
Advanced dynamical sytems

1. | Discrete maps
Maps in T1

Proposition 1. Let α = p
q ∈ Q and let Rα : T1 → T1

be the rotation of angle α. Then, all the points of T1 are
periodic for Rα with period q.

Proof. We identify the elements of T1 as R/Z. Let x ∈ T1.
Then, Rαqx = x+ αq = x+ p = x. And q is the smallest
integer such that Rαqx = x because we assume that p and
q are coprime. □

Proposition 2. Let α ∈ R \ Q and let Rα : T1 → T1

be the rotation of angle α. Then, all the orbits of Rα are
dense in T1.

Proof. Let ε > 0, x, y ∈ T1. Discretize T1 in intervals of
length at most 1

ε . Then, ∃m,n ∈ N with m < n ≤ 1
ε + 1

such that Rαmx and Rαnx are in the same interval. Thus,∣∣Rαn−mx− x
∣∣ < ε. Now, concatenating Rαn−mx repeat-

edly, we will eventually have
∣∣∣Rαk(n−m)x− y

∣∣∣ < ε for
some k ∈ N. □

Corollary 3. Let α ∈ R \Q and A ⊂ T1 be a non-empty
closed invariant set for Rα. Then, A = T1.

Proof. Let x ∈ T1 and y ∈ A. Then, ∀k ∈ N ∃nk ∈ N
such that Rnk

α y ∈ (x− 1
k , x+ 1

k ). Thus, Rnk
α y

k→∞−→ x and
x ∈ A because A is closed and Rnk

α y ∈ A ∀k ∈ N because
A is invariant. □

Definition 4. Consider the set

Σm := {(x1, x2, . . .) : xi ∈ {0, 1, . . . ,m− 1}}

We define the shift map as:

σm : Σm −→ Σm
(x1, x2, . . .) 7−→ (x2, x3, . . .)

Remark. Note that some elements in [0, 1] have two dif-
ferent representations in base-m identified as elements
of Σm. So we can think of Σm as the quotient space
Σm/ ∼, where (x1, x2, . . .) ∼ (y1, y2, . . .) if and only if∑∞
i=1

xi

mi =
∑∞
i=1

yi

mi .

Proposition 5. Let m ∈ N. Consider the expansion map

Em : T1 −→ T1

x 7−→ mx

Then, if ϕ : Σm → T1 is the map ϕ(x1, x2, . . .) =
∑∞
i=1

xi

mi ,
we have that Em ◦ ϕ = ϕ ◦ σm. In particular, ϕ is a bijec-
tion, and thus it is a conjugacy between Em and σm.

Proof. Let x = (x1, x2, . . .) ∈ Σm. Then, ϕ ◦ σm(x) =∑∞
i=1

xi+1
mi . Moreover:

Em ◦ ϕ(x) = m

∞∑
i=1

xi
mi

= xi +
∑
i=1

xi+1

mi
≡
∑
i=1

xi+1

mi

□

Remark. Note that E preserves the Lebesgue measure
backwards:

∣∣Em−1(A)
∣∣ = |A| for all A ⊆ T1, but

|Em(A)| ̸= |A| in general.

Definition 6. We define the following distance in Σm.
For all x, x′ ∈ Σm:

d(x, x′) := 1
2ℓ with ℓ := min{i : xi ̸= x′

i}

Proposition 7. Periodic points of Em are dense in T1.

Proof. By conjugacy it suffices to show that periodic
points of σm are dense in Σm. Let x ∈ Σm and ε > 0.
Then, ε > 1

2ℓ for some ℓ. And so the orbit of

y = (x1, . . . , xℓ, x1, . . . , xℓ, x1, . . . , xℓ, . . .)

is periodic and d(x, y) < ε. So periodic points of σm are
dense in Σm. □

Proposition 8. There exists x ∈ T1 such that its orbit
under Em is dense in T1.

Proof. By conjugacy, we only prove it for σm. But this is
clear by taking he sequence of all sequences:

x = (0, 1, . . . ,m− 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 2, 2, 0, 1, 2, 2, 1,
2, 2, . . . , (m− 1), (m− 1), 0, 0, 0, . . .)

□

A hyperbolic automorphism of T2

Proposition 9. Consider A =
(

2 1
1 1

)
∈ GL2(R). Then,

A(Z2) = Z2 and this induces an automorphism Ã of
T2 = R2/Z2.

Definition 10. We define the set of periodic points of Ã
as Per Ã.

Lemma 11. Per Ã = Q2/Z2. Thus, Per Ã is dense in T2.

Proof. Let x ∈ Per Ã. Then, ∃k ∈ N and n ∈ Z2

such that Akx = x + n. One can easily check that
σ(Ã) =

{
3
2 ±

√
5

2

}
=: {λ±} with λ− < 1 < λ+. Thus,

det
(

Ak − I
)

= (λ+
k − 1)(λ−

k − 1) ̸= 0

and so the equation Akx = x + n has a unique solution.
Now suppose the solution is x = (α, β) /∈ Q2/Z2. We have
a system of the form:{

aα+ bβ = n1

cα+ dβ = n2

An easy check shows that we must necessarily have both
α, β /∈ Q/Z. Since Ak − I is invertible, we may assume
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that b ̸= d (otherwise it’s a ̸= c). So, we can write
β = n1−n2

b−d − a−c
b−dα. So:

n1 = aα+ bβ = b
n1 − n2

b− d
− α

ad− bc

b− d
=⇒ α ∈ Q

/
Z

because ad− bc ̸= 0. Now let (p1
q1
, p2
q2

) ∈ Q2/Z2 and N ≥ 1
left to be chosen. We define the set QN := Z2

N mod Z2,
which is a subset finite set of T2. Observe that QN is in-
variant under Ã, and thus, all of its points are periodic
because the set is finite. For the above rational numbers,
just choose N = q1q2. □

Remark. The hyperbolicity comes from the fact that there
is one eigenvector with eigenvalue greater than 1 and an-
other with eigenvalue less than 1, both eigenvalues being
positive.

Theorem 12. The iterates of Ã smear every domain
F ⊆ T2 uniformly over T2, that is, for every domain
G ⊆ T2, we have that the following limit exists:∣∣∣(Ã−n

F ) ∩G
∣∣∣ n→∞−→ |F ||G|

This property of Ã is called mixing.

Proof. We can prove a more general property in terms of
functions in the torus (and then apply it to f = 1F and
g = 1G):

lim
n→∞

ˆ

T2

f(Ãnx)g(x) dx =
ˆ

T2

f(x) dx
ˆ

T2

g(x) dx

We will prove this for the orthonormal basis of Fourier
series {e2πip·x}p∈Z2 . Note that:

ˆ

T2

e2πi((Ãn)Tp)·x dx =
{

1 if p = 0
0 if p ̸= 0

Now for large n, the norm of the vector (Ãn)
T

p is large
for p ̸= 0 as we have:

Ãnp ≃ λn+⟨p, e+⟩e+

And so its transpose will eventually be different from −q.
Therefore, we have that if g = e2πiq·x then:

lim
n→∞

ˆ

T2

e2πi((Ãn)Tp+q)·x dx = 0

So for any p,q ∈ Z2 we have the equality. Then, we use
that any function nice enough can be approximated uni-
formly with the Féjer means of the Fourier series (see ??
??). □

Theorem 13. On the torus T2 there exist two direction
fields invariant with respect to the automorphism Ã. The
integral curves of each of these directions fields are every-
where dense on the torus. The automorphism Ã converts
the integral curves of each field into integral curves of the
same field, expanding by λ+ for the first field and con-
tracting by λ− for the second.

Proof. Let e+ and e− be the eigenvectors of A with eigen-
values λ+ and λ− respectively. Let x ∈ T2 and

γ+ : R −→ T2

t 7−→ x + te+

γ− : R −→ T2

t 7−→ x + te−

be the expanding and contracting curves and let ξx =
im(γ+), ηx = im(γ−) be the corresponding direction
fields. The density of the curves is a consequence of the
density of orbits in rotation maps in the circle with irra-
tional angle. □

Definition 14. Let A,B : T2 → T2 be C1 functions and
ε > 0. We say that B is C0-ε-close to A if:

sup
x∈T2

∥B(x) − A(x)∥ < ε

We say that B is C1-ε-close to A if they are C0-ε-close
and:

sup
x∈T2

∥DB(x) − DA(x)∥ < ε

Theorem 15 (Structal stability). Let B be a diffeo-
morphism on T2 which is C1-ε-close to Ã. Then, B is
C0-conjugate to Ã.

Proof. We need to find a C0-conjugacy H between B and
Ã. Since, B is C1-close to Ã, we may expect that both
H and B are small perturbations of the identity and Ã
respectively. So set H = I + h and B = Ã + b. Then, we
want to find h and b such that:

H ◦ Ã = B ◦ H ⇐⇒ h(Ãx) − Ãh(x) = b(x + h(x))

This equation is called conjugacy equation. Consider the
operators

SÃ : C0(R2,R2) −→ C0(R2,R2)
h 7−→ h(Ã(x))

LÃ : C0(R2,R2) −→ C0(R2,R2)
h 7−→ SÃh − Ãh

where we consider the diffeomorphisms Ã and B as oper-
ators lifted to C1(R2,R2). Observe that:

sup
x∈R2

∥SÃh(x)∥ = sup
x∈R2

∥∥∥SÃh(Ã−1x)
∥∥∥ = sup

x∈R2
∥h(x)∥

Hence, ∥SÃ∥ = 1 and similarly
∥∥∥S−1

Ã

∥∥∥ = 1, where S−1
Ã :

h 7→ h(Ã−1(x)). We’ll now prove that LÃ is invertible.
Note that R2 = ⟨e+⟩⊕⟨e−⟩ because Ã is invertible. Thus:

LÃh = c ⇐⇒

{
LÃh+ = SÃh+ − λ+h+ = c+

LÃh− = SÃh− − λ−h− = c−

where h = h+ + h−, c = c+ + c− and h±, c± ∈ ⟨e±⟩.
Now, note that

∥∥∥SÃ
λ+

∥∥∥ < 1 and so

(SÃ − λ+I) = λ+

(
SÃ
λ+

− I
)

is invertible. Similarly, we have
∥∥∥S−1

Ã λ−

∥∥∥ < 1 and so

(S−1
Ã − λ−I) = S−1

Ã

(
I − λ−S−1

Ã

)
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is invertible because it is a product of invertible operators.
Thus, LÃ is invertible and its inverse is linear because LÃ
is linear. Now, we return to our initial problem. Find h
such that h = LÃ

−1(b(x + h(x))) =: Ψ(h), which is a
fixed-point problem. Note that Ψ is a contraction. In-
deed:∥∥Ψ(h) − Ψ(h′)

∥∥ ≤
∥∥LÃ

−1∥∥∥∥b(x + h(x))−b(x + h′(x))
∥∥

≤
∥∥LÃ

−1∥∥ ∥Db∥
∥∥h − h′∥∥

because of ?? ??. This last term is arbitrarily small (∥Db∥
is arbitrarily small) because B is C1-close to Ã. Thus, h
exists and it’s unique. □

Definition 16. A dynamical system f : X → X has sen-
sitive dependence on initial conditions on X if ∃ε > 0 such
that for each x ∈ X and any neighborhood Nx of x, exists
y ∈ Nx and n ≥ 0 such that d(fn(x), fn(y)) > ε.

Definition 17. Let U ⊆ Rn, f : U → U be a dynamical
system and x ∈ U and v ∈ Rn. We define the Lyapunov
exponent as:

χ(x,v) := lim sup
n→∞

1
n

log ∥D(fn)(x)v∥

Remark. The Lyapunov exponent measures the exponen-
tial growth rate of tangent vectors along orbits. It can
rarely be computed explicitly, but if we can show that
χ(x,v) > 0 for some v, then we know that the system is
chaotic.

Hamiltonian systems
Definition 18. Let U ⊆ Rn×Rn be open and H : U → R
be a C1 function. We define the Hamiltonian vector field
associated to H as: 

ẋ = ∂H

∂p

ṗ = −∂H

∂x

(1)

Remark. Recall that H is a first integral of the system
Eq. (1).

Lemma 19. Let H : U → R be a C1 function, W ⊆ U .
Then, the volume of W under the field of Eq. (1) is pre-
served.

Proof. Let Wt := ϕt(W ), where ϕt is the flow of Eq. (1).
Then:

d
dt vol(Wt) = d

dt

ˆ

ϕt(W )

dx =
ˆ

W

d
dt det Dϕt =

ˆ

W

div XH

where XH is the vector field of Eq. (1). But an easy com-
putation shows that div XH = 0. Let’s make the last
step of the computation of above more explicit. Given
A ∈ GLn(R), we have that:

det(A + εT) = εn det(A) det
(

1
ε

I + TA−1
)

= det(A)
(
1 + ε tr(TA−1) + O

(
ε2))

And so, det′(A)T = tr(TA−1). Finally, taking A = Dϕt
and using that d

dtDϕt = DXHDϕt we get:

d
dt det Dϕt = det ′(Dϕt)

d
dtDϕt = tr

(
d
dtDϕt(Dϕt)

−1
)

=

= tr(DXH) = div XH

□

2. | Dynamics on the circle
Generalities

Definition 20. Let x, x′ ∈ R. We say that x ∼ x′ if and
only if x − x′ ∈ Z. We define the circle as T1 := R/ ∼.
We define the following distance in T1:

d(x, y) = min
x′∈x,y′∈y

|x′ − y′|

Proposition 21 (Existence of a lift).

1. For any continuous map F : T1 → T1 there exists
a lift f , i.e. a continuous map f : R → R such that
F ◦ π = π ◦ f , where π : R → T1 is the canonical
projection.

2. If g is another lift of F , then g − f = k ∈ Z.

Proof. We only prove the second property. Since, f , g are
both lifts of F , they belong to the same equivalence class.
Thus, f − g ∈ Z. And now use the continuity of f − g.

□

Remark. Recall that a continuous function f : R → R is a
homeomorphism if and only if f is strictly monotonous.

Definition 22. We say that a homeomorphism F pre-
serves orientation if and only if f is strictly increasing.
We define the set of Homeo+(T1) as the set of homeomor-
phisms of T1 that preserve orientation.

Proposition 23. Let F ∈ Homeo+(T1). Then, F admits
a lift f such that f(x) = x + φ(x), where φ : R → R is a
1-periodic function.

Proof. We already now that F admits a lift f . A straight-
forward calculation shows that f1 : R → R defined by
f1(x) = f(x+ 1) is also a lift of F . Thus, f1 − f = k ∈ Z.
Now, since f must be strictly increasing, we need k ∈ N.
Moreover, since F is injective, f |[0,1) is injective and its
image cannot contain 2 points whose difference is an inte-
ger. Thus, k = 1. Now, define φ(x) = f(x) − x, which is
1-periodic:

φ(x+ 1) = f(x+ 1) − (x+ 1) = f(x) − x = φ(x)

□

Definition 24. We define the set:

D0(T1) := {f ∈ Homeo(R) : f increasing and
f(x+ 1) = f(x) + 1}
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Note that we have the projection:

D0(T1) −→ Homeo+(T1)
f 7−→ F

We can define a distance in D0(T1) as:

d(f, g) = max
{

sup
x∈R

|f(x) − g(x)|, sup
x∈R

∣∣f−1(x) − g−1(x)
∣∣}

Lemma 25. D0(T1) is a complete metric space. More-
over, the functions:

D0(T1) −→ D0(T1)
f 7−→ f−1

D0(T1) × D0(T1) −→ D0(T1)
(f, g) 7−→ f ◦ g

are continuous. Thus, D0(T1) is a topological group with
the composition.

Definition 26. Let ε ≥ 0 and α ∈ R. We define the
Arnold family as:

fα,ε : R −→ R
x 7−→ x+ α+ ε sin(2πx)

Lemma 27. If 0 ≤ ε < 1
2π , then fα,ε ∈ D0(T1).

Proof. Note that fα,ε′ > 0 ⇐⇒ ε < 1
2π . Thus, fα,ε is

strictly increasing, and therefore it is a homeomorphism.
Moreover, fα,ε(x+ 1) = fα,ε(x) + 1. □

Rotation number

Lemma 28. Let f = id + φ ∈ D0(T1) with φ 1-periodic.
Thus:

fn = id +
n−1∑
i=0

φ ◦ f i =: id + φn

with φn 1-periodic.

Proof. Use induction on i to prove that all the terms of
the sum φ ◦ f i are 1-periodic. The case i = 0 is clear.
Now, for the inductive step:

φ ◦ f i+1(x+ 1) = φ

(
x+ 1 +

i∑
k=0

φ ◦ fk(x+ 1)
)

=

= φ

(
x+

i∑
k=0

φ ◦ fk(x)
)

= φ ◦ f i+1(x)

□

Lemma 29. Let f = id + φ ∈ D0(T1) with φ 1-periodic.
Let m := minx∈R φ and M := maxx∈R φ. Then, we have
m ≤ M < m+ 1.

Proof. By the periodicity and continuity of φ, we have
that ∃xm, xM ∈ R such that φ(xm) = m, φ(xM ) = M
and 0 ≤ xM − xm < 1. Since f ∈ D0(T1), we must have
f(xM ) − f(xm) < 1. Thus:

M −m = f(xM ) − f(xm) − (xM − xm) < 1

□

Definition 30. Let (un) ∈ R be a sequence. We say that
(un) is subadditive if un+m ≤ un + um for all n,m ∈ N.
We say that (un) is superadditive if un+m ≥ un + um for
all n,m ∈ N, that is, if (−un) is subadditive.

Lemma 31. Let f ∈ D0(T1) be such that f = id + φ.
We can write fn = id + φn and let mn := minx∈R φn and
Mn := maxx∈R φn. Then, (Mn) is subadditive and (mn)
is superadditive.

Proof. We have that:

fn+m(x) −x = (fm − id)(fn(x)) + fn(x) −x ≤ Mm +Mn

Now take the supremum in x. The other inequality is
analogous. □

Lemma 32. Let (un) ∈ R be a subadditive sequence.
Then, lim

n→∞

un
n

exists, and it is equal to inf
n∈N

un
n

. Analo-

gously, if (un) is superadditive, then lim
n→∞

un
n

exists, and

it is equal to sup
n∈N

un
n

.

Proof. Assume (un) is subadditive and fix p ∈ N. Let
n ≥ p be such that n = knp+ rn with r < p. Then:

un
n

≤ uknp + urn

n
≤ knup

n
+ urn

n
= up
p+ rn

kn

+ urn

n

where in the first and second inequalities we used that
(un) is subadditive. Now to show that the limit exists and
that the value is the one of above, take first lim sup in n
and then inf in p:

lim sup
n→∞

un
n

≤ inf
p∈N

up
p

≤ lim inf
p→∞

up
p

□

Theorem 33 (Existence of the rotation number).
For all f ∈ D0(T1), we have that the sequence of func-
tions 1

n (fn − id) convergence uniformly to constant func-
tion ρ(f) ∈ R. This number is called the rotation number
of f .

Proof. By Theorem 29 we have that mn

n ≤ Mn

n < mn

n + 1
n ,

where mn := minx∈R φn and Mn := maxx∈R φn. By The-
orems 31 and 32, we have that mn

n and Mn

n have the same
limit and moreover:

mn

n
≤ 1
n

(fn(x) − x) ≤ Mn

n

So we have the result, and in fact the convergence is uni-
form by domination. □

Proposition 34. The following properties are satisfied:

1. ρ(Rα) = α ∀α ∈ R.

2. ρ(fn) = nρ(f) ∀f ∈ D0(T1), n ∈ N.

3. f ≤ g =⇒ ρ(f) ≤ ρ(g) ∀f, g ∈ D0(T1).

4. ρ(f + k) = ρ(f) + k ∀f ∈ D0(T1), k ∈ Z.

5. If f, g ∈ D0(T1) commute, then ρ(f ◦ g) = ρ(f) +
ρ(g).
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Sketch of the proof. For the penultimate one, note that
fk(x) := f(x+ k) = f(x) + k, since f ∈ D0(T1). Thus:

fk
n(x) = f(f(· · · f(f(x+ k) + k) + · · · ) + k) = fn(x) +nk

□

Proposition 35. The function

R : D0(T1) −→ R
f 7−→ ρ(f)

is continuous with respect to the C0-topology.

Proof. Let ε > 0 and N > 0 such that 1
N < ε. Let f, g ∈

D0(T1) be close enough such that
∣∣fN (x) − gN (x)

∣∣ < ε
for all x ∈ R. In particular, fN (0) < gN (0) + ε.
A straightforward induction shows that in fact we have
fkN (0) < gkN (0) + k − 1 + ε for all k ∈ N. Thus:

ρ(f) − ρ(g) = lim
k→∞

fkN (0) − gkN (0)
kN

≤ 1
N

< ε

Exchanging the roles of f and g we get the other inequal-
ity. □

Definition 36. Let F ∈ Homeo+(T1) with lift f . We
define the rotation number of F as ρ(F ) := [ρ(f)] ∈ T1.

Definition 37. Let F,G ∈ Homeo+(T1). We say that G
is semi-conjugate to F if there exists a continuous surjec-
tive map H : T1 → T1 such that H ◦ F = G ◦H. We say
that G is conjugate to F if H is a homeomorphism.

Lemma 38. Let F,G ∈ Homeo+(T1) be such that G is
semi-conjugate to F . Then, if F has a periodic point, then
G has a periodic point.

Proof. Let p ∈ T1 be a periodic point of F with period n.
Then, H(p) is a periodic point of G with period at most
n. Indeed:

Gn(H(p)) = H(Fn(p)) = H(p)

□

Remark. The converse is not true.

Theorem 39. Let F,G ∈ Homeo+(T1) be conjugate by
H ∈ Homeo+(T1). Then, ρ(F ) = ρ(G).

Proof. Let h and f be lifts of H and F respectively. Then,
an easy check shows that g := h ◦ f ◦ h−1 is a lift of G. It
suffices to prove that ρ(g) = ρ(f). Note that, by induction
we have h◦fn = gn◦h for all n ∈ N. Now write h = id+φ
with φ ∈ C(T1). Then:

fn(x) − x+ φ(fn(x))
n

= gn(h(x)) − h(x)
n

+ h(x) − x

n

Taking limits, we have that ρ(f) = ρ(g), as φ is bounded.
□

Remark. Note that the proof also works even if ∃h =
id + φ ∈ C(T1) such that h ◦ f = g ◦ h (i.e. H is only
a special semi-conjugacy).

Rotation number and invariant measure

Definition 40. We say that µ : C(T1) → R is a measure
on C(T1) if:

1. µ is linear.

2. µ is continuous.

3. µ(φ) ≥ 0, whenever φ ≥ 0.

We say that µ is a probability measure if µ(1) = 1. We
denote by M(T1) the set of all probability measures on
C(T1).

Remark. Usually we will denote µ(φ) by
´
T1 φ dµ or´

T1 φ(x) dµ(x).

Remark. Note that we then have µ(φ) > 0 whenever
φ > 0, because φ attains its minimum at some point x0
(by the compactness of T1). Similarly, µ(φ) ≤ 0 whenever
φ ≤ 0, and µ(φ) < 0 whenever φ < 0.

Remark. Examples of such measures are the Dirac mea-
sures

δx(φ) = φ(x) x ∈ T1

or the Lebesgue measure:

Leb(φ) :=
1ˆ

0

φ(x) dx

Definition 41. Let F ∈ Homeo+(T1) and µ ∈ M(T1).
We define the push-forward measure of F as F∗µ(φ) :=
µ(φ ◦ F ).

Definition 42. We say that a measure µ ∈ M(T1) is in-
variant by F ∈ Homeo(T1) (or F -invariant) if F∗µ = µ.
We will denote by MF (T1) the set of F -invariant proba-
bility measures.

Proposition 43. Let F ∈ Homeo+(T1), x ∈ T1 and
n ∈ N.

1. Leb is invariant under Rα ∀α ∈ R.

2. δx is F -invariant ⇐⇒ F (x) = x

3.
δx + · · · + δFn−1(x)

n
is F -invariant ⇐⇒ Fn(x) = x

Proof. We prove the difficult implication in the second
item. That is, suppose δx is F -invariant. We then have
that φ(F (x)) = φ(x) ∀φ ∈ C(T1). Now if F (x) ̸= x for
some x ∈ T1, then we may assume x < F (x) and consider
a continuous function on T1 that equals one in a neighbor-
hood of F (x) not containing x and zero otherwise. □

Theorem 44. Let F ∈ Homeo+(T1). Then, MF (T1) ̸=
∅.

Proposition 45. Let F ∈ Homeo(T1) and f = id + φ
be a lift of F , with φ ∈ C(T1). Then, ∀µ ∈ MF (T1),
ρ(f) = µ(φ). Moreover:

1. ∥fn − id − nρ(f)∥C(R) < 1 for all n ∈ N.

2. ∀n ∈ N, ∃xn ∈ R such that fn(xn) − xn = nρ(f).
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Proof. Let ψn := fn − id − nµ(φ) with µ ∈ MF (T1). We
have that:

µ(ψn) =
n−1∑
i=0

µ(φ◦f i)−nµ(φ) =
n−1∑
i=0

µ(φ◦F i)−nµ(φ) = 0

where we have used Theorem 28. Now we must have
that ψn change their sign in [0, 1] because otherwise that
would contradict µ(ψn) = 0. So ∃xn ∈ [0, 1] such that
ψn(xn) = 0. So:

fn(xn) − xn = nµ(φ)

Dividing by n and taking limits, we have that ρ(f) = µ(φ).
This also shows the second point. To prove the first one,
note that minψn ≤ 0 and so by Theorem 29 we have
maxψn < 1. Moreover, minψn = − max(−ψn) > −1 (us-
ing the same argument as before) and so ∥ψn∥C(R) < 1 for
all n ∈ N. □

Rational rotation number

Proposition 46. Let f ∈ D0(T1), p ∈ Z and q ∈ N be
such that the fraction p

q is irreducible. Then:

ρ(f) = p

q
⇐⇒ ∃x ∈ R such that fq(x) = x+ p

ρ(f) > p

q
⇐⇒ ∀x ∈ R we have fq(x) > x+ p

ρ(f) < p

q
⇐⇒ ∀x ∈ R we have fq(x) < x+ p

Proof. Since ρ(fq) = qρ(f) and ρ(f + p) = ρ(f) + p, we
have that if g = fq − p, ρ(g) = qρ(f) − p. Thus, an easy
check shows that we can assume that p = 0 and q = 1.
We will only prove the equivalences to the left, as it is
sufficient.

1. Assume f(x) = x for some x ∈ R. Then, from the
definition of ρ(f) applied to the point x, we have
that ρ(f) = 0.

2. Assume f(x) > x and write f = id + φ with
φ ∈ C(T1) and φ > 0. Since, T1 is compact, we
have in fact that φ ≥ minφ =: ε > 0. Now:

fn − id =
n−1∑
i=0

φ ◦ f i ≥ nε

And so ρ(f) ≥ ε > 0.

3. Proceed as in the previous case.

□

Definition 47. Let F ∈ Homeo+(T1) and x ∈ T1. We
define the orbit of x as:

OF (x) := {Fn(x) : n ∈ Z}

We also define the positive orbit of x and the negative orbit
of x as:

O+
F (x) := {Fn(x) : n ∈ Z≥0}

O−
F (x) := {Fn(x) : n ∈ Z≤0}

If the homeomorphism is not specified, we will omit the
subscript.

Definition 48. Let F ∈ Homeo+(T1) and x ∈ T1. We
define the omega limit of x as the set of limit points of
O+
F (x), i.e.:

ω(x) := {y ∈ T1 : ∃(nk) ↗ +∞ such that Fnk (x) → y}

We define the alpha limit of x as the set of limit points of
O−
F (x), i.e.:

α(x) := {y ∈ T1 : ∃(nk) ↘ −∞ such that Fnk (x) → y}

Definition 49. Let F ∈ Homeo+(T1) and X ⊂ T1. We
say that X is positively invariant if F (X) ⊆ X and nega-
tively invariant if F−1(X) ⊆ X. We say that X is invari-
ant if F (X) = X.

Proposition 50. Let X ⊂ T1 and x ∈ T1. Then:

1. X is invariant ⇐⇒ ∀x ∈ X, O(x) ⊆ X ⇐⇒ X is
a union of orbits.

2. O(x) is finite ⇐⇒ x is periodic.

3. The omega limit ω(x) and the alpha limit α(x) are
non-empty compact invariant sets.

Definition 51. Let F ∈ Homeo+(T1). We define the
positively recurrent points and negatively recurrent points
as:

R+(F ) := {x ∈ T1 : x ∈ ω(x)}
R−(F ) := {x ∈ T1 : x ∈ α(x)}

Proposition 52. Let F ∈ Homeo+(T1). Then, R±(F )
are invariant non-closed sets.

Definition 53. Let F ∈ Homeo+(T1) and x ∈ T1. We
say that x is a wandering point if there exists a neighbor-
hood U of x such that ∀n ≥ 1 we have Fn(U) ∩ U = ∅.
The neighborhood U is called a wandering domain. We
define the set:

Ω(F ) := {x ∈ T1 : x is not wandering}

Remark. A point x ∈ T1 is non-wandering if it is not
wandering, i.e. if ∀U neighborhood of x ∃n ≥ 1 such that
Fn(U) ∩ U ̸= ∅.

Proposition 54. Let F ∈ Homeo+(T1). Then, Ω(F ) is
an invariant closed set.

Lemma 55. Let F ∈ Homeo+(T1). Then:

Fix(F ) ⊆ Per(F ) ⊆ R±(F ) ⊆ Ω(F ) ⊆ T1

Proof. All the inclusions are clear except for maybe
R±(F ) ⊆ Ω(F ). Let x ∈ R±(F ). Then, ∃(nk) ∈ N
with nk ↗ ∞ such that Fnk (x) → x. Now, let U be
a neighborhood of x. Then, x ∈ U and for k large enough,
by the continuity of F , we must have x ∈ Fnk (U). So
Fnk (U) ∩ U ̸= ∅ and thus x ∈ Ω(F ). □
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Definition 56. Let F ∈ Homeo+(T1) and X ⊆ T1 be a
non-empty closed invariant set. We say that X is mini-
mal if ∀x ∈ X, O(x) = X. If X = T1, we say that F is
minimal.

Proposition 57. Let F ∈ Homeo+(T1) and X ⊆ T1 be a
closed and invariant. Then, X is minimal ⇐⇒ ∀Y ⊆ X
closed, invariant and non-empty, Y = X.

Proof.

=⇒) Let Y ⊆ X be closed, invariant and non-empty
and take y ∈ Y . We have:

Y ⊆ X = O(y) ⊆ Y = Y

⇐=) Let x ∈ X. Since O(x) ⊆ X is closed, invariant
and non-empty, we have that O(x) = X.

□

Theorem 58. Let F ∈ Homeo+(T1) with ρ(F ) = p
q ∈

Q/Z. Then:

1. F has periodic points of period q, and any periodic
point of F has minimal period q.

2. For any x ∈ T1, ω(x) and α(x) are periodic orbits.

Proof. First we assume q = 1 and p = 0. Let f ∈ D0(T1)
be a lift of F . By Theorem 46, we have that ∃x ∈ R with
f(x) = x. So Fix(f) ̸= ∅, and it is closed and invari-
ant by integer translations. Now we write R \ Fix(f) as
union of open intervals. Let (a, b) be one of such connected
components. Inside it, we must have either f(x) > x or
f(x) < x. In the first case we have that (fn(x)) is strictly
increasing ∀x ∈ (a, b) and so ω(x) = {b} ∈ Fix(f) and
α(x) = {a} ∈ Fix(f) ∀x ∈ (a, b). The second case is
exactly the opposite.
Now we do the general case. Assume ρ(f) = p

q . Then,
again by Theorem 46, we have that ∃x ∈ R with fq(x) =
x + p. Assume we have x′ ∈ R and p′, q′ ∈ Z with q′ ≥ 1
such that fq′(x′) = x′ + p′. By Theorem 46, we have that
p
q = p′

q′ and so ∃k ∈ N such that q′ = kq and p′ = kp′

because p
q is irreducible. Now let g = fq − p. Then, an

easy calculation shows that gk(x′) = x′. But ρ(g) = 0
and in the previous case we have seen that the periodic
points are only fixed points, so k = 1. For the second
part, we proceed as in the previous case with the function
g = fq − p. □

Irrational rotation number

Definition 59. Given µ ∈ M(T1) and U ⊆ T1 open, we
define the measure of U as:

µ(U) := sup{µ(φ) : φ ∈ C(T1), φ ≤ 1U}

Let A ⊂ B(T1) be a Borel measurable set. We define the
measure of A as:

µ(A) := inf{µ(U) : A ⊆ U,U open}

Remark. With this definition we have the usual proper-
ties of measure defined on subsets of T1. In particular,
Leb([a, b]) = b−a and δx(A) = 1x∈A ∀x ∈ T1 and A ⊆ T1.

Definition 60. Let µ ∈ M(T1). We define the support
of µ as:

suppµ := {x ∈ T1 : ∀U ⊆ T1 open with x ∈ U, µ(U) > 0}

Remark. Note that suppµ is a closed set and µ(T1 \
suppµ) = 0.
Remark. If F ∈ Homeo+(T1) and µ ∈ MF (T1), then
suppµ is invariant.
Remark. supp Leb = T1 and supp δx = {x}.
Proposition 61. Let µ ∈ M(T1) and F ∈ Homeo(T1).
µ is invariant by F if and only if ∀A ⊆ T1 Borel set,
µ(A) = µ(F−1(A)).
Proof.

=⇒) Let A ⊆ T1 be Borel. We have:

µ(A) = inf
U open
A⊆U

sup
ψ cont.
φ≤1U

µ(φ) = inf
U open
A⊆U

sup
ψ cont.
φ≤1U

µ(φ ◦F ) =

= inf
U open
A⊆U

sup
ψ cont.

ψ≤1F −1(U)

µ(ψ) = inf
V open

F−1(A)⊆V

sup
ψ cont.
ψ≤1V

µ(ψ) =

= µ(F−1(A))

□

Remark. If F ∈ Homeo+(T1) and µ ∈ MF (T1), then
µ(Fn(A)) = µ(A) ∀n ∈ Z and A ⊆ T1 Borel.
Lemma 62. Let µ ∈ M(T1). We have a lift to a measure
µ on R invariant by integer translations: µ(A+k) = µ(A)
∀k ∈ Z and A ⊆ B(R).
Definition 63. Let µ ∈ M(T1). We define hµ : [0, 1] →
[0, 1] as the function with hµ(0) = 0 and hµ(x) = µ([0, x))
for 0 < x ≤ 1. This definition extends to a non-decreasing
function hµ : R → R such that hµ(x + k) = hµ(x) + k
∀k ∈ Z.
Definition 64. Let µ ∈ M(T1). We say that µ has atoms
if ∃x ∈ T1 such that µ({x}) > 0.
Lemma 65. Let µ ∈ M(T1). hµ is continuous if and only
if ∀x ∈ R, µ({x}) = 0, that is if µ has no atoms.
Proof.

=⇒) Let xn = x + 1
n → x. Then, [0, xn) ⊃ [0, xn+1)

and so by the continuity of hµ and ?? we have:

µ([0, x)) = lim
n→∞

µ([0, xn)) = µ

(⋂
n∈N

[0, xn)
)

=

= µ([0, x])

which implies that µ({x}) = 0.

⇐=) Let x ∈ R and xn → x. Since (xn) is bounded, we
can extract a monotone subsequence (xnk

). Then:

lim
n→∞

h(xn) = lim
k→∞

µ([0, xnk
)) =

=
{
µ
(⋃

k∈N[0, xnk
)
)

= µ([0, x)) if xnk
↗ x

µ
(⋂

k∈N[0, xnk
)
)

= µ([0, x]) if xnk
↘ x

The first case is fine, and for the second one, since
µ({x}) = 0, we have that µ([0, x]) = µ([0, x)).
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□

Definition 66. A subset C ⊆ R is a Cantor set if it is
closed, it has no isolated points and it has empty interior.

Theorem 67. Let F ∈ Homeo+(T1) with ρ(F ) /∈ Q/Z.
Then, there exists a surjective continuous map H : T1 →
T1 such that H◦F = Rρ(F )◦H. Moreover, we have exactly
one of the following two properties:

1. F is conjugated to Rρ(F ) and in that case F is min-
imal.

2. ∃X ⊊ T1 minimal which is a Cantor set and X =
Ω(F ).

Proof. Let µ ∈ MF (T1) and consider h := hµ : R → R
as defined above. Now assume x ∈ T1 is such that
µ({x}) = c > 0, then by invariance µ(An) = c > 0,
where An := {Fn(x)}. Note that since µ ≤ 1, (An) can-
not be disjoint. So ∃n,m ∈ N with n < m such that
Fn(x) = Fm(x). But then Fm−n(x) = x and so x is
periodic, which is not possible since ρ(F ) ∈ Q/Z by The-
orem 46. Thus, µ has no atoms and so h is continuous
by Theorem 65. Now, define H : T1 → T1 as the projec-
tion of h to T1, which is continuous and surjective. Let
f ∈ D0(T1) be a lift of F . Then:

h(f(x)) − h(f(0)) = µ([f(0), f(x))) = µ([0, x)) = h(x)

where we have used the invariance of µ. Thus, h ◦
f = Rh(f(0)) ◦ h and necessarily we need h(f(0)) =
ρ(Rh(f(0))) = ρ(f) because of the invariance of the rota-
tion number under semi-conjugacy1. This gives H ◦ F =
Rρ(F ) ◦H. Now, we can express the dichotomy as follows:
either suppµ = T1 or suppµ =: X ⊊ T1. The first case
is equivalent to h being strictly increasing and so h is a
homeomorphism. Then, H conjugates F and Rρ(F ) and
so F is minimal because Rρ(F ) is minimal. In the second
case, we have that X is a nonempty closed invariant set
that has no isolated points because µ has no atoms. To
show that X is minimal, let T1 = X⊔U with U open, and
so it can be written as a countable union of open intervals.
Let D ⊆ X be the set containing the endpoints of those
intervals and let

Y := {y ∈ T1 : H−1({y}) is a closed interval} (2)

Y is countable (H−1(Y ) = U ∪D). Now take M ⊆ X be
nonempty, closed and invariant. We want to prove that
M = X. We have that H(M) ⊆ T1 is nonempty, closed
(in fact it’s compact because it is the image of a com-
pact set) and invariant by Rρ(F ). So H(M) = T1 because
Rρ(F ) is minimal. Now, since H restricted to X \ D is
injective (h is strictly increasing in X \ D thought inside
[0, 1]), then M ⊇ X \ D because if not there would exist
x ∈ X \D such that x /∈ M . We have H(X \D) = T1 \Y .
Thus, H−1(H(X \ D)) = H−1(T1 \ Y ) = X \ D. Then,
H(x) ∈ H(X \ D) ⊆ T1 = H(M). So ∃y ∈ M such that
H(x) = H(y), and so y ∈ H−1(H(X \X)) = X \D. But

H|X\D is injective, so x = y ∈ M , which is a contradiction
because x /∈ M . Thus, M ⊇ X \D, which implies:

M = M ⊇ X \D = X = X

So M = X and, thus, X is minimal. Moreover, X has
empty interior. Indeed, if that wasn’t the case, we would
have ∂ X = X \ Int(X) = X \ Int(X) ⊊ X and so ∂ X
would be a nonempty closed invariant set, which is not
possible because X is minimal. Finally, to prove X =
Ω(F ), by minimality it suffices to show that Ω(F ) ⊆ X.
Let x ∈ U , where T1 = X ⊔U , with U =

⊔∞
i=1 Ii invariant

and Ii intervals. Note that F maps connected components
of U to connected components of U . We need to see that
x is wandering. Let I be one of such intervals. We may
have either Fn(I) = I for some n ≥ 1 or Fn(I) ∩ I = ∅
for all n ≥ 1. But in the first case, we would have that the
extremities of I are periodic points, which is not possible
because ρ(F ) /∈ Q/Z. So we must have the second case,
which implies that I is a wandering domain, and thus so
is U . □

Unique ergodicity

Definition 68. A homeomorphism F : T1 → T1 is
uniquely ergodic if it has a unique invariant probability
measure.

Lemma 69. If α /∈ Q, then Rα is uniquely ergodic and
MRα

(T1) = {Leb}.

Proof. Let µ ∈ MRα
. We want to see that ∀φ ∈ C(T1):

ˆ

T1

φ(x) dµ =
ˆ

T1

φ(x) dx

An easy check shows that if Pn =
∑n
k=−n ake2πikx is a

trigonometric polynomial, then
´
T1 Pn(x) dx = a0. More-

over, if k ̸= 0:
ˆ

T1

e2πikx dµ = e2πikα
ˆ

T1

e2πikx dµ =⇒
ˆ

T1

e2πikx dµ = 0

where the equality is due to the invariance of µ. So, we also
have

´
T1 Pn(x) dµ = a0. Now consider the Féjer means,

which converge uniformly to φ (recall ?? ??) and use ??.
□

Proposition 70. Let F ∈ Homeo+(T1) with ρ(F ) /∈
Q/Z. Then, F is uniquely ergodic.

Proof. Let H be such that H ◦ F = Rρ(F ) ◦H (by Theo-
rem 67) and so F−1(H−1(A)) = H−1(Rρ(F )

−1(A)). Take
µ ∈ MF (T1) and define H∗µ as:

H∗µ(A) := µ(H−1(A)) ∀A ⊆ T1 Borel

We have:

H∗µ(A) = µ(H−1(A)) = µ(F−1(H−1(A))) =
= µ(H−1(Rρ(F )

−1(A))) = H∗µ(Rρ(F )
−1(A))

1Recall that since h is a lift, then h(x + 1) is also a lift and so h(x + 1) − h(x) = k ∈ Z and this constant has to be 1 because h(1) = 1.
By Theorem 23 we have an expression of h = id + φ, and that gives us the invariance of the rotation number.
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where the second equality is due to the invariance of µ.
Hence, H∗µ is invariant by Rρ(F ), and so H∗µ = Leb.
That, is µ(H−1(A)) = Leb(A). Recall again the set Y
of Eq. (2) and T1 = X ⊔ U , with H−1(Y ) = U . Since
Y is countable, 0 = Leb(Y ) = µ(H−1(Y )). Now since
H|X\D : X \ D → T1 \ Y is a homeomorphism, we have
that µ(B) = Leb(H(B)), and so µ is uniquely determined.

□

Proposition 71. Let F ∈ Homeo(T1). Then, F is
uniquely ergodic if and only if ∀φ ∈ C(T1) ∃cφ ∈ R such
that 1

n

∑n−1
i=0 φ◦F i converge uniformly to cφ. In that case,

cφ = µ(φ), where MF (T1) = {µ}.

Proof. Assume first that MF (T1) = {µ} and argue by
contradiction. That, is ∃ε > 0, (nk) ∈ N with nk ↗ +∞
and (xk) ∈ T1 such that ∀k ≥ 0:∣∣∣∣∣∣ 1
nk

nk−1∑
i=0

φ ◦ F i(xk) −
ˆ

T1

φ dµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ˆ

T1

φ dνk −
ˆ

T1

φ dµ

∣∣∣∣∣∣ > ε

(3)

where νk = 1
nk

∑nk−1
i=0 (F i)∗δxk

. Note that νk ∈ M(T1)
and since M(T1) is compact with the weak∗-topology2,
after extracting a subsequence, (νk) converges weakly to
ν ∈ M(T1). Now, ν is invariant. Indeed:

∥F∗νk − νk∥ =
∥∥∥∥ 1
nk

((Fnk )∗δxk
− δxk

)
∥∥∥∥ ≤ 2 ∥φ∥

nk

k→∞−→ 0

So ν = µ, but this is a contradiction with Eq. (3). Now
we prove the converse. Let µ ∈ MF (T1). Then:

cφ =
ˆ

T1

cφ dµ =
ˆ

T1

lim
n→∞

1
n

n−1∑
i=0

φ ◦ F i dµ =

= lim
n→∞

1
n

n−1∑
i=0

ˆ

T1

φ◦F i dµ = lim
n→∞

1
n

n−1∑
i=0

ˆ

T1

φ dµ =
ˆ

T1

φ dµ

where the third equality is due to the uniform convergence
and the penultimate equality is due to the invariance of µ.
This implies that µ is uniquely determined. □

Remark. The unique ergodicity property is preserved un-
der conjugation.

Definition 72. For k ∈ N∪ {0} we define the set Dk(T1)
as:

Dk(T1) := {f : R → R increasing Ck-diffeomorphism
such that f(x+ 1) = f(x) + 1}

Note that f ∈ Dk(T1) if and only if f = id + φ, with
φ ∈ Ck(T1). We also define the set Diffk+(T1) as:

Diffk+(T1) := {F : T1 → T1 Ck-diffeomorphism with
orientation preserving}

Proposition 73. Let F ∈ Diff1
+(T1) with ρ(F ) /∈ Q/Z,

µ be the unique invariant probability measure of F and
f ∈ D1(T1) be a lift of F . Then, lim

n→∞

1
n

logDfn(x) =ˆ

T1

log(Df) dµ = 0.

Proof. An easy induction shows that ∀n ∈ N we have:

logDfn =
n−1∑
i=0

log
(
Df ◦ f i

)
So:

1
n

logDfn = 1
n

n−1∑
i=0

log
(
Df ◦ f i

)
= 1
n

n−1∑
i=0

log
(
Df ◦ F i

)
where in the last equality we have used the fact that
Df = 1 + Dφ ∈ C(T1). By Theorems 70 and 71, we
have that 1

n

∑n−1
i=0 log

(
Df ◦ F i

)
converges uniformly to

c :=
´
T1 log(Df) dµ. Moreover, since Dfn = 1 + Dφn ∈

C(T1), we have that
´
T1 Df

n dx = 1 +
´
T1 Dφn dx = 1.

Now assume without loss of generality that c > 0. Then,
for n large enough we must have Dfn(x) ∼ enc and so:

1 =
ˆ

T1

Dfn dx ∼
ˆ

T1

enc dx n→∞−→ +∞

If c < 0, we have a similar contradiction. Thus, c = 0.
□

Definition 74. Let φ ∈ C(T1). We say that φ has
bounded variation if ∃C ≥ 0 such that for all 0 = x0 <
x1 < · · · < xn = 1 we have:

n∑
i=1

|φ(xi) − φ(xi−1)| ≤ C

The constant C is usually denoted as Var(φ).

Remark. If φ ∈ Lip(T1), then Var(φ) = L, where L is the
Lipschitz constant of φ.

Lemma 75. Let α /∈ Q. Then, ∀n ∈ N, ∃pn

qn
∈ Q such

that:

1.
∣∣∣∣α− pn

qn

∣∣∣∣ < 1
qn2

2. qn
n→∞−→ +∞

Proof. Let Q ∈ N. By the Pigeon-hole principle, there
exist two elements among 0, {α}, . . . , {Qα} (here {·} de-
notes the fractional part) such that they are in one of
the intervals among

[
0, 1

Q

]
,
[

1
Q ,

2
Q

]
, . . . ,

[
Q−1
Q , 1

]
. That

is, ∃q1, q2 ∈ Q≥0 and p ∈ Z such that |qα− p| ≤ 1
Q with

q := q2 −q1 ≤ Q. Now apply this to Qn = n ≥ 1: ∃pn

qn
∈ Q

with 1 ≤ qn ≤ n such that:

|qnα− pn| < 1
n

≤ 1
qn

2M(T1) is closed in E = (C(T1))∗ and it’s contained in the unit ball of E, which is compact for the weak∗-topology. Thus, M(T1) is
compact.
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To prove that qn
n→∞−→ +∞, we argue by contradiction.

Assume that ∃M ∈ N such that qn ≤ M for all n ∈ N.
Then, ∃n0 ∈ N such that ∀n ≥ n0 we have qn = qn0 . But
then by the irrationality of α we have that ∃c > 0 such
that:

c ≤ |qnα− pn| ≤ 1
n

n→∞−→ 0

which is a contradiction. □

Lemma 76. Let α /∈ Q and p
q ∈ Q with

∣∣∣α− p
q

∣∣∣ < 1
q2 . Set

αi := {iα} for 1 ≤ i ≤ q, where {x} denotes the fractional
part of x. Then, each αi belongs to a different interval of
the form

(
ki

q ,
ki+1
q

)
with ki ∈ {0, . . . , q − 1}.

Proof. Assume without loss of generality that 0 < α− p
q <

1
q2 . Then, for 1 ≤ i ≤ q we have:

0 ≤ iα− ip

q
<

i

q2 ≤ 1
q

(4)

We claim that the numbers {ipq } are all distinct for 1 ≤
i ≤ q. Indeed, if ∃i, j with ipq − j pq = k ∈ Z∗, then
p
q = k

i−j , which is not possible because p
q is irreducible

and i − j ≤ q − 1. So we can write {ipq } = ki
p
q for

some ki ∈ {0, . . . , q − 1}. Finally, Eq. (4) implies that
αi ∈

(
ki

q ,
ki+1
q

)
. □

Proposition 77 (Denjoy-Koksma inequality). Let
F ∈ Homeo+(T1) with α := ρ(F ) /∈ Q/Z, µ ∈ MF (T1)
and p

q ∈ Q with
∣∣∣α− p

q

∣∣∣ < 1
q2 . Then, ∀ψ ∈ C(T1) with

Var(ψ) < ∞ we have:∣∣∣∣∣∣
q−1∑
i=0

ψ(F i(x)) − q

ˆ

T1

ψ dµ

∣∣∣∣∣∣ ≤ Var(ψ) ∀x ∈ T1

Proof. We’ll prove that ∀x ∈ T1:∣∣∣∣∣∣
q∑
i=1

ψ(F i(x)) − q

ˆ

T1

ψ dµ

∣∣∣∣∣∣ ≤ Var(ψ)

which is equivalent by replacing x by F−1(x). Let x ∈ T1

and choose y1, . . . , yq−1 ∈ T1 circularly ordered with y0 :=
x and such that H(yi) = i

q + H(x), where H : T1 → T1

is the semi-conjugacy between F and Rα given by Theo-
rem 67. By Theorem 76, we have that ∃!ki ∈ {0, . . . , q−1}
such that H(x) + iα ∈

(
H(x) + ki

q , H(x) + ki+1
q

)
. This

implies that F i(x) ∈ [yki
, yki+1] =: Ii because H(x)+iα =

Rα
i ◦ H(x) = H ◦ F i(x) and H is increasing (thought in

[0, 1]). Now, we have:∣∣∣∣∣∣
q∑
i=1

ψ(F i(x)) − q

ˆ

T1

ψ dµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
q∑
i=1

ψ(F i(x)) − q

ˆ

Ii

ψ dµ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
q∑
i=1

q

ˆ
Ii

ψ(F i(x)) − ψ(t) dµ(t)

∣∣∣∣∣∣ ≤

≤ q

q∑
i=1

sup
t∈Ii

∣∣ψ(F i(x)) − ψ(t)
∣∣µ(Ii) =

=
q∑
i=1

∣∣ψ(F i(x)) − ψ(ti)
∣∣ ≤

q∑
i=1

Var(ψ|Ii) = Var(ψ)

where in the first equality we have used that:

µ(Ii) = µ(F−1(Ii)) = µ(F−1(H−1(Ji))) =

= µ(H−1(Rα−1(Ji))) = µ(H−1(Ji)) = Leb(Ji) = 1
q

where Ji = [H(yki
), H(yki+1)]. Here we used first the in-

variance of µ, then the semi-conjugacy property of H, the
fact that H∗µ is invariant under Rα and lastly H∗µ = Leb.
The value ti ∈ Ii above is because the supremum is reached
at some point, as the intervals are closed. □

Lemma 78. Let f ∈ D1(T1). Df has bounded variation
if and only if logDf has bounded variation.

Proof. Note that since Df > 0 (because f is an increas-
ing homeomorphism) it attains a maximum M > 0 and a
minimum m > 0 in [0, 1]. Thus, for any 0 = x0 < x1 <
· · · < xn = 1 we have:

n∑
i=1

1
M

|Df(xi) −Df(xi−1)| ≤

≤
n∑
i=1

|logDf(xi) − logDf(xi−1)| ≤

≤
n∑
i=1

1
m

|Df(xi) −Df(xi−1)|

where we have used the ?? ??. Hence, Var(Df) < ∞ ⇐⇒
Var(logDf) < ∞. □

Theorem 79 (Denjoy theorem). Let F ∈ Diff1
+(T1)

with ρ(F ) /∈ Q/Z and f ∈ D1(T1) be a lift of F whose
derivative Df has bounded variation. Then, F is topolog-
ically conjugated to Rρ(F ).

Proof. By Theorem 67 it suffices to show that F has
no wandering intervals. We argue by contraction. As-
sume that J ⊆ T1 is a wandering interval, i.e. ∀n ∈ Z∗,
Fn(J) ∩ J = ∅. This implies that Fn(J) ∩ Fm(J) = ∅
if n ̸= m and since

∑
n∈Z Leb(Fn(J)) ≤ 1, we must have

Leb(Fn(J)) n→∞−→ 0. By assumption, Var(Df) < ∞, so by
Theorem 78, we have Var(logDf) < ∞. By Theorem 75,
∃pn

qn
∈ Q such that

∣∣∣α− pn

qn

∣∣∣ ≤ 1
qn

2 and qn
n→∞−→ +∞. Now

use 77 Denjoy-Koksma inequality applied to ψ = logDf
and the sequence pn

qn
:∣∣∣∣∣∣

qn−1∑
i=0

logDf(F i(x)) − q

ˆ

T1

logDf dµ

∣∣∣∣∣∣ =

=

∣∣∣∣∣
qn−1∑
i=0

logDf(F i(x))

∣∣∣∣∣ ≤ Var(logDf) =: V

But
qn−1∑
i=0

logDf(F i(x)) =
qn−1∑
i=0

logDf(f i(x)) = logDfqn(x)

10



Thus, −V ≤ logDfqn ≤ V , and so e−V ≤ Dfqn ≤ eV .
Hence, using the mean value theorem ∀x, y ∈ R we have:

e−V |x− y| ≤ |fqn(x) − fqn(y)| ≤ eV |x− y|

Applying this to the extremities of J , we have:

e−V Leb(J) ≤ Leb(F qn(J)) ≤ eV Leb(J)

Since qn
n→∞−→ +∞, this contradicts the fact that

Leb(Fn(J)) n→∞−→ 0. □

11
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