Stochastic processes

1. | Preliminaries

Let (Q,.A,P) be a probability space and
(X») be sequence of random variables such that:

SCE(X,)) < oo
n=1
X, is a random variable and:
=33 ) - 3ay
n=1 n=1
By the 7?7 7?7 we have that

E <j£:|}(n|> :ZZE:IEU)(HD <o

so the random variable Y := E
VN € N satisfies:
N
3
n=1

Then, > %,

1 | Xn| is integrable and

n| <Y

(Law of total probability). Let
(Q, A,P) be a probability space and {4, : 1 < n <
N} ¢ A, N € NU {oo}, be such that |_|£:;1 A, =
with P(€2') = 1. Then, VA € A:

Z P(A
See the proof of 7?7 77.

Note that if there is some A,, for which P(4,,) =
0, the conditional probability is not well-defined. But note
that:

0<PA,PA] A,) =

P(A] Ay)

P(Ajjf4n>fgp(An)::O

So we can omit this term in the sum.

Conditional expectation

(Substitution principle). Let (22,4, P)
be a probability space, X be a discrete random vector with
support Sx, Y be a discrete random variable with support
Sy, h: Sx x Sy — R be a function and y € Sy. Then:

E(MX, Y)Y =y) =ERX,y) | Y =y)

(Law of total expectation). Let
(22, A,P) be a probability space, X is a discrete random
vector with support Sx, {4, : 1 < n < N} C A,
N € NU{oo}, be such that | [N, A, = Q' with P(€) =
and h : Sx — R be a function. If h(X) has finite expec-
tation or A > 0, then:

E(h(X) | An)P(An)

See the proof of 77 77.

Let (2,.A,P) be a probability space, X be
a discrete random vector with support Sx, Y be a discrete
random variable with support Sy and h : Sx — R be a

function. For all w € Q we define the random variable
E(h(X)|Y) as

E(h(X) [ Y)(w) =E((X) [ Y =y)

provided that Y (w) = y. Note that it can also be written
as:
E(RX)|Y)= Y E(X)]Y =)Ly

yESY

Let (2, A, P) be a probability space, X be
a discrete random vector with support Sx, Y be a discrete
random variable with support Sy, h,hi,he : Sx — R be
functions and a,b € R. Then:

1. E(ahi(X) 4+ bhe(X) | V) =
bE(hy(X) | V)

aB(hi(X) [ Y) +

2. If X and Y are independent, then E(h(X) | V) =
E(h(X)).

3. E(E(M(X) | Y)) = E(h(X))

The first two properties are conse-
quence of the fact that the conditional expectation is an
expectation. For the last one note that:

EEMRX)|Y) = Y EhX)|Y =y)PY =y)
YyESy

= E(h(X))

where the last equality is due to the

(Wald theorem). Let (€2, A, P) be a proba-
bility space, (Z,) be a sequence of random variables, all of
them with expectation p € R, such that sup,,~; E(|Z,|) =
A < co. If N is an integrable random variable with sup-
port N independent of Z, Vn € N, we have that:

o (3 0) s

Note that E (Zle Zn) =E(>0,

it is integrable because:

anNZn),and

n=1

gAZ]P(Nzn)

n=1

= AE(N) < o©



where we have used the Independence of (Z,) and N in
the first equality. And so:

N e
E (Z Zn) = 3 E(Z0)E(1ysn) = 1E(N)

Note that the equality remains true if Z,, >
0 Vn € N even if E(N) = oo because the equality
>ooC \P(N > n) = E(N) remains true.

Probability-generating function

Let (Q2,.A,P) be a probability space and
X be a random variable with support N U {0}. The
probability-generating function (or pgf) of X is the func-
tion gx : Dx — R defined as:

gx(s) = iskP(X =k) =P(X =0)+ i sPP(X = k)
k=0 k=1

(1)
The set Dy is defined as all the points for which the series
of converges absolutely.

Let (Q,A,P) be a probability space and
X be a random variable with support N U {0}. Then,
[-1,1] € Dx and gx(s) = E(s¥) (with the convention
that 0° = 1).

Clearly gx(s) = E(s*) and furthermore Vs €
[—1,1] we have s € Dx because:

SIs"P(X =k) <Y P(X=k)=1<x
k=0 k=0

Let (22, A,P) be a probability space and
X, Y be random variables with support NU {0}. Then:

d
X=Y<:>gX:gy

Moreover:

gy ¥ (0)

X vk >0

Note that gx(s) is a power series de-
fined in a neighbourhood of s = 0 (recall ?7?).

Let (£2, A, P) be a probability space and X,
Y be independent random variables with support NU{0}.
Then, Vs € Dx N Dy we have:

gx+v(s) = gx(s)gy (s)

Note that if s € Dx NDy, then s € Dx 4y because

gxv(Is) =E (IsI*) =E (Is*) E (1s]") < o

due to the independence of X and Y. To show the equality
if s =0, we have:

P(X+Y =0)=P(X =0,Y =0) =P(X =0)P(Y =0)

where the first equality is due to X,Y € NU {0} and the
second one is becuse of the independence. If s # 0, as
before:

gx1v(s) = E(s¥T) = E(s¥)E(s") = gx(s)gv (5)

Let (Q, A, P) be a probability space and X
be a random variable with support NU{0}. Then, Vk > 1
we have:

lim gx®™(s) =E(X(X —1)--- (X —k+1))

s—1—

Take (s,) € R such that s, 2 1.
Differentiating term by term we have that:

98 (50) = BX(X = 1)+ (X =k +1)(s)" ")
for all n € N. Moreover, note that X(X —1)--- (X —k+

1)(s,) ™" A X(X —1)---(X — k+1). Now use the ??
?7.

X gx(8) Dx
keN sk R
U({k1,.. k) | 2300 sk R
B(n, p) (ps+1—-p)" R
Pois()\) A1) R
S -1 1
Geolp) 1—([1)—19)5 (1—p’1—p>

Table 1: Probability-generating functions of common dis-
tributions.

2. | Discrete-time Markov chains

Stochastic processes

(Stochastic process). Let T C R™ be
a set, (F,€) be a measurable space and (2, 4,P) be a
probability space. A stochastic process on (Q, A, P) with
parameter set T and state space (E,E) is a family of ran-
dom variables {X;},., from (2, A4) to (£,£). That is,
X; : Q — F satisfies X, '(B) € A for all B € £ and all
teT.

In general, we wil consider stochastic processes
with parameter sets T = N,N U {0},Z,R,R>¢ and state
spaces (NU {0}, P(NU {0})) or (R, B(R)).

Let (X¢),eps (Yi),er be two stochastic
processes defined on the same probability space (€2, .4, P).
We say that (X¢),., and (Y:),cp are independent if Vn, k €

N and all t1,...,t,,81,...,8 € T we have that the ran-
dom vectors (X, ,..., X, ) and (Ys,,...,Ys,) are indepen-
dent.



Galton-Watson process

Let (X,,), n € NU {0} be a sequence of dis-
crete random variables representing the number of new
individuals of a certain population at the n-th generation.
Suppose they are defined as

Xn
k
Xn+1 = Z Zr(LJr)l
k=1

and Xo = 1. Here Zfllfgl has support NU{0} Vn, k and rep-

resent the number of descendants (to the next generation)

of the k-th individual of the n-th generation. Suppose
that Zr(ji)l ~ Z are ii.d. and independent of (X,). We

would like to study the probability p of extinction of this
population:

p:IP’({Xn:0:f0rsomen€N})=IP’<G{X”:O}>

Let (Z,,) be a sequence of i.i.d. random vari-
ables distributed as Z with support N U {0}, and N be a
random variable also with support N U {0} and indepen-
dent to (Z,). Let X = Eszl Zy. Then, Vs € [—1,1] we
have:
9x(s) = gn(9z(s))

First suppose N < M with M € N fixed. Then us-
ing the independence, the and
the

= gn(9z(s))
Now if N can take any value of NU {0} we have that:

N
x(o) = ()
:E<hm32ﬂwm&>
M — o0
- E(z )

M—o0

= lim gmin(N,M) (gZ (S))

M—o0

= 1im E ((g2(s)"" ")

M — o0
Iy
= gn(92(s))

where both limit exchangings are due to the 7?7 7?7 using
the intagrable random variable 1.

In the hypothesis of , we have

that:
p=9z(p)

Note that {X,, =0} C {X,,+1 = 0}. Hence:

n—oo

p="r <U {Xn = O}) = nh—>H;o ]P)(Xn = O) = lim gx, (0)

n=1

Now, using we have:

9x,(8) = gx,_,(92(s)) =+ = gx,(92"(s))

But X; = 1 and so gx,(s) = s. So gx,(s) = gz"(s)
and therefore gx, ., (0) = gz(9x,(0)). Taking the limit
as n — oo and using the continuity of the pgf we get the
result.

In the hypothesis of and the
additional assumption that 0 < P(Z = 0) < 1 we have:

1. f E(Z) < 1, gz has only 1 fixed point (the trivial
one, s = 1). Hence, the population will extinct with
probability 1.

First suppose P(Z = 0) + P(Z = 1) = 1. Thus,

Z a'gc' 1 and so E(Z) < 1. Moreover, gz(s) = P(Z =
0) + sP(Z = 1), which is a line with slope P(Z = 1) < 1.
Hence, it has a unique fixed point, which is s = 1.

Now assume P(Z = 0) + P(Z = 1) < 1. Then, 3k > 2
with P(Z = k) > 0. Hence, gz'(s) > 0 and gz"(s) > 0
Vs € (0,1). Now consider f(s) = g(s) — s. Note that f is
strictly convex in (0,1) and f(0) = g(0) =P(Z =0) > 0.
Finally, note that

lim f'(s) = lim g(s) —1=E(Z) -1

t—1— t—1—

and so lim f'(s) is negative in the first case and positive
t—1—

in the second case. This implies that f has no zeros on
(0,1) in the first case and exactly 1 zero in (0,1) in the
second case.

It’s missing to see that in the second case the probability
of extinction p is given by the fixed point in (0, 1), rather
than 1. We have that:

p= lim gx,(0) = lim gz"(0)

n—oo n— oo

Since gz’ > 0, we have that gz is increasing and so it
is gz™ Vn € N. Moreover, if gz(xg) = o, we have that
9z (x0) = xo ¥n € N. Therefore,

0<gz(0)<gz2(0) < - <gz"(0) < <xp<---<1

And so the limit has to be zy (note that the limit does ex-
ist because (gz™(0)) is an increasing bounded sequence).



Gambler’s ruin

(Gambler’s ruin problem). Consider a
gambler with an initial capital z € Z and suppose that he
plays a game in which wins 1 unit of capital with probabil-
ity p and loses 1 unit of capital with probability ¢ := 1 —p.
The game ends whenever the player is ruined or if he ar-
rives to a capital of a € Z. All the plays are independent.
We denote by (Xj) the variables that measure the k-th
play. That is:

P(Xk = —1) =dq

We define g, as the probability of ruining himself starting
with a capital of z, p, as the probability of winning the
game starting with a capital of z and D, as the duration
of the game starting with a capital of z.

Consider the Gambler’s ruin problem.

Then: (1)74(2)
—(4)*+(2)*
—el P/ jf 1/2
o=y o Ay
1-2 ifp=1/2
We have that ¢, solves the difference
equation

qr = P(ruin | X = HP(X; = 1)+
+ P(ruin | X = —1)P(X; = —1) = qe410 + qr-1¢

with ¢o = 1 and g, = 0, whose solution is straightforward.

Consider the Gambler’s ruin problem.
Suppose that we play against another player (and so when
we lose, he wins and vice versa). Let p%, ¢ be the respec-
tive probabilities for the other player. Then:

:+q =1
Hence, D, < .
Note that
() (B
" G if 1/2
¢ = 17(5) pF /
1—2== ifp=1/2

Let d, = E(D,) and suppose that this
expectation is finite. Then:

z a 17(

d, = aPp api-( ; ifp£1/2
- 2) ifp=1/2

S b

LSS

z(a
We have that g solves the difference equation:
dp =E(Dg | X = )P(X; =1)+
+E(Dk | X = —1)P(X1 = —1) =
=E(Dp+1+ 1)p+E(Di—1 + 1)g = dir1p + dp—19 + 1

with dg = 0 and d, = 0, whose solution is straightforward
(di, = p—fq and d = —k? are particular solutions for the

case p # q and p = ¢, respectively).

Markov chains

A Markov chain is a sequence of discrete
random variables (X,,) with support I such that:

P(Xni1=7]|Xo="40,...,Xn-1=lp-1,X, =1) =
=P(Xpy1=7| Xn=1)

for all n > 0 and all 49, ...,%i,-1,%,j € I. This property is
usually called Markov property. If moreover P(X,, 11 = j |
X,, = 1) does not depend on n, that is

P(Xni1 =4 | Xn=1)=P(X; =j | Xo=1i)

then we say that the Markov chain is a time-homogeneous
Markov chain. The set I is called state space and its ele-
ments are called states of the Markov chain.

(Stochastic matrix). Let I be an index
set. A matrix P = (p;;)i jer is called a stochastic matriz
if p;; > 0Vi,j €l and:

Zpij =1

Jjel
Let (X,,) be a time-homogeneous Markov
chain. We define the transition probabilities p;; as the
probability of going from state 7 to state j. That is:
pij = P(Xy1 =3[ Xo=1)
The matrix P = (p;;); jer is called the transition matriz
of the Markov chain. Finally, we define the probabilities

m; as m; = P(Xo = i). We define the vector m = (7;);er as
the initial distribution of the Markov chain.

Let (X,) be a time-homogeneous
Markov chain. Then:

1. P is a stochastic matrix.
2. Zie] T; = 1.
Let I, F be finite or countable set, (Z,,) be
a sequence of random variables with support F, Xy be a

random variable with support I and f : I x FF — I be a
function. Consider the sequence (X,,) defined by:

Xn+1 = f(Xnv Zn+1)

If Vig,...,in_1,7 € I and Vk € F' we have:

P(Zni1=k| Xo=i0,...,Xn 1 =in_1,X, =1) =
—P(Znsr =k | Xn = i) =P(Z1 = k | Xo = )

then (X,,) is a time-homogeneous Markov chain with tran-
sition matrix P = (p;;); jer given by:

pij =P(f(i,Z1) =7 | Xo =1)



Let C = {Xo =t0,...,Xpn-1 = in-1,X, =i} and The matrix P = (pg-l))mg is called n-step transition

let A;j :={keF: f(i,k) =j}. We have: matriz of the Markov chain.
P(Xpi1=7]C)=P(f(i, Zns1) =3 | C) Let (X,,) be a time-homogeneous Markov
=P(Zpi1 € Aij | O) chain. We define the probabilities 77( ™) as the probability

of being in state ¢ after n steps. That is:

= > P(Zu1=k|C)
k€A,

P(Z; =k | Xo =)
keA; ;

=P(f(i,21) =j | Xo = 1)

7" =P(X, =)
We define the vector (") = (wgn))iel as n-step distribu-
tion of the Markov chain.

Let A, B, C be events in a probability space
such that P(BN C) > 0. Then:

(Random walk). A random walk is a se- P(ANB|C)=P(B|C)P(A| BNC)
quence (S,) with S = X, and S, = >, _, X}, where
(Xk)r>1 is a sequence of i.i.d. random vectors and Xy is

a random vector independent of (Xy). P(ANBNC)P(BNC)

A simple random walk is a random walk P(C) P(BNC)
in which in one step we can only pass from one state to its =P(B|C)P(A|BNC)
neighbours. That is, if the random walk is in Z, X}, are
random variables such that:

P(ANB|C) =

1 with probability p Let I be a finite or countable set and A and
X = —1 with probability 1 — p D; for i € I be events 'in a probability space such that
P(A | D;) = p for all i € I and such that the D; are

pairwise disjoint. Then:

IP’(AL_JD,):p

P(AN L
<A gl ) i
S B(ANDy)
B Eie] P(Di)
_ 2ier P(A | D)P(Dy)
a ZiEI P(Di)
o Zie[ pP(D;)
B Zie] P(Di)

=D

Let (X,,) be a time-homogeneous Markov
chain. Then, P = P".
Figure 1: A simple random walk of 10000 steps in Z2. The
green and blue dots are the respective initial and final po-
sitions of the random walk.

By induction on n. The case n = 1 is clear. For
n > 2 we have:
Pl = P(Xos1 = j | Xo =)
A sequence of i.i.d. random variables, a ] )
random walk and a Galton-Watson process are all time- - ZP(X"H =), Xn = k[ Xo=1)
homogeneous Markov chains. kel

=>» P(X,=k|Xo=1)
Let (X,,) be a time-homogeneous Markov kzel ( | Xo=19)
chain. We flr.aﬁne the'n-step transztan probabzl.z?zes p;; as P(Xpsr = | X =k, Xo = 1)
the probability of going from state ¢ to state j in n steps.
That is: = szk pkj
pgl) P(X, =j | Xo=1) kel



where the penultimate equality follows from

and the last equality follows from and the
Markov property because if D = {X,, = k, Xy = i} we
have that:

n

11,0 yin—1€1

D= {Xn=k,Xo=10,X1=11,...
and so:

P(Xpt1=71Xn =k Xo=1)
Xoii,Xl :il,...

=P(Xp41=7| Xn=k,
7Xn—1 = Z‘n—l) =
= IP)(Xn+1 =7 | Xn = k)

Therefore, P 1) = P"P, by induction hypothesis.

(Chapman-Kolmogorov equation). Let
(X,) be a time-homogeneous Markov chain and 4,5 € I.

Then:
(m)_(n)
me )pl(w
kel

(m+n)

Let (X,) be a time-homogeneous
Markov chain. Then:

L. PO =1;

2. () = g O)pn

: 'pinflin

i _P(XTL:Z):ZP(X,,L:2|X0:]§)

kel
(0) (n)
Z Ty D
kel

3. Use the 7?7 7?7 and the Markov property.

Classification of states

Let (X,,) be a time-homogeneous Markov
chain. We say that a state j € I is reachable from i € I if
In € NU{0} such that p(") > 0. In this case we will write
i—j.

Let (X,,) be a time-homogeneous Markov
chain. We say that two states i, j € I communicateifi — j
and j — 4. In this case we will write i <> j.

Let (X,) be a time-homogeneous Markov
chain. Then, the relation <+ is an equivalence relation.

The reflexivity and symmetry are clear. For the
transitivity, suppose ¢ <+ j and j <> k. Then, In,m € I
such that pﬁ?) > 0 and p(m) > 0. Then by

Zp(n) (m >

lel
(r+s)

(n+m)

P ()()

Pij Pjk >0

(2)

Similarly, we have p,." ™’ > 0 for some r, s € I. Therefore,

i< k.

Let (X,,) be a time-homogeneous Markov
chain. A subset C C [ is called irreducible class if for any
1,7 € C we have ¢ <> j. That is, if C is an equivalence
class of «<». If all the states are in the same equivalence
class, then the Markov chain is called an irreducible chain.

Let (X,,) be a time-homogeneous Markov
chain and i € I. We define the period of i as:

d(i) == ged{n € N : p\™ > 0}

with the convention that if {n € N : p(") > 0} = &, then
d(i) = oco. If d(i) = 1 we say that ¢ is aperiodic.

Let (X,) be a time-homogeneous
Markov chain and ¢, € I. Then:

i< j = d(i)

= d(j)
Suppose i # j. We will see that if p(-?) > 0, then
d(i) | n. Since i <> j, then 3r,s € I such that p(’") >0

(s) , we have p(-- 950, Thus,

(23

andp > 0. So as in

d(@) | r + s. Moreover, if pg-?) > 0, then:

P 2 p e > 0

So d(i) | r+n+s. Thus, d(i) | n and so d(j) > d(i)
because d(j) is the greatest common divisor of all such
n. Repeating the argument exchanging ¢ and j we get
d(j) = d(i).

Let (X,,) be a time-homogeneous Markov
chain. If the chain is irreducible, we will denote the com-
mon period by d. If d = 1 we say that the chain is aperi-
odic.

Let (X,) be a time-homogeneous
Markov chain. Suppose we have an irreducible chain of
period d > 1. Then, there exist subsets Cy,...,Cq_1 C I
such that I = Cy U --- U Cy_1 and such that if j € Cy,
then:

Pik > 0 = ke C[a+1]d

for all k € I. Here [ov+ 1], denotes a +1 mod d.
Let 7 € I and define
={j€l:3n e NU{0} with p(nd+a > 0}
Clearly C’OU~ -+UCy—1 = I. Let’s see that C,NCg = @ if
a # B. Suppose k € C, N Cg. Note that since the chain is
irreducible, 3m € NU {0} such that p(m) > 0. And so, as

in we have p("d+a+m) > 0 because k € C,. Thus,
d | « + m. The same argument with 3 1mphes d|B+m.
Sod| B —aand 8=« because a, 5 € {0,--- ,d—1}.
Finally, if j € Cy is such that pj; > 0 for k 6 I, then as
in we have p(nd+a+1) >0. So,ifa+1<d-1,
then k € Cyy1. Otherwise, k € Cy = Clqayq),-



Stopping time and strong Markov property

Let (X,) be a time-homogeneous
Markov chain, k¥ € N and A C I¥ and B C I". Then:

P((Xn+1, Ce aXn—i-k) cA | (Xo, Ce ,Xn_l) € B X, = 7,) =
=P(Xnt1,- - Xntk) EA| Xp=1) =
:P((Xl,...,Xk) €A|X0 :i)
for all n > 0.
By it suffices to prove the statement

for B = {ig} x---x{in—1}. Moreover, since A is countable
we can suppose A = {j1} x -+ x {jr}. We will prove it by
induction on k the homogeneous equality (the other one
is even easier). The case k = 1 is by definition. Now sup-

pose k > 2. Then, denoting C := {Xo = ip,..., Xp—1 =

in—1,X, =i} we have:

P(Xpt1 =1, s Xngkt1 = Jrt1 | C)

=P(Xntrkt1 = g1 | O, X1 = J1, oo, Xk = i)
P(Xnp1=J15- s Xoge = i | O)
=P(Xpy1 = Ji1 | Xo =14, X1 =J1,..., X = Ji)-
P(Xy =j1,. -, Xk = Jk | Xo=1)
=P(X1 =j1,- -, Xpp1 = Jrr1 | Xo =1)

where in the second equality we have used the Markov
property, the homogeneous property and induction hy-
pothesis.

Let (2,.4,P) be a probability space and
let I be a finite or countable set. For each i € I, let F;
be a sub o-algebra of A, that is a subset of A which also
o-algebra. We say that (F;);cr is filtration if for all ¢ € T
we have F; C F;y1. The tuple (Q, A, (Fi)icr,P) is called
a filtration space.

Let (2, A,P) be a probability space and
X be a random vector. The o-algebra generated by X is:

o(X):={X"'(B): B € B(R")}

Let (Q,A,P) be a probability space
and (X,,) be a time-homogeneous Markov chain. Then,
it 7, := 0(Xo,...,Xn), the sequence (F,)n>0 is a filtra-
tion.

Take F' € F,. Then:

F={(Xo,...,X,) €BCI"} =
={(Xo,..., X, Xpn41) EBXICI"} € Friq

Let (Q,F,(Fn)n>0,P) be a filtration
space and 7 a random variable on it with support NU{0}.
We say that 7 is a stopping time if Vn > 0 we have:

{r=n}eF,

Intuitively, this condition means that the “deci-
sion” of whether to stop at time n must be based only
on the information present at time n, not on any future
information.

Let (Q, F, (Fn)n>0,P) be a filtration space
and 7 be a random variable. Then:

T is a stopping time <= {r <n} € F,

n

=) {t<n}= |_| {r =m} € F, because {Tr =m} €
m=1
Fm C F,, Vm < n.

—) {r=n}={r <n}\{r <n-1} € F, because
{r<n-1} € F,-1 C F,.

Let (X,) be a time-homogeneous
Markov chain, (2, F, (Fn)n>0,P) be a filtration space de-
fined with (X,,), 4 € I and 7; be the random variable with
support NU {0, 00} defined by:

Ti(w) =inf{n >1: X, (w) =i} (3)

with the convention that inf @ = +o0o. Then, 7; is a stop-
ping time.

If n =0, then {r; =0} = @ € Fy. If n =1, then
{Ti = ].} = {XO € I,Xl :Z} e Fr. Ifn> 2, then:

{ri=n}={Xoel,Xy,...,. Xp1€{i}, X, =i} €F,

(Strong Markov property). Let (X,,)
be a time-homogeneous Markov chain, (2, F, (F,)n>0,P)
be a filtration space defined with (X,,) and 7 be a stopping
time. Suppose that P(7 < co) > 0. Then:

]P(XT-i-n-i-l =J | X: =1g,...
T<OO):IP(X-,—+TL+1 :j|XT+n:i,T<OO):

=P(X1=j | Xo=1)

{XT =

7X'r+n—1 = in—l; XT+n = i7

on account that P(A) > 0, where A :=
iOa cee 7X7'+n71 = Z.nfle'H»n = i,’T < OO}

P(Xrini1 =34 A) =D P(Xppnp1=jr=m|A) =

m=0

= Y PXpyn1 | AT =m)P(r=m|A)

m=0

P(r=m,A)>0

Now note that since {7 = m} € F,,, we can write:
{r=m}= || {Xo=Jo, s Xon =jm}
JOse-Jm

for some jg,...,jm € I. But since P(1 = m, A) > 0, we
have that in this last expression j,, = ip and so using

we get:
P(Xrint1=414) = Z P(X1 =7 | Xo=1)
]P’(T:n:n:,%)>0



(Strong Markov property). Let (X,)
be a time-homogeneous Markov chain, (2, F, (Fn)n>0,P)
be a filtration space defined with (X,,), 7 be a stopping
time, ¥ € N and A C I*¥ and B C I™. Suppose that
P(7 < 00) > 0. Then:

P((Xrqnt1s--
Xign =1,7 < 00) =P((Xq,..

for all n > 0.

~7X'r+n+k) €A ‘ (XT77"‘7XT+7L71) € Ba
,Xk)€A|X0:’L)

Recurrence and transience

From now on we will omit saying that a stopping time 7
is defined in a filtration space (2, F, (Fn)n>0,P). More-
over, given a Markov chain (X,), we will denote by
for any event A.

Let (X,,) be a time-homogeneous Markov
chain, ¢, 7 € I and consider the stopping time 7; of
We define f;; := P;(7; < 00). We say that i is transient if
fii < 1 and recurrent if f;; = 1. Finally, we define N; as:

Ni={neN: X, =i}| => 1{x,—q
n=1

Roughly speaking, if i is recurrent it means that
the chain will return at least once to i. On the other hand,
if 7 is transient, it means that the chain may never return
to <.

Let (X,) be a time-homogeneous Markov
chain, ¢, 7 € I and consider the stopping time 7; of
For k > 2, we define the k-th hitting time of i by:

K X, =)

17 =inf{n > 7;

with the convention that 7! = 7; and 70 = 0. Moreover,
we define the time difference T := 7% — Tik_l.

Let (X,,) be a time-homogeneous Markov

chain. Then, 7F is a stopping time Vk € N and more-

over TF are i.i.d. random variables distributed as 7; with
respect to the probability P;.

We need to check that Vmyq, ..
]P)Z(z? =Mi,... ,T;k = mk) = PZ(TZ = ml) . ]P)Z(TZ = mk)

We expand the left-hand side using the 7?7 ??. Now we
examine each term of the product, which have the form:

Do = Pi(Tf =my | T,} =mq,... ,Tf_l =my_1)

We have that:

,mi € N:

pe=Pi(r{ =7, =mg| A)

where A = {Xo = ’i,Xl 7é Z',...,Xmlfl 75 i,Xml =
b X1 # 0y o oy Xongtotme_, = ). So, by the
we have:
Pe = Pz(Xm1++my = i7Xm1+~--+mg71 # 7;7 R
Xm1+“'+me—1+1 #Z | A)
=P;(Xm, =6, Xmp-1 £ by..., X1 | Xo=14)
= P(Ti = mg)

Let (X,) be a time-homogeneous
Markov chain and ¢ € I. Then:

Pi(N; > k) = (fu)"*
First suppose f;; = 0. Then:
Pi(Ni > k) <Pi(N; > 1) =Py(r; <o0) = fi; =0

Now assume f;; = Pi(1; < 00) > 0. We will prove the
statement by induction on k. The case k = 1 is clear.
Note that {7F < oo} C {7F7! < c0}. Thus:

IP; (N

Y

! < o0)

k)= Pi(rf < o0) = Pi(Tik < OO,TZ»k_
=Pi(7F 7 < co)Pi(1] < o0 | 7T < o0) =

K3
= (fii)k_IIP’i(Tik < oo Tik_l < )

So it’s missing to prove that P; (7} < oo | 77! < 00) = fis.
But:
Pi(1F < oo | 7Pt < 00) =

o
SR g

m=1

< 0)

k_ k—1 _ k-1
Pi(ry =m+7"" | XTffl =14,7;

o

< 00)
=1

=3 PNy Fbye s Xy g #

m=1

X k-
Ti

3

L = il XTik'—l = Z‘,Tikil < 00)

sz(Xl #ia"'va—l #Z,szz) =

m=1

m=1

where we have used the

Let (X,,) be a time-homogeneous Markov
chain and ¢ € I. Then:

o ¢ is recurrent = P;(N; =o0) =1
o ¢ is transient — P;(N; < 0) =1

Note that {N; > k} \, {N; = oo}, so by
we get:

k—oo
1
1o

if 7 is recurrent

if 7 is transient



Let (X,,) be a time-homogeneous Markov
chain, i,j € I and n € N. We define fi(;l) as:
(n) ._ P.(r =
fij = Z(Tj =n)

Note that in these conditions we have:
o0
_ (n)
fij = Z fij
n=1

Let (X,) be a time-homogeneous
Markov chain, ¢,5 € I and n € N. Then:

pg? - Zlf1] "

Note that {X,, = j} C {r; <n} =11 _,{r; = m}.
Hence, {X,, = j} =L _,[{X» = 7} N {r; = m}]. Thus:

P =Pi(X, = j)
> Pi(x
m=1

n — j?Tj = m)
D Pi(Xn = | 7 = m)Pyi(r; = m)
m=1
> Pl
m=1

Xn:j|Xm:j7Xm—l #ja-'-aXl #])

Z Pj(Xn-m = J)fz(jm)

— Zf(m) n—m)

Let (X,) be a time-homogeneous
Markov chain, 4,5 € I. Then:

i—j = fi; >0

First note that f;; > 0 <= 3m € N such that
f(m) > 0. So, we have:

=) If i — j, In € N such that pE;L) > 0. So by

we have that Im € N such that fi(]m) > 0.

<) Now suppose fi(Jm) > 0 for some m € N. Then:

(m)

0< f(m) (Tj = m) < ]P)Z(X .]) Pij;

Thus, i — j.

Let (X,,) be a time-homogeneous Markov

chain, 4,7 € I. We define: S;; :=> " 1p§?).
Let (X,

have:

Sij = fiz(1+ 545)

n) be a time-homogeneous Markov
chain and j € I be such that S;; < oo. Then, Vi € I we

0o
= Z fl(jm)(l—FSJ]) flj(1+S]])
m=1

Let (X,) be a time-homogeneous Markov
chain and j € I. Then, Vi € I and all N € N we have:

Zpgl) < fi (1 + Zp(")>

Same as in

Let (X,,) be a time-homogeneous Markov

chain and 4,5 € I. Then:
1. 7 is recurrent <= S;; = oo.
2. If i <» j, then 7 is recurrent <= j is recurrent.
3. If j is recurrent and i — 7, then i is recurrent.

4. If j is transient, then S;; < oo Vi € I. In particular,
Vi € I, we have lim pz(-;) =0.
n—oo

1. =) Suppose S;; < co. Then, since f;; =1,
implies S;; = 1+ .S;;, which is a

contradiction.
<) Using we have:
N o (n)
fii > —Z" L P - N2geq
1+ Zn:l pii
2. If i + j, then Jr,s > 1 such that pgj), ) 5 0. So
by we have that Vn > 0:

P > pp ) = opllY
And so, Zpgz =00 = Zp(n) = oo by

3. Similarly, as before, since i — j, 3r > 1 such that

pg) > 0. Thus, pl(»Z»HT) > pg)pﬁ?. So, Zpﬁ?)
(n) _

00 = ) P = 0.

4. Tt follows from and

Let (X,,) be a time-homogeneous Markov
chain. We say that the chain is recurrent if i is recurrent
for all i € I. We say that the chain is transient if i is
transient for all ¢ € I.

(Polya’s theorem on Z). The simple ran-
dom walk on Z is recurrent if and only if p = ¢.



By we need to study the convergence of

5227 Note that:
= (M

because we choose n steps to the right from a total of 2n
and the rest must be steps to the left. Finally, using 77
one can check that:

Sl =

(2n)

(4pq)"

~ —

vn

which lead to a convergent series if and only if p # q.
Let n € N. Then:

()= ()

Equate the coefficients of ™ of the

(4)

n

>

m=0

2n
n

n

m

two series
2n (

=0

2n

).

1) =10

n
n—m

and use the fact that () = (, " ).

(Polya’s theorem on Z?). The simple
random walk on Z? is recurrent if and only if P(X; =
(1,0)) = P(X; = (=1,0)) = P(X; = (0,1)) = P(X; =
(0,—-1))=1/4.

We will proof only the implication to
the left, in order to keep the proof short. Note that we
(2n)!
)!2 42n -

have:
w0 S0

In the formula m denotes the number of steps rightwards
and leftwards, and n — m, the number of steps upwards
and downwards. Now using and we
have:

1
yor

2n
n

P = == ("

m=0

n
> m
m=0

@en _ 1
[ - ﬁ

(Polya’s theorem on Z?). The simple
random walk on Z3 is always transient.

Let (X,,) be a time-homogeneous Markov
chain and 4,7 € I. Then, if j is transient, we have
E; (NJ) < 0Q.

=E, (Z l{Xw,—j}> = sz(;) < 00
n=1 n=1

where the last inequality follows from
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Limit distributions

Let (X,,) be a time-homogeneous Markov
chain and 7 € I be recurrent. We denote u; := E;(7;). We
say that ¢ is positive recurrent if p; < co and null recurrent

(Ergotic theorem). Let (X,,) be a time-
homogeneous Markov chain and ¢ € I be positively recur-
rent. Then:

n

o1 (m) _
i 2 A =

m=1 @

By hypothesis Tf has finite expectation and so by
the 7?7 we have:

?v\»—*

Let N* =
of visits of the state 4 in the first n steps.

E:anl l{mez} < n, which counts the number
Note that if

Nl'=k <n, Tk<n<7k+landsoz
k k+1  k »"<I<:
R

Hence, taking the limit k& — oo we have:

:n k‘l a.e., 1
lim —* = lim —
n—oo N k—oo T} i
N™

Moreover note that
that:

< 1. Thus, by the ?? we have

n n (m)

E. Nzn _ Zm:l ]P)Z(Xm :7’) _ Zm 1P ﬂ i
‘\n n n 1
Let (X,,) be a time-homogeneous Markov

chain and ¢ € I be positive recurrent such that 3 lim pl(-;l).
n—roo

Then:

(n)

7

lim p

n—o0

Recall ?77.

2%

(Ergotic theorem). Let (X,,) be a time-

homogeneous Markov chain and ¢ € I be recurrent and

(n)

aperiodic. Then, the limit hm p;;  exists and:

Z p(n)

= lim —
T S0 n

lim p

n—oo

(n

In particular, if ¢ is positive recurrent, then hm Dis )

and if ¢ is null recurrent, then lim pl(-l- ") — .

n—oQ

Let (X,) be a time-homogeneous
Markov chain, i € I be recurrent and aperiodic and j € I

be such that i <+ j. Then:
1. 4 positive recurrent = j positive recurrent.

2. ¢ null recurrent = j null recurrent.



By and we have that j is recur-

rent and aperiodic. Thus, by , the lim-

its hm p( " and lim p'™ exist. Moreover, since i < j
n— n—oo" JJ

(r)  (s)

dr,s e N such that p;;”,p;;” > 0. By we have that
p§"+r+s > sz(-?). If i is positive recurrent then:

lim p(n+r+g) > C lim pz(f) >0
n—oo n—oo

If ¢ is null and j was positive, then ¢ would be positive by

the previous argument, which is a contradiction.

Let (X,,) be a time-homogeneous Markov
chain and i € I be recurrent and periodic of period d.
Then:

n d
n—oo M'L
(Y,) := (Xnq) is a time-homogeneous Markov
chain and ¢ € [ is recurrent and aperiodic. Thus, by
(nd) _ :
we have that 7}52027 Ez(TZY) But:

1
:inf{nzlen:i}:Einf{nZl:Xn:i}:T

d

Let (X,) be a time-homogeneous irre-
ducible and aperiodic Markov chain. Then, we have ex-

actly one of the following results:

1. All the states are transient and Vi,j € I:

lim Dij ™) — Jim 7™ =0
n—oo n—oo
Moreover Y7 1p£?) < 0.

2. All the states are null recurrent and Vi, j € I:
(n) _ (n) _

lim p;;” = lim 7,77 =0
n— oo n—oo
Moreover > o7 1pgb) 00.

3. All the states are positive recurrent and Vi, j € I:

n n 1
lim pl(.j) = lim 7T§ )= =
n—oo n—o0 uj
It can be seen that lim p(j) = hm p ) vi ,j € 1.
We will prove that hrn p(") = lim 7, L) Vi,j € I. We
n—oo
have that:
i " = Ji PO =) = i 3 pim
= lim pl(-j)mzzﬂ:—
ier " ier Hi Hi

where we have used the dominated convergence theorem
for series.

Let (X,) be a time-homogeneous irre-
ducible and aperiodic Markov chain such that I is finite.
Then, all the states are positive recurrent.

11

Note that we must have Z el T (n)
1VneN.

Let (X,,) be a time-homogeneous Markov
chain. A vector v = (v;),.; is called a stationary distribu-

tion if:
Z Vv, = 1

i€l

v>0 vP=vr

In general, we cannot guarantee the existence or
uniqueness of stationary distributions.

Let (X,) be a time-homogeneous Markov
chain, v be a stationary distribution and suppose w(®) =
v. Then, #(™ = v V¥n € N.

a0 =P =P = =y

Let (X,) be a time-homogeneous irre-
ducible and aperiodic Markov chain. Then, (X,,) is posi-
tive recurrent if and only if it admits a stationary distribu-
tion. Moreover, this distribution is unique, and it is given
by v; = L.

i

We will only proof the case when I is finite. By
we only need to prove the impication to

the right. Since hm pﬁ?) =

v=1/pi)icr = O satlsﬁes

1
— Vi,j € I we have that
Hj

— 1 (n) _
2 om=3 i pl =l > v
jel jeI jeI
Zuipij Z lim pkz)p” = hm p(nH) =y
i€l i€l

where we have used

Hence, v is a stationary distribution. Now, for the unique-
ness, suppose v is an arbitrary stationary distribution.
Then, v; = ZZE[ Vngj Vn € N. Thus, taking n — oo we

get that v; = M Vjel.

3. | Continuous-time Markov chains

Introduction

Let (X¢),~o be a stochastic process. We
say that (X;),~, is a continuous-time Markov chain with
state space I (finite or countable) if Yn € N and all

0<t < - <ty <tpsr and all 4y,...,0,-1,4,5 € I
we have that:
]P)(th+1 :j | th = i’th—l = in—l e 7Xt1 = Zl) =

= P<th+1 =] | X, = i)

The chain is called homogeneous if P(Xy, ,, = j | X;, = 1)
does only depend on the difference t¢,,+1 — t,,. That is, if
Vs <t we have:

P(Xews = j | Xy = 1) = P(X; = j | Xo = i)
In order to simplify the lecture we will write CTHMC for
continuous-time homogeneous Markov chains.



Let (X¢);~, be a CTHMC. We define the
transition probabilities as:

pij(t) =P(X; =j | Xo =1)

The transition matrix is P(t) = (p;;(t))i jer-

(Chapman-Kolmogorov equation)

Let (X¢),~, be a CTHMC. Then, P(t) is a stochastic ma-
trix V¢t > 0 and Vs, t > 0:

P(t +s5) = P(t)P(s)

p’L] t+5 Z]P)Xt+s*]7 *k|X0*Z)
kel
= ZIP(XHS =j| Xs =k, Xo=1i)
kel
P(X, =k | Xo = i)
= pir(t)pr;(s)
kel
Let (X¢),~, be a CTHMC. Then, for
all0<t; <---<t,and all 41,...,7, € I we have that:
P(Xt, =in, Xty =in-1,..., X, =11) =
= Di, (t1)Diyis (b2 = t1) - 0i_yin, (b — th—1)

where p;(t) := P(X; =1).

Poisson process

Let A > 0. A stochastic process (N¢),~,
is called a Poisson process with parameter X if:

1. Ng=0.
2. N has independent increments, that is N, Ny, —

Ny,..., N, — N, , are independent random vari-
ables for all 0 <t; < --- <t, and all n € N.

3. N; has stationary increments, that is Ny
Pois(A(t —s)) V0 < s <.

— N, ~

4. For all w € Q the functions (called trajectories)

N.(w):[0,00) — NU {0}

t — Nt (UJ)
are right-continuous (cdd).

Let (X¢),~, be a stochastic process with
independent increments. Then, (X;),s, is a continuous-
time Markov chain. -

[P’()(tn+1 =5 X, =6, Xt,,_, =tn-1...,Xt; =11)
(X, ~ Xy, =j—i| X, — Xo,_, =i
ity Xy — Xy, =i — i1, Xe, = 1)
=P(Xy,,, —Xp, =5 — 1)
=P(Xy,,, =7 Xy, =1)
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Let (N¢);~o be a Poisson process with pa-
rameter X\. Then, (N),-, is a CTHMC with transition
probabilities: -

(At)?

ef)\t
4!

pij(t) =P(Ny = j | No = i) =

Let (N});>o and (N?),5, be two inde-
pendent Poisson processes with parameters \; and Ay re-
spectively. Then, (N} + N?),-, is a Poisson process with
parameter \; + Ag. B

Let N; := (N} + N?). We only check the indepen-
dent increment, the other properties are easier. We need
to check that for all 0 < t; < --- < t, and all n € N the

random variables X;, := Ny, Xy, 1= Ny, — Ny, .., Xy, 1=
N, — Ny, _, are independent. We have that
Xy =Nj,—N;,  +N.—-N. =Y +Y/}

By hypothesis the variables Yél and Yf are independent.
Moreover, since N/ are Poisson processes, we have that
{(Y)}k=1. . pairwise independent, for i = 1,2. Now
using the characterization of independence with the char-
acteristic function, we have:

.
PXey o Xty (ug,...,up) =FE (el Zj:1 quj>
=E (ei Z;L:1 u; Yy o Z;;l u; Yf)

ITE () ()

n
=1
n

=1L

<.

Let (N¢);~, be a Poisson process with pa-
rameter A\. Then: -

P(Ny, > 2) = o (h)

P(Ny >2)=1—e M - Xhe " =0 (h)

Let (N¢),~, be a Poisson process with
parameter A. Then, the trajectories are almost surely non-
decreasing and have jumps of size at most 1.

We need to see that the event {N, < N;
R,0 < s < t} has probability 1. We have:

() {N.<N}= ) {N. <Ny}
0<s<t 0<s<t
5,teQ

1 Vt, s €

because the trajectories are cad. Finally, since P(N; <
N;) =P(Ny — Ny > 0) = 1, the intersection has probabil-
ity 1. Now, let:

A :={w € Q: N(w) has jumps of size > 2}
Ap = {w € 2 : N(w) has jumps of size > 2 in [0, R}
BIT% = {Hk‘ IS {1,...,n} :Ner — Nu—1r > 2}



Note that A = [Ji_, Ar and Agr C B} Vn > 1 because
the trajectories are cad. Thus, VR > 0:

P(AR) < P(BL) = P (CJ {Nm — None > 2}) <
k=1

<Y P (N@ ~ Nuur > 2) = nP(Nz >2) =
k:1 n n

Hence, P(A) = 0.

Let (N¢),~, be a Poisson process with
parameter A. We define the holding times as:

=inf{t > Tp_1 : N; = k}
with Ty := 0. The inter-arrival times are:
Sy =Tk —Tp_1

Let (N¢);~ be a Poisson process with pa-
rameter \. Then, P(T}, < o) =1 Vk € NU {0}.

Since the trajectories are cad:

P(Tk = OO)
Ny —

=PVteR: N, <k—-1)<P(N; =0,
Ni=0,....,N, —N,_1 =0)=e " =50
because the inequality is true for all n € N.

Let (NV¢),~, be a Poisson process with pa-
rameter A. Then, the inter-arrival times (Si) are i.i.d.
random variables distributed as Exp(A).

Let T := (T1,...,T,). Recall that:
0" Fx P(T € [[—; (t, tr + hai])
t)=—"F7"-(t)= 1 =
fz(t) 6x1-~-0xn( ) hlf]& hy---hy,

Assume that ¢ + by, < tg41 VE € {1,...,n — 1}. Then:

]P) <T E H(tk,tk + hk]) == ]P)(Ntl == O,Nt1+hl — Ntl = 17
k=1

Nt2 - Nt1+h1 = 07 oo 7Nt71, - Ntn,—1+hn,—1 = 0’
Nisn, — Nip > 1) =X hy oo hy e Mo (1 — e M)
Hence:
fr(t) = Ame™
Now consider
g:{0<t; < <tp}— (0,00)"
(th-"atn) '_>(t17t2_t17 ~'7tn_tn71)

which is a diffecomorphism such that det Dg(t) = 1. The
density of S := g(T) is thus

)\akl

fs(s) = fr(g7"(s))1(0,00)" (8 o) (Sk)
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by ?7?. And this last expression is the joint pdf of n i.i.d.
Exp(A) variables.

Let (Sk) be a sequence of i.i.d. random
variables distributed as Exp(\). Consider the sequence
(T,,) defined as Ty := 0 and T,, = > ,_; Sk. Let N, :=
sup{n > 1: 7T, < t}. Then, (Ny),>, is a Poisson process
with parameter A. In this case, we can also express N, as:

oo

= Z nlir, <t<Tnii}

n=1

We'll see only that N, ~ Pois(At).
Let k € NU{0}. Then, P(N; = k) = P(T}, <t < Tg41)-
Since T}, = Zle Si, we have that Ty and Sk, are in-
dependent. Hence, fr, s,.,(2,y) = fr.(2)fs,.,(y) and
since Sp+1 ~ Exp(A) and Ty ~ I'(k, \) (because is a sum
of exponentials), we have that:

Ny

In (z,y) = —Ak th=le A \e ™A = 7)\k+1tkile*)‘(x+y)
ey S+ A T'(k) (k—1)!
Finally:
)"
P(N, = k) = / Fru s ey dedy = e

where A := {(z,y) €ERso*>:x <t <z +y)

Kolmogorov’s differential equations

From here on, we’ll assume that the transition marices
P(t) satisty that ’llir% P(h) = 1. That is, we have right con-
—

tinuity at 0. This is equivalent to say that }llin%) pij(h) = 6;5.
—

Let (X¢),~, be a CTHMC with transition

matrix P(¢). Then, (p;;(t)) are continuous functions for

all 4,5 € I.
The result follows from the inequality:
—pi()] <1 —pii(|h])

and the right-continuity at 0. Let’s prove the inequality.
Suppose that h > 0. Then:

Ipi;(t + h)

pij(t+ h) > pik(h)prs () — pij (t)

kel

= szk

kel
ki

= szk

kel
ki

< szk

kel
ki

<1—pii(h)

—pi;(H)] =

)Pk; (1) — pij (B)[L—pii(h)]

Z pzk

kel
ki

= pij(t)]

pk] +pu

‘pkj

The case h < 0 follows from considering t' =t + h.
Let P(t) be a stochastic matrix such that:
1. P(0)=1.



2. P(t+s)=P(t)P(s) for all ¢,s > 0.
3. lim P(h) =1
h—0

Then, for any 4,5 € I, the following limits exist:

- . pij(h) e
Gij = }lbl—>mO17h (; [0,00)  ifi#j

T — Dii e
qi *ilg%ih €0,00] ifi=y

Note that if the limits are finite we have ¢;; = p;;'(0) and
¢ = —pii' (0).

Let (X¢),~, be a CTHMC with tran-
sition matrix P(t). Then, the infinitesimal generator of
(Xt)t>0 is the matrix Q deﬁned as Q = (qij); je > where

Qi = . We define the infinitesimal transition scheme
as:

pii(h) =1—qh+o(h) ifi=jy

pij(h) = qijh+o(h)  ifi#j

Let (X¢),~, be a CTHMC with infinites-

imal generator Q and assume that [ is finite. Then,

= QP and P’ = PQ. The first equation is called

the Kolmogorov’s backward equation and the second one
the Kolmogorov’s forward equation.

Note that since [ is finite, ¢; < oo Vi € I. Indeed:
pzk

1= pii(h
q; = lim A = h—>0 Zqzk < 00
kel kel

h—0 h
k#i k#i
Now, let t > 0, h > 0 and ¢,j € I. Then, using

=Y pi(h)pij (8) +pis(R)pis (1) —pis (t) =
kel
ki

Nk (1) +(L+giih+o (h))pi;(t) —pi;(t) =

= Z qikhpr;(t) +o

kel

pij(t+h)—pi;(t)

= (gixh+o (h

kel
ki

(h)

Dividing by h and taking limits we get the result with
the right derivative. Now take ¢ > 0 and h < 0. Then,
similarly:

pij(t) — = gihpr;(t+h) +o(h)

kel

pij(t+h) =

Using the continuity of the p;;’s we get the result with
the left derivative. The other equation follows analo-
gously by exchanging the roles of h and ¢ in the Chapman-
Kolmogorov equations.

Let (X¢);~, be a CTHMC with infinitesi-
mal generator Q. Assume that ¢; < oo and ¢; = Y ker qix
k#i

for all i € I. Then, P’ = QP.

Let (X¢);~ be a CTHMC with infinitesi-
mal generator Q. Assume that ¢; < oo and ¢; = Y ker ¢ix
ki
for all i € I and that ), ; pix(t)qx < oo for all i € I and
t > 0. Then, P’ = PQ.

Note that in this latter theorem if sup,c;gr <
oo, then ), -/ pir(t)qr < oo for alli € I and t > 0.

Jump processes

Let (X¢),~o be a stochastic process with
state space [ (not necessa;ﬂy countable) and ) be such
that P(2) = 1. We say that (X;),-, is a jump process if
Vw €  and V¢ > 0, 3 > 0 such that Xi(w) = X5(w) for
all s € [t,t + €).

Let (X;),~, be a jump process. We say
that the jump process is regular if VC > 0, the number of
jumps of X.(w) in [0, C] is finite for all w € Q.

Let (X¢),~, be a CTHMC and a regular
jump process. Then, Vi € I, ¢; < oo and q; = > _ker qik-
k#i

Let (X{),~, be a CTHMC. Then,
(X¢);>0 is said to be stable ifVi € I, ¢ < oo, and is
said to be conservative if Vi € I, ¢; = > rer qik-
ki

Let (X¢);>, be a CTHMC and a regu-

lar jump process. Then, the two Kolmogorov ODEs are

satisfied.

Limit and stationary distributions

Let (X),~, be a CTHMC. We say that
P is a stationary distribution for (X),5, if p; > 0 Vi € I,
Y ic;Pi=1and pP(t) =p Vt > 0.

Let (X;);~, be a CTHMC and a regular
jump process. Then: B

(1) = aripe(t)

kel

In particular if we have a stationary distribution p, then
pQ = 0, or equivalently:

Z Prdk;

kel
k#3j

= T)j q;j
This equation is called balance equation.

pi(t) = P(X; = j)

Z pz pU )

el

A result allows us to differentiate term by term and re-
arrange the following series (because (X;),- is a regular
jump process): -

') =Y pi(0)pi; (¢

iel

)= Zpi(O) Zpik(t)% =

i€l kel
=" a4y D pi(O)pie(t) = D aupel)
kel

kel i€l

If we have a stationary distribution, then p;’(t) = 0.

14



In the CTHMC there is no periodic behaviour as
in the discrete case. Indeed, given t > 0 and § > 0 small
enough, In € NU{0} such that ¢t = nd + h with h € [0, ).
And so:

pii(t) > pii(nd)pis(h) > -+ > (pii(0))"pii(h) >0

where the last inequality is due to the fact that
h—0

Let (X),~, be a CTHMC. We say that
the chain is irreducible if Vi,j € I, t1,t5 > 0 such that
pij(tl) > 0 and pji(tQ) > 0.

Let X be an irreducible CTHMC and a
regular jump process. Then, we have exactly one of the
following:

1. The balance equation has a unique solution P
(which must be the stationary distribution) and
tlim pij(t) = P; ¥i,j € I. In that case, P is called a
—> 00

limit distribution.

2. The balance equation has no solution and in that
case tlim pij(t) =0Vi,jel.
—00

Note that if [ is finite, we are always in the first
case since we always need to have >, p;;(t) = 1.

Birth and death processes

Let I = NU{0}. A birth and death
process is a CTHMC and a regular jump process with the
following infinitesimal transition scheme:

Dii+1(h) = Ash + o (h) 1>0
pii—1(h) = ph +o(h) i>1
pii(h) =1 = Ah+o(h) i=0
pii(h)=1— N\ +p))h+o(h) 1>1
pij = o (h) otherwise

This model describes a population of individuals, each of
whom having A\;h + o (h) probability of giving birth to a
new individual in the time interval [¢,t+h) and p;h+o0 (h)
probability of dying in the same time interval. The prob-
ability of having more than one birth or death in that
interval is o (h). In this case the infinitesimal generator is:

—Xo Ao 0 0
pr —(Ar+ ) A 0
Q=1 o

o —(A2+p2) A2

If \; = 0Vi € I, then we said that the process is a pure
death process. If u; = 0 Vi € I, then we said that the
process is a pure birth process.

The Poisson process is a birth and
death process with \;, = A and u; =0Vi € I.

Consider a birth and death process.
Then, a limit distribution p exists if \; > 0 and p; > 0
Vi € I and

PYS VNS Vi
Z 0A1 i1 _
ier Mz

This distribution is given by:
_ AoA1 - A1
Haph2 - g

SR AoA1 1 -1
Wlth pO = (1+ZIEI m) .
First let’s prove by induction that if P is a station-
ary distribution, then the components are those of
Indeed, for i = 1, using the balance equation we have
oDy = m1p;- Now, suppose that the hypothesis holds
Vi < j. Then, we have:

Do i >1

(Aj + 1j)P; = Aj—1Dj_1 + 1j+1Dj 41

Xo- N1 Mo Njg B
(A + Mj)ﬁpo = )\jflu1 — Po + Hj+1Pj 41
j j—
Mo At

Do = Hj+1Pj41

po e i
The first argument is determined from the condition 1 =
> ic1Di = Do+ Do Y icr % Now if we see that for
Ai > 0 and p; > 0 Vi € I the chain is irreducible, then the
theorem will be proved by . But this is clear

because, for example if ¢ < j we have:

i)h) > piiv1(R)pisiipa(h) - pj—1,;(h)
= XNAip1 e )\jflhj_i +o (hj—i) >0

pij (5 —

if A; > 0 Vi € I and for some h small enough. The case
i > j is analogous.

(Reuter criterion). Consider an in-
finitesimal generator for a birth and death process. Then,
there is a CTHMC of regular jumps with this infinitesimal
generator if and only if:

;[AH+AA T ] T

n/\n—1

4. | Brownian motion

Gaussian processes

Let x € R™ be a random vector. Then,
x is a Gaussian vector, that is it distributes as an n-
dimensional normal, if and only if there exists £k € N,
A € M, «1(R), z € R¥ with i.i.d. components distributed
as N(0,1), and p € R™ such that:

x=Az+p

A stochastic process (Xi),- is called a
Gaussian process if for all 1, ..., t, > 0 the random vector

(Xty,- .., Xy,) is Gaussian.

Let (X:),~, be a Gaussian process.
Then, the mean function is defined as:

o [0,00) — R
t — ]E(Xt) = Ut

and the covariance function is defined as:

C :]0,00) x [0,00) — R

(s,t) — Cov(Xs, Xt) = E(XXt) — pspie

15



Brownian motion

A stochastic process (Bt), is called a
Brownian motion (or a Wiener process) with parameter A
if:

0.

. By

[\]

. B¢ has independent increments.

w

. By has stationary increments with distribution B; —
Bs ~ N(0,02(t — 5)) V0 < s < t with o > 0.

4. The trajectories t — B, are continuous.

The Brownian motion is said to be standard if o = 1.

Let B := (B¢),, be a standard
Brownian motion. Then, B is a Gaussian process with
mean function p; = 0 and covariance function C(s,t) =
min(s, t).

Let 0 < t; < --- < t,. We can write the vector
b:=(By,...,B;, )" as:
1 0 0 By,
b _ 1 Bt2 7 Btl
: 1 0 3
1 1 1 B, — By, _,

And so b is Gaussian because is a linear combination of
Gaussian. Now in the general, let s1,...,s, > 0. We can
write any vector (Bs,, ..., Bs,) as a linear transformation
of the vector (B, , ..., By, ) with0 < ¢ < --- < t,. Onthe
other hand, it is clear that u; = E(B;) = E(B; — By) =0
and if s < ¢:

E(BsB:) = E(Bs(B: — Bs)) + E(B2) = popir—s + 5=

Let B := (By),>, be a Gaussian pro-
cess with By = 0, mean function u; = 0 and covariance
function C(s,t) = min(s,t). Then, B is a standard Brow-
nian motion.

Since Gaussian uncorrelated variables are indepen-
dent, it suffices to show that the covariance matrix of
(Bt17Bt2 — .Bt17 ey Btn — Btn—l) iSZ

t1 0 0

0 to—1t

: . 0

0 0 tn - tnfl

for all 0 < ¢; < --- <t,. On the one hand, if ¢; < t;, then
tig <t <tj_1 <ty and:

E((Bh _Btifl)(Btj _Btj—l)) = E(‘Bti‘Btj)_E(BtiBtj—l)_

- ]E(Bti_lBtj) +E(Bti_1Btj_1) = t»L - tl - ti,1 +t1‘,1 = 0
On the other hand:
E ((Btz - Bti—l)Z) = E(Bfi) - QE(BtiBti—l) +]E(BtZi,1) =

=1 —ti—1

Let B := (B;),~, be a standard Brow-
nian motion. Then, the following stochastic processes are
also standard Brownian motions:

1. Ve € R*, (¢By,¢2)

>0
2. (_Bt)tZO
3. (Bigs — BS)tzo for all s > 0.
4.
y, (B it 0
0 ift=0

Let (X¢),cp and (Y3),cq be two stochas-
tic processes. We say that (Xi),.p and (Y;),cp are
stochastically equivalent if Vt € T we have:

P(X,=Y,) =1

In that case we also say that (X;),p is a version of (Y;),cp
(or vice versa). We say that (X;),., and (Y;),op are in-
distinguishable if:

P(X, =Y, VteT)=1

Note that if the set T is finite or countable, then
the two notions are equivalent because:
> - 1

Let (X¢)ier and (Yi)ier be equivalent
stochastic processes. Then, Vn € N and all t,...,t, €T
we have:

N{x. =7}

}P’(Xt:YtVteT):IP<
teT

X::(tha"'aXtT,,)g(}/tuu'ayz ):Y

n

Let B € B(R") and A := {X;, = Y;, Vi}. Using
that P(A) =1 we have:

P(XeB)=P(Xe€ B,A)+P(X € B, A
Y e B,A)+0
Y € B,A)+P(Y € B, A°)

Y € B)

—_— == =

P
P
P

ol Let B be a standzgd Brownian motion
and B be a version of B. Then, B is also a standard
Brownian motion.

(Kolmogorov’s continuity theorem)
Let (X¢),>, be a stochastic process such that 3o, 3,C > 0
such that:
E(|1X; — X,|%) < Clt — 5|7

for all t,s > 0. Then, there exists a version of (X;),-,
with continuous trajectories. -
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Let X ~ N(0,02). Then, E(|X|") = C,,0™

)

Let B := (Bt),, be a standard Brown-
ian motion. Then, there exists a version of B with contin-
uous trajectories.

where:
n+1

2

2n/2
N

Cu=E(21") =T (

and Z ~ N(0,1).

We use and with @ = 3 and

B=1/2.
Let B := (B;),>, be a standard Brow-
nian motion. Then, for any interval [a, b] C R:

P(w € Q : B.(w) is monotone on [a,b]) =0

Let A = {w € Q : B.(w) is monotone on [a,b]}.
Using the density and continuity of B we have:

A={B;<B;:Vs,t €Q,a<s<t<b}+
+{Bs > B;:Vs,t € Qa<s<t<b}

Hence, given n € N and a partition {t;},-,-,, of [a,b] we
have: o

Ag{Btﬁ_l—Bti ZO’L:O,,TZ—l}-F
+{Bti+1—Bti§0:i=0,...,n—1}

Therefore, using the independence of the increments of B
and the symmetry of the normal distribution we have:

n—1

P(A) <2 [[P(B.,,
1=0

1

)

n—oo

— 0

.y 20):2(

Let B := (By),>, be a standard Brow-
nian motion. Then, Vt > 0 the set

Ao { |Beyn(w) — B(w))|

h
which may not belong in the g-algebra, contains an event
of probability 1.

w € Q : limsup
h—0

Note that A D {w € Q : sup,, ¢y [Beeam@=Be@)| _
+00} = (N> Am where:

| |

If we see that P(Ays) =1 for all M > 1 we are done.

i) -

|Bis1/n(w) — Be(w)]

>M
1/n

w € Q:sup
neN

|Bis1/n(w) — By(w)|

P(An) > P <

1/n
o= )20 () =

where the first inequality holds Vn € N, Z ~ N(0,1) and
® is the cumulative distribution function of the standard
normal distribution.

17

(Paley-Wiener-Zygmund theorem)
The Brownian trajectories are almost surely nowhere dif-
ferentiable. Namely, the set

B - B
{w € Q:Vt > 0,limsup t+h (W) t(w) = 400 or
h—0+ h
lim inf Biin(w) = Bi(w) = —oo}
h—0t h

contains an event of probability 1. And the same occurs
for the left limit » — 0~ (in this case we need to exclude
t=0).

Figure 2: A Brownian motion simulated with 7500 incre-
ments. Observe the “non-differentiability” of the path.

Let B be a standard Brownian motion
and a > 0. We define:

Te :=inf{t >0: B; > a}
If a < 0 we define:
Te :=inf{t >0: B; < a}

Note that if 7,(w) < oo, then B, (,)(w) = a by
the continuity of the trajectories.

Let B be a standard Brownian motion.
Then, Vt > 0 and a > 0:

max Bs > a
0<s<t

P(Tagt):]P’( ):2]P(Bt2a)

If a < 0 we have:

Mm<ﬂ=P<

min B, <a
0<s<t

)=2MB,<@

Let B be a standard Brownian motion
and a € R*. Then, P(7, < c0) = 1.

Assume a > 0, the other case is similar. Then:

P(r, <o0)=P <[j {1a < n}) = nli_}rr;()l?’(m <n)=

=2 lim P(B, >a)=2 lim

n—oo n—oo

(oo



Let B be a standard Brownian motion.
Then:

sup By =
t>0

“

It suffices to prove only P(sup,»¢ By = +o0) = 1.

g =) oA o)

Let’s see that all the events A, := {sup,~q By > n} in the
intersection have probability 1:

+o0, inf By = —oo) =1
>0

sup By = +00
>0

sup By >n
t>0

max By > n

P(A,) > P <
0<t<s

):QIP’(Bszn):
(-0 (3)

The Brownian trajectories have infinite
zeros almost surely, and they tend to infinity.

S5— 00

— 1

Let B := {B; : t > 0} be a standard Brownian
motion and let A = {w € Q : B.(w) has finite zeros} C
Uo—{w € Q: B.(w) doesn’t vanish in [n,00)}. Let’s see
that all the events A,, := {B. doesn’t vanish in [n,00)} in
the union have probability 0.

P(A,) =P(B. > 0 in [n,00)) + P(B. < 0 in [n,00))

<P <t11>1f B; # —oo> +P <suth # 400

t>n

.

The Brownian trajectories pass through
every point a € R infinitely many times almost surely.

Let B be a standard Brownian motion.
Then, Vh > 0:

"

It suffices to prove P (maxo<i<p Br > 0) = 1. Let
a > 0. Then:

"

max By

>0, min Bt<0) =1
0<t<h 0<t<h

max By >0) ZP(maX B; >a> =2P(By, > a) =
0<t<h 0<t<h

Let B be a standard Brownian motion
and a € R*. Then, E(7,) = 0.

a

Vh

0
20

Using the symmetry of the Brownian motion, we
have:

18

and F; (0) = 0. An easy check of the hypothesis of 7?7
shows that the density of 7, is FTa/ and so:

w‘n

2
e 2t
dt = o

E(Ta) \/i

o0
7w/
2
0
because it diverges at co.

A d-dimensional standard Brownian
motion is a d-dimensional stochastic process B
(Bl,...,B%) such that Vi € {1,...,d}, B' is a standard
Brownian motion, and it is independent of the other com-
ponents.

Let B be a d-dimensional Brownian mo-
tion. Then:

If d = 2, then B is recurrent, that is ¥x € R? and
V6 >0 3(7,) € R, with lim 7, = 400, such that:
n—oo

P(B;, € Bs(x) Vn e N) =1

Here Bjs(x) denotes the open ball of radius § cen-
tered at x.

. If d > 3, then B is transient, that is VM > 0, 37 > 0
such that:

P(B, € By (0) V> T) =0

(Law of the iterated logarithm). Let
B be a standard Brownian motion. Then:

lim su __B 2 lim inf __ B =
tﬁoop Vv2tloglogt t—oo /2tloglogt

Let B be a standard Brownian motion.

Then:
B a.e. B a.e.
lim sup ———t %€ Jiminf o e
h=0"/2hloglog + h=0 \/2hloglog +

Recall that B, is a standard Brow-
nian motion.

Let S, = ", X; be a simple random
walk with P(X; = 1) = P(X; = —1) = § and B = (By)
be a standard Brownian motion. We define the following

sequence of stochastic processes:

1

N

}/tn = [Sl_ntj + (nt — LntJ)X\_ntj-H}

Then, Y;* -% B,.



Existence of Brownian motion

(Finite-dimensional distributions)
Let (Q, A, P) be a probability space and X : IxQ — (E, &)
be a stochastic process. The finite-dimensional distribu-

tions of X are the probability measures Py, . . defined
on (E™, &™) by:
Piy,tn (B) == P((X4,,..., Xy, ) € B)

for all B € £™.

Let (2, A,P) be a probability space and
X I xQ — (E,E) be a stochastic process. Then, the
finite-dimensional distributions satisfy the following con-
sistency condition:

1. For all n € N, ¢4,...
o € S, we have:

tn €I, Bi,...,B, € € and

19

Py, tn(Bl X X Bn) =
= Pto(1)7"'7to(7L) (Bo'(l) X o0 X Bo‘(n))
2. Forallm e N, ty,...,t, € [ and By,...,B,_1 € &,
we have:
Pty,tn(Br X -+ X By X E) =

= Ptl,“ (Bl X oo X Bn—l)

tn1

(Kolmogorov extension theorem)
Let I be a set and {Py, ..+, :n € Njtq,..., ¢, € I} be a
family of probabilities defined on B(R™) satisfying the con-
sistency conditions. Then, there exists a probability space
(©, A,P) and a stochastic process X : I x Q@ — (R, B(R))
such that Py, . ;. is the finite-dimensional distribution of
X foralln € Nand tq,...,t, € I.
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