
Stochastic processes

1. | Preliminaries
Proposition 1. Let (Ω, A,P) be a probability space and
(Xn) be sequence of random variables such that:

∞∑
n=1

E(|Xn|) < ∞

Then,
∑∞

n=1 Xn is a random variable and:

E

( ∞∑
n=1

Xn

)
=

∞∑
n=1

E(Xn)

Proof. By the ?? ?? we have that

E

( ∞∑
n=1

|Xn|

)
=

∞∑
n=1

E(|Xn|) < ∞

so the random variable Y :=
∑∞

n=1 |Xn| is integrable and
∀N ∈ N satisfies: ∣∣∣∣∣

N∑
n=1

Xn

∣∣∣∣∣ ≤ Y

Now use the ?? ??. □

Proposition 2 (Law of total probability). Let
(Ω, A,P) be a probability space and {An : 1 ≤ n ≤
N} ⊂ A, N ∈ N ∪ {∞}, be such that

⊔N
n=1 An = Ω′

with P(Ω′) = 1. Then, ∀A ∈ A:

P(A) =
N∑

n=1
P(An)P(A | An)

Sketch of the proof. See the proof of ?? ??. □

Remark. Note that if there is some An for which P(An) =
0, the conditional probability is not well-defined. But note
that:

0 ≤ P(An)P(A | An) = P(A ∩ An) ≤ P(An) = 0

So we can omit this term in the sum.

Conditional expectation
Proposition 3 (Substitution principle). Let (Ω, A,P)
be a probability space, X be a discrete random vector with
support SX, Y be a discrete random variable with support
SY , h : SX × SY → R be a function and y ∈ SY . Then:

E(h(X, Y ) | Y = y) = E(h(X, y) | Y = y)

Proposition 4 (Law of total expectation). Let
(Ω, A,P) be a probability space, X is a discrete random
vector with support SX, {An : 1 ≤ n ≤ N} ⊂ A,
N ∈ N∪ {∞}, be such that

⊔N
n=1 An = Ω′ with P(Ω′) = 1

and h : SX → R be a function. If h(X) has finite expec-
tation or h ≥ 0, then:

E(h(X)) =
N∑

n=1
E(h(X) | An)P(An)

Sketch of the proof. See the proof of ?? ??. □

Definition 5. Let (Ω, A,P) be a probability space, X be
a discrete random vector with support SX, Y be a discrete
random variable with support SY and h : SX → R be a
function. For all ω ∈ Ω we define the random variable
E(h(X) | Y ) as

E(h(X) | Y )(ω) = E(h(X) | Y = y)

provided that Y (ω) = y. Note that it can also be written
as:

E(h(X) | Y ) =
∑

y∈SY

E(h(X) | Y = y)1{Y =y}

Proposition 6. Let (Ω, A,P) be a probability space, X be
a discrete random vector with support SX, Y be a discrete
random variable with support SY , h, h1, h2 : SX → R be
functions and a, b ∈ R. Then:

1. E(ah1(X) + bh2(X) | Y ) = aE(h1(X) | Y ) +
bE(h1(X) | Y )

2. If X and Y are independent, then E(h(X) | Y ) =
E(h(X)).

3. E(E(h(X) | Y )) = E(h(X))

Sketch of the proof. The first two properties are conse-
quence of the fact that the conditional expectation is an
expectation. For the last one note that:

E(E(h(X) | Y )) =
∑

y∈SY

E(h(X) | Y = y)P(Y = y)

= E(h(X))

where the last equality is due to the 4 Law of total expec-
tation. □

Theorem 7 (Wald theorem). Let (Ω, A,P) be a proba-
bility space, (Zn) be a sequence of random variables, all of
them with expectation µ ∈ R, such that supn≥1 E(|Zn|) =
A < ∞. If N is an integrable random variable with sup-
port N independent of Zn ∀n ∈ N, we have that:

E

(
N∑

n=1
Zn

)
= µE(N)

Proof. Note that E
(∑N

n=1 Zn

)
= E (

∑∞
n=1 Zn1N≥n), and

it is integrable because:

E

( ∞∑
n=1

|Zn1N≥n|

)
=

∞∑
n=1

E(|Zn|)E(1N≥n) ≤

≤ A

∞∑
n=1

P(N ≥ n) = AE(N) < ∞
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where we have used the Independence of (Zn) and N in
the first equality. And so:

E

(
N∑

n=1
Zn

)
=

∞∑
n=1

E(Zn)E(1N≥n) = µE(N)

□

Remark. Note that the equality remains true if Zn ≥
0 ∀n ∈ N even if E(N) = ∞ because the equality∑∞

n=1 P(N ≥ n) = E(N) remains true.

Probability-generating function
Definition 8. Let (Ω, A,P) be a probability space and
X be a random variable with support N ∪ {0}. The
probability-generating function (or pgf) of X is the func-
tion gX : DX → R defined as:

gX(s) =
∞∑

k=0
skP(X = k) = P(X = 0) +

∞∑
k=1

skP(X = k)

(1)
The set DX is defined as all the points for which the series
of Eq. (1) converges absolutely.

Lemma 9. Let (Ω, A,P) be a probability space and
X be a random variable with support N ∪ {0}. Then,
[−1, 1] ⊆ DX and gX(s) = E(sX) (with the convention
that 00 = 1).

Proof. Clearly gX(s) = E(sX) and furthermore ∀s ∈
[−1, 1] we have s ∈ DX because:

∞∑
k=0

|s|kP(X = k) ≤
∞∑

k=0
P(X = k) = 1 < ∞

□

Theorem 10. Let (Ω, A,P) be a probability space and
X, Y be random variables with support N ∪ {0}. Then:

X
d= Y ⇐⇒ gX = gY

Moreover:

P(X = k) = gY
(k)(0)
k! ∀k ≥ 0

Sketch of the proof. Note that gX(s) is a power series de-
fined in a neighbourhood of s = 0 (recall ??). □

Theorem 11. Let (Ω, A,P) be a probability space and X,
Y be independent random variables with support N∪{0}.
Then, ∀s ∈ DX ∩ DY we have:

gX+Y (s) = gX(s)gY (s)

Proof. Note that if s ∈ DX ∩ DY , then s ∈ DX+Y because

gX+Y (|s|) = E
(

|s|X+Y
)

= E
(

|s|X
)
E
(

|s|Y
)

< ∞

due to the independence of X and Y . To show the equality
if s = 0, we have:

P(X + Y = 0) = P(X = 0, Y = 0) = P(X = 0)P(Y = 0)

where the first equality is due to X, Y ∈ N ∪ {0} and the
second one is becuse of the independence. If s ̸= 0, as
before:

gX+Y (s) = E(sX+Y ) = E(sX)E(sY ) = gX(s)gY (s)

□

Theorem 12. Let (Ω, A,P) be a probability space and X
be a random variable with support N∪ {0}. Then, ∀k ≥ 1
we have:

lim
s→1−

gX
(k)(s) = E(X(X − 1) · · · (X − k + 1))

Sketch of the proof. Take (sn) ∈ R such that sn ↗ 1.
Differentiating term by term we have that:

g
(k)
X (sn) = E(X(X − 1) · · · (X − k + 1)(sn)X−k)

for all n ∈ N. Moreover, note that X(X − 1) · · · (X − k +
1)(sn)X−k ↗ X(X − 1) · · · (X − k + 1). Now use the ??
??. □

X gX(s) DX

k ∈ N sk R
U({k1, . . . , kn}) 1

n

∑n
i=1 ski R

B(n, p) (ps + 1 − p)n R
Pois(λ) eλ(s−1) R

Geo(p) ps

1 − (1 − p)s

(
−1

1 − p
,

1
1 − p

)
Table 1: Probability-generating functions of common dis-
tributions.

2. | Discrete-time Markov chains

Stochastic processes

Definition 13 (Stochastic process). Let T ⊆ Rn be
a set, (E, E) be a measurable space and (Ω, A,P) be a
probability space. A stochastic process on (Ω, A,P) with
parameter set T and state space (E, E) is a family of ran-
dom variables {Xt}t∈T from (Ω, A) to (E, E). That is,
Xt : Ω → E satisfies Xt

−1(B) ∈ A for all B ∈ E and all
t ∈ T .

Remark. In general, we wil consider stochastic processes
with parameter sets T = N,N ∪ {0},Z,R,R≥0 and state
spaces (N ∪ {0}, P(N ∪ {0})) or (R, B(R)).

Definition 14. Let (Xt)t∈T , (Yt)t∈T be two stochastic
processes defined on the same probability space (Ω, A,P).
We say that (Xt)t∈T and (Yt)t∈T are independent if ∀n, k ∈
N and all t1, . . . , tn, s1, . . . , sk ∈ T we have that the ran-
dom vectors (Xt1 , . . . , Xtn

) and (Ys1 , . . . , Ysk
) are indepen-

dent.
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Galton-Watson process
Model 15. Let (Xn), n ∈ N ∪ {0} be a sequence of dis-
crete random variables representing the number of new
individuals of a certain population at the n-th generation.
Suppose they are defined as

Xn+1 =
Xn∑
k=1

Z
(k)
n+1

and X0 = 1. Here Z
(k)
n+1 has support N∪{0} ∀n, k and rep-

resent the number of descendants (to the next generation)
of the k-th individual of the n-th generation. Suppose
that Z

(k)
n+1 ∼ Z are i.i.d. and independent of (Xn). We

would like to study the probability ρ of extinction of this
population:

ρ = P({Xn = 0 : for some n ∈ N}) = P

( ∞⋃
n=1

{Xn = 0}

)
Lemma 16. Let (Zn) be a sequence of i.i.d. random vari-
ables distributed as Z with support N ∪ {0}, and N be a
random variable also with support N ∪ {0} and indepen-
dent to (Zn). Let X =

∑N
k=1 Zk. Then, ∀s ∈ [−1, 1] we

have:
gX(s) = gN (gZ(s))

Proof. First suppose N ≤ M with M ∈ N fixed. Then us-
ing the independence, the 4 Law of total expectation and
the 3 Substitution principle:

gX(s) = E(sX) =
M∑

k=1
E(sX | N = k)P(N = k)

=
M∑

k=1
E
(

s
∑N

i=1
Zi | N = k

)
P(N = k)

=
M∑

k=1
E
(

s
∑k

i=1
Zi

)
P(N = k)

=
M∑

k=1
gZ(s)kP(N = k)

= gN (gZ(s))

Now if N can take any value of N ∪ {0} we have that:

gX(s) = E
(

s
∑N

i=1
Zi

)
= E

(
lim

M→∞
s
∑min(N,M)

i=1
Zi

)
= lim

M→∞
E
(

s
∑min(N,M)

i=1
Zi

)
= lim

M→∞
gmin(N,M)(gZ(s))

= lim
M→∞

E
(

(gZ(s))min(N,M)
)

= E
(

lim
M→∞

(gZ(s))min(N,M)
)

= gN (gZ(s))

where both limit exchangings are due to the ?? ?? using
the intagrable random variable 1. □

Theorem 17. In the hypothesis of Theorem 15, we have
that:

ρ = gZ(ρ)

Proof. Note that {Xn = 0} ⊆ {Xn+1 = 0}. Hence:

ρ = P

( ∞⋃
n=1

{Xn = 0}

)
= lim

n→∞
P(Xn = 0) = lim

n→∞
gXn

(0)

Now, using Theorem 16 we have:

gXn
(s) = gXn−1(gZ(s)) = · · · = gX1(gZ

n(s))

But X1 = 1 and so gX1(s) = s. So gXn
(s) = gZ

n(s)
and therefore gXn+1(0) = gZ(gXn

(0)). Taking the limit
as n → ∞ and using the continuity of the pgf we get the
result. □

Theorem 18. In the hypothesis of Theorem 15 and the
additional assumption that 0 < P(Z = 0) < 1 we have:

1. If E(Z) ≤ 1, gZ has only 1 fixed point (the trivial
one, s = 1). Hence, the population will extinct with
probability 1.

2. If E(Z) > 1, gZ has a unique non-trivial fixed point
on (0,1).

Proof. First suppose P(Z = 0) + P(Z = 1) = 1. Thus,
Z

a.e.
≤ 1 and so E(Z) ≤ 1. Moreover, gZ(s) = P(Z =

0) + sP(Z = 1), which is a line with slope P(Z = 1) < 1.
Hence, it has a unique fixed point, which is s = 1.
Now assume P(Z = 0) + P(Z = 1) < 1. Then, ∃k ≥ 2
with P(Z = k) > 0. Hence, gZ

′(s) > 0 and gZ
′′(s) > 0

∀s ∈ (0, 1). Now consider f(s) = g(s) − s. Note that f is
strictly convex in (0, 1) and f(0) = g(0) = P(Z = 0) > 0.
Finally, note that

lim
t→1−

f ′(s) = lim
t→1−

g(s) − 1 = E(Z) − 1

and so lim
t→1−

f ′(s) is negative in the first case and positive
in the second case. This implies that f has no zeros on
(0, 1) in the first case and exactly 1 zero in (0, 1) in the
second case.
It’s missing to see that in the second case the probability
of extinction ρ is given by the fixed point in (0, 1), rather
than 1. We have that:

ρ = lim
n→∞

gXn
(0) = lim

n→∞
gZ

n(0)

Since gZ
′ > 0, we have that gZ is increasing and so it

is gZ
n ∀n ∈ N. Moreover, if gZ(x0) = x0, we have that

gZ
n(x0) = x0 ∀n ∈ N. Therefore,

0 < gZ(0) < gZ
2(0) < · · · < gZ

n(0) < · · · < x0 < · · · < 1

And so the limit has to be x0 (note that the limit does ex-
ist because (gZ

n(0)) is an increasing bounded sequence).
□
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Gambler’s ruin
Definition 19 (Gambler’s ruin problem). Consider a
gambler with an initial capital z ∈ Z and suppose that he
plays a game in which wins 1 unit of capital with probabil-
ity p and loses 1 unit of capital with probability q := 1−p.
The game ends whenever the player is ruined or if he ar-
rives to a capital of a ∈ Z. All the plays are independent.
We denote by (Xk) the variables that measure the k-th
play. That is:

P(Xk = 1) = p P(Xk = −1) = q

We define qz as the probability of ruining himself starting
with a capital of z, pz as the probability of winning the
game starting with a capital of z and Dz as the duration
of the game starting with a capital of z.

Proposition 20. Consider the Gambler’s ruin problem.
Then:

qz =


−( q

p )a+( q
p )z

1−( q
p )a if p ̸= 1/2

1 − z
a if p = 1/2

Sketch of the proof. We have that qk solves the difference
equation

qk = P(ruin | Xk = 1)P(X1 = 1)+
+ P(ruin | Xk = −1)P(X1 = −1) = qk+1p + qk−1q

with q0 = 1 and qa = 0, whose solution is straightforward.
□

Proposition 21. Consider the Gambler’s ruin problem.
Suppose that we play against another player (and so when
we lose, he wins and vice versa). Let p∗

z, q∗
z be the respec-

tive probabilities for the other player. Then:

qz + q∗
z = 1

Hence, Dz

a.e.
< ∞.

Sketch of the proof. Note that

q∗
z =


−( p

q )a+( p
q )a−z

1−( p
q )a if p ̸= 1/2

1 − a−z
a if p = 1/2

□

Proposition 22. Let dz = E(Dz) and suppose that this
expectation is finite. Then:

dz =

 z
q−p − a

q−p

1−( q
p )z

1−( q
p )a if p ̸= 1/2

z(a − z) if p = 1/2

Proof. We have that qk solves the difference equation:

dk = E(Dk | Xk = 1)P(X1 = 1)+
+ E(Dk | Xk = −1)P(X1 = −1) =

= E(Dk+1 + 1)p + E(Dk−1 + 1)q = dk+1p + dk−1q + 1

with d0 = 0 and da = 0, whose solution is straightforward
(dk = k

p−q and dk = −k2 are particular solutions for the
case p ̸= q and p = q, respectively). □

Markov chains

Definition 23. A Markov chain is a sequence of discrete
random variables (Xn) with support I such that:

P(Xn+1 = j | X0 = i0, . . . , Xn−1 = in−1, Xn = i) =
= P(Xn+1 = j | Xn = i)

for all n ≥ 0 and all i0, . . . , in−1, i, j ∈ I. This property is
usually called Markov property. If moreover P(Xn+1 = j |
Xn = i) does not depend on n, that is

P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i)

then we say that the Markov chain is a time-homogeneous
Markov chain. The set I is called state space and its ele-
ments are called states of the Markov chain.

Definition 24 (Stochastic matrix). Let I be an index
set. A matrix P = (pij)i,j∈I is called a stochastic matrix
if pij ≥ 0 ∀i, j ∈ I and:∑

j∈I

pij = 1

Definition 25. Let (Xn) be a time-homogeneous Markov
chain. We define the transition probabilities pij as the
probability of going from state i to state j. That is:

pij = P(X1 = j | X0 = i)

The matrix P = (pij)i,j∈I is called the transition matrix
of the Markov chain. Finally, we define the probabilities
πi as πi = P(X0 = i). We define the vector π = (πi)i∈I as
the initial distribution of the Markov chain.

Proposition 26. Let (Xn) be a time-homogeneous
Markov chain. Then:

1. P is a stochastic matrix.

2.
∑

i∈I πi = 1.

Lemma 27. Let I, F be finite or countable set, (Zn) be
a sequence of random variables with support F , X0 be a
random variable with support I and f : I × F → I be a
function. Consider the sequence (Xn) defined by:

Xn+1 = f(Xn, Zn+1)

If ∀i0, . . . , in−1, i ∈ I and ∀k ∈ F we have:

P(Zn+1 = k | X0 = i0, . . . , Xn−1 = in−1, Xn = i) =
= P(Zn+1 = k | Xn = i) = P(Z1 = k | X0 = i)

then (Xn) is a time-homogeneous Markov chain with tran-
sition matrix P = (pij)i,j∈I given by:

pij = P(f(i, Z1) = j | X0 = i)
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Proof. Let C = {X0 = i0, . . . , Xn−1 = in−1, Xn = i} and
let Ai,j := {k ∈ F : f(i, k) = j}. We have:

P(Xn+1 = j | C) = P(f(i, Zn+1) = j | C)
= P(Zn+1 ∈ Ai,j | C)

=
∑

k∈Ai,j

P(Zn+1 = k | C)

=
∑

k∈Ai,j

P(Z1 = k | X0 = i)

= P(f(i, Z1) = j | X0 = i)

□

Definition 28 (Random walk). A random walk is a se-
quence (Sn) with S0 = X0 and Sn =

∑n
k=0 Xk, where

(Xk)k≥1 is a sequence of i.i.d. random vectors and X0 is
a random vector independent of (Xk).

Definition 29. A simple random walk is a random walk
in which in one step we can only pass from one state to its
neighbours. That is, if the random walk is in Z, Xk are
random variables such that:

Xk =
{

1 with probability p

−1 with probability 1 − p

Figure 1: A simple random walk of 10000 steps in Z2. The
green and blue dots are the respective initial and final po-
sitions of the random walk.

Lemma 30. A sequence of i.i.d. random variables, a
random walk and a Galton-Watson process are all time-
homogeneous Markov chains.

Definition 31. Let (Xn) be a time-homogeneous Markov
chain. We define the n-step transition probabilities p

(n)
ij as

the probability of going from state i to state j in n steps.
That is:

p
(n)
ij = P(Xn = j | X0 = i)

The matrix P(n) = (p(n)
ij )i,j∈I is called n-step transition

matrix of the Markov chain.

Definition 32. Let (Xn) be a time-homogeneous Markov
chain. We define the probabilities π

(n)
i as the probability

of being in state i after n steps. That is:

π
(n)
i = P(Xn = i)

We define the vector π(n) = (π(n)
i )i∈I as n-step distribu-

tion of the Markov chain.

Lemma 33. Let A, B, C be events in a probability space
such that P(B ∩ C) > 0. Then:

P(A ∩ B | C) = P(B | C)P(A | B ∩ C)

Proof.

P(A ∩ B | C) = P(A ∩ B ∩ C)
P(C)

P(B ∩ C)
P(B ∩ C)

= P(B | C)P(A | B ∩ C)

□

Lemma 34. Let I be a finite or countable set and A and
Di for i ∈ I be events in a probability space such that
P(A | Di) = p for all i ∈ I and such that the Di are
pairwise disjoint. Then:

P

(
A |

⊔
i∈I

Di

)
= p

Proof.

P

(
A |

⊔
i∈I

Di

)
=

P(A ∩
⊔

i∈I Di)
P(
⊔

i∈I Di)

=
∑

i∈I P(A ∩ Di)∑
i∈I P(Di)

=
∑

i∈I P(A | Di)P(Di)∑
i∈I P(Di)

=
∑

i∈I pP(Di)∑
i∈I P(Di)

= p

□

Theorem 35. Let (Xn) be a time-homogeneous Markov
chain. Then, P(n) = Pn.

Proof. By induction on n. The case n = 1 is clear. For
n ≥ 2 we have:

p
(n+1)
ij = P(Xn+1 = j | X0 = i)

=
∑
k∈I

P(Xn+1 = j, Xn = k | X0 = i)

=
∑
k∈I

P(Xn = k | X0 = i)·

· P(Xn+1 = j | Xn = k, X0 = i)

=
∑
k∈I

p
(n)
ik p

(1)
kj
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where the penultimate equality follows from Theorem 33
and the last equality follows from Theorem 34 and the
Markov property because if D = {Xn = k, X0 = i} we
have that:

D =
⊔

i1,...,in−1∈I

{Xn = k, X0 = i, X1 = i1, . . . , Xn−1 =

= in−1}

and so:

P(Xn+1 = j | Xn = k, X0 = i) = P(Xn+1 = j | Xn = k,

X0 = i, X1 = i1, . . . , Xn−1 = in−1) =
= P(Xn+1 = j | Xn = k)

Therefore, P(n+1) = PnP, by induction hypothesis. □

Theorem 36 (Chapman-Kolmogorov equation). Let
(Xn) be a time-homogeneous Markov chain and i, j ∈ I.
Then:

p
(m+n)
ij =

∑
k∈I

p
(m)
ik p

(n)
kj

Proposition 37. Let (Xn) be a time-homogeneous
Markov chain. Then:

1. P(0) = II

2. π(n) = π(0)Pn

3. P(X0 = i0, . . . , Xn = in) = π
(0)
i0

pi0i1 · · · pin−1in

Sketch of the proof.

1. p
(0)
ij = P(X1 = j | X0 = i) = δij .

2.

π
(n)
i = P(Xn = i) =

∑
k∈I

P(Xn = i | X0 = k)·

· P(X0 = k) =
∑
k∈I

π
(0)
k p

(n)
ki

3. Use the ?? ?? and the Markov property.

□

Classification of states

Definition 38. Let (Xn) be a time-homogeneous Markov
chain. We say that a state j ∈ I is reachable from i ∈ I if
∃n ∈ N∪ {0} such that p

(n)
ij > 0. In this case we will write

i → j.

Definition 39. Let (Xn) be a time-homogeneous Markov
chain. We say that two states i, j ∈ I communicate if i → j
and j → i. In this case we will write i ↔ j.

Lemma 40. Let (Xn) be a time-homogeneous Markov
chain. Then, the relation ↔ is an equivalence relation.

Proof. The reflexivity and symmetry are clear. For the
transitivity, suppose i ↔ j and j ↔ k. Then, ∃n, m ∈ I

such that p
(n)
ij > 0 and p

(m)
jk > 0. Then by 36 Chapman-

Kolmogorov equation:

p
(n+m)
ik =

∑
ℓ∈I

p
(n)
iℓ p

(m)
ℓk ≥ p

(n)
ij p

(m)
jk > 0 (2)

Similarly, we have p
(r+s)
ki > 0 for some r, s ∈ I. Therefore,

i ↔ k. □

Definition 41. Let (Xn) be a time-homogeneous Markov
chain. A subset C ⊆ I is called irreducible class if for any
i, j ∈ C we have i ↔ j. That is, if C is an equivalence
class of ↔. If all the states are in the same equivalence
class, then the Markov chain is called an irreducible chain.
Definition 42. Let (Xn) be a time-homogeneous Markov
chain and i ∈ I. We define the period of i as:

d(i) := gcd{n ∈ N : p
(n)
ii > 0}

with the convention that if {n ∈ N : p
(n)
ii > 0} = ∅, then

d(i) = ∞. If d(i) = 1 we say that i is aperiodic.
Proposition 43. Let (Xn) be a time-homogeneous
Markov chain and i, j ∈ I. Then:

i ↔ j =⇒ d(i) = d(j)

Proof. Suppose i ̸= j. We will see that if p
(n)
jj > 0, then

d(i) | n. Since i ↔ j, then ∃r, s ∈ I such that p
(r)
ij > 0

and p
(s)
ji > 0. So as in Eq. (2), we have p

(r+s)
ii > 0. Thus,

d(i) | r + s. Moreover, if p
(n)
jj > 0, then:

p
(r+n+s)
ii ≥ p

(r)
ij p

(n)
jj p

(s)
ji > 0

So d(i) | r + n + s. Thus, d(i) | n and so d(j) ≥ d(i)
because d(j) is the greatest common divisor of all such
n. Repeating the argument exchanging i and j we get
d(j) = d(i). □

Definition 44. Let (Xn) be a time-homogeneous Markov
chain. If the chain is irreducible, we will denote the com-
mon period by d. If d = 1 we say that the chain is aperi-
odic.
Proposition 45. Let (Xn) be a time-homogeneous
Markov chain. Suppose we have an irreducible chain of
period d > 1. Then, there exist subsets C0, . . . , Cd−1 ⊆ I
such that I = C0 ⊔ · · · ⊔ Cd−1 and such that if j ∈ Cα,
then:

pjk > 0 =⇒ k ∈ C[α+1]d

for all k ∈ I. Here [α + 1]d denotes α + 1 mod d.
Proof. Let i ∈ I and define

Cα := {j ∈ I : ∃n ∈ N ∪ {0} with p
(nd+α)
ij > 0}

Clearly C0 ∪ · · · ∪ Cd−1 = I. Let’s see that Cα ∩ Cβ = ∅ if
α ̸= β. Suppose k ∈ Cα ∩ Cβ . Note that since the chain is
irreducible, ∃m ∈ N ∪ {0} such that p

(m)
ki > 0. And so, as

in Eq. (2) we have p
(nd+α+m)
kk > 0 because k ∈ Cα. Thus,

d | α + m. The same argument with β implies d | β + m.
So d | β − α and β = α because α, β ∈ {0, · · · , d − 1}.
Finally, if j ∈ Cα is such that pjk > 0 for k ∈ I, then as
in Eq. (2) we have p

(nd+α+1)
ik > 0. So, if α + 1 ≤ d − 1,

then k ∈ Cα+1. Otherwise, k ∈ C0 = C[α+1]d
. □
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Stopping time and strong Markov property
Proposition 46. Let (Xn) be a time-homogeneous
Markov chain, k ∈ N and A ⊆ Ik and B ⊆ In. Then:

P((Xn+1, . . . , Xn+k) ∈ A |(X0, . . . , Xn−1) ∈ B, Xn = i) =
= P((Xn+1, . . . , Xn+k) ∈ A | Xn = i) =

= P((X1, . . . , Xk) ∈ A | X0 = i)

for all n ≥ 0.

Proof. By Theorem 34 it suffices to prove the statement
for B = {i0}×· · ·×{in−1}. Moreover, since A is countable
we can suppose A = {j1} × · · · × {jk}. We will prove it by
induction on k the homogeneous equality (the other one
is even easier). The case k = 1 is by definition. Now sup-
pose k ≥ 2. Then, denoting C := {X0 = i0, . . . , Xn−1 =
in−1, Xn = i} we have:

P(Xn+1 = j1, . . . , Xn+k+1 = jk+1 | C)
= P(Xn+k+1 = jk+1 | C, Xn+1 = j1, . . . , Xn+k = jk)·

· P(Xn+1 = j1, . . . , Xn+k = jk | C)
= P(Xk+1 = jk+1 | X0 = i, X1 = j1, . . . , Xk = jk)·

· P(X1 = j1, . . . , Xk = jk | X0 = i)
= P(X1 = j1, . . . , Xk+1 = jk+1 | X0 = i)

where in the second equality we have used the Markov
property, the homogeneous property and induction hy-
pothesis. □

Definition 47. Let (Ω, A,P) be a probability space and
let I be a finite or countable set. For each i ∈ I, let Fi

be a sub σ-algebra of A, that is a subset of A which also
σ-algebra. We say that (Fi)i∈I is filtration if for all i ∈ I
we have Fi ⊆ Fi+1. The tuple (Ω, A, (Fi)i∈I ,P) is called
a filtration space.

Definition 48. Let (Ω, A,P) be a probability space and
X be a random vector. The σ-algebra generated by X is:

σ(X) := {X−1(B) : B ∈ B(Rn)}

Proposition 49. Let (Ω, A,P) be a probability space
and (Xn) be a time-homogeneous Markov chain. Then,
if Fn := σ(X0, . . . , Xn), the sequence (Fn)n≥0 is a filtra-
tion.

Proof. Take F ∈ Fn. Then:

F = {(X0, . . . , Xn) ∈ B ⊆ In+1} =
= {(X0, . . . , Xn, Xn+1) ∈ B × I ⊆ In+2} ∈ Fn+1

□

Definition 50. Let (Ω, F , (Fn)n≥0,P) be a filtration
space and τ a random variable on it with support N∪{0}.
We say that τ is a stopping time if ∀n ≥ 0 we have:

{τ = n} ∈ Fn

Remark. Intuitively, this condition means that the “deci-
sion” of whether to stop at time n must be based only
on the information present at time n, not on any future
information.

Lemma 51. Let (Ω, F , (Fn)n≥0,P) be a filtration space
and τ be a random variable. Then:

τ is a stopping time ⇐⇒ {τ ≤ n} ∈ Fn

Proof.

=⇒) {τ ≤ n} =
n⊔

m=1
{τ = m} ∈ Fn because {τ = m} ∈

Fm ⊆ Fn ∀m ≤ n.

⇐=) {τ = n} = {τ ≤ n} \ {τ ≤ n − 1} ∈ Fn because
{τ ≤ n − 1} ∈ Fn−1 ⊆ Fn.

□

Proposition 52. Let (Xn) be a time-homogeneous
Markov chain, (Ω, F , (Fn)n≥0,P) be a filtration space de-
fined with (Xn), i ∈ I and τi be the random variable with
support N ∪ {0, ∞} defined by:

τi(ω) = inf{n ≥ 1 : Xn(ω) = i} (3)

with the convention that inf ∅ = +∞. Then, τi is a stop-
ping time.
Proof. If n = 0, then {τi = 0} = ∅ ∈ F0. If n = 1, then
{τi = 1} = {X0 ∈ I, X1 = i} ∈ F1. If n ≥ 2, then:

{τi = n} = {X0 ∈ I, X1, . . . , Xn−1 ∈ {i}c, Xn = i} ∈ Fn

□

Theorem 53 (Strong Markov property). Let (Xn)
be a time-homogeneous Markov chain, (Ω, F , (Fn)n≥0,P)
be a filtration space defined with (Xn) and τ be a stopping
time. Suppose that P(τ < ∞) > 0. Then:

P(Xτ+n+1 = j | Xτ = i0, . . . , Xτ+n−1 = in−1, Xτ+n = i,

τ < ∞) = P(Xτ+n+1 = j | Xτ+n = i, τ < ∞) =
= P(X1 = j | X0 = i)

on account that P(A) > 0, where A := {Xτ =
i0, . . . , Xτ+n−1 = in−1, Xτ+n = i, τ < ∞}.
Proof.

P(Xτ+n+1 = j | A) =
∞∑

m=0
P(Xτ+n+1 = j, τ = m | A) =

=
∞∑

m=0
P(τ=m,A)>0

P(Xm+n+1 | A, τ = m)P(τ = m | A)

Now note that since {τ = m} ∈ Fm, we can write:

{τ = m} =
⊔

j0,...,jm

{X0 = j0, . . . , Xm = jm}

for some j0, . . . , jm ∈ I. But since P(τ = m, A) > 0, we
have that in this last expression jm = i0 and so using
Theorem 46 we get:

P(Xτ+n+1 = j | A) =
∞∑

m=0
P(τ=m,A)>0

P(X1 = j | X0 = i)·

· P(τ = m | A) = P(X1 = j | X0 = i)

□
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Corollary 54 (Strong Markov property). Let (Xn)
be a time-homogeneous Markov chain, (Ω, F , (Fn)n≥0,P)
be a filtration space defined with (Xn), τ be a stopping
time, k ∈ N and A ⊆ Ik and B ⊆ In. Suppose that
P(τ < ∞) > 0. Then:

P((Xτ+n+1, . . . , Xτ+n+k) ∈ A | (Xτ , , . . . , Xτ+n−1) ∈ B,

Xτ+n = i, τ < ∞) = P((X1, . . . , Xk) ∈ A | X0 = i)

for all n ≥ 0.

Recurrence and transience
From now on we will omit saying that a stopping time τ
is defined in a filtration space (Ω, F , (Fn)n≥0,P). More-
over, given a Markov chain (Xn), we will denote by
Pi(A) := P(A | X0 = i) and Ei(A) := E(A | X0 = i),
for any event A.
Definition 55. Let (Xn) be a time-homogeneous Markov
chain, i, j ∈ I and consider the stopping time τj of Eq. (3).
We define fij := Pi(τj < ∞). We say that i is transient if
fii < 1 and recurrent if fii = 1. Finally, we define Ni as:

Ni := |{n ∈ N : Xn = i}| =
∞∑

n=1
1{Xn=i}

Remark. Roughly speaking, if i is recurrent it means that
the chain will return at least once to i. On the other hand,
if i is transient, it means that the chain may never return
to i.
Definition 56. Let (Xn) be a time-homogeneous Markov
chain, i, j ∈ I and consider the stopping time τj of Eq. (3).
For k ≥ 2, we define the k-th hitting time of i by:

τk
i := inf{n > τk−1

i : Xn = i}

with the convention that τ1
i = τi and τ0

i = 0. Moreover,
we define the time difference T k

i := τk
i − τk−1

i .
Lemma 57. Let (Xn) be a time-homogeneous Markov
chain. Then, τk

i is a stopping time ∀k ∈ N and more-
over T k

i are i.i.d. random variables distributed as τi with
respect to the probability Pi.
Proof. We need to check that ∀m1, . . . , mk ∈ N:

Pi(T 1
i = m1, . . . , T k

i = mk) = Pi(τi = m1) · · ·Pi(τi = mk)

We expand the left-hand side using the ?? ??. Now we
examine each term of the product, which have the form:

pℓ := Pi(T ℓ
i = mℓ | T 1

i = m1, . . . , T ℓ−1
i = mℓ−1)

We have that:

pℓ = Pi(τ ℓ
i − τ ℓ−1

i = mℓ | A)

where A = {X0 = i, X1 ̸= i, . . . , Xm1−1 ̸= i, Xm1 =
i, Xm1+1 ̸= i, . . . , Xm1+···+mℓ−1 = i}. So, by the 3 Substi-
tution principle we have:

pℓ = Pi(Xm1+···+mℓ
= i, Xm1+···+mℓ−1 ̸= i, . . . ,

Xm1+···+mℓ−1+1 ̸= i | A)
= Pi(Xmℓ

= i, Xmℓ−1 ̸= i, . . . , X1 | X0 = i)
= P(τi = mℓ)

□

Proposition 58. Let (Xn) be a time-homogeneous
Markov chain and i ∈ I. Then:

Pi(Ni ≥ k) = (fii)k

Proof. First suppose fii = 0. Then:

Pi(Ni ≥ k) ≤ Pi(Ni ≥ 1) = Pi(τi < ∞) = fii = 0

Now assume fii = Pi(τi < ∞) > 0. We will prove the
statement by induction on k. The case k = 1 is clear.
Note that {τk

i < ∞} ⊆ {τk−1
i < ∞}. Thus:

Pi(Ni ≥ k) = Pi(τk
i < ∞) = Pi(τk

i < ∞, τk−1
i < ∞)

= Pi(τk−1
i < ∞)Pi(τk

i < ∞ | τk−1
i < ∞) =

= (fii)k−1Pi(τk
i < ∞ | τk−1

i < ∞)

So it’s missing to prove that Pi(τk
i < ∞ | τk−1

i < ∞) = fii.
But:

Pi(τk
i < ∞ | τk−1

i < ∞) =

=
∞∑

m=1
Pi(τk

i = m + τk−1
i | τk−1

i < ∞)

=
∞∑

m=1
Pi(τk

i = m + τk−1
i | Xτk−1

i
= i, τk−1

i < ∞)

=
∞∑

m=1
Pi(Xτk−1

i
+1 ̸= i, . . . , Xτk−1

i
+m−1 ̸= i,

Xτk−1
i

+m = i | Xτk−1
i

= i, τk−1
i < ∞)

=
∞∑

m=1
Pi(X1 ̸= i, . . . , Xm−1 ̸= i, Xm = i) =

=
∞∑

m=1
Pi(τi = m) = Pi(τi < ∞) = fii

where we have used the 53 Strong Markov property. □

Theorem 59. Let (Xn) be a time-homogeneous Markov
chain and i ∈ I. Then:

• i is recurrent =⇒ Pi(Ni = ∞) = 1

• i is transient =⇒ Pi(Ni < ∞) = 1

Proof. Note that {Ni ≥ k} ↘ {Ni = ∞}, so by Theo-
rem 58 we get:

Pi(Ni = ∞) = lim
k→∞

Pi(Ni ≥ k) = (fii)k =

=
{

1 if i is recurrent
0 if i is transient

□
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Definition 60. Let (Xn) be a time-homogeneous Markov
chain, i, j ∈ I and n ∈ N. We define f

(n)
ij as:

f
(n)
ij := Pi(τj = n)

Note that in these conditions we have:

fij =
∞∑

n=1
f

(n)
ij

Proposition 61. Let (Xn) be a time-homogeneous
Markov chain, i, j ∈ I and n ∈ N. Then:

p
(n)
ij =

n∑
m=1

f
(m)
ij p

(n−m)
jj

Proof. Note that {Xn = j} ⊆ {τj ≤ n} =
⊔n

m=1{τj = m}.
Hence, {Xn = j} =

⊔n
m=1[{Xn = j} ∩ {τj = m}]. Thus:

p
(n)
ij = Pi(Xn = j)

=
n∑

m=1
Pi(Xn = j, τj = m)

=
n∑

m=1
Pi(Xn = j | τj = m)Pi(τj = m)

=
n∑

m=1
Pi(Xn = j | Xm = j, Xm−1 ̸= j, . . . , X1 ̸= j)·

· f
(m)
ij

=
n∑

m=1
Pj(Xn−m = j)f (m)

ij

=
n∑

m=1
f

(m)
ij p

(n−m)
jj

□

Proposition 62. Let (Xn) be a time-homogeneous
Markov chain, i, j ∈ I. Then:

i → j ⇐⇒ fij > 0

Proof. First note that fij > 0 ⇐⇒ ∃m ∈ N such that
f

(m)
ij > 0. So, we have:

=⇒) If i → j, ∃n ∈ N such that p
(n)
ij > 0. So by Theo-

rem 61 we have that ∃m ∈ N such that f
(m)
ij > 0.

⇐=) Now suppose f
(m)
ij > 0 for some m ∈ N. Then:

0 < f
(m)
ij = Pi(τj = m) ≤ Pi(Xm = j) = p

(m)
ij

Thus, i → j.

□

Definition 63. Let (Xn) be a time-homogeneous Markov
chain, i, j ∈ I. We define: Sij :=

∑∞
n=1 p

(n)
ij .

Lemma 64. Let (Xn) be a time-homogeneous Markov
chain and j ∈ I be such that Sjj < ∞. Then, ∀i ∈ I we
have:

Sij = fij(1 + Sjj)

Proof.

∞∑
n=1

p
(n)
ij =

∞∑
n=1

n∑
m=1

f
(m)
ij p

(n−m)
jj =

∞∑
m=1

∞∑
n=m

f
(m)
ij p

(n−m)
jj =

=
∞∑

m=1
f

(m)
ij (1 + Sjj) = fij(1 + Sjj)

□

Lemma 65. Let (Xn) be a time-homogeneous Markov
chain and j ∈ I. Then, ∀i ∈ I and all N ∈ N we have:

N∑
n=1

p
(n)
ij ≤ fij

(
1 +

N∑
n=1

p
(n)
jj

)

Sketch of the proof. Same as in Theorem 64. □

Theorem 66. Let (Xn) be a time-homogeneous Markov
chain and i, j ∈ I. Then:

1. i is recurrent ⇐⇒ Sii = ∞.

2. If i ↔ j, then i is recurrent ⇐⇒ j is recurrent.

3. If j is recurrent and i → j, then i is recurrent.

4. If j is transient, then Sij < ∞ ∀i ∈ I. In particular,
∀i ∈ I, we have lim

n→∞
p

(n)
ij = 0.

Proof.

1. =⇒) Suppose Sii < ∞. Then, since fii = 1, The-
orem 64 implies Sii = 1 + Sii, which is a
contradiction.

⇐=) Using Theorem 65 we have:

fii ≥
∑N

n=1 p
(n)
ii

1 +
∑N

n=1 p
(n)
ii

N→∞−→ 1

2. If i ↔ j, then ∃r, s ≥ 1 such that p
(r)
ij , p

(s)
ji > 0. So

by Eq. (2) we have that ∀n ≥ 0:

p
(n+r+s)
jj ≥ p

(s)
ji p

(n)
ii p

(r)
ij =: Cp

(n)
ii

And so,
∑

p
(n)
ii = ∞ =⇒

∑
p

(n)
jj = ∞ by Item 66-1.

3. Similarly, as before, since i → j, ∃r ≥ 1 such that
p

(r)
ij > 0. Thus, p

(n+r)
ii ≥ p

(r)
ij p

(n)
jj . So,

∑
p

(n)
jj =

∞ =⇒
∑

p
(n)
ii = ∞.

4. It follows from Item 66-1 and Theorem 64.

□

Definition 67. Let (Xn) be a time-homogeneous Markov
chain. We say that the chain is recurrent if i is recurrent
for all i ∈ I. We say that the chain is transient if i is
transient for all i ∈ I.

Theorem 68 (Polya’s theorem on Z). The simple ran-
dom walk on Z is recurrent if and only if p = q.
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Proof. By Item 66-1 we need to study the convergence of∑
p

(n)
ii =

∑(2n)
ii . Note that:

p
(2n)
ii =

(
2n

n

)
pnqn

because we choose n steps to the right from a total of 2n
and the rest must be steps to the left. Finally, using ??
one can check that:

p
(2n)
ii ∼ 1√

n
(4pq)n (4)

which lead to a convergent series if and only if p ̸= q. □

Lemma 69. Let n ∈ N. Then:
n∑

m=0

(
n

m

)2
=
(

2n

n

)
Sketch of the proof. Equate the coefficients of xn of the
two series

2n∑
j=0

(
2n

j

)
xj = [(1 + x)n]2 =

 n∑
j=0

(
n

j

)
xj

2

and use the fact that
(

n
m

)
=
(

n
n−m

)
. □

Theorem 70 (Polya’s theorem on Z2). The simple
random walk on Z2 is recurrent if and only if P(X1 =
(1, 0)) = P(X1 = (−1, 0)) = P(X1 = (0, 1)) = P(X1 =
(0, −1)) = 1/4.

Sketch of the proof. We will proof only the implication to
the left, in order to keep the proof short. Note that we
have:

p
(2n)
ii =

n∑
m=0

(2n)!
(m!)2(n − m)!2

1
42n

= 1
42n

(
2n

n

) n∑
m=0

(
n

m

)2

In the formula m denotes the number of steps rightwards
and leftwards, and n − m, the number of steps upwards
and downwards. Now using Theorem 69 and Eq. (4) we
have:

p
(2n)
ii = 1

42n

(
2n

n

)2
∼ 1

n

□

Theorem 71 (Polya’s theorem on Z3). The simple
random walk on Z3 is always transient.

Corollary 72. Let (Xn) be a time-homogeneous Markov
chain and i, j ∈ I. Then, if j is transient, we have
Ei(Nj) < ∞.

Proof.

Ei(Nj) = Ei

( ∞∑
n=1

1{Xn=j}

)
=

∞∑
n=1

p
(n)
ij < ∞

where the last inequality follows from Item 66-4. □

Limit distributions
Definition 73. Let (Xn) be a time-homogeneous Markov
chain and i ∈ I be recurrent. We denote µi := Ei(τi). We
say that i is positive recurrent if µi < ∞ and null recurrent
if µi = ∞.

Theorem 74 (Ergotic theorem). Let (Xn) be a time-
homogeneous Markov chain and i ∈ I be positively recur-
rent. Then:

lim
n→∞

1
n

n∑
m=1

p
(m)
ii = 1

µi

Proof. By hypothesis T k
i has finite expectation and so by

the ?? we have:

1
k

k∑
m=1

T m
i = τk

i

k

a.e.−→ µi

Let Nn
i =

∑n
m=1 1{Xm=i} ≤ n, which counts the number

of visits of the state i in the first n steps. Note that if
Nn

i = k ≤ n, τk
i ≤ n < τk+1

i and so:

k

k + 1
k + 1
τk+1

i

= k

τk+1
i

<
Nn

i

n
≤ k

τk
i

Hence, taking the limit k → ∞ we have:

lim
n→∞

Nn
i

n
= lim

k→∞

k

τk
i

a.e.−→ 1
µi

Moreover note that Nn
i

n ≤ 1. Thus, by the ?? we have
that:

Ei

(
Nn

i

n

)
=
∑n

m=1 Pi(Xm = i)
n

=
∑n

m=1 p
(m)
ii

n

a.e.−→ 1
µi

□

Corollary 75. Let (Xn) be a time-homogeneous Markov
chain and i ∈ I be positive recurrent such that ∃ lim

n→∞
p

(n)
ii .

Then:
lim

n→∞
p

(n)
ii = 1

µi

Sketch of the proof. Recall ??. □

Theorem 76 (Ergotic theorem). Let (Xn) be a time-
homogeneous Markov chain and i ∈ I be recurrent and
aperiodic. Then, the limit lim

n→∞
p

(n)
ii exists and:

lim
n→∞

p
(n)
ii = lim

n→∞

1
n

∞∑
n=1

p
(n)
ii = 1

µi

In particular, if i is positive recurrent, then lim
n→∞

p
(n)
ii > 0

and if i is null recurrent, then lim
n→∞

p
(n)
ii = 0.

Proposition 77. Let (Xn) be a time-homogeneous
Markov chain, i ∈ I be recurrent and aperiodic and j ∈ I
be such that i ↔ j. Then:

1. i positive recurrent =⇒ j positive recurrent.

2. i null recurrent =⇒ j null recurrent.

10



Proof. By Theorems 43 and 66 we have that j is recur-
rent and aperiodic. Thus, by 76 Ergotic theorem, the lim-
its lim

n→∞
p

(n)
ii and lim

n→∞
p

(n)
jj exist. Moreover, since i ↔ j

∃r, s ∈ N such that p
(r)
ij , p

(s)
ji > 0. By Eq. (2) we have that

p
(n+r+s)
jj ≥ Cp

(n)
ii . If i is positive recurrent then:

lim
n→∞

p
(n+r+s)
jj ≥ C lim

n→∞
p

(n)
ii > 0

If i is null and j was positive, then i would be positive by
the previous argument, which is a contradiction. □

Theorem 78. Let (Xn) be a time-homogeneous Markov
chain and i ∈ I be recurrent and periodic of period d.
Then:

lim
n→∞

p
(nd)
ii = d

µi

Proof. (Yn) := (Xnd) is a time-homogeneous Markov
chain and i ∈ I is recurrent and aperiodic. Thus, by 76
Ergotic theorem we have that lim

n→∞
p

(nd)
ii = 1

Ei(τY
i )

. But:

τY
i = inf{n ≥ 1 : Yn = i} = 1

d
inf{n ≥ 1 : Xn = i} = τi

d

□

Theorem 79. Let (Xn) be a time-homogeneous irre-
ducible and aperiodic Markov chain. Then, we have ex-
actly one of the following results:

1. All the states are transient and ∀i, j ∈ I:

lim
n→∞

p
(n)
ij = lim

n→∞
π

(n)
j = 0

Moreover
∑∞

n=1 p
(n)
ij < ∞.

2. All the states are null recurrent and ∀i, j ∈ I:

lim
n→∞

p
(n)
ij = lim

n→∞
π

(n)
j = 0

Moreover
∑∞

n=1 p
(n)
ij = ∞.

3. All the states are positive recurrent and ∀i, j ∈ I:

lim
n→∞

p
(n)
ij = lim

n→∞
π

(n)
j = 1

µj

Proof. It can be seen that lim
n→∞

p
(n)
ij = lim

n→∞
p

(n)
jj ∀i, j ∈ I.

We will prove that lim
n→∞

p
(n)
ij = lim

n→∞
π

(n)
j ∀i, j ∈ I. We

have that:

lim
n→∞

π
(n)
j = lim

n→∞
P(Xn = j) = lim

n→∞

∑
i∈I

p
(n)
ij πi =

=
∑
i∈I

lim
n→∞

p
(n)
ij πi =

∑
i∈I

πi

µj
= 1

µj

where we have used the dominated convergence theorem
for series. □

Corollary 80. Let (Xn) be a time-homogeneous irre-
ducible and aperiodic Markov chain such that I is finite.
Then, all the states are positive recurrent.

Sketch of the proof. Note that we must have
∑

j∈I π
(n)
j =

1 ∀n ∈ N. □

Definition 81. Let (Xn) be a time-homogeneous Markov
chain. A vector ν = (νi)i∈I is called a stationary distribu-
tion if:

ν ≥ 0
∑
i∈I

νi = 1 νP = ν

Remark. In general, we cannot guarantee the existence or
uniqueness of stationary distributions.

Lemma 82. Let (Xn) be a time-homogeneous Markov
chain, ν be a stationary distribution and suppose π(0) =
ν. Then, π(n) = ν ∀n ∈ N.

Proof. π(n) = νPn = νPn−1 = · · · = ν □

Theorem 83. Let (Xn) be a time-homogeneous irre-
ducible and aperiodic Markov chain. Then, (Xn) is posi-
tive recurrent if and only if it admits a stationary distribu-
tion. Moreover, this distribution is unique, and it is given
by νi = 1

µi
.

Proof. We will only proof the case when I is finite. By
Theorem 80 we only need to prove the impication to
the right. Since lim

n→∞
p

(n)
ij = 1

µj
∀i, j ∈ I we have that

ν = (1/µi)i∈I ≥ 0 satisfies:∑
j∈I

νj =
∑
j∈I

lim
n→∞

p
(n)
ij = lim

n→∞

∑
j∈I

p
(n)
ij = 1

∑
i∈I

νipij =
∑
i∈I

lim
n→∞

p
(n)
ki pij = lim

n→∞
p

(n+1)
kj = νj

where we have used 36 Chapman-Kolmogorov equation.
Hence, ν is a stationary distribution. Now, for the unique-
ness, suppose ν is an arbitrary stationary distribution.
Then, νj =

∑
i∈I νip

(n)
ij ∀n ∈ N. Thus, taking n → ∞ we

get that νj = 1
µj

∀j ∈ I. □

3. | Continuous-time Markov chains
Introduction

Definition 84. Let (Xt)t≥0 be a stochastic process. We
say that (Xt)t≥0 is a continuous-time Markov chain with
state space I (finite or countable) if ∀n ∈ N and all
0 ≤ t1 < · · · < tn < tn+1 and all i1, . . . , in−1, i, j ∈ I
we have that:

P(Xtn+1 = j | Xtn
= i, Xtn−1 = in−1 . . . , Xt1 = i1) =

= P(Xtn+1 = j | Xtn
= i)

The chain is called homogeneous if P(Xtn+1 = j | Xtn = i)
does only depend on the difference tn+1 − tn. That is, if
∀s ≤ t we have:

P(Xt+s = j | Xs = i) = P(Xt = j | X0 = i)

In order to simplify the lecture we will write CTHMC for
continuous-time homogeneous Markov chains.
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Definition 85. Let (Xt)t≥0 be a CTHMC. We define the
transition probabilities as:

pij(t) = P(Xt = j | X0 = i)

The transition matrix is P(t) = (pij(t))i,j∈I .

Proposition 86 (Chapman-Kolmogorov equation).
Let (Xt)t≥0 be a CTHMC. Then, P(t) is a stochastic ma-
trix ∀t ≥ 0 and ∀s, t ≥ 0:

P(t + s) = P(t)P(s)

Proof.

pij(t + s) =
∑
k∈I

P(Xt+s = j, Xs = k | X0 = i)

=
∑
k∈I

P(Xt+s = j | Xs = k, X0 = i)·

· P(Xs = k | X0 = i)

=
∑
k∈I

pik(t)pkj(s)

□

Proposition 87. Let (Xt)t≥0 be a CTHMC. Then, for
all 0 ≤ t1 < · · · < tn and all i1, . . . , in ∈ I we have that:

P(Xtn
= in, Xtn−1 = in−1, . . . , Xt1 = i1) =

= pi1(t1)pi1i2(t2 − t1) · · · pin−1in
(tn − tn−1)

where pi(t) := P(Xt = i).

Poisson process
Definition 88. Let λ > 0. A stochastic process (Nt)t≥0
is called a Poisson process with parameter λ if:

1. N0 = 0.

2. Nt has independent increments, that is Nt1 , Nt2 −
Nt1 , . . . , Ntn − Ntn−1 are independent random vari-
ables for all 0 ≤ t1 < · · · < tn and all n ∈ N.

3. Nt has stationary increments, that is Nt − Ns ∼
Pois(λ(t − s)) ∀0 ≤ s ≤ t.

4. For all ω ∈ Ω the functions (called trajectories)

N·(ω) : [0, ∞) −→ N ∪ {0}
t 7−→ Nt(ω)

are right-continuous (càd).

Proposition 89. Let (Xt)t≥0 be a stochastic process with
independent increments. Then, (Xt)t≥0 is a continuous-
time Markov chain.

Proof.

P(Xtn+1 = j | Xtn = i, Xtn−1 = in−1 . . . , Xt1 = i1)
= P(Xtn+1 − Xtn = j − i | Xtn − Xtn−1 = i−

− in−1, . . . , Xt2 − Xt1 = i2 − i1, Xt1 = i1)
= P(Xtn+1 − Xtn = j − i)
= P(Xtn+1 = j | Xtn = i)

□

Corollary 90. Let (Nt)t≥0 be a Poisson process with pa-
rameter λ. Then, (Nt)t≥0 is a CTHMC with transition
probabilities:

pij(t) = P(Nt = j | N0 = i) = (λt)j

j! e−λt

Proposition 91. Let (N1
t )t≥0 and (N2

t )t≥0 be two inde-
pendent Poisson processes with parameters λ1 and λ2 re-
spectively. Then, (N1

t + N2
t )t≥0 is a Poisson process with

parameter λ1 + λ2.

Proof. Let Nt := (N1
t + N2

t ). We only check the indepen-
dent increment, the other properties are easier. We need
to check that for all 0 ≤ t1 < · · · < tn and all n ∈ N the
random variables Xt1 := Nt1 , Xt2 := Nt2 −Nt1 , . . . , Xtn

:=
Ntn

− Ntn−1 are independent. We have that

Xtℓ
= N1

tℓ
− N1

tℓ−1
+ N2

tℓ
− N2

tℓ−1
=: Y 1

ℓ + Y 2
ℓ

By hypothesis the variables Y 1
ℓ and Y 2

ℓ are independent.
Moreover, since N i

t are Poisson processes, we have that
{(Y i

k )}k=1,...,n pairwise independent, for i = 1, 2. Now
using the characterization of independence with the char-
acteristic function, we have:

φXt1 ,...,Xtn
(u1, . . . , un) = E

(
ei
∑n

j=1
ujXj

)
= E

(
ei
∑n

j=1
ujY 1

j ei
∑n

j=1
ujY 2

j

)
=

n∏
j=1

E
(

eiujY 1
j

)
E
(

eiujY 2
j

)
=

n∏
j=1

φXj (uj)

□

Lemma 92. Let (Nt)t≥0 be a Poisson process with pa-
rameter λ. Then:

P(Nh ≥ 2) = o (h)

Proof. P(Nh ≥ 2) = 1 − e−λh − λhe−λh = o (h) □

Proposition 93. Let (Nt)t≥0 be a Poisson process with
parameter λ. Then, the trajectories are almost surely non-
decreasing and have jumps of size at most 1.

Proof. We need to see that the event {Ns ≤ Nt : ∀t, s ∈
R, 0 ≤ s < t} has probability 1. We have:⋂

0≤s<t

{Ns ≤ Nt} =
⋂

0≤s<t
s,t∈Q

{Ns ≤ Nt}

because the trajectories are càd. Finally, since P(Ns ≤
Nt) = P(Nt − Ns ≥ 0) = 1, the intersection has probabil-
ity 1. Now, let:

A := {ω ∈ Ω : N(ω) has jumps of size ≥ 2}
AR := {ω ∈ Ω : N(ω) has jumps of size ≥ 2 in [0, R]}
Bn

R := {∃k ∈ {1, . . . , n} : N kR
n

− N (k−1)R
n

≥ 2}
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Note that A =
⋃∞

R=1 AR and AR ⊆ Bn
R ∀n ≥ 1 because

the trajectories are càd. Thus, ∀R > 0:

P(AR) ≤ P(Bn
R) = P

(
n⋃

k=1

{
N kR

n
− N (k−1)R

n

≥ 2
})

≤

≤
n∑

k=1
P
(

N kR
n

− N (k−1)R
n

≥ 2
)

= nP(N R
n

≥ 2) =

= no
(

R

n

)
n→∞−→ 0

Hence, P(A) = 0. □

Definition 94. Let (Nt)t≥0 be a Poisson process with
parameter λ. We define the holding times as:

Tk := inf{t > Tk−1 : Nt = k}

with T0 := 0. The inter-arrival times are:

Sk := Tk − Tk−1

Lemma 95. Let (Nt)t≥0 be a Poisson process with pa-
rameter λ. Then, P(Tk < ∞) = 1 ∀k ∈ N ∪ {0}.

Proof. Since the trajectories are càd:

P(Tk = ∞) = P(∀t ∈ R : Nt ≤ k − 1) ≤ P(N1 = 0,

N2 − N1 = 0, . . . , Nn − Nn−1 = 0) = e−λn n→∞−→ 0

because the inequality is true for all n ∈ N. □

Theorem 96. Let (Nt)t≥0 be a Poisson process with pa-
rameter λ. Then, the inter-arrival times (Sk) are i.i.d.
random variables distributed as Exp(λ).

Proof. Let T := (T1, . . . , Tn). Recall that:

fT(t) = ∂nFX

∂x1 · · · ∂xn
(t) = lim

h→0+

P(T ∈
∏n

k=1(tk, tk + hk])
h1 · · · hn

Assume that tk + hk < tk+1 ∀k ∈ {1, . . . , n − 1}. Then:

P

(
T ∈

n∏
k=1

(tk, tk + hk]
)

= P(Nt1 = 0, Nt1+h1 − Nt1 = 1,

Nt2 − Nt1+h1 = 0, . . . , Ntn
− Ntn−1+hn−1 = 0,

Ntn+hn
− Ntn

> 1) = λn−1h1 · · · hn−1e−λtn(1 − e−λhn)

Hence:
fT(t) = λne−λtn

Now consider

g : {0 < t1 < · · · < tn} −→ (0, ∞)n

(t1, . . . , tn) 7−→ (t1, t2 − t1, . . . , tn − tn−1)

which is a diffeomorphism such that det Dg(t) = 1. The
density of S := g(T) is thus

fS(s) = fT(g−1(s))1(0,∞)n(s) =
n∏

k=1
λe−λsk 1(0,∞)(sk)

by ??. And this last expression is the joint pdf of n i.i.d.
Exp(λ) variables. □

Theorem 97. Let (Sk) be a sequence of i.i.d. random
variables distributed as Exp(λ). Consider the sequence
(Tn) defined as T0 := 0 and Tn =

∑n
k=1 Sk. Let Nt :=

sup{n ≥ 1 : Tn ≤ t}. Then, (Nt)t≥0 is a Poisson process
with parameter λ. In this case, we can also express Nt as:

Nt =
∞∑

n=1
n1{Tn≤t<Tn+1}

Sketch of the proof. We’ll see only that Nt ∼ Pois(λt).
Let k ∈ N ∪ {0}. Then, P(Nt = k) = P(Tk ≤ t < Tk+1).
Since Tk =

∑k
i=1 Si, we have that Tk and Sk+1 are in-

dependent. Hence, fTk,Sk+1(x, y) = fTk
(x)fSk+1(y) and

since Sk+1 ∼ Exp(λ) and Tk ∼ Γ(k, λ) (because is a sum
of exponentials), we have that:

fTk,Sk+1(x, y) = λk

Γ(k) tk−1e−λxλe−λy = λk+1tk−1

(k − 1)! e−λ(x+y)

Finally:

P(Nt = k) =
¨

A

fTk,Sk+1(x, y) dx dy = (λt)k

k! e−λt

where A := {(x, y) ∈ R≥0
2 : x ≤ t < x + y}. □

Kolmogorov’s differential equations
From here on, we’ll assume that the transition marices
P(t) satisfy that lim

h→0
P(h) = I. That is, we have right con-

tinuity at 0. This is equivalent to say that lim
h→0

pij(h) = δij .

Lemma 98. Let (Xt)t≥0 be a CTHMC with transition
matrix P(t). Then, (pij(t)) are continuous functions for
all i, j ∈ I.

Proof. The result follows from the inequality:

|pij(t + h) − pij(t)| ≤ 1 − pii(|h|)

and the right-continuity at 0. Let’s prove the inequality.
Suppose that h > 0. Then:

|pij(t + h) − pij(t)| =
∣∣∣∣∣∑
k∈I

pik(h)pkj(t) − pij(t)
∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∑
k∈I
k ̸=i

pik(h)pkj(t) − pij(t)[1−pii(h)]

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
k∈I
k ̸=i

pik(h)pkj(t) + pij(t)
∑
k∈I
k ̸=i

pik(h)

∣∣∣∣∣∣∣∣
≤
∑
k∈I
k ̸=i

pik(h)|pkj(t) − pij(t)|

≤ 1 − pii(h)

The case h < 0 follows from considering t′ = t + h. □

Theorem 99. Let P(t) be a stochastic matrix such that:

1. P(0) = I.
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2. P(t + s) = P(t)P(s) for all t, s ≥ 0.

3. lim
h→0

P(h) = I.

Then, for any i, j ∈ I, the following limits exist:
qij := lim

h→0

pij(h)
h

∈ [0, ∞) if i ̸= j

qi := lim
h→0

1 − pii(h)
h

∈ [0, ∞] if i = j

Note that if the limits are finite we have qij = pij
′(0) and

qi = −pii
′(0).

Definition 100. Let (Xt)t≥0 be a CTHMC with tran-
sition matrix P(t). Then, the infinitesimal generator of
(Xt)t≥0 is the matrix Q defined as Q := (qij)i,j∈I , where
qii := −qi. We define the infinitesimal transition scheme
as: {

pii(h) = 1 − qih + o (h) if i = j

pij(h) = qijh + o (h) if i ̸= j

Theorem 101. Let (Xt)t≥0 be a CTHMC with infinites-
imal generator Q and assume that I is finite. Then,
P′ = QP and P′ = PQ. The first equation is called
the Kolmogorov’s backward equation and the second one
the Kolmogorov’s forward equation.
Proof. Note that since I is finite, qi < ∞ ∀i ∈ I. Indeed:

qi = lim
h→0

1 − pii(h)
h

=
∑
k∈I
k ̸=i

lim
h→0

pik(h)
h

=
∑
k∈I
k ̸=i

qik < ∞

Now, let t ≥ 0, h > 0 and i, j ∈ I. Then, using 86
Chapman-Kolmogorov equation

pij(t+h)−pij(t) =
∑
k∈I
k ̸=i

pik(h)pkj(t)+pii(h)pij(t)−pij(t) =

=
∑
k∈I
k ̸=i

(qikh+o (h))pkj(t)+(1+qiih+o (h))pij(t)−pij(t) =

=
∑
k∈I

qikhpkj(t) + o (h)

Dividing by h and taking limits we get the result with
the right derivative. Now take t > 0 and h < 0. Then,
similarly:

pij(t) − pij(t + h) = −
∑
k∈I

qikhpkj(t + h) + o (h)

Using the continuity of the pij ’s we get the result with
the left derivative. The other equation follows analo-
gously by exchanging the roles of h and t in the Chapman-
Kolmogorov equations. □

Theorem 102. Let (Xt)t≥0 be a CTHMC with infinitesi-
mal generator Q. Assume that qi < ∞ and qi =

∑
k∈I
k ̸=i

qik

for all i ∈ I. Then, P′ = QP.
Theorem 103. Let (Xt)t≥0 be a CTHMC with infinitesi-
mal generator Q. Assume that qi < ∞ and qi =

∑
k∈I
k ̸=i

qik

for all i ∈ I and that
∑

k∈I pik(t)qk < ∞ for all i ∈ I and
t ≥ 0. Then, P′ = PQ.
Remark. Note that in this latter theorem if supk∈I qk <
∞, then

∑
k∈I pik(t)qk < ∞ for all i ∈ I and t ≥ 0.

Jump processes

Definition 104. Let (Xt)t≥0 be a stochastic process with
state space E (not necessarily countable) and Ω̃ be such
that P(Ω̃) = 1. We say that (Xt)t≥0 is a jump process if
∀ω ∈ Ω̃ and ∀t ≥ 0, ∃ε > 0 such that Xt(ω) = Xs(ω) for
all s ∈ [t, t + ε).

Definition 105. Let (Xt)t≥0 be a jump process. We say
that the jump process is regular if ∀C > 0, the number of
jumps of X·(ω) in [0, C] is finite for all ω ∈ Ω.

Theorem 106. Let (Xt)t≥0 be a CTHMC and a regular
jump process. Then, ∀i ∈ I, qi < ∞ and qi =

∑
k∈I
k ̸=i

qik.

Definition 107. Let (Xt)t≥0 be a CTHMC. Then,
(Xt)t≥0 is said to be stable if ∀i ∈ I, qi < ∞, and is
said to be conservative if ∀i ∈ I, qi =

∑
k∈I
k ̸=i

qik.

Theorem 108. Let (Xt)t≥0 be a CTHMC and a regu-
lar jump process. Then, the two Kolmogorov ODEs are
satisfied.

Limit and stationary distributions

Definition 109. Let (Xt)t≥0 be a CTHMC. We say that
p is a stationary distribution for (Xt)t≥0 if pi ≥ 0 ∀i ∈ I,∑

i∈I pi = 1 and pP(t) = p ∀t ≥ 0.

Lemma 110. Let (Xt)t≥0 be a CTHMC and a regular
jump process. Then:

pj
′(t) =

∑
k∈I

qkjpk(t)

In particular if we have a stationary distribution p, then
pQ = 0, or equivalently:∑

k∈I
k ̸=j

pkqkj = pjqj

This equation is called balance equation.

Proof.

pj(t) = P(Xt = j) =
∑
i∈I

pi(0)pij(t)

A result allows us to differentiate term by term and re-
arrange the following series (because (Xt)t≥0 is a regular
jump process):

pj
′(t) =

∑
i∈I

pi(0)pij
′(t) =

∑
i∈I

pi(0)
∑
k∈I

pik(t)qkj =

=
∑
k∈I

qkj

∑
i∈I

pi(0)pik(t) =
∑
k∈I

qkjpk(t)

If we have a stationary distribution, then pj
′(t) = 0. □
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Remark. In the CTHMC there is no periodic behaviour as
in the discrete case. Indeed, given t > 0 and δ > 0 small
enough, ∃n ∈ N∪ {0} such that t = nδ + h with h ∈ [0, δ).
And so:

pii(t) ≥ pii(nδ)pii(h) ≥ · · · ≥ (pii(δ))n
pii(h) > 0

where the last inequality is due to the fact that
lim
h→0

pii(h) = 1.

Definition 111. Let (Xt)t≥0 be a CTHMC. We say that
the chain is irreducible if ∀i, j ∈ I, ∃t1, t2 > 0 such that
pij(t1) > 0 and pji(t2) > 0.

Theorem 112. Let X be an irreducible CTHMC and a
regular jump process. Then, we have exactly one of the
following:

1. The balance equation has a unique solution p
(which must be the stationary distribution) and
lim

t→∞
pij(t) = pj ∀i, j ∈ I. In that case, p is called a

limit distribution.

2. The balance equation has no solution and in that
case lim

t→∞
pij(t) = 0 ∀i, j ∈ I.

Remark. Note that if I is finite, we are always in the first
case since we always need to have

∑
j∈I pij(t) = 1.

Birth and death processes
Definition 113. Let I = N ∪ {0}. A birth and death
process is a CTHMC and a regular jump process with the
following infinitesimal transition scheme:

pi,i+1(h) = λih + o (h) i ≥ 0
pi,i−1(h) = µih + o (h) i ≥ 1
pii(h) = 1 − λih + o (h) i = 0
pii(h) = 1 − (λi + µi)h + o (h) i ≥ 1
pij = o (h) otherwise

This model describes a population of individuals, each of
whom having λih + o (h) probability of giving birth to a
new individual in the time interval [t, t+h) and µih+o (h)
probability of dying in the same time interval. The prob-
ability of having more than one birth or death in that
interval is o (h). In this case the infinitesimal generator is:

Q =


−λ0 λ0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2 · · ·
...

...
... . . . . . .


If λi = 0 ∀i ∈ I, then we said that the process is a pure
death process. If µi = 0 ∀i ∈ I, then we said that the
process is a pure birth process.

Proposition 114. The Poisson process is a birth and
death process with λi = λ and µi = 0 ∀i ∈ I.

Theorem 115. Consider a birth and death process.
Then, a limit distribution p exists if λi > 0 and µi > 0
∀i ∈ I and ∑

i∈I

λ0λ1 · · · λi−1

µ1µ2 · · · µi
< ∞

This distribution is given by:

pi = λ0λ1 · · · λi−1

µ1µ2 · · · µi
p0 i ≥ 1 (5)

with p0 =
(

1 +
∑

i∈I
λ0λ1···λi−1

µ1µ2···µi

)−1
.

Proof. First let’s prove by induction that if p is a station-
ary distribution, then the components are those of Eq. (5).
Indeed, for i = 1, using the balance equation we have
λ0p0 = µ1p1. Now, suppose that the hypothesis holds
∀i ≤ j. Then, we have:

(λj + µj)pj = λj−1pj−1 + µj+1pj+1

(λj + µj)λ0 · · · λj−1

µ1 · · · µj
p0 = λj−1

λ0 · · · λj−2

µ1 · · · µj−1
p0 + µj+1pj+1

λ0 · · · λj−1λj

µ1 · · · µj
p0 = µj+1pj+1

The first argument is determined from the condition 1 =∑
i∈I pi = p0 + p0

∑
i∈I

λ0λ1···λi−1
µ1µ2···µi

. Now if we see that for
λi > 0 and µi > 0 ∀i ∈ I the chain is irreducible, then the
theorem will be proved by Theorem 112. But this is clear
because, for example if i < j we have:

pij((j − i)h) ≥ pi,i+1(h)pi+1,i+2(h) · · · pj−1,j(h)
= λiλi+1 · · · λj−1hj−i + o

(
hj−i

)
> 0

if λi > 0 ∀i ∈ I and for some h small enough. The case
i > j is analogous. □

Theorem 116 (Reuter criterion). Consider an in-
finitesimal generator for a birth and death process. Then,
there is a CTHMC of regular jumps with this infinitesimal
generator if and only if:

∞∑
n=1

[
1

λn
+ µn

λnλn−1
+ · · · + µn · · · µ1

λn · · · λ0

]
= ∞

4. | Brownian motion
Gaussian processes
Proposition 117. Let x ∈ Rn be a random vector. Then,
x is a Gaussian vector, that is it distributes as an n-
dimensional normal, if and only if there exists k ∈ N,
A ∈ Mn×k(R), z ∈ Rk with i.i.d. components distributed
as N(0, 1), and µ ∈ Rn such that:

x = Az + µ

Definition 118. A stochastic process (Xt)t≥0 is called a
Gaussian process if for all t1, . . . , tn ≥ 0 the random vector
(Xt1 , . . . , Xtn

) is Gaussian.

Definition 119. Let (Xt)t≥0 be a Gaussian process.
Then, the mean function is defined as:

µ : [0, ∞) −→ R
t 7−→ E(Xt) =: µt

and the covariance function is defined as:

C : [0, ∞) × [0, ∞) −→ R
(s, t) 7−→ Cov(Xs, Xt) = E(XsXt) − µsµt
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Brownian motion
Definition 120. A stochastic process (Bt)t≥0 is called a
Brownian motion (or a Wiener process) with parameter λ
if:

1. B0 = 0.

2. Bt has independent increments.

3. Bt has stationary increments with distribution Bt −
Bs ∼ N(0, σ2(t − s)) ∀0 ≤ s ≤ t with σ > 0.

4. The trajectories t → Bt are continuous.
The Brownian motion is said to be standard if σ = 1.
Proposition 121. Let B := (Bt)t≥0 be a standard
Brownian motion. Then, B is a Gaussian process with
mean function µt = 0 and covariance function C(s, t) =
min(s, t).
Proof. Let 0 < t1 < · · · < tn. We can write the vector
b := (Bt1 , . . . , Btn

)T as:

b =


1 0 · · · 0

1 . . . . . . ...
... . . . 1 0
1 · · · 1 1




Bt1

Bt2 − Bt1
...

Btn
− Btn−1


And so b is Gaussian because is a linear combination of
Gaussian. Now in the general, let s1, . . . , sn ≥ 0. We can
write any vector (Bs1 , . . . , Bsn) as a linear transformation
of the vector (Bt1 , . . . , Btn

) with 0 < t1 < · · · < tn. On the
other hand, it is clear that µt = E(Bt) = E(Bt − B0) = 0
and if s ≤ t:

E(BsBt) = E(Bs(Bt − Bs)) + E(B2
s ) = µsµt−s + s = s

□

Proposition 122. Let B := (Bt)t≥0 be a Gaussian pro-
cess with B0 = 0, mean function µt = 0 and covariance
function C(s, t) = min(s, t). Then, B is a standard Brow-
nian motion.
Proof. Since Gaussian uncorrelated variables are indepen-
dent, it suffices to show that the covariance matrix of
(Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1) is:

t1 0 · · · 0

0 t2 − t1
. . . ...

... . . . . . . 0
0 · · · 0 tn − tn−1


for all 0 < t1 < · · · < tn. On the one hand, if ti < tj , then
ti−1 < ti ≤ tj−1 < tj and:

E((Bti
−Bti−1)(Btj

−Btj−1)) = E(Bti
Btj

)−E(Bti
Btj−1)−

−E(Bti−1Btj
) +E(Bti−1Btj−1) = ti − ti − ti−1 + ti−1 = 0

On the other hand:

E
(

(Bti
− Bti−1)2

)
= E(B2

ti
) − 2E(Bti

Bti−1) +E(B2
ti−1

) =

= ti − ti−1

□

Proposition 123. Let B := (Bt)t≥0 be a standard Brow-
nian motion. Then, the following stochastic processes are
also standard Brownian motions:

1. ∀c ∈ R∗, (cBt/c2)
t≥0

2. (−Bt)t≥0

3. (Bt+s − Bs)t≥0 for all s ≥ 0.

4.

Yt =
{

tB1/t if t > 0
0 if t = 0

Definition 124. Let (Xt)t∈T and (Yt)t∈T be two stochas-
tic processes. We say that (Xt)t∈T and (Yt)t∈T are
stochastically equivalent if ∀t ∈ T we have:

P(Xt = Yt) = 1

In that case we also say that (Xt)t∈T is a version of (Yt)t∈T

(or vice versa). We say that (Xt)t∈T and (Yt)t∈T are in-
distinguishable if:

P(Xt = Yt ∀t ∈ T ) = 1

Remark. Note that if the set T is finite or countable, then
the two notions are equivalent because:

P(Xt = Yt ∀t ∈ T ) = P

(⋂
t∈T

{Xt = Yt}

)
= 1

Proposition 125. Let (Xt)t∈T and (Yt)t∈T be equivalent
stochastic processes. Then, ∀n ∈ N and all t1, . . . , tn ∈ T
we have:

X := (Xt1 , . . . , Xtn
) d= (Yt1 , . . . , Ytn

) =: Y

Proof. Let B ∈ B(Rn) and A := {Xti
= Yti

∀i}. Using
that P(A) = 1 we have:

P(X ∈ B) = P(X ∈ B, A) + P(X ∈ B, Ac)
= P(Y ∈ B, A) + 0
= P(Y ∈ B, A) + P(Y ∈ B, Ac)
= P(Y ∈ B)

□

Corollary 126. Let B be a standard Brownian motion
and B be a version of B. Then, B is also a standard
Brownian motion.

Theorem 127 (Kolmogorov’s continuity theorem).
Let (Xt)t≥0 be a stochastic process such that ∃α, β, C > 0
such that:

E(|Xt − Xs|α) ≤ C|t − s|1+β

for all t, s ≥ 0. Then, there exists a version of (Xt)t≥0
with continuous trajectories.
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Lemma 128. Let X ∼ N(0, σ2). Then, E(|X|n) = Cnσn

where:
Cn = E(|Z|n) = Γ

(
n + 1

2

)
2n/2
√

π

and Z ∼ N(0, 1).

Corollary 129. Let B := (Bt)t≥0 be a standard Brown-
ian motion. Then, there exists a version of B with contin-
uous trajectories.

Proof. We use Theorems 127 and 128 with α = 3 and
β = 1/2. □

Proposition 130. Let B := (Bt)t≥0 be a standard Brow-
nian motion. Then, for any interval [a, b] ⊂ R:

P(ω ∈ Ω : B·(ω) is monotone on [a, b]) = 0

Proof. Let A = {ω ∈ Ω : B·(ω) is monotone on [a, b]}.
Using the density and continuity of B we have:

A = {Bs ≤ Bt : ∀s, t ∈ Q, a ≤ s < t ≤ b}+
+ {Bs ≥ Bt : ∀s, t ∈ Q, a ≤ s < t ≤ b}

Hence, given n ∈ N and a partition {ti}0≤i≤n of [a, b] we
have:

A ⊆ {Bti+1 − Bti
≥ 0 : i = 0, . . . , n − 1}+

+ {Bti+1 − Bti
≤ 0 : i = 0, . . . , n − 1}

Therefore, using the independence of the increments of B
and the symmetry of the normal distribution we have:

P(A) ≤ 2
n−1∏
i=0

P(Bti+1 − Bti ≥ 0) = 2
(

1
2

)n
n→∞−→ 0

□

Proposition 131. Let B := (Bt)t≥0 be a standard Brow-
nian motion. Then, ∀t ≥ 0 the set

A :=
{

ω ∈ Ω : lim sup
h→0

|Bt+h(ω) − Bt(ω)|
h

= +∞
}

which may not belong in the σ-algebra, contains an event
of probability 1.

Proof. Note that A ⊇ {ω ∈ Ω : supn∈N
|Bt+1/n(ω)−Bt(ω)|

1/n =
+∞} =

⋂
M≥1 AM where:

AM :=
{

ω ∈ Ω : sup
n∈N

∣∣Bt+1/n(ω) − Bt(ω)
∣∣

1/n
≥ M

}

If we see that P(AM ) = 1 for all M ≥ 1 we are done.

P(AM ) ≥ P

(∣∣Bt+1/n(ω) − Bt(ω)
∣∣

1/n
≥ M

)
=

= P
(

|Z| ≥ M√
n

)
= 2

(
1 − Φ

(
M√

n

))
n→∞−→ 1

where the first inequality holds ∀n ∈ N, Z ∼ N(0, 1) and
Φ is the cumulative distribution function of the standard
normal distribution. □

Theorem 132 (Paley-Wiener-Zygmund theorem).
The Brownian trajectories are almost surely nowhere dif-
ferentiable. Namely, the set{

ω ∈ Ω : ∀t ≥ 0, lim sup
h→0+

Bt+h(ω) − Bt(ω)
h

= +∞ or

lim inf
h→0+

Bt+h(ω) − Bt(ω)
h

= −∞
}

contains an event of probability 1. And the same occurs
for the left limit h → 0− (in this case we need to exclude
t = 0).

Figure 2: A Brownian motion simulated with 7500 incre-
ments. Observe the “non-differentiability” of the path.

Definition 133. Let B be a standard Brownian motion
and a > 0. We define:

τa := inf{t ≥ 0 : Bt ≥ a}

If a < 0 we define:

τa := inf{t ≥ 0 : Bt ≤ a}

Remark. Note that if τa(ω) < ∞, then Bτa(ω)(ω) = a by
the continuity of the trajectories.

Lemma 134. Let B be a standard Brownian motion.
Then, ∀t ≥ 0 and a > 0:

P(τa ≤ t) = P
(

max
0≤s≤t

Bs ≥ a

)
= 2P(Bt ≥ a)

If a < 0 we have:

P(τa ≤ t) = P
(

min
0≤s≤t

Bs ≤ a

)
= 2P(Bt ≤ a)

Corollary 135. Let B be a standard Brownian motion
and a ∈ R∗. Then, P(τa < ∞) = 1.

Proof. Assume a > 0, the other case is similar. Then:

P(τa < ∞) = P

( ∞⋃
n=1

{τa ≤ n}

)
= lim

n→∞
P(τa ≤ n) =

= 2 lim
n→∞

P(Bn ≥ a) = 2 lim
n→∞

(
1 − Φ

(
a√
n

))
= 1

□
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Proposition 136. Let B be a standard Brownian motion.
Then:

P
(

sup
t≥0

Bt = +∞, inf
t≥0

Bt = −∞
)

= 1

Proof. It suffices to prove only P(supt≥0 Bt = +∞) = 1.
Note that:

P
(

sup
t≥0

Bt = +∞
)

= P

( ∞⋂
n=1

{
sup
t≥0

Bt ≥ n

})

Let’s see that all the events An := {supt≥0 Bt ≥ n} in the
intersection have probability 1:

P(An) ≥ P
(

max
0≤t≤s

Bt ≥ n

)
= 2P(Bs ≥ n) =

= 2
(

1 − Φ
(

n√
s

))
s→∞−→ 1

□

Corollary 137. The Brownian trajectories have infinite
zeros almost surely, and they tend to infinity.

Proof. Let B := {Bt : t ≥ 0} be a standard Brownian
motion and let A = {ω ∈ Ω : B·(ω) has finite zeros} ⊆⋃∞

n=1{ω ∈ Ω : B·(ω) doesn’t vanish in [n, ∞)}. Let’s see
that all the events An := {B· doesn’t vanish in [n, ∞)} in
the union have probability 0.

P(An) = P(B· > 0 in [n, ∞)) + P(B· < 0 in [n, ∞)) ≤

≤ P
(

inf
t≥n

Bt ̸= −∞
)

+ P
(

sup
t≥n

Bt ̸= +∞
)

= 0

□

Corollary 138. The Brownian trajectories pass through
every point a ∈ R infinitely many times almost surely.

Proposition 139. Let B be a standard Brownian motion.
Then, ∀h > 0:

P
(

max
0≤t≤h

Bt > 0, min
0≤t≤h

Bt < 0
)

= 1

Proof. It suffices to prove P (max0≤t≤h Bt > 0) = 1. Let
a > 0. Then:

P
(

max
0≤t≤h

Bt > 0
)

≥ P
(

max
0≤t≤h

Bt > a

)
= 2P(Bh > a) =

= 2
(

1 − Φ
(

a√
h

))
a→0−→ 1

□

Proposition 140. Let B be a standard Brownian motion
and a ∈ R∗. Then, E(τa) = ∞.

Proof. Using the symmetry of the Brownian motion, we
have:

Fτa
(t) = P(τa ≤ t) = 2P(Bt < −a) = 2√

2π

− a√
tˆ

−∞

e− x2
2 dx

and Fτa(0) = 0. An easy check of the hypothesis of ??
shows that the density of τa is Fτa

′ and so:

E(τa) = a√
2π

∞̂

0

e− a2
2t

√
t

dt = ∞

because it diverges at ∞. □

Definition 141. A d-dimensional standard Brownian
motion is a d-dimensional stochastic process B =
(B1, . . . , Bd) such that ∀i ∈ {1, . . . , d}, Bi is a standard
Brownian motion, and it is independent of the other com-
ponents.

Theorem 142. Let B be a d-dimensional Brownian mo-
tion. Then:

1. If d = 2, then B is recurrent, that is ∀x ∈ R2 and
∀δ > 0 ∃(τn) ∈ R, with lim

n→∞
τn = +∞, such that:

P(Bτn ∈ Bδ(x) ∀n ∈ N) = 1

Here Bδ(x) denotes the open ball of radius δ cen-
tered at x.

2. If d ≥ 3, then B is transient, that is ∀M > 0, ∃T > 0
such that:

P(Bt ∈ BM (0) ∀t ≥ T ) = 0

Theorem 143 (Law of the iterated logarithm). Let
B be a standard Brownian motion. Then:

lim sup
t→∞

Bt√
2t log log t

a.e.= lim inf
t→∞

Bt√
2t log log t

a.e.= 1

Corollary 144. Let B be a standard Brownian motion.
Then:

lim sup
h→0

Bh√
2h log log 1

h

a.e.= lim inf
h→0

Bh√
2h log log 1

h

a.e.= 1

Sketch of the proof. Recall that xB1/x is a standard Brow-
nian motion. □

Proposition 145. Let Sn =
∑n

i=1 Xi be a simple random
walk with P(Xi = 1) = P(Xi = −1) = 1

2 and B = (Bt)
be a standard Brownian motion. We define the following
sequence of stochastic processes:

Y n
t := 1√

n

[
S⌊nt⌋ + (nt − ⌊nt⌋)X⌊nt⌋+1

]
Then, Y n

t
d−→ Bt.
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Existence of Brownian motion
Definition 146 (Finite-dimensional distributions).
Let (Ω, A,P) be a probability space and X : I×Ω → (E, E)
be a stochastic process. The finite-dimensional distribu-
tions of X are the probability measures Pt1,...,tn defined
on (En, En) by:

Pt1,...,tn
(B) := P((Xt1 , . . . , Xtn

) ∈ B)

for all B ∈ En.
Lemma 147. Let (Ω, A,P) be a probability space and
X : I × Ω → (E, E) be a stochastic process. Then, the
finite-dimensional distributions satisfy the following con-
sistency condition:

1. For all n ∈ N, t1, . . . , tn ∈ I, B1, . . . , Bn ∈ E and
σ ∈ Sn, we have:

Pt1,...,tn(B1 × · · · × Bn) =
= Ptσ(1),...,tσ(n)(Bσ(1) × · · · × Bσ(n))

2. For all n ∈ N, t1, . . . , tn ∈ I and B1, . . . , Bn−1 ∈ E ,
we have:

Pt1,...,tn
(B1 × · · · × Bn−1 × E) =

= Pt1,...,tn−1(B1 × · · · × Bn−1)

Theorem 148 (Kolmogorov extension theorem).
Let I be a set and {Pt1,...,tn : n ∈ N, t1, . . . , tn ∈ I} be a
family of probabilities defined on B(Rn) satisfying the con-
sistency conditions. Then, there exists a probability space
(Ω, A,P) and a stochastic process X : I × Ω → (R, B(R))
such that Pt1,...,tn

is the finite-dimensional distribution of
X for all n ∈ N and t1, . . . , tn ∈ I.
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