Advanced dynamical sytems

1. | Discrete maps
Maps in T'

Proposition 1. Let a = %7 € Qand let R, : T' — T!

be the rotation of angle a. Then, all the points of T' are
periodic for R, with period gq.

Proof. We identify the elements of T! as R/Z. Let x € T*.
Then, Ry%c =z + aqg=x+p=x. And ¢ is the smallest
integer such that R,%x = x because we assume that p and
q are coprime. Ol

Proposition 2. Let « € R\ Q and let R, : T' — T!
be the rotation of angle o. Then, all the orbits of R, are
dense in T!.

Proof. Let ¢ > 0, z,y € T'. Discretize T' in intervals of
length at most L. Then, Im,n € Nwithm <n <1 +1
such that R,z and R, "z are in the same interval. Thus,
|Ra"7mx — x| < e. Now, concatenating R," ™z repeat-
edly, we will eventually have |R,*" "™z —y| < ¢ for
some k € N. O
Corollary 3. Let o € R\ Q and A C T! be a non-empty
closed invariant set for R,. Then, A = T!.

Proof. Let x € T' and y € A. Then, Vk € N In;, € N
such that Ry € (z — £,z + 1). Thus, Ry "% 2 and
2 € A because A is closed and R}*y € A Yk € N because
A is invariant. O

Definition 4. Consider the set

Yo = {(z1,22,...) :2; €{0,1,...,m — 1}}
We define the shift map as:
Om - Y — Y
(1’1, T, .. ) — ($2,$3, .. )

Remark. Note that some elements in [0, 1] have two dif-
ferent representations in base-m identified as elements
of ¥,,. So we can think of ¥,, as the quotient space
Ym/ ~, where (z1,22,...) ~ (y1,Y2,...) if and only if

Zf; :f = Zf; gz

Proposition 5. Let m € N. Consider the expansion map

E,:T'— T!

T — mx
Then, if ¢ : X, — T is the map ¢(21, x2,...) = > ioq 2,
we have that E,, o ¢ = ¢ o g,,. In particular, ¢ is a bijec-

tion, and thus it is a conjugacy between E,, and o,,.

Proof. Let x = (z1,22,...) € L. Then, ¢ o op(z) =

S72 ZEL. Moreover:
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Remark. Note that E preserves the Lebesgue measure
backwards: |E,~'(A)] = |A| for all A C T!, but
|E,.(A)] # |A] in general.

Definition 6. We define the following distance in X,,.
For all z, 2’ € 3,,:

d(z,z') == =

57 with £ := min{i : z; # z}}

Proposition 7. Periodic points of E,, are dense in T?.

Proof. By conjugacy it suffices to show that periodic
points of o, are dense in ¥,,. Let x € ¥, and € > 0.

Then, £ > 2%7 for some ¢. And so the orbit of

Y= (T1yee ey oy @1y ey Ty Ty ey Tyt t)

is periodic and d(x,y) < e. So periodic points of ¢, are
dense in 3. O

Proposition 8. There exists z € T such that its orbit
under E,, is dense in T*.

Proof. By conjugacy, we only prove it for o,,. But this is
clear by taking he sequence of all sequences:

z=(0,1,...,m—1,0,0,1,0,0,1,1,1,0,2,2,0,1,2,2,1,

2,2,...,(m—1),(m—1),0,0,0,...)

O

A hyperbolic automorphism of T?

? 1) € GL2(R). Then,

A(Z*) = 7% and this induces an automorphism A of
T? = R?/Z2.

Proposition 9. Consider A = (

Definition 10. We define the set of periodic points of A
as Per A.

Lemma 11. Per A = Q?/Z2. Thus, Per A is dense in T2.

Proof. Let x € PerA. Then, 3k € N and n € 72
such that A*x = x 4+ n. One can easily check that

o(A) = {% + %} =:{A+} with A_ <1 < A4. Thus,
k _ k k
det(A* ~T) = (A5 =)0 F = 1) £0

and so the equation A*x = x + n has a unique solution.
Now suppose the solution is x = (o, 3) ¢ Q?/Z*. We have
a system of the form:

ac+bB =mny
ca+dfp =ng

An easy check shows that we must necessarily have both
a,f ¢ Q/Z. Since A* — T is invertible, we may assume



that b # d (otherwise it’s a #
B = "= — j=5a. So:

¢). So, we can write

B B ng ad — be Q
ny = aa+bp = bbd ab_d:ae/z

because ad — be # 0. Now let (2, 22) € Q*/Z* and N > 1

q1’ q2
left to be chosen. We define the set Qn := Z—; mod Z2,
which is a subset finite set of T2. Observe that @Qy is in-
variant under A, and thus, all of its points are periodic
because the set is finite. For the above rational numbers,

just choose N = q1qs. O

Remark. The hyperbolicity comes from the fact that there
is one eigenvector with eigenvalue greater than 1 and an-
other with eigenvalue less than 1, both eigenvalues being
positive.

Theorem 12. The iterates of A smear every domain

F C T? uniformly over T2, that is, for every domain

G C T?, we have that the following limit exists:
AT"F)nG| =% |F||G)|

This property of A is called mizing.

Proof. We can prove a more general property in terms of
functions in the torus (and then apply it to f = 1r and

g=1¢):
FA"x)g(x) dx = / £(x) dx / 9(x) dx
']1‘2 ’H‘Q

We will prove this for the orthonormal basis of Fourier
series {e?™P*} 7>, Note that:

/ (A R)x gy — {1
0
T2

~n.T
Now for large n, the norm of the vector (A") p is large
for p # 0 as we have:

lim
n—o0
']1‘2

ifp=0
ifp#0

A"p ~ N (p,eq)eq

And so its transpose will eventually be different from —q.
Therefore, we have that if g = ™9 then:
lim [ &2 (A" pra)x gy — g
n—oo
T2

So for any p,q € Z? we have the equality. Then, we use
that any function nice enough can be approximated uni-
formly with the Féjer means of the Fourier series (see 77
?7). O

Theorem 13. On the torus T? there exist two direction
fields invariant with respect to the automorphism A. The
integral curves of each of these directions fields are every-
where dense on the torus. The automorphism A converts
the integral curves of each field into integral curves of the
same field, expanding by Ay for the first field and con-
tracting by A_ for the second.

Proof. Let e, and e_ be the eigenvectors of A with eigen-
values A\, and A_ respectively. Let x € T? and
:R— T2

t — x+te_

Y. :R— T? v_
t — x+tey

be the expanding and contracting curves and let £, =
im(y,), nx = im(y_) be the corresponding direction
fields. The density of the curves is a consequence of the
density of orbits in rotation maps in the circle with irra-
tional angle. O

Definition 14. Let A, B : T? — T2 be C! functions and
e > 0. We say that B is C?-e-close to A if:

sup |[B(x) — A(x)[ <e

We say that B is Cl-e-close to A if they are C%-e-close
and:
sup |DB(x) —
x€T?
Theorem 15 (Structal stability). Let B be a diffeo-

morphism on ’]I‘2~Which is Cl-e-close to A. Then, B is
C%-conjugate to A.

DAX)|| <e

Proof. We need to find a Co- conjugacy H between B and
A. Since, B is C'-close to A, we may expect that both
H and B are small perturbations of the identity and A
respectively. So set H=1+h and B = A +b. Then, we
want to find h and b such that:

HoA =BoH = h(Ax)— Ah(x) = b(x + h(x))

This equation is called conjugacy equation. Consider the
operators

Sx : CO(R?,R?) —» cO(RgZ,R?)
h h(A(x))
Ly : CO(R%,R?) — CO(R2,R2)

h  +—Szh-Ah

where we consider the diffeomorphisms A and B as oper-
ators lifted to C'(R?,R?). Observe that:

-1
sup [Szh(x)| = sup [Szh(A™"x)| = sup B0
x€R? x€R? x€R?
Hence, ||Sx|| = 1 and similarly HSZH = 1, where Sgl

h — h(A (x)). We'll now prove that Lz is invertible.
Note that R? = (e, )@ (e_) because A is invertible. Thus:

LAh+ = SAh+ — )\+h+ = Cyt

Lzh =Szh —A h_

Lih=c <
e {

where h = h, +h_, ¢ = ¢y +c_ and hy,cy € (ey).
Now, note that H%H < 1 and so
_1)

is invertible. Similarly, we have HS;/\_H < 1 and so

N
At

(S5' —A-T) =83 (I - A,S;)



is invertible because it is a product of invertible operators.
Thus, L is invertible and its inverse is linear because L 5
is linear. Now, we return to our initial problem. Find h
such that h = Lz '(b(x + h(x))) =: ¥(h), which is a
fixed-point problem. Note that ¥ is a contraction. In-
deed:

| ®(h) — ®(h')|| < ||Lz'|||[b(x + h(x))—b(x + h'(x))]

< Lz [[IDb]| b — v

because of 2?7 ??. This last term is arbitrarily small (|| Db]|
is arbitrarily small) because B is C'-close to A. Thus, h
exists and it’s unique. O

Definition 16. A dynamical system f: X — X has sen-
sitive dependence on initial conditions on X if 3¢ > 0 such
that for each z € X and any neighborhood N, of z, exists
y € N, and n > 0 such that d(f"(x), f*(y)) > ¢

Definition 17. Let U CR™, f : U — U be a dynamical
system and x € U and v € R". We define the Lyapunov
exponent as:

x(x,v) := lim sup — IOgHD(f")(x)VH

n—oo
Remark. The Lyapunov exponent measures the exponen-
tial growth rate of tangent vectors along orbits. It can
rarely be computed explicitly, but if we can show that
x(z,v) > 0 for some v, then we know that the system is
chaotic.

Hamiltonian systems

Definition 18. Let U C R”" xR" beopenand H : U — R
be a C! function. We define the Hamiltonian vector field
associated to H as:

) OH
X=—
op
_oH (1)
P= ox

Remark. Recall that H is a first integral of the system
Eq. (1).

Lemma 19. Let H : U — R be a C' function, W C U.
Then, the volume of W under the field of Eq. (1) is pre-
served.

Proof. Let Wy := ¢, (W
Then:

d .
E vol(W;) = ! / dx = / T det D¢, = /le Xy
&t (W)

), where ¢, is the flow of Eq. (1).

where Xy is the vector field of Eq. (1). But an easy com-
putation shows that divXy = 0. Let’s make the last
step of the computation of above more explicit. Given
A € GL,(R), we have that:

1
det(A +eT) = " det(A) det <€I + TA—1>

=det(A) (1 +etr(TA™) + 0 (?))

And so, det’(A)T
and using that %D@

= tr(TA™!). Finally, taking A = D¢,
=DXyDg, we get:

d d _
P det D¢y, = det’ (D(bt) D(bt = tr< tD¢t(D¢t) 1) =

= tI‘(DXH) = diVXH

O

2. | Dynamics on the circle

Generalities

Definition 20. Let z,2’ € R. We say that z ~ 2’ if and
only if z — 2’ € Z. We define the circle as T! := R/ ~.
We define the following distance in T*:

d(Z,y) = min |2/ — /|

/€T,y €Y
Proposition 21 (Existence of a lift).

1. For any continuous map F : T! — T! there exists
a lift f, i.e. a continuous map f : R — R such that
Fonm =mof, where m : R — T! is the canonical
projection.

2. If g is another lift of F', then g — f = k € Z.

Proof. We only prove the second property. Since, f, g are
both lifts of F', they belong to the same equivalence class.
Thus, f — g € Z. And now use the continuity of f — g.

|

Remark. Recall that a continuous function f: R — R is a
homeomorphism if and only if f is strictly monotonous.

Definition 22. We say that a homeomorphism F' pre-
serves orientation if and only if f is strictly increasing.
We define the set of Homeo, (T*) as the set of homeomor-
phisms of T! that preserve orientation.

Proposition 23. Let F' € Homeo, (T'). Then, F admits
a lift f such that f(z) = 2 + p(z), where p : R - R is a
1-periodic function.

Proof. We already now that F' admits a lift f. A straight-
forward calculation shows that f; : R — R defined by
fi(x) = f(z+1) is also a lift of F. Thus, fi — f =k € Z.
Now, since f must be strictly increasing, we need k € N.
Moreover, since F' is injective, fljp,1) is injective and its
image cannot contain 2 points whose difference is an inte-
ger. Thus, k = 1. Now, define p(z) = f(z) — x, which is

1-periodic:
ple+1)=flz+1)—(z+1) = f(z) -z = p(z)
U
Definition 24. We define the set:
D(T!) := {f € Homeo(R) : f increasing and
fle+1) = fz) +1}



Note that we have the projection:

DO(T') — Homeo (T*)
f — F

We can define a distance in D°(T?) as:
i(5.) = max {sup |1 (2) — o) s~ 0) — )]}
z€R z€R

Lemma 25. DY(T!) is a complete metric space. More-
over, the functions:

DO(T*) — DO(T?)
fo—

DO(T) x PO(T!) —s DO(T?)
(f,9) — fog

are continuous. Thus, D°(T?) is a topological group with
the composition.

Definition 26. Let ¢ > 0 and o € R. We define the
Arnold family as:

foe : R— R
r — ¢+ o+ esin(2nrz)

Lemma 27. If 0 < & < 5, then f, . € D(T?).

Proof. Note that fa,e/ >0 < < i Thus, fuc is
strictly increasing, and therefore it is a homeomorphism.
Moreover, foe(z+1) = fo(x)+ 1. O

Rotation number

Lemma 28. Let f =id + ¢ € DY(T!) with ¢ 1-periodic.
Thus:

n—1

fr=id+) o fi=rid+pn

i=0
with ¢,, 1-periodic.
Proof. Use induction on ¢ to prove that all the terms of

the sum ¢ o f? are l-periodic. The case i = 0 is clear.
Now, for the inductive step:

<pofi+1(x+1)=<p<x+l+chofk(x+l)> -

k=0
= <x+ Y po fk(m)> =po fH(x)
k=0
O

Lemma 29. Let f =id + ¢ € D°(T!) with ¢ 1-periodic.
Let m := minger ¢ and M := max,cr ¢. Then, we have
m<M<m-+1.

Proof. By the periodicity and continuity of ¢, we have
that 3,2 € R such that o(x,) = m, p(zy) = M
and 0 < xp — x,, < 1. Since f € D(T!), we must have
flzar) — f(xm) < 1. Thus:

M—-—m=f(xy)— flem) — (xp —2m) <1

Definition 30. Let (u,) € R be a sequence. We say that
(up) is subadditive if wpim < Uy + Uy, for all n,m € N.
We say that (uy,) is superadditive if wyqm > Un + Uy, for
all n,m € N| that is, if (—u,,) is subadditive.

Lemma 31. Let f € D°(T!) be such that f = id + ¢.
We can write f™ = id + ¢, and let m,, := min,cg ¢, and
M, := max,cgr ¢n. Then, (M,) is subadditive and (m.,,)
is superadditive.

Proof. We have that:

(@) =z = (f" =id)(f" (@) + M (2) =2 < My + My
Now take the supremum in z. The other inequality is
analogous. (I

Lemma 32. Let (u,) € R be a subadditive sequence.

U u
Then, lim — exists, and it is equal to ian —. Analo-
ne

n—oo N n

U
gously, if (u,) is superadditive, then lim — exists, and
n—oo N
o Unp,
it is equal to sup —.
neN T

Proof. Assume (u,) is subadditive and fix p € N. Let
n > p be such that n = k,p + r,, with r < p. Then:

kpup Uy, Up Up,,

Tn

n —_—
n n n n o P+ 3 n
where in the first and second inequalities we used that
(uy,) is subadditive. Now to show that the limit exists and
that the value is the one of above, take first limsup in n
and then inf in p:

U U
2 <liminf -2
p—00 p

. (2 .
limsup — < inf
n—oo N PEN D

O

Theorem 33 (Existence of the rotation number).
For all f € D(T!), we have that the sequence of func-
tions %( f™ —id) convergence uniformly to constant func-
tion p(f) € R. This number is called the rotation number
of f.

Proof. By Theorem 29 we have that %= < 1\;[:, < et %,
where m,, := mingecgr @, and M, := max;cgr ¢,. By The-
orems 31 and 32, we have that “= and MT have the same
limit and moreover:
My, 1 n
() - ) <
So we have the result, and in fact the convergence is uni-
form by domination. O

Proposition 34. The following properties are satisfied:

—_

. p(Ry) = a Va €R.

2. p(f*) =np(f) Vf € D)(T'), n e N.
f<g9 = p(f) <plg) Vf.g € DUT).
o(f +k)=p(f) +kVfeDTY), k€ Z.

If f,g € D°(T!) commute, then p(f o g) =
p(9)-

AN

p(f) +



Sketch of the proof. For the penultimate one, note that
fr(z) == f(x + k) = f(z) + k, since f € D°(T'). Thus:

S (@) = FOfC f(f e+ R) +R) 4 ) + k) = [ () +nk

O
Proposition 35. The function

R:D°T!) — R
f ()

is continuous with respect to the C°-topology.

Proof. Let € > 0 and N > 0 such that % <e. Let f,g €
D(T) be close enough such that ‘fN(x) —gN(@)| < e
for all z € R. In particular, fN(0) < ¢V (0) + e.
A straightforward induction shows that in fact we have
FEN(0) < g*N(0) + k — 1 + ¢ for all k € N. Thus:

PO g0 1

lim
k—o0

p(f) —plg) =

Exchanging the roles of f and g we get the other inequal-
ity. O

Definition 36. Let F € Homeo, (T') with lift f. We
define the rotation number of F as p(F) := [p(f)] € T!.

Definition 37. Let F,G € Homeo, (T'). We say that G
is semi-conjugate to F' if there exists a continuous surjec-
tive map H : T' — T! such that H o F = G o H. We say
that G is conjugate to F' if H is a homeomorphism.

Lemma 38. Let F,G € Homeo, (T') be such that G is
semi-conjugate to F'. Then, if F' has a periodic point, then
G has a periodic point.

Proof. Let p € T! be a periodic point of F' with period n.
Then, H(p) is a periodic point of G with period at most
n. Indeed:

G"(H(p)) = H(F"(p)) = H(p)

Remark. The converse is not true.

Theorem 39. Let F,G € Homeo, (T') be conjugate by
H € Homeo, (T'). Then, p(F) = p(G).

Proof. Let h and f be lifts of H and F' respectively. Then,
an easy check shows that g := ho foh~!isa lift of G. It
suffices to prove that p(g) = p(f). Note that, by induction
we have ho f = g"oh for all n € N. Now write h = id+¢
with ¢ € C(T"). Then:

fr@) —z+ (") _

n n n

Taking limits, we have that p(f) = p(g), as ¢ is bounded.
O

Remark. Note that the proof also works even if 3h =
id + ¢ € C(T') such that ho f = goh (i.e. H is only
a special semi-conjugacy).

Rotation number and invariant measure

Definition 40. We say that u : C(T') — R is a measure
on C(T!) if:

1. p is linear.
2. u is continuous.
3. u(p) > 0, whenever ¢ > 0.

We say that p is a probability measure if p(1) = 1. We
denote by M(T?!) the set of all probability measures on
C(TY).

Remark. Usually we will denote pu(p) by [1,¢du or
Jr (@) dp(z).

Remark. Note that we then have p(p) > 0 whenever
@ > 0, because ¢ attains its minimum at some point xg
(by the compactness of T'). Similarly, u(¢) < 0 whenever
© <0, and u(p) < 0 whenever ¢ < 0.

Remark. Examples of such measures are the Dirac mea-
sures

Go(p) =) zeT

or the Lebesgue measure:
1
Leb(yp) := /gp(x) dz
0

Definition 41. Let F € Homeo, (T!) and p € M(T?).
We define the push-forward measure of F' as Fyu(p) =

p(p o F).

Definition 42. We say that a measure p € M(T?) is in-
variant by F € Homeo(T') (or F-invariant) if Fiu = p.
We will denote by Mg (T?) the set of F-invariant proba-
bility measures.

Proposition 43. Let F € Homeo;(T!), € T! and
n € N.

1. Leb is invariant under R, Va € R.
2. 6, is F-invariant <= F(z) =«

3 53c 4+ 4 5Fn—1(m)
' n

is F-invariant <— F"(z) =z

Proof. We prove the difficult implication in the second
item. That is, suppose ¢, is F-invariant. We then have
that ¢(F(x)) = p(z) Vo € C(T). Now if F(x) # z for
some x € T!, then we may assume x < F(z) and consider
a continuous function on T that equals one in a neighbor-
hood of F(x) not containing x and zero otherwise. O

Theorem 44. Let F' € Homeo, (T!). Then, Mp(T!) #
.

Proposition 45. Let F' € Homeo(T!) and f = id + ¢
be a lift of F, with ¢ € C(T!). Then, Vu € Mp(T?),
p(f) = u(p). Moreover:

Lo[f* —id = np(f)llemy < 1 for all n € N.

2. ¥n € N, 3x,, € R such that f"(x,) — z, = np(f).



Proof. Let 1, := f" —id — nu(p) with u € Mp(T'). We
have that:

wn) = 3 oo f) —nu(@) = 3 plgpo P —np() = 0
1=0 =0

where we have used Theorem 28. Now we must have
that v, change their sign in [0, 1] because otherwise that
would contradict u(¢,) = 0. So Iz, € [0,1] such that
Yn(x,) = 0. So:
f"(@n) — 20 = nu(p)

Dividing by n and taking limits, we have that p(f) = p(y).
This also shows the second point. To prove the first one,
note that min, < 0 and so by Theorem 29 we have
max ¢, < 1. Moreover, min ¢,, = — max(—1,) > —1 (us-

ing the same argument as before) and so [ty [|¢g) < 1 for
all n € N.

Rational rotation number

Proposition 46. Let f € D°(T!), p € Z and ¢ € N be
such that the fraction % is irreducible. Then:

p(f)zg <= Jx € R such that f9(z) =z +p
p(f)>§ <= Vz € R we have fi(z) >z +p
p(f)<§ < Vz € R we have fi(z) <z +p

Proof. Since p(f?) = qp(f) and p(f +p) = p(f) + p, we
have that if g = f2 —p, p(g9) = qgp(f) — p. Thus, an easy
check shows that we can assume that p = 0 and ¢ = 1.
We will only prove the equivalences to the left, as it is
sufficient.

1. Assume f(x) = « for some z € R. Then, from the
definition of p(f) applied to the point z, we have
that p(f) =0.

2. Assume f(z) > x and write f = id + ¢ with
@ € C(T') and ¢ > 0. Since, T' is compact, we
have in fact that ¢ > min¢ =: € > 0. Now:

n—1
f"—idZZSOOfiZnE

i=0
And so p(f) > e > 0.
3. Proceed as in the previous case.
O

Definition 47. Let F € Homeo, (T!) and # € T. We
define the orbit of x as:

Op(x) :={F"(z):n€Z}

We also define the positive orbit of x and the negative orbit
of = as:

Of(z) == {F™(x) :n € Z>o}
Op(x) :={F"(z) :n € Z<o}

If the homeomorphism is not specified, we will omit the
subscript.

Definition 48. Let F' € Homeoy (T!) and z € T!. We
define the omega limit of x as the set of limit points of
Of(2), i.e.

w(z) == {y € T' : I(ng) / +oo such that F™*(z) — y}

We define the alpha limit of x as the set of limit points of
Or(x), Le.

az) = {y € T" : I(ng) \, —oo such that F"(z) — y}

Definition 49. Let F' € Homeo, (T!) and X C T!. We
say that X is positively invariant if F(X) C X and nega-
tively invariant if F~1(X) C X. We say that X is invari-
antif F(X)=X.

Proposition 50. Let X C T'! and = € T'. Then:

1. X isinvariant <= Vr e X, O(z) C X < X is
a union of orbits.

2. O(z) is finite <= = is periodic.

3. The omega limit w(z) and the alpha limit «(z) are
non-empty compact invariant sets.

Definition 51. Let F € Homeo, (T!). We define the
positively recurrent points and negatively recurrent points
as:

RY(F):={z T :2cw()}
R (F)={zeT :z€a)}

Proposition 52. Let F' € Homeo, (T'). Then, R*(F)
are invariant non-closed sets.

Definition 53. Let F' € Homeoy (T!) and z € T!. We
say that x is a wandering point if there exists a neighbor-
hood U of x such that Vn > 1 we have F*(U)NU = @.
The neighborhood U is called a wandering domain. We
define the set:

Q(F) := {z € T : x is not wandering}

Remark. A point z € T' is non-wandering if it is not
wandering, i.e. if VU neighborhood of = 9n > 1 such that
FrU)NU # @.

Proposition 54. Let F' € Homeo, (T'). Then, Q(F) is
an invariant closed set.

Lemma 55. Let F' € Homeo (T!). Then:
Fix(F) C Per(F) C R*(F) C Q(F) C T!

Proof. All the inclusions are clear except for maybe
RE(F) C Q(F). Let x € R*(F). Then, 3(ny) € N
with ng oo such that F™ (z) — x. Now, let U be
a neighborhood of x. Then, x € U and for k large enough,
by the continuity of F', we must have x € F™:(U). So
Fm(U)NU # @ and thus z € Q(F). O



Definition 56. Let F' € Homeo, (T!) and X C T! be a
non-empty closed invariant set. We say that X is mini-
mal if Vo € X, O(x) = X. If X = T!, we say that F is
manimal.

Proposition 57. Let F' € Homeo (T!) and X C T! be a
closed and invariant. Then, X is minimal <= VY C X
closed, invariant and non-empty, ¥ = X.

Proof.

=) Let Y C X be closed, invariant and non-empty
and take y € Y. We have:

YCX=0@cY=Y

<) Let z € X. Since O(z) C X is closed, invariant
and non-empty, we have that O(z) = X.

|
Theorem 58. Let F' € Homeo, (T!) with p(F) = Be
Q/Z. Then:

1. F has periodic points of period ¢, and any periodic
point of F' has minimal period q.

2. For any z € T!, w(z) and «(z) are periodic orbits.

Proof. First we assume ¢ = 1 and p = 0. Let f € D°(T?!)
be a lift of F. By Theorem 46, we have that dz € R with
f(x) = xz. So Fix(f) # &, and it is closed and invari-
ant by integer translations. Now we write R \ Fix(f) as
union of open intervals. Let (a,b) be one of such connected
components. Inside it, we must have either f(z) > z or
f(z) < z. In the first case we have that (f"(x)) is strictly
increasing Yz € (a,b) and so w(xz) = {b} € Fix(f) and
a(z) = {a} € Fix(f) Vx € (a,b). The second case is
exactly the opposite.

Now we do the general case. Assume p(f) = %. Then,
again by Theorem 46, we have that 3z € R with f9(z) =
2z + p. Assume we have 2’ € R and p’, ¢’ € Z with ¢’ > 1
such that f¢'(z') = 2’ +p/. By Theorem 46, we have that
P = ’q’—: and so 3k € N such that ¢’ = kq and p’ = kp’

q
because % is irreducible. Now let ¢ = f¢ — p. Then, an

easy calculation shows that g¥(z’) = /. But p(g) = 0
and in the previous case we have seen that the periodic
points are only fixed points, so k = 1. For the second
part, we proceed as in the previous case with the function

g=rf"—p. O

Irrational rotation number
Definition 59. Given p € M(T!) and U C T! open, we
define the measure of U as:

u(U) = sup{u(p) : ¢ € C(T'), < 1y}
Let A C B(T!) be a Borel measurable set. We define the
measure of A as:

w(A) :=inf{u(U) : A CU,U open}

Remark. With this definition we have the usual proper-
ties of measure defined on subsets of T'. In particular,
Leb([a,b]) = b—a and 6,(A) = 1,4 Vo € T and A C T*.

Definition 60. Let p € M(T!). We define the support
of 1 as:

supp it := {x € T* : VU C T" open with 2 € U, u(U) > 0}
Remark. Note that suppu is a closed set and u(T! \
supp p) = 0.

Remark. If F € Homeo, (T!) and g € Mp(T!), then
supp p is invariant.

Remark. supp Leb = T! and supp d, = {z}.

Proposition 61. Let 4 € M(T') and F € Homeo(T").
1 is invariant by F if and only if YA C T' Borel set,

H(A) = p(F~1(A)).

Proof.
=) Let A C T! be Borel. We have:
w(A) = inf sup u(p)= inf sup p(poF) =
U open 1 cont. U open 1 cont.
ACU <1y ACU <1y
=t oswp )=l swp () =
U open % cont. V open % cont.
ACU <11y, FTHA)CV y<1y
= p(F71(4)
(I

Remark. If F € Homeo, (T!) and p € Mpg(T?), then
u(F™(A)) = u(A) Vn € Z and A C T! Borel.

Lemma 62. Let u € M(T!). We have a lift to a measure
w1 on R invariant by integer translations: u(A+k) = pu(A)
Vk € Z and A C B(R).

Definition 63. Let u € M(T'). We define h,, : [0,1] —
[0,1] as the function with h,(0) = 0 and h,(z) = ([0, z))
for 0 < x < 1. This definition extends to a non-decreasing
function h, : R — R such that h,(x + k) = h,(z) + k
Vk € Z.

Definition 64. Let u € M(T'). We say that p has atoms
if 3z € T! such that u({z}) > 0.

Lemma 65. Let u € M(T'). hy, is continuous if and only
if Ve € R, u({z}) =0, that is if ;& has no atoms.

Proof.

=) Let 2, = + L — 2. Then, [0,2,) D [0, 2541)
and so by the continuity of h, and 77 we have:

©([0,2)) = lim p([0,2,)) = (ﬂ [0,(En)> =

n—oo
neN

= ([0, z])
which implies that u({z}) = 0.
Let = € R and z,, — z. Since (z,,) is bounded, we

can extract a monotone subsequence (z,, ). Then:

lim h(z,) = kllﬂéo w([0, 25, ) =

n—oo

_ {u (Uren[0:ny)) = u([0,2))  if 2, N2
M (ﬂkeN[()» xnk)) = N([Ov :L’]) if Ty, \( x

The first case is fine, and for the second one, since
ﬂ({x}) =0, we have that ,U,([O,{E]) = :U’([Oa (E))



O

Definition 66. A subset C C R is a Cantor set if it is
closed, it has no isolated points and it has empty interior.

Theorem 67. Let F' € Homeo, (T') with p(F) ¢ Q/Z.
Then, there exists a surjective continuous map H : T' —
T! such that HoF = R,(ryoH. Moreover, we have exactly
one of the following two properties:

1. F is conjugated to R,(r) and in that case F' is min-
imal.

2. 3X C T! minimal which is a Cantor set and X =
Q(F),

Proof. Let p € Mp(T') and consider h := h, : R - R
as defined above. Now assume z € T' is such that
u({xz}) = ¢ > 0, then by invariance u(4,) = ¢ > 0,
where A,, := {F"(z)}. Note that since u < 1, (4,) can-
not be disjoint. So In,m € N with n < m such that
F"(z) = F™(x). But then F™ "(z) = x and so z is
periodic, which is not possible since p(F') € Q/Z by The-
orem 46. Thus, 4 has no atoms and so & is continuous
by Theorem 65. Now, define H : T' — T' as the projec-
tion of h to T', which is continuous and surjective. Let
f € D°(T?) be a lift of F. Then:

h(f(x)) = h(f(0)) = p([£(0), f(2))) = u([0,2)) = h(z)

where we have used the invariance of pu. Thus, h o
f = Rp(s0)) © h and necessarily we need h(f(0)) =
p(Rpu(r0))) = p(f) because of the invariance of the rota-
tion number under semi-conjugacy'. This gives H o F =
R,(ryo H. Now, we can express the dichotomy as follows:
either suppu = T* or supppu =: X € T!. The first case
is equivalent to h being strictly increasing and so h is a
homeomorphism. Then, H conjugates I' and R,y and
so F' is minimal because R,y is minimal. In the second
case, we have that X is a nonempty closed invariant set
that has no isolated points because p has no atoms. To
show that X is minimal, let T* = X UU with U open, and
so it can be written as a countable union of open intervals.
Let D C X be the set containing the endpoints of those
intervals and let

Y:={yeT : H'({y}) is a closed interval}  (2)
Y is countable (H=*(Y) = U U D). Now take M C X be
nonempty, closed and invariant. We want to prove that
M = X. We have that H(M) C T! is nonempty, closed
(in fact it’s compact because it is the image of a com-
pact set) and invariant by R,py. So H(M) = T' because
R,(py is minimal. Now, since H restricted to X \ D is
injective (h is strictly increasing in X \ D thought inside
[0,1]), then M D X \ D because if not there would exist
x € X\ D such that x ¢ M. We have H(X \ D) =T\ Y.
Thus, H-Y(H(X \ D)) = H-YT*\Y) = X \ D. Then,
H(z) € H(X\ D) C T! = H(M). So 3y € M such that
H(z)=H(y),andsoy € H-*(H(X \ X)) = X \ D. But

H|x\p is injective, so x = y € M, which is a contradiction
because x ¢ M. Thus, M O X \ D, which implies:

M=M2>2X\D=X=X

So M = X and, thus, X is minimal. Moreover, X has
empty interior. Indeed, if that wasn’t the case, we would
have 0 X = X \ Int(X) = X \ Int(X) € X and so 0 X
would be a nonempty closed invariant set, which is not
possible because X is minimal. Finally, to prove X =
Q(F), by minimality it suffices to show that Q(F) C X.
Let z € U, where T' = X WU, with U = | |, I; invariant
and I; intervals. Note that F' maps connected components
of U to connected components of U. We need to see that
x is wandering. Let I be one of such intervals. We may
have either F"(I) = I for some n > 1or F*(I)NI =&
for all n > 1. But in the first case, we would have that the
extremities of I are periodic points, which is not possible
because p(F') ¢ Q/Z. So we must have the second case,
which implies that I is a wandering domain, and thus so
isU. |

Unique ergodicity

Definition 68. A homeomorphism F : T! — T! is
uniquely ergodic if it has a unique invariant probability
measure.

Lemma 69. If o ¢ Q, then R, is uniquely ergodic and
Mg (T!) = {Leb}.

Proof. Let p € Mpg,. We want to see that Vo € C(T!):

[e@an= [ @)z

T! T!

An easy check shows that if P, = Zzz_n aie? kT ig g
trigonometric polynomial, then le P, (z)dx = ap. More-
over, if k # 0:

/6271'“6‘36 dM _ eQTI’ikOt /e2wikx dM . /e2ﬂikac d/J -0
T?! T?! T?!

where the equality is due to the invariance of p. So, we also
have le P,(z)du = ag. Now consider the Féjer means,

which converge uniformly to ¢ (recall 2?7 ?7) and use ?7.
(Il

Proposition 70. Let F € Homeo, (T') with p(F) ¢
Q/Z. Then, F is uniquely ergodic.

Proof. Let H be such that H o F' = R,y o H (by Theo-
rem 67) and so F~1(H 1(A)) = H’l(Rp(F)fl(A)). Take
€ Mp(T!) and define H,u as:

H.u(A) = pu(H 1 (A)) VA CT' Borel
We have:
Hyp(A) = p(H™H(A)) = w(F~H(HH(A))) =
= u(H  (Ryr) ™1 (A))) = Hep(Ryry ' (A))

1Recall that since h is a lift, then h(z + 1) is also a lift and so h(x 4+ 1) — h(z) = k € Z and this constant has to be 1 because h(1) = 1.
By Theorem 23 we have an expression of h = id + ¢, and that gives us the invariance of the rotation number.



where the second equality is due to the invariance of pu.
Hence, H,u is invariant by R,r), and so H.u = Leb.
That, is u(H~'(A)) = Leb(A). Recall again the set Y
of Eq. (2) and T' = X U U, with H-%(Y) = U. Since
Y is countable, 0 = Leb(Y) = p(H~1(Y)). Now since
H|x\p : X\ D — T*\ 'Y is a homeomorphism, we have

that pu(B) = Leb(H(B)), and so p is uniquely determined.
O
Proposition 71. Let F € Homeo(T!). Then, F is

uniquely ergodic if and only if Vi € C(T') e, € R such
that + Zl 0 <poF converge uniformly to c,. In that case,
= u(@), where Mp(T?) = {u}.

Proof. Assume first that Mp(T?) = {u} and argue by
contradiction. That, is 3¢ > 0, (ng) € N with ng * 400
and (z,) € T! such that Vk > 0:

1 nkfl )
- Z gpoF’(mk)—/apdu = /goduk—/gpdu > e
=0 ! ! T!
3)
where vy, = %Z?:kofl (F%),d.,. Note that v, € M(T?)

and since M(T?) is compact with the weak*-topology?,
after extracting a subsequence, (1) converges weakly to
v € M(TY). Now, v is invariant. Indeed:

2
el & s
ng

1 mn
VFuve — vl = an((F ) .Boe — b21)

<

So v = p, but this is a contradiction with Eq. (3). Now
we prove the converse. Let u € Mp(T?!). Then:

n—1

o1 ;
cw=/0wd/‘:/,}5&n;@0pdu=
i 13 [eoran = i 1S [ o /@dﬂ

=0 =0
where the third equality is due to the uniform convergence

and the penultimate equality is due to the invariance of u.
This implies that g is uniquely determined. O

Remark. The unique ergodicity property is preserved un-
der conjugation.

Definition 72. For k € NU{0} we define the set D*(T?)
as:

DF(T') := {f : R — R increasing C*-diffeomorphism

such that f(x 4+ 1) = f(x) + 1}

Note that f € DF(T!) if and only if f = id + ¢, with
@ € CF(T'). We also define the set Diff* (T") as:

Diff* (T') := {F : T' — T' C*-diffeomorphism with

orientation preserving}

2 M(T) is closed in E =
compact.

Proposition 73. Let F € Diff} (T') with p(F) ¢ Q/Z,
1 be the unique invariant probability measure of F' and

1
f € DYT!) be a lift of F. Then, lim —logDf"(x) =
n—oo N
/log(Df) dp = 0.
Tl

Proof. An easy induction shows that ¥n € N we have:

n—1
log Df" = Zlog(Df o f")
i=0
So:
1 n—1 n—1
—log D" = Zlong i) ZlongoF)

where in the last equality we have used the fact that
Df =1+ Dy € C(']Tl) By Theorems 70 and 71, we
have that lzl o log(Dfo Fl) converges uniformly to

n

¢ := [ log(Df)dp. Moreover, since Df™ = 1+ Dy, €
C(T'), we have that Jp Df*rde = 14 [ Dppdz = 1.
Now assume without loss of generality that ¢ > 0. Then,
for n large enough we must have D f™(x) ~ €™ and so:

1—/Df”dx~/ et dr =% foo
T1

If ¢ < 0, we have a similar contradiction. Thus, ¢ = 0.
|

Definition 74. Let ¢ € C(T!). We say that ¢ has
bounded variation if 3C' > 0 such that for all 0 = z¢ <
Ty < -+ <z, =1 we have:

Z lo(x:) —

The constant C' is usually denoted as Var(p).

;)| <C

Remark. 1If ¢ € Lip(T!), then Var(yp)
Lipschitz constant of (.

= L, where L is the

Lemma 75. Let a ¢ Q. Then, ¥n € N, 32—: € Q such
that:

1
ooz,
An dn
n—oo

2. ¢, — +00

Proof. Let @ € N. By the Pigeon-hole principle, there
exist two elements among 0, {a},...,{Qa} (here {-} de-
notes the fractional part) such that they are in one of

the intervals among [O, é} , [é, %} R, [%, 1}. That
is, 31,92 € Q>¢ and p € Z such that |ga — p| < % with
q:=q2—q1 < Q. Now apply this to @, =n > 1: 3% eQ
with 1 < ¢, < n such that:

11
lgnoe — pp| < — < —
n " G

(C(T1))* and it’s contained in the unit ball of E, which is compact for the weak*-topology. Thus, M(T?) is



To prove that ¢, n=se 400, we argue by contradiction.

Assume that M € N such that ¢, < M for all n € N.
Then, Ing € N such that Vn > ng we have ¢, = ¢,,. But
then by the irrationality of o we have that 3¢ > 0 such
that:

n—oo

c<|gna—py| <= —0

S|

which is a contradiction. O

Lemma 76. Let a ¢ Q and % € Q with ‘a — g‘ < q%. Set
a; = {ia} for 1 < i < g, where {2} denotes the fractional
part of x. Then, each «; belongs to a different interval of
the form (%7 %) with k; € {0,...,¢—1}.

Proof. Assume without loss of generality that 0 < a— % <
% Then, for 1 <1i < g we have:

ip i 1
0<ia-L <l <=
¢ ¢4

We claim that the numbers {i2} are all distinct for 1 <

(4)

i < q. Indeed, if 34,5 with i% —jg = k € Z*, then
% = %, which is not possible because £ is irreducible
and i —j < ¢ — 1. So we can write {i’} = k;L for

some k; € {0,...,¢ — 1}. Finally, Eq. (4) implies that

ki ki+1
OéiE(q, ;_) O

Proposition 77 (Denjoy-Koksma inequality). Let
F € Homeo, (T!) with o := p(F) ¢ Q/Z, p € Mp(T?)
and 2 € Q with ‘a— g‘ < L. Then, V¢ € C(T") with
Var(y) < oo we have:

qg—1

Y W(F () ~

=0

Q/wd,u < Var(¢y)) VzeT!

’]Tl
Proof. We’ll prove that Va € T':

q

S wlFi @) ~a [ vdu] < Var(v)
’]I‘l

i=1

which is equivalent by replacing by F~!(x). Let z € T*
and choose y1,...,Yq—1 € ']1_‘1 circularly ordered with yo :=
z and such that H(y;) = £ + H(z), where H : T! — T!
is the semi-conjugacy between F' and R, given by Theo-
rem 67. By Theorem 76, we have that 3'k; € {0,...,¢—1}
such that H(z) + i« € (H(x) + %,H(x) + %) This
implies that F(x) € [yk,, Yk,4+1] =: I; because H (x)+io =
R,' o H(x) = H o F'(z) and H is increasing (thought in
[0,1]). Now, we have:

q

S o(Fi(x) *q/wdu =

i=1

S vFi@) —q/uzdu
=1 I;

P(t) du(t)

IA

Zq /wF’

< quél}? [W(F (2)) — ()| (i) =

10

= Z [(F'(x) ZVar = Var(v)
i=1
where in the first equality we have used that:
p(l) = p(F~H(L)) = p(F~HHTH(T)) =
= W(H (Ra ™M (1) = (H () = Leb(J) =

where J; = [H(yx,), H(yr,+1)]. Here we used first the in-
variance of u, then the semi-conjugacy property of H, the
fact that H, p is invariant under R, and lastly H,pu = Leb.
The value t; € I; above is because the supremum is reached
at some point, as the intervals are closed. (Il

Lemma 78. Let f € DY(T!). Df has bounded variation
if and only if log D f has bounded variation.

Proof. Note that since Df > 0 (because f is an increas-

ing homeomorphism) it attains a maximum M > 0 and a

minimum m > 0 in [0,1]. Thus, for any 0 = z¢ < 21 <
- < x, =1 we have:

=

— Df(wi1)| <
< Z llog D f (x;) — log D f(z;—1)| <

<3~ IDf () — Df i)
i=1

where we have used the ?? ??7. Hence, Var(Df) < 0o <=
Var(log Df) < 0. O

Theorem 79 (Denjoy theorem). Let F € Diff} (T!)
with p(F) ¢ Q/Z and f € D'(T') be a lift of F whose
derivative D f has bounded variation. Then, F' is topolog-
ically conjugated to R,(r).

Proof. By Theorem 67 it suffices to show that F has
no wandering intervals. We argue by contraction. As-
sume that J C T! is a wandering interval, i.e. Vn € Z*,
F(J)NJ = @. This implies that F*(J) N F™(J) = @
if n # m and since ), Leb(F™(J)) < 1, we must have
Leb(F™(J)) =5 0. By assumption, Var(Df) < oo, so by
Theorem 78, we have Var(log D f ) < 00. By Theorem 75,
Elp" € Q such that ‘a < 45 q > and ¢, —3 +o0. Now
use 77 Denjoy-Koksma 1nequaht} applied to ¢ = log D f
and the sequence f]’—z:

qn—1 ‘
Z log Df(F*(x)) *Q/IOngdu _
i=0 s
qn—1 :
3" log Df(Fi(x))| < Var(log Df) =
i=0
But
1 an—
Z log Df(F'(x Z log Df(f'(z)) = log Df (x)
i=0



Thus, —V < logDf% < V, and so eV < Df% < eV. Applying this to the extremities of .J, we have:

Hence, using the mean value theorem Vz,y € R we have:
e”VLeb(J) < Leb(F(J)) < e"Leb(J)

Since ¢, =3 400, this contradicts the fact that
— n—oo
e Ve —y| < |f(x) = [T (y)| < eV]w —y| Leb(F"(J)) — 0. .
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