(E, E , µ) be a measurable space and (fn)n∈N be a sequence
of measurable functions fn : E → R such that ∀n ∈ N,
|fn| ≤ g for some g : E → [0, ∞] integrable. Then:ˆ

E

lim
n→∞

fn dµ = lim
n→∞

ˆ

E

fn dµ

Proposition 10. Let (E, E , µ) be a measurable space and
f : E×I → R be a measurable function, where I ⊆ R is an
interval. Assume that ∀λ ∈ I, f(·, λ) is integrable and that
for some k ∈ N ∪ {0} and ∀x ∈ E we have f(x, ·) ∈ Ck(I)
and

∣∣∂k
λf(x, λ)

∣∣ ≤ g(x) for some g : E → [0, ∞] integrable.
Then, the function F : I → R defined by:

F (λ) :=
ˆ

E

f(x, λ) dµ(x)

is in Ck(I) and ∀j ∈ {0, . . . , k} we have:

∂j
λF (λ) =

ˆ

E

∂j
λf(x, λ) dµ(x)

Definition 11 (Product measure). Let (E, E , µ) and
(F, F , ν) be two measurable spaces. We define the product
measure µ ⊗ ν on (E × F, E ⊗ F) as:

∀A ∈ E , B ∈ F , µ ⊗ ν(A × B) := µ(A)ν(B)

Definition 12. Let (E, E , µ) be a measurable space. We
say that µ is σ-finite if there exists a sequence (En)n∈N ⊆ E
such that ∀n ∈ N, µ(En) < ∞ and

⋃
n∈N En = E.

Theorem 13 (Fubini). Let (E, E , µ) and (F, F , ν) be
two σ-finite measurable spaces and f : E × F → R be a
measurable function. Then, the following are equivalent:

1. f is integrable with respect to µ ⊗ ν.

2.
ˆ

E

ˆ
F

|f(x, y)| dν(y)

 dµ(x) < ∞.

3.
ˆ

F

ˆ
E

|f(x, y)| dµ(x)

 dν(y) < ∞.
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And if any of the above holds, then:

ˆ

E×F

f d(µ ⊗ ν) =
ˆ

E

ˆ
F

f(x, y) dν(y)

 dµ(x)

=
ˆ

F

ˆ
E

f(x, y) dµ(x)

dν(y)

Definition 14. Let (E, E , µ) be a measurable space and
f : E → [0, ∞] be a measurable function. We define the
measure ν on (E, E) as ∀A ∈ E :

ν(A) :=
ˆ

A

f dµ

In that case, we say that f is the density of ν with respect
to µ, also denoted by dν

dµ = f .

Definition 15. Let (E, E , µ) be a measurable space. A
measure ν on (E, E) is said to be absolutely continuous
with respect to µ if ∀A ∈ E such that µ(A) = 0, we have
ν(A) = 0.

Theorem 16 (Radon-Nikodym). Let µ, ν be two σ-
finite on a measurable space (E, E) such that ν is abso-
lutely continuous with respect to µ. Then, ν admits a
density f with respect to µ.

2. | Probability spaces and random
variables

Definition 17. A probability space is a triple (Ω, F ,P)
where Ω is a set, F is a σ-algebra on Ω and P is a mea-
sure on (Ω, F) such that P(Ω) = 1. In this context, the
elements if F are called events.

Definition 18 (Random variable). Let (Ω, F ,P) be a
probability space and (E, E) be a measurable space. An
E-valued random variable is a measurable function from
(Ω, F) to (E, E)1.

Definition 19 (Expectation). Let (Ω, F ,P) be a prob-
ability space and X be a random variable. We define the
expectation of X as:

E(X) :=
ˆ

Ω

X dP

Definition 20. Let (Ω, F ,P) be a probability space,
(E, E) be a measurable space and X be a E-valued random
variable. We define the law of X as the measure image on
E, defined for all A ∈ E as:

LX(A) := P ◦ X−1(A) = P(X ∈ A)

Proposition 21. Let (Ω, F ,P) be a probability space, X
be a random variable and h : R → R be a measurable
function such that h(X) is integrable. Then:

E(h(X)) =
ˆ

R

h(x) dLX(x)

In particular, if the law of X admits a density f with
respect to the Lebesgue measure, then:

E(h(X)) =
ˆ

R

h(x)f(x) dx

Definition 22. Let (Ω, F ,P) be a probability space and
X be a random variable. We define the σ-algebra gener-
ated by X as the smallest σ-algebra containing X, i.e.:

σ(X) := σ(X−1(A) : A ∈ E)

Proposition 23. Let X be a (E, E)-valued random vari-
able and Y be a σ(X)-measurable random variable. Then,
there exists a measurable function f : E → R such that
Y = f(X).

Proposition 24 (Jensen’s inequality). Let (Ω, F ,P)
be a probability space, X be a random variable and
h : R → R be a convex function. Then:

h(E(X)) ≤ E(h(X))

as long as the expectations are well-defined.

Proposition 25. Let (Ω, F ,P) be a probability space, X
be a random variable and h : R → R be a non-decreasing
positive function. Then:

P(X ≥ t) ≤ E(h(X))
h(t)

3. | Conditional expectation
Proposition 26. Let (Ω, F ,P) be a probability space and
G ⊆ F be a σ-algebra. Then, for any integrable random
variable X, there exists a unique (up to a.s.) random vari-
able Y such that:

1. Y is G-measurable.

2. For any Z G-measurable such that XZ is integrable,
we have that E(XZ) = E(Y Z).

We denote Y = E(X | G) and call it the conditional ex-
pectation of X given G.

Remark. If the variable X is not integrable but it is non-
negative, then the above holds for any Z non-negative as
well.

Remark. The conditional expectation, when restricted to
X ∈ L2(Ω, F ,P), is the orthogonal projection of X onto
L2(Ω, G,P).

Proposition 27. Let (Ω, F ,P) be a probability space,
G ⊆ F be a σ-algebra and X, Y be random variables.
Then, assuming that all the expectations below are well-
defined, we have:

1. If Y , Z are G-measurable random variables, then
E(XY + Z | G) = Y E(X | G) + Z.

2. If X
a.s.
≤ Y , then E(X | G)

a.s.
≤ E(Y | G).

1When E is not specified, we will assume that E = R.
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3. E(E(X | G)) = E(X).

4. E(|E(X | G)|) ≤ E(|X|).

5. Tower property: if H ⊆ G ⊆ F are σ-algebras, then
E(E(X | G) | H) = E(X | H).

6. If X is independent of G, then E(X | G) = E(X).

7. If X is independent of G and Y is G-measurable,
then for any measurable function f , we have that
E(f(X, Y ) | G) = g(Y ), where g(y) = E(f(X, y)).
This is often written as:

E(f(X, Y ) | G) = E(f(X, y))|y=Y

Definition 28. Let (Ω, F ,P) be a probability space and
X, Y be random variables. We define the conditional ex-
pectation of X given Y as:

E(X | Y ) := E(X | σ(Y ))

Remark. It can be seen that this definition coincides with
the one given by:

E(X | Y ) =
∑

y∈supp(Y )

E(X | Y = y)1Y =y

Proposition 29. Let (Ω, F ,P) be a probability space and
X, Y be random variables. Assume that (X, Y ) has a law
which admits a density f = f(x, y) (which for simplicity
we may think it with respect to dx dy). Then, for any
function h such that E(h(X)) makes sense:

E(h(X) | Y ) a.s=
´
R h(x)f(x, Y ) dx´

R f(x, Y ) dx

Definition 30. A probability kernel on (R, B(R)) is a func-
tion K : R × B(R) → [0, 1] such that:

1. ∀y ∈ R, K(y, ·) is a probability measure on
(R, B(R)).

2. ∀A ∈ B(R), K(·, A) is measurable.

Theorem 31. Let (Ω, F ,P) be a probability space and
X, Y be random variables. Then, there exists a proba-
bility kernel LX|Y , called the conditional law of X given
Y , such that for any bounded measurable function f we
have:

E(f(X) | Y ) =
ˆ

R

f(x) dLX|Y (Y, x)

4. | Martingales
Definition 32. Let (Ω, F ,P) be a probability space. A
filtration is a sequence of sub-σ-algebras (Fn)n∈N such that
∀n ∈ N, Fn ⊆ Fn+1. The tuple (Ω, F ,P, (Fn)n∈N) is called
a filtered probability space.

Definition 33. Let (Ω, F ,P, (Fn)n∈N) be a filtered prob-
ability space. A stochastic process (Xn)n∈N is adapted to
(Fn)n∈N if ∀n ∈ N, Xn is Fn-measurable.

Definition 34. Let (Ω, F ,P, (Fn)n∈N) be a filtered prob-
ability space and (Mn)n∈N be an adapted stochastic pro-
cess. We say that (Mn)n∈N is a martingale if ∀n ∈ N,
E(|Mn|) < ∞ and E(Mn+1 | Fn) = Mn.

Remark. A submartingale and supermartingale are defined
similarly, but with E(Mn+1 | Fn) ≥ Mn and E(Mn+1 |
Fn) ≤ Mn respectively.

Definition 35. Let (Ω, F ,P, (Fn)n∈N) be a filtered prob-
ability space. A stopping time is a random variable
τ : Ω → N ∪ {∞} such that ∀n ∈ N, {τ ≤ n} ∈ Fn.

Definition 36. Let (Ω, F ,P, (Fn)n∈N) be a filtered proba-
bility space, τ be a stopping time and M := (Mn)n∈N be a
process. We define the stopped process Mτ := (Mτ∧n)n∈N.

Proposition 37. Let (Ω, F ,P, (Fn)n∈N) be a filtered
probability space, τ be a stopping time and M :=
(Mn)n∈N be a martingale. Then, Mτ := (Mτ∧n)n∈N is
a martingale.

Corollary 38. Let (Ω, F ,P, (Fn)n∈N) be a filtered prob-
ability space, τ be a bounded stopping time and M :=
(Mn)n∈N be a martingale. Then, E(Mτ ) = E(M0).

Definition 39. Let (Ω, F ,P, (Fn)n∈N) be a filtered prob-
ability space, τ be a stopping time. We define:

Fτ := {A ∈ F : ∀n ∈ N, A ∩ {τ = n} ∈ Fn}

Remark. It can be seen that in the above definition, Fτ is
a σ-algebra.

Proposition 40. Let (Ω, F ,P, (Fn)n∈N) be a filtered
probability space, ρ ≤ τ be two bounded stopping times,
and M be a martingale. Then, E(Mτ | Fρ) = Mρ.

Theorem 41. Let (Ω, F ,P) be a probability space and
(Mn)n∈N be a martingale such that supn∈N E(|Mn|) < ∞.
Then, there exists a random variable M∞ such that Mn

a.s.→
M∞.

Definition 42. Let (Ω, F ,P) be a probability space. A
family of random variables (Xt)t∈I is said to be uniformly
integrable if:

lim
a→∞

sup
t∈I

E(|Xt|1|Xt|>a) = 0

Proposition 43. Let (Ω, F ,P) be a probability space and
(Xn)n∈N be a family of uniformly integrable random vari-
ables such that Xn

a.s.→ X. Then, X is integrable and
E(Xn) → E(X).

Theorem 44. Let (Ω, F ,P) be a probability space and
(Mn)n∈N be a martingale bounded in Lp, 1 < p < ∞.
Then, there exists a random variable M∞ such that Mn

Lp

→
M∞ and Mn

a.s.→ M∞.
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