Advanced probability

These summaries aims to review the basic notions of prob-
ability theory in a more abstract setting. We will not prove
any result here as most of them are from previous courses.
Furthermore, we will skip some elementary definitions al-
ready defined in other summaries.

1. | Basics of measure theory and inte-
gration

(o-algebra). Let E be a set. A o-algebra
€ on F is a collection of subsets of E such that:

1. gek.
2. VAe &, Ac €.
3. V(An)nen €&, Upen An € €.
The pair (F,€) is called a measurable space.

Let E be a set and F be a collection of sub-
sets of E. The o-algebra generated by F is the smallest
o-algebra containing F, i.e.:

o(F):=

N £

£ is a o-algebra
-

Let (E,E), (F,F) be measurable spaces.
A function f: E— F is said to be measurable if VA € F,
(A e€.

(Measure). Let (E,€) be a measurable
space. A function p : £ — [0, 00] is said to be a measure
if:

1. u(@)=0.
2. p is o-additive, i.e. V(A,)

we have:
‘LL <U An)
neN

The triple (E, &, i) is called a measure space.

nen © € pairwise disjoint,

= Z .U(An)

neN

Let (E,&, ) be a measurable space and
f+ E — [0,00] be a measurable function. We define the
integral of f with respect to u as:

/fdu := sup /gdu 19 < f,g simple
E E
Let (E,&, ) be a measurable space and
f + E — R be a measurable function. Suppose that

J |fldp < co. Then, we define the integral of f with
respect to p as:

b/fdu::E/f*du—E[fdu

(Monotone convergence theorem). Let
(E, &, u) be a measurable space and (fy),, oy be a sequence
of measurable functions f, : E — [0, 0o] such that Vn € N,
fn < fay1. Then:

/ lim f,dp = lim /fn du

n—oo n—oo

E E

(Fatou’s lemma). Let (E,&, 1) be a mea-

surable space and (fy),cy be a sequence of measurable
functions f,, : E — [0, 00]. Then:

/hm inf f,, dp < lim inf/fn du
— 00
E

n—00 n
E

(Dominated convergence theorem). Let
(E, &, u) be a measurable space and (fy,),, oy be a sequence
of measurable functions f,, : ¥ — R such that ¥n € N,
|fn] < g for some g : E — [0, 00| integrable. Then:

/lim fndp = lim /fndu
n—oo n—oo
E E

Let (E, &, ) be a measurable space and
[ ExI — R be a measurable function, where I C R is an
interval. Assume that VA € I, f(-, \) is integrable and that
for some k € NU {0} and Vz € E we have f(x,-) € C*(I)
and |05 f(z,\)| < g(z) for some g : E — [0, 0] integrable.
Then, the function F': I — R defined by:

F\) = / F(, ) du(z)
E

is in C¥(I) and Vj € {0,...,k} we have:
AP = [ 81N duta)
E

(Product measure). Let (E, &, ) and
(F, F,v) be two measurable spaces. We define the product
measure p @ v on (E x F,E® F) as:

VAe&,BeF, puev(AxB):=u(Av(B)

Let (E,&, p) be a measurable space. We
say that p is o-finite if there exists a sequence (E,), .y € €
such that ¥n € N, u(E,) < oo and {J,,cyy En = E.

(Fubini). Let (E,&,u) and (F,F,v) be
two o-finite measurable spaces and f : E X ' — R be a
measurable function. Then, the following are equivalent:

1. f is integrable with respect to u ® v.

2 [ [ @nlan) | dute) < .

E F

s [ | [ Vel aue) | aiw) <.

F E



And if any of the above holds, then:

[ fawen = [ | [ Henaw | duw)

ExXF E F

:/ /f(x,y)du(ﬂc) dv(y)

F E

Let (E, &, ) be a measurable space and
f+ E — [0,00] be a measurable function. We define the
measure v on (F,€) as VA € &:

VM%!f@

In that case, we say that f is the density of v with respect
to u, also denoted by g—: = f.

Let (E,&, 1) be a measurable space. A
measure v on (E, &) is said to be absolutely continuous
with respect to p if VA € £ such that u(A) = 0, we have
v(A) =0.

(Radon-Nikodym). Let u, v be two o-
finite on a measurable space (EF, &) such that v is abso-
lutely continuous with respect to u. Then, v admits a
density f with respect to p.

2. | Probability
variables

spaces and random

A probability space is a triple (Q, F,P)
where € is a set, F is a o-algebra on 2 and P is a mea-
sure on (€, F) such that P(2) = 1. In this context, the
elements if F are called events.

(Random variable). Let (Q, F,P) be a
probability space and (E, &) be a measurable space. An
FE-valued random wvariable is a measurable function from
(Q,F) to (E,&)".

(Expectation). Let (Q, F,P) be a prob-

ability space and X be a random variable. We define the
expectation of X as:

E(X) := Q/X dp

Let (©,F,P) be a probability space,
(E, €) be a measurable space and X be a E-valued random

variable. We define the law of X as the measure image on
E, defined for all A € € as:

LX(A):=Po X }A)=P(X € A)

Let (Q, F,P) be a probability space, X
be a random variable and h : R — R be a measurable
function such that h(X) is integrable. Then:

E(h(X)) = / h(z) dLX (z)
R
1When E is not specified, we will assume that E = R.

In particular, if the law of X admits a density f with
respect to the Lebesgue measure, then:

B(h(X)) = [ ha) (o) dz

Let (2, F,P) be a probability space and
X be a random variable. We define the o-algebra gener-
ated by X as the smallest o-algebra containing X, i.e.:

o(X):=0(X1(A):Ac¥)

Let X be a (E, £)-valued random vari-
able and Y be a o(X)-measurable random variable. Then,
there exists a measurable function f : F — R such that

Y = f(X).

(Jensen’s inequality). Let (2, F,P)
be a probability space, X be a random variable and
h:R — R be a convex function. Then:

h(E(X)) < E(h(X))
as long as the expectations are well-defined.

Let (2, F,P) be a probability space, X
be a random variable and h : R — R be a non-decreasing
positive function. Then:

P(X >t)< — )

3. | Conditional expectation

Let (Q2, F,P) be a probability space and
G C F be a o-algebra. Then, for any integrable random
variable X, there exists a unique (up to a.s.) random vari-
able Y such that:

1. Y is G-measurable.

2. For any Z G-measurable such that X Z is integrable,
we have that E(XZ) = E(YZ).

We denote Y = E(X | G) and call it the conditional ex-
pectation of X given G.

If the variable X is not integrable but it is non-
negative, then the above holds for any Z non-negative as
well.

The conditional expectation, when restricted to
X € L*(Q,F,P), is the orthogonal projection of X onto
L?(Q,G,P).

Let (92, F,P) be a probability space,
G C F be a o-algebra and X, Y be random variables.
Then, assuming that all the expectations below are well-
defined, we have:

1. If Y, Z are G-measurable random variables, then
E(XY+Z|G)=YE(X|G)+Z.

2. If X <Y, then E(X | G) < E(Y | G).



3. E(E(X | §)) = E(X).
4. E([E(X | 9)]) < E(X]).

5. Tower property: it H C G C F are o-algebras, then
EE(X [G) [ H) =EX [ H).
6. If X is independent of G, then E(X | G) = E(X).

7. If X is independent of G and Y is G-measurable,
then for any measurable function f, we have that

E(f(X,Y) | G) = g(Y), where g(y) = E(f(X,y)).
This is often written as:

E(f(X,Y) | G) = E(f(X,y)ly=y

Let (2, F,P) be a probability space and
X, Y be random variables. We define the conditional ez-
pectation of X given 'Y as:

E(X | V) :=E(X | o(Y))

It can be seen that this definition coincides with
the one given by:

yesupp(Y)

E(X|Y)= E(X|Y =91y,

Let (Q2, F,P) be a probability space and
X, Y be random variables. Assume that (X,Y) has a law
which admits a density f = f(z,y) (which for simplicity
we may think it with respect to dzdy). Then, for any
function h such that E(h(X)) makes sense:

(z,Y)dx

E(h(X >Y>“fRf ERaTr
R

A probability kernelon (R, B(R)) is a func-
tion K : R x B(R) — [0, 1] such that:

1. Yy € R, K(y,-) is a probability measure on
(R, B(R)).

2. YA € B(R),

Let (Q, F,P) be a probability space and
X, Y be random variables. Then, there exists a proba-
bility kernel £X!Y| called the conditional law of X given
Y, such that for any bounded measurable function f we
have:

K(-, A) is measurable.

E(f(X)|Y) = / F() dLXY (v, 2)
R

4. | Martingales

Let (92, F,P) be a probability space. A
filtration is a sequence of sub-o-algebras (F,),, o such that
Vn € N, F;, C F,11. The tuple (Q, F,P, (F,), cy) is called
a filtered probability space.

Let (0, F,P, (Fy),cy) be a filtered prob-
ability space. A stochastic process (X, ),y is adapted to
(Fn)pen if ¥n € N, X, is Fy,-measurable.

Let (Q, F,P, (Fy),cy) be a filtered prob-
ability space and (My), oy be an adapted stochastic pro-
cess. We say that (Mp), .y is a martingale if Vn € N,

E(|M,]) < oo and E(My,41 | F) = M,.

A submartingale and supermartingale are defined
similarly, but with E(M,+1 | F,) > M, and E(M,
F,) < M, respectively.

n+1 l

Let (Q, F,P, (F, )neN) be a filtered prob-
ability space. A stopping time is a random variable
7:Q — NU {oo} such that Vn € N, {r <n} € F,.

Let (Q, F,P, (Fy,),cy) be a filtered proba-
bility space, 7 be a stopping time and M := (M), .y be a
process. We define the stopped process M7 := (Mrpn),,cn-

Let (9, F,P,(Fy),cy) be a filtered
7 be a stopping time and M :=
Then, M7 := (Mrpn),cn 18

probability space,
(My),,cy be a martingale.
a martingale.

Let (Q, F,P, (F,),cy) be a filtered prob-
ability space, 7 be a bounded stopping time and M :=

(M), cy be a martingale. Then, E(M,) = E(M).

Let (Q, F,P, (Fy),cn) be a filtered prob-
ability space, T be a stopping time. We define:

Fr={AcF:Vne N An{r=n} e F,}

It can be seen that in the above definition, F is
a o-algebra.

Let (9, F,P,(Fy),cy) be a filtered
probability space, p < 7 be two bounded stopping times,
and M be a martingale. Then, E(M, | F,) = M,.

Let (Q, F,P) be a probability space and

(My),,cn be a martingale such that sup,,cy E(|My,|) < oco.

Then, there exists a random variable M, such that M, =y
M.

Let (Q,F,P) be a probability space. A
family of random variables (X}),.; is said to be uniformly
integrable if:

lim sup E(|X¢[1|x,|>q) =0

a—0o0 tel

Let (2, F,P) be a probability space and
(Xn)pen be a family of uniformly integrable random vari-

ables such that X, 3 X. Then, X is integrable and
E(X,) — E(X).

Let (2, F,P) be a probability space and

(M) be a martingale bounded in L?, 1 < p < oo.

Then, there exists a random variable M, such that M, L—>p
M, and M, *3 M.

neN
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