
Real and functional analysis

1. | Measure theorey and Lebesgue in-
tegral

Measures
Definition 1 (σ-algebra). Let Ω be a set and Σ ⊆ P(Ω).
We say that Σ is a σ-algebra over Ω if:

1. Ω ∈ Σ.

2. If A ∈ Σ, then Ac ∈ Σ.

3. If (An) ∈ Σ, then:
∞⋃

n=1
An ∈ Σ

Proposition 2. Let Σ be a σ-algebra over a set Ω. Then:

1. ∅ ∈ Σ.

2. If A, B ∈ Σ, then A \ B ∈ Σ.

3. If (An) ∈ Σ, then:
∞⋂

n=1
An ∈ Σ

Sketch of the proof. Use ?? ?? to show that A ∩ B ∈ Σ if
A, B ∈ Σ. □

Definition 3 (Measure). Let Σ be a σ-algebra over a
set Ω. A measure over Ω is any function

µ : Σ −→ [0, ∞]

satisfying the following properties:

1. µ(∅) = 0.

2. σ-additivity: If (An) ∈ Σ are pairwise disjoint, then:

µ

( ∞⊔
n=1

An

)
=

∞∑
n=1

µ(An)

Definition 4. Let Σ be a set and (An) ∈ Σ be sub-
sets. We say that An ↗ A if An ⊆ An+1 ∀n ∈ N and
A =

⋃∞
n=1 An. Analogously, we say that An ↘ A if

An ⊇ An+1 ∀n ∈ N and A =
⋂∞

n=1 An.

Proposition 5. Let Σ be a σ-algebra over a set Ω,
µ : Σ −→ [0, ∞] be a measure over Ω and An, A, B ∈ Σ,
n ∈ N. Then:

1. If A ⊆ B, then µ(B \ A) = µ(B) − µ(A).

2. If A ⊆ B, then µ(A) ≤ µ(B).

3. If An ↗ A, then µ(A) = lim
n→∞

µ(An).

4. If An ↘ A and µ(A1) < ∞, then µ(A) =
lim

n→∞
µ(An).

Sketch of the proof.

1, 2.

µ(B) = µ(A ⊔ (B \ A)) = µ(A) + µ(B \ A)

3. Let E1 = A1 and En = An \ An−1 for n ≥ 2. Then,
A =

⋃∞
n=1 An =

⊔∞
n=1 En and:

µ(A) =
∞∑

n=1
µ(En) = lim

N→∞

N∑
n=1

(µ(An) − µ(An−1))

= lim
N→∞

µ(AN )

4. Let En = An \ An+1 for n ∈ N. Then, A1 =
A ⊔

⊔∞
n=1 En and:

µ(A1) = µ(A) +
∞∑

n=1
µ(En)

= µ(A) + lim
N→∞

N∑
n=1

(µ(An) − µ(An+1))

= µ(A) + µ(A1) − lim
N→∞

µ(AN )

And since µ(A1) < ∞, we get the desired result.

□

Definition 6. An interval I ⊆ Rn is a set of the form:

I = |a1, b1| × · · · × |an, bn|

where ai, bi ∈ R∞ and the notation |a, b| represents either
(a, b), [a, b), (a, b] or [a, b].

Definition 7. Let I =
∏n

i=1 |ai, bi| ⊆ Rn be an interval.
We define its volume as:

vol(I) :=
n∏

i=1
(bi − ai)

Definition 8. Let m ∈ N ∪ {0}. We define the m-th
dyadic cube as the set:

[a1, a1 + 2−m) × · · · × [an, an + 2−m)

where ai ∈ 2−mZ1.

Lemma 9. Let m ∈ N ∪ {0}. Then the sidelength of
the m-th dyadic cube is 2−m, its volume 2−mn and its
diameter is 2−m

√
n.

Proposition 10. Any nonempty open set U ⊆ Rn can
be written as a countable union of disjoint dyadic cubes
whose closure is in U .

1Note that for each m ∈ N we can make a partition of Rn in dyadic cubes.
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Proof. Let D0 be a union of disjoint 0-th dyadic cubes
whose closure is contained in U . Now let D1 be a family
of disjoint 1-th dyadic cubes contained in U \ D0 whose
closure is in U \ D0. In general, let Dn be a family of dis-
joint n-th dyadic cubes contained in U \

⋃n−1
k=0 Dk whose

closure is in U \
⋃n−1

k=0 Dk. By construction, we have that⋃∞
n=0 D0 ⊆ U and the Dn are clearly pairwise disjoint.

Moreover, if x ∈ U , δ := d(x, U c) > 0 and so it will be con-
tained (at least) in an m-th dyadic cube, with 2−m

√
n < δ.

Hence,
⋃∞

n=0 D0 = U □

Definition 11. Let A ⊆ Rn be a set. We denote by I(A)
the set of sequences of intervals that cover A. Analogously,
we denote by I0(A) the set of sequences of open intervals
that cover A.

Definition 12 (Outer measure). Let A ⊆ Rn be a set.
We define its outer measure as the function |·|∗ defined by:

|A|∗ := inf
{ ∞∑

k=1
vol(Ik) : {Ik : k ≥ 1} ∈ I(A)

}

Proposition 13. Let A ⊆ Rn be a set. Then:

|A|∗ = inf
{ ∞∑

k=1
vol(Ik) : {Ik : k ≥ 1} ∈ I0(A)

}

Proof. Let

|A|∗0 = inf
{ ∞∑

k=1
vol(Ik) : {Ik : k ≥ 1} ∈ I0(A)

}

We shall see |A|∗ = |A|∗0. As I0(A) ⊂ I(A), we have
|A|∗ ≤ |A|∗0.
Now let ε > 0 and by the definition of infimum we can
take (Ik) ∈ I(A) of the form

Ik =
∣∣ak

1 , bk
1
∣∣× · · · ×

∣∣ak
n, bk

n

∣∣
such that

∑∞
k=1 vol(Ik) ≤ |A|∗ + ε

2 . It is clear ∀k ∈ N
∃δk > 0 such that:

Jk =
∣∣ak

1 − δk, bk
1 + δk

∣∣× · · · ×
∣∣ak

n − δk, bk
n + δk

∣∣
satisfy vol(Jk) ≤ vol(Ik) + ε

2k+1 and so:

|A|∗0 ≤
∞∑

k=1
vol(Jk) ≤

∞∑
k=1

vol(Ik) + ε

2 ≤ |A|∗ + ε

This is true ∀ε > 0. Thus, |A|∗0 ≤ |A|∗. □

Lemma 14. Let I, J1, . . . , JN ⊆ Rn be intervals such that
I ⊆

⋃N
k=1 Jk. Then, vol(I) ≤

∑N
k=1 vol(Jk).

Sketch of the proof. Note that we can suppose I =⋃N
k=1 Jk by intersecting (if necessary) with I. Suppose

I = I1 × · · · × In and let {Rk : k = 1, . . . , M} be an
appropriate partition of subrectangles of I. Note that
vol(I) =

∑M
k=1 vol(Rk). If (Jk) were pairwise disjoint we

would have
∑M

k=1 vol(Rk) =
∑N

k=1 vol(Jk). If not, some of
these Rk are “repeated” and so vol(I) =

∑M
k=1 vol(Rk) ≤∑N

k=1 vol(Jk). □

Theorem 15. The outer measure has the following prop-
erties:

1. |∅|∗ = 0.

2. If A ⊆ B ⊆ Rn, then |A|∗ ≤ |B|∗.

3. If (Ak) ⊆ Rn, then:∣∣∣∣∣
∞⋃

k=1
Ak

∣∣∣∣∣
∗

≤
∞∑

k=1
|Ak|∗

4. If I ⊆ Rn is an open interval and I ⊆ A ⊆ I, then
|A|∗ = vol(I).

5. If I1, . . . , IN ⊆ Rn are disjoint intervals, then:∣∣∣∣∣
N⊔

k=1
Ik

∣∣∣∣∣
∗

=
N∑

k=1
vol(Ik)

6. If A, B ⊆ Rn and d(A, B) := inf{d(a, b) : a ∈ A, b ∈
B} > 0, then |A ⊔ B|∗ = |A|∗ + |B|∗.

7. If A ⊆ Rn and x ∈ Rn, then |A + x|∗ = |−A|∗ =
|A|∗2.

Sketch of the proof.
1. Clear because ∅ ⊂ I for any interval I ⊂ Rn.

2. Use the fact that I(B) ⊆ I(A).

3. Let ε > 0. For each k ∈ N let (Ik
n) ∈ I(Ak) be such

that:
∞∑

n=1
vol (Ik

n) ≤ |Ak|∗ + ε

2k

Since,
⋃∞

k=1 Ak ⊆
⋃∞

k,n=1 Ik
n we have that:∣∣∣∣∣

∞⋃
k=1

Ak

∣∣∣∣∣
∗

≤
∞∑

k,n=1
vol (Ik

n) ≤
∞∑

k=1

(
|Ak|∗ + ε

2k

)
=

∞∑
k=1

|Ak|∗ + ε

for all ε > 0.

4. If follows from Item 15-2 and the fact that vol(I) =
vol(I).

5. The inequality ≤ follows from Item 15-3.
For the other one, let ε > 0, I :=

⊔N
k=1 Ik and K ⊂ I

be a compact interval such that
∑N

k=1 vol (Ik) ≤
vol(K) + ε. Now take (Jk) ∈ I0(I) such that∑∞

k=1 vol(Jk) ≤ |I|∗ +ε. In particular (Jk) ∈ I0(K).
Since K is compact, there exists a finite covering of
K which without loss of generality we may assume
it is K ⊂

⋃M
k=1 Jk. Then

N∑
k=1

vol (Ik) ≤ vol(K) + ε ≤
M∑

k=1
vol(Jk) + ε

≤
∞∑

k=1
vol(Jk) + ε ≤ |I|∗ + 2ε

by Items 15-2 and 15-3. Since this is true ∀ε > 0,
we get

∑N
k=1 vol (Ik) ≤ |I|∗.

2Here A + x := {a + x : a ∈ A} and −A := {−a : a ∈ A}
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6. If δ = d(A, B) > 0, it suffices to consider two se-
quences (Ik) ∈ I(A) and (Jk) ∈ I(B) such that
diam(Ik) < δ/3 and diam(Jk) < δ/3 ∀k ∈ N.

7. It follows from the property that the volume of inter-
vals is invariant under translations and reflections.

□

Definition 16. A set N ⊂ Rn is called a null set if
|N |∗ = 0.

Definition 17. We say that a property holds almost ev-
erywhere (a.e.) if the set of points that doesn’t hold it is
null.

Lemma 18. The countable union of null sets is null.

Proof. Let (Nn) ⊂ Rn be a sequence of null sets. Then:∣∣∣∣∣
∞⋃

n=1
Nn

∣∣∣∣∣
∗

≤
∞∑

n=1
|Nn|∗ = 0

□

Lemma 19. A point is null. Therefore, all countable sets
are null.

Proof. Let x = (x1, . . . , xn) ∈ Rn. Then, ∀ε > 0 we have:

|{x}|∗ ≤ vol
(

n∏
i=1

(
xi − ε

2 , xi + ε

2

))
= εn

And if Q ⊂ Rn is a countable subset, then using The-
orem 18 we deduce that |Q|∗ = 0 from the fact that
Q =

⋃
q∈Q{q}. □

Lebesgue measure
Definition 20 (Lebesgue measure). We say that A ⊆
Rn is Lebesgue measurable (or simply measurable) if ∀ε >
0, there exists an open set U ⊇ A such that |U \ A|∗ < ε.
We denote by M(Rn) the set of all Lebesgue measurable
sets of Rn and by |·| the restriction of |·|∗ to M(Rn).

Theorem 21. M(Rn) is a σ-algebra and |·| : M(Rn) →
[0, ∞] is a measure (called Lebesgue measure) that satis-
fies:

1. The open sets, closed sets and null sets are in
M(Rn).

2. Each interval I ⊆ Rn is measurable and |I| = vol(I).

3. If A ∈ M(Rn) and x ∈ Rn, then A+x, −A ∈ M(Rn)
and |A + x| = |−A| = |A|.

4. If A ∈ M(Rn):

|A| = inf{|U | : A ⊆ U ⊆ Rn, U open}
= sup{|C| : C ⊆ A ⊆ Rn, C closed}
= sup{|K| : K ⊆ A ⊆ Rn, K compact}

Sketch of the proof. Let’s prove first that M(Rn) is a σ-
algebra.

• Rn ∈ M(Rn) because Rn is open and 0 =
|M(Rn) \ Rn|∗ < ε ∀ε > 0

• Let (An) ∈ M(Rn). Then, ∀ε > 0 for each
n ∈ N there exists an open set Un ⊇ An such that
|Un \ An|∗ < ε

2n . Now, U :=
⋃∞

n=1 Un is open and
satisfy:∣∣∣∣∣

∞⋃
n=1

Un \
∞⋃

n=1
An

∣∣∣∣∣
∗

≤

∣∣∣∣∣
∞⋃

n=1
(Un \ An)

∣∣∣∣∣
∗

≤
∞∑

n=1
|Un \ An|∗ ≤

∞∑
n=1

ε

2n
= ε

Let’s see now the first property.
1. Clearly open sets are measurable and so are the null

sets since |U \ N |∗ ≤ |U |∗ for all open sets U and
null sets N . To show that the closed sets are mea-
surable, let’s prove first that the compact sets are
measurable. Given a compact set K and ε > 0, there
exists an open set U such that K ⊂ U , |U | ≤ |K|∗+ε
and U \K =

⊔∞
k=1 Dk, where (Dk) are dyadic cubes.

Thus:

|K|∗ + ε ≥ |U | ≥

∣∣∣∣∣K ⊔
∞⊔

k=1
Dk

∣∣∣∣∣
∗

= |K|∗ +
∞∑

k=1
vol Dk

by Item 15-5. Thus, |U \ K|∗ ≤
∑∞

k=1 vol Dk ≤ ε.
Finally, as any closed set can be written a countable
union of compact sets, since M(Rn) is a σ-algebra,
we get the desired result.

Finally:
• Let A ∈ M(Rn). Then, ∀k ∈ N there exists an

open set Uk ⊇ A such that |Uk \ A|∗ < 1
k . Let

U :=
⋃∞

k=1 Uk
c. Then, U ⊆ Ac and if N = Ac \U we

have that N ⊆ Uk \ A ∀k ∈ N. So |N |∗ ≤ 1
k ∀k ∈ N

and therefore N is null. So Ac = U ∪ N is union
of two measurable sets (U is a countable union of
closed sets) and thereby measurable.

So M(Rn) is a σ-algebra. Now let’s see that |·| is a mea-
sure.

• Consequence of ∅ ∈ M(Rn) and |∅|∗ = 0.

• Let (An) ∈ M(Rn) be pairwise disjoint. We need to
prove that: ∣∣∣∣∣

∞⊔
n=1

An

∣∣∣∣∣ =
∞∑

n=1
|An|

One inequality has already been given in Item 15-3.
For the other one, first suppose that the (An) are
bounded. Then, ∀ε > 0 there exist compact sets
Kn ⊂ An such that |An| ≤ |Kn|∗ + ε

2k . Then:
∞∑

n=1
|An| ≤

∞∑
n=1

(
|Kn|∗ + ε

2k

)
≤ |A| + ε

If the (An) aren’t bounded, then take (Bn
m) mea-

surable and bounded such that An =
⊔∞

m=1 Bn
m and

so:
∞∑

n=1
|An| =

∞∑
n,m=1

|Bn
m| =

∣∣∣∣∣
∞⊔

n,m=1
Bn

m

∣∣∣∣∣ = |A|
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So |·| is a measure. Now let’s continue with the remaining
properties:

2. I = ∂ I ∪ Int(I) which is a union of a closed set and
an open set. Hence, I ∈ M(Rn) and |I| = vol(I)
(by Item 15-4).

3. It follows from Item 15-7.

4. Note that if A ∈ M(Rn), then there exists a closed
set C ⊆ A such that |A \ C|∗ < ε ∀ε > 0. In-
deed, there exists an open set U ⊇ Ac such that
|U \ Ac|∗ < ε. Now take C = U c. From here we
deduce the first two equalities. For the third one, it
suffices to bound to closed sets by intersecting them
with balls to become compact sets.

□

Definition 22. A real function is a function f : Rn →
[−∞, +∞]. We will say that f is finite if ±∞ /∈ im f .

Definition 23. Let f be a real function. We say that f
is Lebesgue measurable (or simply measurable) if {f(x) >
r} ∈ M(Rn) ∀r ∈ R.

Lemma 24. Let a, b ∈ [−∞, +∞] and f be a real func-
tion. The sets:

• {a < f(x) < b}

• {a ≤ f(x) < b}

• {a < f(x) ≤ b}

• {a ≤ f(x) ≤ b}

are all measurable.

Sketch of the proof. Rewrite the sets as union of antiim-
ages of f . For example, for the second one:

{a ≤ f(x) < b} = {f(x) ≥ a} ∪ {f(x) ≥ b}c

=
∞⋂

n=1

{
f(x) > a − 1

n

}
∪

( ∞⋃
n=1

{
f(x) > b − 1

n

})c

Since all the sets in the unions are measurable, so is the
initial set. □

Proposition 25. A function f : Rn → R is measurable if
and only if for all open set U ⊆ R, f−1(U) ∈ M(Rn).

Sketch of the proof.

=⇒) Let U ⊆ R be an open set. We can write U as a
countable union of intervals In. Then:

f−1(U) = f−1

( ∞⋃
n=1

In

)
=

∞⋃
n=1

f−1(In)

And f−1(In) ∈ M(Rn) by Theorem 24.

⇐=) Take the open set (r, ∞) ⊂ R and note that:

{f > r} = f−1((r, ∞)) ∈ M(Rn)

□

Proposition 26. Let f be a finite measurable real func-
tion, U ⊆ R be an open set such that im f ⊆ U and
φ : U → R be a continuous function. Then, φ ◦ f is also
measurable.

Proof. For any open set V ⊆ R we have that:

(φ ◦ f)−1(V ) = f−1(φ−1(V )) ∈ M(Rn)

because φ−1(V ) is open as φ is continuous. □

Proposition 27. Let u, v be two finite measurable real
functions, U ⊆ R2 be an open set such that (u(x), v(x)) ∈
U ∀x ∈ Rn and φ : U → R be a continuous function.
Then, φ(u(x), v(x)) is also measurable.

Sketch of the proof. For any open set V ⊆ R, φ−1(V ) is
open, and therefore it is a countable union of intervals of
the form I × J . Now, use the fact that {(u, v) ∈ I × J} =
{u ∈ I} ∩ {v ∈ J}. □

Proposition 28. Let f , g be two measurable real func-
tions. Then, so are f ±g, fg and f/g if g(x) ̸= 0 ∀x ∈ Rn.

Proof. Use Theorem 27 with φ(x, y) = x|y|∗, φ(x, y) = xy
and φ(x, y) = x/y, respectively. □

Proposition 29. Let f , g be two real functions such that
f is measurable and f

a.e.= g. Then, g is also measurable.

Sketch of the proof. Let N := {f ̸= g} which is null. More-
over, note that ∀r ∈ R:

{g > r} = {f > r} ∪ ({g > r} ∩ N)

which is measurable. □

Proposition 30. Let (fm) be a sequence of measurable
real functions. Then, the following functions are measur-
able:

• sup{fm : m ∈ N}

• inf{fm : m ∈ N}

• lim sup
m→∞

fm

• lim inf
m→∞

fm

Furthermore, any function being pointwise limit a.e. of a
sequence of measurable functions is measurable.

Sketch of the proof. Use de following identities for each
case:

• {sup{fm : m ∈ N} > r} =
∞⋃

n=1
{fm > r}

• inf{fm : m ∈ N} = − sup{−fm : m ∈ N}

• lim sup
m→∞

fm = inf{sup{fk : k ≥ n} : m ∈ N}

• lim inf
m→∞

fm = sup{inf{fk : k ≥ n} : m ∈ N}

For the last property, if f(x) = lim
m→∞

fm(x) ∀x ∈ Rn \ N

with fm measurable functions and |N | = 0, then fm1Rn\N

are measurable, f1Rn\N = lim
m→∞

fm1Rn\N and f
a.e.=

f1Rn\N . □
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Definition 31. The Borel σ-algebra over Rn, B(Rn), is
the smallest σ-algebra that contains the open sets of Rn.
Lemma 32. We have that B(Rn) ⊂ M(Rn).
Definition 33. A function g : R → R is Borel measurable
if {x ∈ Rn : g(x) > r} ∈ B(Rn) ∀r ∈ R.
Proposition 34. Let f : R → R be a Lebesgue mea-
surable function and g : R → R be a Borel measurable
function. Then, g ◦ f is Lebesgue measurable.
Sketch of the proof. The set

Σf = {A ∈ M(Rn) : f−1(A) is measurable}

is a σ-algebra that contain the open sets. Keeping this in
mind, for any open set U ⊆ R we have that:

(g ◦ f)−1(U) = f−1(g−1(U)) ∈ M(Rn)

because g−1(U) ∈ B(Rn) ⊆ Σf . □

Definition 35. Let f be a measurable function. We de-
fine the following measurable functions:

f+ := sup{f, 0} f− := sup{−f, 0}

Note that then, f = f+ − f− and |f | = f+ + f−.
Definition 36. A simple function is a linear combination

s :=
N∑

k=1
αk1Ak

where αk ∈ R and Ak ∈ M(Rn) for k = 1, . . . , N3.
Theorem 37. Let f : Rn → [0, +∞] be a measurable
function and ∀k ∈ N, m ∈ N ∪ {0} let:

E(k, m) :=
{

k − 1
2m

≤ f <
k

2m

}
and F (m) := {f ≥ m}

Then, the sequence of positive simple functions

sm = m1F (m) +
m2m∑
k=1

k − 1
2m

1E(k,m)

is increasing and lim
m→∞

sm(x) = f(x) ∀x ∈ Rn.

Sketch of the proof. The sets E(k, m) an F (m) are mea-
surable and satisfy:

E(k, m) = E(2k − 1, m + 1) ⊔ E(2k, m + 1)

and:

F (m) =

 (m+1)2m+1⊔
h=m2m+1+1

E(h, m + 1)

 ⊔ F (m + 1)

The proof of sm(x) ≤ sm+1(x) follows from distinguish the
following three cases: x ∈ F (m + 1), x ∈ F (m) \ F (m + 1)
and x ∈ E(k, m) for some k ∈ N.
Now given x ∈ {f ̸= ∞}, we have that x ∈ E(k, m) for
some k ∈ N. Thus:

k − 1
2m

≤ f(x) <
k

2m
=⇒ 0 ≤ f(x) − sm(x) <

1
2m

If x ∈ {f = ∞}, then lim
m→∞

sm(x) = m = ∞ = f(x). □

Theorem 38. Let f : Rn → [−∞, +∞] be a measurable
function. Then, there exists a sequence of simple func-
tions (sm) such that lim

m→∞
sm(x) = f(x) ∀x ∈ Rn and

|sm| ≤ |sm+1| ≤ |f | ∀m ∈ N.

Sketch of the proof. Apply Theorem 37 to the functions
f+ and f− and use that f = f+ − f− and |f | = f+ + f−.

□

Lebesgue integral

Definition 39. Let N ∈ N, E1, . . . , EN be disjoint mea-
surable sets and s =

∑N
k=1 αk1Ek

be a positive simple
function such that 0 ≤ α1 < · · · < αN < ∞. We define
the integral of s over Rn as:

ˆ
s :=

N∑
k=1

αk|Ek|

We define the integral of s over a measurable set E as:

ˆ

E

s :=
ˆ

s1E =
N∑

k=1
αk|Ek ∩ E|

Proposition 40. Let (En) be a sequence of measurable
sets and s, t be simple functions. Then:

1. If E =
∞⊔

n=1
En, then

ˆ

E

s =
∞∑

n=1

ˆ

En

s.

2.
ˆ

(s + t) =
ˆ

s +
ˆ

t.

3. If λ ∈ R≥0, then
ˆ

λs = λ

ˆ
s.

4. If s ≤ t, then
ˆ

s ≤
ˆ

t.

Sketch of the proof. Note that we can suppose s =∑N
k=1 αk1Fk

and t =
∑N

k=1 βk1Fk
with αk, βk ≥ 0.

1.

ˆ

E

s =
N∑

k=1
αk

∣∣∣∣∣Fk ∩
∞⊔

n=1
En

∣∣∣∣∣ =
N∑

k=1
αk

∣∣∣∣∣
∞⊔

n=1
(Fk ∩ En)

∣∣∣∣∣
=

∞∑
n=1

N∑
k=1

αk|Fk ∩ En| =
∞∑

n=1

ˆ

En

s

The other proofs are straightforward by considering t±s =∑N
k=1(βk ± αk)1Fk

and λs =
∑N

k=1 λαk1Fk
. □

3We may suppose that the sets Ak are pairwise disjoint, the quantities αk are all different and that Ak = s−αk .
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Proposition 41. Given a simple function s, the function

µs : M(Rn) −→ [0, ∞]
E 7−→

ˆ

E

s

is a measure.

Sketch of the proof. Clearly µs(∅) = 0 and the property
of σ-additivity is exactly Item 40-1. □

Definition 42. Let f : Rn → [0, +∞] be a measurable
function. We define:

S(f) := {s : s is a simple function such that 0 ≤ s ≤ f}

Definition 43. Let f : Rn → [0, +∞] be a measurable
function. We define the integral of f over Rn as:

ˆ

Rn

f(x) dx := sup
s∈S(f)

ˆ
s

We define the integral of f over a measurable set E ⊆ Rn

as:
ˆ

E

f(x) dx :=
ˆ

Rn

f(x)1E(x) dx = sup
s∈S(f1E)

ˆ
s

Proposition 44. Let E ⊆ Rn be a measurable set, s be
a simple function and f , g be measurable functions such
that f(x) ≤ g(x) ∀x ∈ E. Then:

1.
ˆ

E

s =
ˆ

E

s(x) dx

2.
ˆ

E

f(x) dx ≤
ˆ

E

g(x) dx

Sketch of the proof. The first property is clear. Regarding
the second one, just note that:

S(f1E) ⊆ S(g1E) =⇒ sup
s∈S(f1E)

ˆ
s ≤ sup

s∈S(g1E)

ˆ
s

□

Theorem 45 (Monotone convergence theorem). Let
E ⊆ Rn be a measurable set, f ≥ 0 be a non-negative mea-
surable function such that ∃(fm) ≥ 0 with fm measurable
∀m ∈ N and fm ↗ f . Then:

ˆ

E

f(x) dx = lim
m→∞

ˆ

E

fm(x) dx

Proof. The inequality
´

E
fm(x) dx ≤

´
E

f(x) dx is obvi-
ous. We need to prove the other one. To do so it suffices to
show that ∀ε > 0 and ∀s ∈ S(f1E) we have (1 − ε)

´
E

s ≤
lim

m→∞

´
E

fm(x) dx. Let Em := {fm ≥ (1 − ε)s}. Note that
Em ↗ E and moreover:

ˆ

E

fm ≥
ˆ

Em

fm ≥ (1 − ε)
ˆ

Em

s

Since µs is a measure we can use Item 5-3 to conclude that´
Em

s ↗
´

E
s. Therefore, ∀ε > 0 we have:

(1 − ε)
ˆ

E

s ≤ lim
m→∞

ˆ

E

fm

□

Proposition 46. Let E ⊆ Rn be a measurable set with
|E| > 0, f, g, (fm) ≥ 0 be non-negative measurable func-
tions. Then:

1.
ˆ

E

(f + g)(x) dx =
ˆ

E

f(x) dx +
ˆ

E

g(x) dx

2.
ˆ

E

∞∑
m=1

fm(x) dx =
∞∑

m=1

ˆ

E

fm(x) dx

3. If (Ek) is a sequence of measurable sets such that
E =

⊔∞
m=1 Em, then:

ˆ

E

f(x) dx =
∞∑

m=1

ˆ

Em

f(x) dx

4. If α ∈ [0, ∞), then
ˆ

E

αf(x) dx = α

ˆ

E

f(x) dx.

5.
ˆ

E

f(x) dx = 0 ⇐⇒ f
a.e.= 0 on E.

6. If N ⊂ E is a null set, then
ˆ

E

f(x) dx =
ˆ

E\N

f(x) dx.

7. If
ˆ

E

f(x) dx < ∞, then f
a.e.
< ∞ on E.

8. If h ∈ Rn, then
ˆ

E−h

f(x + h) dx =
ˆ

−E

f(−x) dx =

ˆ

E

f(x) dx

Sketch of the proof.

1. Use the 45 Monotone convergence theorem to the
sequences of simple functions sm ↗ f and tm ↗ g
(that exists by Theorem 37).

2. Use induction from Item 46-1 and the 45 Mono-
tone convergence theorem to the sequence FN =∑N

m=1 fm(x).

3. Apply Item 46-2 to fm = f1Em
.

4. Use the 45 Monotone convergence theorem and this
property for simple functions (as in Item 46-1).

6



5. The implication to the left is clear. For the other
one, define Am = {f > 1

m }. We would like to see
that |{f > 0}| =

∣∣∣ lim
m→∞

Am

∣∣∣ = 0. But Am ⊆ Am+1

and they are clearly measurable. So by Item 5-3 we
have:

|{f > 0}| = lim
m→∞

|Am| = lim
m→∞

ˆ

Am

dx

≤ lim
m→∞

m

ˆ

Am

f dx = 0

Hence, the set {f > 0} is null, i.e. f
a.e.= 0 on E.

6. Just note that ˆ

E

f =
ˆ

E\N

f +
ˆ

N

f

and
´

N
f = 0 because

´
N

s = 0 ∀s ∈ S(1N ) by the
construction of the Lebesgue integral.

7. Apply Item 5-3 to the sets Am = {f ≥ m}.

8. For indicator functions the statement is clear since
if f(x) = 1E(x), then f(x + h) = 1E−h(x) and
f(−x) = 1−E(x). Now extend this to positive simple
functions and the to positive measurable functions.

□

Corollary 47. Let E ⊆ Rn be a measurable set, f ≥ 0 be
a non-negative measurable function such that ∃(fm) ≥ 0
with fm

a.e.
↗ f . Then:

ˆ

E

f(x) dx = lim
m→∞

ˆ

E

fm(x) dx

Sketch of the proof. Consequence of Item 46-6 with the
null set N = { lim

m→∞
fm ̸= f}. □

Theorem 48 (Chebyshev’s inequality). Let E ⊆ Rn

be a measurable set, f : E → R be a measurable function
and α ∈ R>0. Then:

|{|f | ≥ α}| ≤ 1
α

ˆ

E

|f(x)| dx

Proof.

|{|f | ≥ α}| =
ˆ

{|f |≥α}

dx ≤ 1
α

ˆ

{|f |≥α}

|f(x)| dx

≤ 1
α

ˆ

E

|f(x)| dx

□

Lemma 49 (Fatou’s lemma). Let E ⊆ Rn be a mea-
surable set and (fm) ≥ 0 be a sequence of non-negative
measurable functions over E. Then:ˆ

E

lim inf
m→∞

fm(x) dx ≤ lim inf
m→∞

ˆ

E

fm(x) dx

Sketch of the proof. Remember that lim inf
m→∞

fm =
lim

k→∞
inf{fm : m ≥ k}. Now apply 45 Monotone con-

vergence theorem to the increasing sequence of functions
(Fk) defined by Fk = inf{fm : m ≥ k}. Bear in mind that
Fk ≤ fk. □

Definition 50. Let E ⊆ Rn be a measurable set and
f : E → [−∞, +∞] be a measurable function such that
either

´
E

f+(x) dx < ∞ or
´

E
f−(x) dx < ∞. Then, we

define the integral of f over E as:
ˆ

E

f(x) dx :=
ˆ

E

f+(x) dx −
ˆ

E

f−(x) dx

We say that f is an integrable function over E if

∥f∥1 :=
ˆ

E

|f(x)| dx < ∞

The set of such functions is denoted by L1(E).

Proposition 51. Let E ⊆ Rn be a measurable set and
f : E → [−∞, +∞] be a measurable function. Then, the
function g = f1|f |<∞ is finite and f

a.e.= g.

Proposition 52. Let E ⊆ Rn be a measurable set. Then:

1. L1(E) is a vector space over R.

2. The integral
´

E
: L1(E) −→ R

f 7−→
´

E
f

is a linear form.

3. If f, g ∈ L1(E) are such that f
a.e.
≤ g on E, then´

E
f ≤
´

E
g. Moreover:∣∣∣∣∣∣
ˆ

E

f(x) dx

∣∣∣∣∣∣ ≤
ˆ

E

|f(x)| dx

4. If f ∈ L1(E) and E = E1 ⊔ E2 with E1, E2 measur-
able, then

ˆ

E1⊔E2

f(x) dx =
ˆ

E1

f(x) dx +
ˆ

E2

f(x) dx

5. If h ∈ Rn, f ∈ L1(E), then:
ˆ

E−h

f(x + h) dx =
ˆ

−E

f(−x) dx =
ˆ

E

f(x) dx

Theorem 53 (Dominated convergence theorem).
Let E ⊆ Rn be a measurable set, f be a measurable func-
tion over E such that ∃(fm) measurable with fm

a.e.→ f

and |fm(x)|
a.e.
≤ g(x) on E with g ∈ L1(E) ∀m ∈ N. Then,

f, fm ∈ L1(E) ∀m ∈ N and:
ˆ

E

f(x) dx = lim
m→∞

ˆ

E

fm(x) dx
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Proposition 54. Let E ⊆ Rn be a measurable set,
f, g ∈ L1(E) and λ ∈ R. Then:

1. ∥f + g∥1 ≤ ∥f∥1 + ∥g∥1

2. ∥λf∥1 = |λ|∥f∥1

3. ∥f∥1 = 0 ⇐⇒ f
a.e.= 0.

Definition 55. Let E ⊆ Rn be a measurable set and
(fm), f ∈ L1(E). We say that (fm) converge in mean to
f if lim

m→∞
∥fm − f∥1 = 0, or equivalently lim

m→∞
fm = f on

L1(E).

Theorem 56. Let E ⊆ Rn be a measurable set and
(fm) ∈ L1(E).

1. If
∑∞

m=1 ∥fm∥1 < ∞, ∃f ∈ L1(E) such that∑∞
m=1 fm = f on L1(E) and

∑∞
m=1 fm(x) = f(x)

converges absolutely ∀x ∈ E \ N , where N is a null
set.

2. If lim
m→∞

fm = f on L1(E), then there exists a subse-
quence (fmk

) such that lim
k→∞

fmk
= f on L1(E) and

lim
k→∞

fmk
(x) = f(x) ∀x ∈ E \ N , where N is a null

set.

Proposition 57. Let E ⊆ Rn be a measurable set and
f ∈ L1(E). Then, there exists a sequence of integrable
simple functions (sm) such that lim

m→∞
sm = f on L1(E),

lim
m→∞

sm(x) = f(x) ∀x ∈ E and |sm| ≤ |sm+1| ≤ |f |
∀m ∈ N.

Integral calculus in one variable and Riemann
integral

Definition 58. Given a function f : R → R, we say
that

´ b

a
f(x) dx exists and it is finite if f is integrable on

(min{a, b}, max{a, b})4.

Theorem 59 (Mean value theorem for integrals).
Let f : R → R≥0 be a positive integrable function over
(a, b) and g : (a, b) → R be a measurable and bounded
function such that α ≤ g(x) ≤ β almost everywhere on
(a, b). Then, ∃γ ∈ [α, β] such that:

bˆ

a

g(x)f(x) dx = γ

bˆ

a

f(x) dx

Moreover if g is continuous, ∃ξ ∈ (a, b) such that:

bˆ

a

g(x)f(x) dx = g(ξ)
bˆ

a

f(x) dx

In particular, taking f = 1, we get:

bˆ

a

g(x) dx = g(ξ)(b − a)

Theorem 60 (Barrow’s law). If f : [a, b] → R is a
continuous function and derivable on (a, b) with bounded
derivative, then f ′ ∈ L1((a, b)) and

bˆ

a

f ′(x) dx = f(b) − f(a)

Theorem 61 (Fundamental theorem of calculus).
Let f : (a, b) → R be an integrable function and continu-
ous at y ∈ (a, b). Then, F (x) =

´ x

a
f(s) ds is derivable at

y and F ′(y) = f(y).

Theorem 62. Let φ : [α, β] → [c, d] be a continuous func-
tion and derivable with bounded derivative on (α, β). Let
a = φ(α) and b = φ(β). If f : [c, d] → R is a continuous
function, then (f ◦ φ)φ′ is integrable on (α, β) and:

dˆ

c

f(x) dx =
β̂

α

f(φ(t))φ′(t) dt

Theorem 63 (Integration by parts). Let F, G :
[a, b] → R be the primitives of the two bounded functions
f, g : (a, b) → R. Then, Fg, fG ∈ L1(a, b) and:

bˆ

a

F (x)g(x) dx = F (a)G(a) − F (b)G(b) −
bˆ

a

f(x)G(x) dx

Theorem 64. Let f : [a, b] → R be a Riemann integrable
function. Then, f is also Lebesgue integrable and both
integrals coincide.

Functions defined by integrals
Theorem 65. Let E ⊆ Rn be a measurable set, I ⊆ R
be an interval, g ∈ L1(E) be such that g ≥ 0 and f(·, t)
be an integrable function ∀t ∈ I. We denote:

Φ(t) :=
ˆ

E

f(x, t) dx

1. If f(x, ·) is continuous on t0 almost everywhere on
E and |f(x, t)|

a.e.
≤ g(x) ∀t ∈ I, then Φ is continuous

at t0.

2. If f(x, ·) is derivable on t0 almost everywhere on E
and ∣∣∣∣∂f

∂t
(x, t)

∣∣∣∣ a.e.
≤ g(x) ∀t ∈ I

then the function ∂f
∂t (x, ·) is integrable on E and

Φ′(t0) =
ˆ

E

∂f

∂t
(x, t0) dx

Definition 66 (Hardy-Littlewood maximal func-
tion). Let f ∈ L1(Rn) and B ⊆ Rn be a ball. We define
the Hardy-Littlewood maximal function as:

Mf(x) = sup
x∈B

1
|B|

ˆ

B

|f(y)| dy

4Note that if f is measurable, the integral always exists, but it may be ±∞.
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Theorem 67. Let f ∈ L1(Rn) and B ⊆ Rn be a ball.
Then:

1. Mf is measurable.

2. Mf
a.e.
< ∞.

3. |{x ∈ Rn : Mf(x) > α}| ≤ A

α

ˆ

Rn

|f(x)| dx.

Theorem 68 (Lebesgue differentiation theorem).
Let f ∈ L1(Rn) and B ⊆ Rn be a ball. Then:

lim
|B|→0

1
|B|

ˆ

B

f(y) dy
a.e.= f(x) x ∈ B

Proposition 69. Let f ∈ L1(Rn) and suppose Mf ∈
L1(Rn). Then, f = 0.

Fubini-Tonelli theorem
Definition 70. Let E ⊆ Rp+q and y ∈ Rq. We define the
section of E at y as:

E(y) := {x ∈ Rp : (x, y ∈ E)}

Proposition 71. Let E, F, Ek ⊆ Rp+q, k ∈ N, and
y ∈ Rq. Then:

1. If E = A × B, with A ⊆ Rp and B ⊆ Rq, then
E(y) = A if y ∈ B and E(y) = ∅ if y /∈ B.

2. E ∩ F = ∅ =⇒ E(y) ∩ F (y) = ∅.

3.

i)
( ∞⋂

k=1
Ek

)
(y) =

∞⋂
k=1

Ek(y)

ii)
( ∞⋃

k=1
Ek

)
(y) =

∞⋃
k=1

Ek(y)

iii) (E \ F ) (y) = E(y) \ F (y)

4. If E(y) is measurable, then:

|E(y)| =
ˆ

Rp

1E(x, y) dx

In particular, if E is an interval E = Ip × Iq, then:

|I(y)| = |Ip|1Iq
(y)

Lemma 72. Let E ⊆ Rp+q be a measurable set. Then:

1. There exists a null set N ⊂ Rq such that E(y) is
measurable ∀y ∈ Rq \ N (that is E(y) is measurable
almost everywhere ∀y ∈ Rq).

2. The function

Φ(y) =
{

|E(y)| if y ∈ Rq \ N

0 if y ∈ N

is measurable and positive on Rq.

3. |E| =
ˆ

Rq

|E(y)| dy

Theorem 73 (Tonelli’s theorem). Let f : Rp+q →
[0, ∞] be a non-negative measurable function. Then:

1. f(·, y) and f(x, ·) are measurable almost everywhere
x ∈ Rp, y ∈ Rq.

2. Let Np and Nq be the respective null sets where the
above functions aren’t measurable. Then the func-
tions

Φ(y) =
{´

Rp f(x, y) dx if y ∈ Rq \ Nq

0 if y ∈ Nq

Ψ(x) =
{´

Rq f(x, y) dy if x ∈ Rp \ Np

0 if x ∈ Np

are measurable on Rq and Rx, respectively.

3. ˆ

Rq

Φ(y) dy =
ˆ

Rp+q

f(x, y) d(x, y) =
ˆ

Rp

Ψ(x) dx

Corollary 74. Let f : Rp+q → [0, ∞] be a non-negative
measurable function. Then:

ˆ

Rp+q

f(x, y) d(x, y) =
ˆ

Rq

ˆ
Rp

f(x, y) dx

 dy

=
ˆ

Rp

ˆ
Rq

f(x, y) dy

 dx

These identities are sometimes written as:ˆ

Rp+q

f(x, y) dx dy =
ˆ

Rq

dy

ˆ

Rp

f(x, y) dx

=
ˆ

Rp

dx

ˆ

Rq

f(x, y) dy

Corollary 75. Let f : Rp+q → R be a measurable func-
tion. Then, f is integrable if and only if:ˆ

Rq

dy

ˆ

Rp

|f(x, y)| dx < ∞

Theorem 76 (Fubini’s theorem). Let f ∈ L1(Rp+q).
Then:

1. f(·, y)
a.e.
∈ L1(Rp) and f(x, ·)

a.e.
∈ L1(Rq), x ∈ Rp,

y ∈ Rq.

2. Let Np and Nq be the respective null sets where the
above functions aren’t integrable. Then the func-
tions

Φ(y) =
{´

Rp f(x, y) dx if y ∈ Rq \ Nq

0 if y ∈ Nq

Ψ(x) =
{´

Rq f(x, y) dy if x ∈ Rp \ Np

0 if x ∈ Np

are integrable on Rq and Rp, respectively.
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3.
ˆ

Rq

Φ(y) dy =
ˆ

Rp+q

f(x, y) d(x, y) =
ˆ

Rp

Ψ(x) dx

Change of variables

Definition 77. Let U, V ⊆ Rn be open sets. A change of
variables is a diffeomorphism φ : U → V of class C1.

Theorem 78 (Change of variables). Let U, V ⊆ Rn

be open sets and φ : U → V be a change of variables. If
f : Rn → [0, ∞] is measurable or integrable on V , then so
is (f ◦ φ)|Jφ| and:

ˆ

V

f(x) dx =
ˆ

U

f(φ(t))|Jφ(t)| dt

2. | Banach spaces
Normed vector spaces

Definition 79. Let M be a set. A distance in M is a
function d : M × M → R such that ∀x, y, z ∈ M the
following properties are satisfied:

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

We define a metric space as a pair (M, d) that satisfy the
previous properties.

Proposition 80. Let (M1, d1), . . . , (Mn, dn) be metric
spaces. Then, M1 × · · · × Mn with the distance

d(x, y) = max{di(xi, yi) : i = 1, . . . , n}

where x = (x1, . . . , xn), y = (y1, . . . , yn), is a metric space.

Definition 81. A metric space (M, d) is complete if every
Cauchy sequence in M converges in M .

Definition 82. Let E be a real (or complex) vector space.
A norm on E is a function ∥ ·∥ : E → K (where K = R,C)
such that ∀u, v ∈ E and ∀λ ∈ K the following properties
are satisfied:

1. ∥u∥ = 0 ⇐⇒ u = 0

2. ∥λu∥ = |λ|∥u∥

3. ∥u + v∥ ≤ ∥u∥ + ∥v∥ (triangular inequality)

We define a normed vector space as a pair (E, ∥ · ∥) that
satisfy the previous properties.

Proposition 83. Let (E1, ∥·∥1), . . . , (En, ∥·∥n) be normed
vector spaces. Then, E1 × · · · × En with the norm

∥(x1, . . . , xn)∥ = max{∥xi∥i : i = 1, . . . , n}

is a normed vector space.

Proposition 84. Let (E, ∥ · ∥) be a normed vector space
and consider the following functions:

S : E × E −→ E
(x, y) 7−→ x + y

P : R × E −→ E
(λ, x) 7−→ λx

Then:
1. S is uniformly continuous.

2. P is continuous.

3. ∥·∥ : E → R is Lipschitz continuous:
|∥x∥ − ∥y∥| ≤ ∥x − y∥ ∀x, y ∈ E

Sketch of the proof.
1, 2. It follows from the Triangular inequality.

3. Consider the inequalities:
∥x∥ ≤ ∥x − y∥ + ∥y∥ ∥y∥ ≤ ∥y − x∥ + ∥x∥

□

Definition 85. Let (E, ∥ · ∥) be a normed vector space
and (xn) ∈ E be a sequence. We say that

∑∞
n=1 xn is a

convergent series in E that converges to x ∈ E if:

lim
N→∞

∥∥∥∥∥x −
N∑

n=1
xn

∥∥∥∥∥ = 0

We say that
∑∞

n=1 xn is absolutely convergent if:
∞∑

n=1
∥xn∥ < ∞

Proposition 86. Let (E, ∥ · ∥) be a normed vector space
and

∑∞
n=1 xn = x be a convergent series. Then:

∥x∥ ≤
∞∑

n=1
∥xn∥

Proof.

∥x∥ = lim
N→∞

∥∥∥∥∥
N∑

n=1
xn

∥∥∥∥∥ ≤ lim
N→∞

N∑
n=1

∥xn∥ =
∞∑

n=1
∥xn∥

□

Definition 87 (Banach space). A Banach space is
normed vector space which is complete with the distance
associated with the norm.
Theorem 88. Let (E, ∥ · ∥) be a normed vector space.
Then, (E, ∥ · ∥) is a Banach space if and only if every se-
ries in E that converges absolutely, converges.
Proof.

=⇒) Let
∑∞

n=1 xn be a sequence in E that converges
absolutely. Then, ∀ε > 0 and ∀M > N > 0 large
enough we have:∥∥∥∥∥

M∑
n=1

xn −
N∑

n=1
xn

∥∥∥∥∥ ≤
M∑

n=N+1
∥xn∥ ≤

∞∑
n=N+1

∥xn∥

< ε

because it is the tail of a convergent series. Thus,∑∞
n=1 xn < ∞ because it is Cauchy and E is Ba-

nach.
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⇐=) Let (yn) ∈ E be a Cauchy sequence. Then,
∀k ∈ N, ∃nk such that ∀p, q ≥ nk we have:

∥yp − yq∥ <
1
2k

Now consider the sequence (xm) ∈ E defined as
x1 = yn1 and xm = ynm

− ynm−1 ∀m ≥ 2.
Therefore, ∥xm∥ ≤ 1

2m−1 ∀m ≥ 2 and so the se-
ries

∑∞
m=1 ∥xm∥ converges, and so does the series∑∞

m=1 xm =: x ∈ E. Since,
∑M

m=1 xm = ynM

we have that lim
M→∞

ynM
= x. Finally, as (ynM

) is
a subsequence of (yn), which is Cauchy, we have
that lim

n→∞
yn = x.

□

Proposition 89. The space B([a, b]) of continuous and
bounded functions with the uniform norm

∥f∥∞ := sup{|f(t)| : t ∈ [a, b]}

is Banach.

Proof. Let (fn) ∈ B([a, b]) be Cauchy. Then, for each
x ∈ [a, b], the numeric sequence (fn(x)) is Cauchy and so
it converges pointwise to a function f(x). Thus, we have:

lim
n,m→∞

|fn(x) − fm(x)| = lim
n→∞

|fn(x) − f(x)|

which is valid ∀x ∈ [a, b]. Hence, lim
n→∞

∥fn − f∥∞ and
clearly f ∈ B([a, b]), as it is the uniform limit of continu-
ous and bounded functions. □

Proposition 90. Let (E, ∥ · ∥) be a normed vector space
and F ⊆ E be a vector subspace. Then, F is also a vector
subspace of E.

Sketch of the proof. Let x, y ∈ F and λ ∈ K. Then,
∃(xn), (yn) ∈ F such that lim

n→∞
xn = x and lim

n→∞
yn = y.

The continuity of the functions defined in Theorem 84 im-
plies x + y ∈ F and λx ∈ F . □

Proposition 91. Let (E, ∥ · ∥) be a normed vector space
and F ⊆ E be a vector subspace.

1. If F is complete, it is closed.

2. If F is closed and E is Banach, then F is complete.

Proof.

1. Let x ∈ F . Then, ∃(xn) ∈ F such that lim
n→∞

xn = x.
In particular (xn) is Cauchy and since F is complete,
we conclude x ∈ F .

2. Let (xn) ∈ F be a Cauchy sequence. In particular,
it is a Cauchy sequence in E and so ∃x ∈ E with
lim

n→∞
xn = x. Moreover, this x satisfies x ∈ F and

since F is closed, x ∈ F .

□

Definition 92. Let (E, ∥ · ∥) be a normed vector space
and A ⊆ E be a subset. We say that A is a total subset if
⟨A⟩ is dense in E.

Remark. The linear span ⟨A⟩ exclude the infinite linear
combinations of elements in A, even if A is a subspace of
infinite dimension.

Definition 93. A metric space is called separable if it
contains a countable dense subset.

Proposition 94. A normed vector space E is separable
if and only if it contains a total countable subset.

Proof. The implication to the right is evident. For the
other one, let A be the total countable subset and con-
sider the set ⟨A⟩Q of rational linear combinations. This
set is countable and dense in ⟨A⟩. Since the latter one is
also dense in E, we conclude that ⟨A⟩Q is dense in E. □

Proposition 95. Let M be a separable metric space and
S ⊆ M be a subspace. Then, S is separable.

Proof. Let A be the countable dense subset of M . The
balls B(y, 1/n) with y ∈ A, n ∈ N cover S. For each
y ∈ N , let An be the set formed by one point of each
nonempty B(y, 1/n) ∩ S. The set

⋃∞
n=1 An is dense in S.

□

Proposition 96. Let M , N be separable metric spaces.
Then, M × N is separable.

Sketch of the proof. The product of two dense subsets is
dense with the product topology. □

Quotient space

Definition 97. Let E be a normed vector space and F
be a closed subspace. We define the quotient space E/F
as the respective quotient vector space with the associated
norm:

∥x∥E/F := inf{∥z∥E : z ∈ E with z = x}

= inf{∥x + y∥E : y ∈ F}

Proposition 98. Let E be a normed vector space and F
be a closed subspace. The quotient space E/F is a normed
vector space. Moreover, the map

π : E −→ E/F
x 7−→ x

is continuous with ∥x∥E/F ≤ ∥x∥E .

Sketch of the proof. Note that x = x + F and so

∥x∥E/F = d(0, x + F ) = 0 ⇐⇒ 0 ∈ x + F ⇐⇒ x = 0

The inequality follows from the fact that ∥y∥E/F = 0
∀y ∈ F . From here, the continuity is clear. □

Lemma 99. Let E be a normed vector space and F be a
closed subspace.

1. If E is Banach, so is E/F .

2. If E is separable, so is E/F .

Sketch of the proof.
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1. Let
∑∞

n=1 ∥xn∥E/F < ∞ and for each n ∈ N
take xn ∈ xn with ∥xn∥ ≤ 2 ∥xn∥E/F . Then,∑∞

n=1 ∥xn∥ < ∞ and since E is Banach,
∑∞

n=1 xn =
x ∈ E. The continuity and linearity of π implies∑∞

n=1 xn = x. Hence, E/F is Banach.

2. Note that the density and countability of sets are
invariant under π.

□

Lp spaces
Definition 100. Let E ⊆ Rn be a measurable set and
1 ≤ p < ∞. We define:

Lp(E) :=

f : E → Rn measurable :
ˆ

E

|f |p < ∞


L∞(E) := {f : E → Rn measurable : ∃M > 0 with

|f(x)|
a.e.
≤ M, x ∈ E

}
N (E) := {f : E → Rn measurable : f

a.e.= 0}

Definition 101. Let E ⊆ Rn be a measurable set and
1 ≤ p ≤ ∞. We define:

Lp(E) := Lp(E)/
N (E)

Lemma 102 (Young’s inequality for products). Let
a, b > 0 and 1 ≤ p, q ≤ ∞ be such that 1

p + 1
q = 1. Then:

ab ≤ ap

p
+ bq

q

And the equality holds if and only if ap = bq.

Sketch of the proof. Let f : [0, a] → R be continuous and
invertible such that f(0) = 0. Then, we have

ab ≤
aˆ

0

f(x) dx +
bˆ

0

f−1(x) dx

with equality if and only if f(a) = b (see Fig. 1 for a
better understanding). Now take f(x) = xp−1 and so
f−1(x) = xq−1. The equality is held if:

ap−1 = b and bq−1 = a ⇐⇒ ap = bq

a

b

x

y

Figure 1

□

Definition 103. We say that p, q ≥ 1 are Hölder conju-
gates if 1

p + 1
q = 1.

Proposition 104 (Hölder’s inequality). Let E ⊆ Rn

be a measurable set, 1 ≤ p, q ≤ ∞ be such that 1
p + 1

q = 1
and f ∈ Lp(E), g ∈ Lq(E). Then:

ˆ

E

|fg| ≤

ˆ
E

|f |p
1/pˆ

E

|g|q
1/q

Or equivalently (see Theorem 107):

∥fg∥1 ≤ ∥f∥p ∥g∥q

And the equality holds if and only if ∃α, β ∈ R≥0 such
that α|f |p a.e.= β|g|q.

Proof. Dividing f by ∥f∥p and g by ∥g∥q we can assume
that ∥f∥p = ∥g∥q = 1. Then, using 102 Young’s inequality
for products we have:
ˆ

E

|f(x)g(x)| dx ≤
ˆ

E

(
|f(x)|p

p
+ |g(x)|q

q

)
dx = 1

p
+ 1

q
= 1

The equality follows from the equality in 102 Young’s in-
equality for products. □

Corollary 105 (Hölder’s inequality). Let E ⊆ Rn be
a measurable set, 1 ≤ p, q, r ≤ ∞ be such that 1

p + 1
q = 1

r

and f ∈ Lp(E), g ∈ Lq(E). Then, fg ∈ Lr(E) and:

∥fg∥r ≤ ∥f∥p ∥g∥q

Sketch of the proof. Use 104 Hölder’s inequality with F :=
|f |r ∈ L

p
r (E) and G := |g|r ∈ L

q
r (E), noting that p/r and

q/r are Hölder conjugates. □

Corollary 106 (Interpolation inequality). Let E ⊆
Rn be a measurable set, 1 ≤ p1 ≤ p2 ≤ ∞ and f ∈
Lp1(E) ∩ Lp2(E). Then, ∀p ∈ [p1, p2] we have f ∈ Lp(E)
and:

∥f∥p ≤ ∥f∥p1

α∥f∥p2

1−α

with α ∈ [0, 1] such that 1
p = α

p1
+ 1−α

p2
.

Proposition 107. Let E ⊆ Rn be a measurable set and
1 ≤ p < ∞. The set Lp(E) is a normed vector space with
the norm:

∥f∥p :=

ˆ
E

|f |p
1/p

∀f ∈ Lp(E)

And the set L∞(E) is also a normed vector space with the
norm:

∥f∥∞ = inf{M : |f(x)|
a.e.
≤ M, x ∈ E} ∀f ∈ L∞(E)
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Sketch of the proof. The case of L∞(E) is easy and the first
two properties for Lp(E), p ≥ 1, too (remember Item 46-
5). It’s missing to prove the Triangular inequality (also
called Minkowski inequality in this case):

∥f + g∥p ≤ ∥f∥p + ∥g∥p

We have that:

∥f + g∥p
p =
ˆ

E

|f + g||f + g|p−1

≤
ˆ

E

|f ||f + g|p−1 +
ˆ

E

|g||f + g|p−1

≤


ˆ

E

|f |p
1/p

+

ˆ
E

|g|p
1/p

 ·

·

ˆ
E

|f + g|(p−1) p
p−1

1−1/p

= (∥f∥p + ∥g∥p)
∥f + g∥p

p

∥f + g∥p

□

Other important Banach spaces
Definition 108. Let I be an index set. We denote by
c0(I) the space of all sequences convergent to 0; by c(I),
the space of all convergent sequences, and by ℓ∞(I), the
space of all bounded sequences.

Proposition 109. Let I be an index set. The spaces
c0(I), c(I) and ℓ∞(I) with the uniform norm

∥(xn)∥∞ := sup{|xn| : n ∈ N}

are Banach.

Definition 110. Let 1 ≤ p < ∞ and I be an index set.
We define the space ℓp(I) as the space of the sequences
x = (xn) such that:

∥x∥p :=
( ∞∑

n=1
xn

p

)1/p

< ∞

Proposition 111. Let I be an index set. The space
(ℓp(I), ∥·∥p) is Banach.

Space of continuous functions
Definition 112. Let X ̸= ∅ be a set. We define the set
B(X) as the vector space over K = R,C of the functions
f : X → K that are bounded with the uniform norm (or
supremum norm):

∥f∥ := ∥f∥X := sup{|f(x)| : x ∈ X}

Proposition 113. Let X ̸= ∅ be a set and (fn), f ∈
B(X) be functions. Then:

lim
n→∞

∥fn − f∥ = 0 ⇐⇒ fn converges uniformly to f

Sketch of the proof. Remember the characterization ??.
□

Definition 114. Let K ⊆ Kn be a compact set. We de-
fine C(K) as the closed subspace of B(K) containing the
continuous functions.

Proposition 115. Let K ⊆ Kn be a compact set and
f, g ∈ C(K). Then:

∥fg∥K ≤ ∥f∥K ∥g∥K

Definition 116. Let K ⊆ Kn be a compact set and
A ⊆ C(K) be a subset. We say that A is a subalgebra
if A is a vector subspace, and it is stable under the prod-
uct, that is if ∀f, g ∈ A we have fg ∈ A.

Proposition 117. Let K ⊆ Kn be a compact set and
A ⊆ C(K) be a subalgebra. Then, A is also a subalgebra.

Proof. In Theorem 90 we saw that A is a vector sub-
space. To show that is stable under the product, consider
f, g ∈ A. Then, we can write f = lim

n→∞
fn and g = lim

n→∞
gn

with (fn), (gn) ∈ A. Finally:

∥fg − fngn∥K ≤ ∥fg − fng∥K + ∥fng − fg∥K

≤ ∥g∥K ∥f − fn∥K + ∥fn∥K ∥g − gn∥K

which has limit 0 when n → ∞. □

Definition 118. Let K ⊆ Kn be a compact set and
A ⊆ C(K) be a subalgebra. We say that A is a separating
set (or separate the points of K) if ∀x, y ∈ K ∃f ∈ A such
that f(x) ̸= f(y).

Definition 119. Let K ⊆ Kn be a compact set and
A ⊆ C(K) be a subalgebra. We say that A vanishes
nowhere if ∀x ∈ K ∃fx ∈ A such that fx(x) ̸= 05.

Lemma 120. Let K ⊆ Kn be a compact set and A ⊆
C(K) be a separating subalgebra that vanishes nowhere.
Then, ∀x, y ∈ K and ∀α, β ∈ K, ∃f ∈ A such that
f(x) = α and f(y) = β.

Proof. By hypothesis ∃g, hx, hy ∈ A such that g(x) ̸=
g(y), hx(x) ̸= 0 and hy(y) ̸= 0. Then consider:

f = α
hx

hx(x)
g − g(y)

g(x) − g(y) + β
hy

hy(y)
g − g(x)

g(y) − g(x)

□

Definition 121. Let K ⊆ Kn be a compact set and
A ⊆ C(K) be a subalgebra. We say that A is self-conjugate
if f ∈ A whenever f ∈ A.

Lemma 122. Let K ⊆ Rn be a compact set and A ⊆
C(K) be a subalgebra. If f ∈ A, then |f | ∈ A.

5Note that it suffices for A to contain the constant functions so that it vanishes nowhere.
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Proof. First note that since f ∈ C(K), f is bounded
and so ∃a, b ∈ R such that f(K) ⊆ [a, b]. Consider
v(x) = |x|, x ∈ [a, b]. Then, by ?? ?? ∃(qn) ∈ R[x]
such that lim

n→∞
∥qn − v∥[a,b] = 0. Now construct pn(x) =

qn(x)−qn(0) which also satisfies lim
n→∞

∥pn − v∥[a,b] = 0 be-
cause lim

n→∞
qn(0) = v(0) = 0. Since we can write pn(x) =∑n

k=1 akxk, we have that pn(f) =
∑n

k=1 akfk ∈ A and so:

lim
n→∞

∥pn(f) − |f |∥K ≤ lim
n→∞

∥pn − v∥[a,b] = 0

□

Corollary 123. Let K ⊆ Kn be a compact set and
A ⊆ C(K) be a subalgebra. If f, g ∈ A, then
sup{f, g}, inf{f, g} ∈ A.

Sketch of the proof.

sup{f, g} = f + g + |f − g|
2 inf{f, g} = f + g − |f − g|

2

□

Lemma 124. Let K ⊆ Kn be a compact set, A ⊆ C(K)
be a separating subalgebra that vanishes nowhere, x ∈ K
and f ∈ C(K). Then, ∀ε > 0 ∃gx ∈ A such that
gx(x) = f(x) and gx < f + ε in K.

Proof. By Theorem 120, ∀y ∈ K ∃hy ∈ C(A) such that
hy(y) = f(y) and hy(x) = f(x). By continuity there is
a neighbourhood Ny of y such that hy < f + ε. Now
note that K ⊂

⋃
y∈K Ny and the compactness implies that

K ⊂
⋃m

i=1 Nyi
for certain yi ∈ K, i = 1, . . . , m. Finally,

take gx := inf{hyi
: i = 1, . . . , m} ∈ A. □

Theorem 125 (Stone-Weierstraß theorem). Let K ⊆
Kn be a compact set and A ⊆ C(K) be a separating self-
conjugate subalgebra that vanishes nowhere. Then, A is
dense in C(K).

Proof. We distinguish between K = R and K = C.

K = R: Let f ∈ C(K). We should find g ∈ A such that
∀ε > 0, ∥f − g∥K < ε. For each x ∈ K, let
gx be the function of Theorem 124 that satis-
fies gx < f + ε. By continuity there is a neigh-
bourhood Nx of x such that gx > f − ε. The
compactness of K implies K ⊂

⋃m
i=1 Nxi for

certain xi ∈ K, i = 1, . . . , m. Finally, take
g := sup{gxi

: i = 1, . . . , m} ∈ A that satisfies
∥f − g∥K < ε.

K = C: Note that A0 := {Re f : f ∈ A} = {Im f : f ∈ A}
because A is self-conjugate. Moreover, A0 is a
separating subalgebra that vanishes nowhere. By
the case K = R we know that exists sequences
(un), (vn) ∈ A0 such that lim

n→∞
∥Re f − un∥K =

lim
n→∞

∥Im f − vn∥K = 0. And it suffices to con-
sider gn := un + ivn that converges uniformly to
f .

□

Definition 126. Let (X, dX), (Y, dY ) be two metric
spaces and F ⊂ C(X, Y ) be a subset. We say that F
is pointwise bounded if ∀x ∈ X ∃Mx > 0 such that
|f(x)| ≤ Mx ∀f ∈ F . We say that F is locally bounded if
∀x ∈ X there exist a neighborhood Nx of x and a constant
Mx > 0 such that |f(Nx)| ≤ Mx ∀f ∈ F . We say that
F is uniformly bounded if ∃M > 0 such that |f(x)| ≤ M
∀x ∈ X and ∀f ∈ F .

Definition 127. Let (X, dX), (Y, dY ) be two metric
spaces and F ⊂ C(X, Y ) be a subset. We say that F
equicontinuous at a point x0 ∈ X if ∀ε > 0 ∃δ > 0 such
that ∀x ∈ X with dX(x, x0) < δ we have:

dY (f(x), f(x0)) < ε ∀f ∈ F

We say that F is pointwise equicontinuous if it is equicon-
tinuous at each point of X. Finally, we say that F is uni-
formly equicontinuous if ∀ε > 0 ∃δ > 0 such that ∀x, y ∈ X
with d(x, y) < δ we have:

dY (f(x), f(y)) < ε ∀f ∈ F

Definition 128. Let (X, d) be a metric space and F ⊆ X.
We say that F is relatively compact on X if F is compact
on X.

Theorem 129 (Arzelà-Ascoli theorem). Let (X, d) be
a metric space, K ⊂ X be a compact set and F ⊂ C(K)
be a subset. Then, F is relatively compact in C(K) if
and only if F is pointwise equicontinuous and pointwise
bounded.

Definition 130. Let E ⊆ Rn be a measurable set and
U ⊆ Rn be an open set. We define:

S(E) = {f : E → R : f is simple}
C0(U) = {f ∈ C(U) : supp f is compact}

Theorem 131. Let E ⊆ Rn be a measurable space,
(fk) ∈ Lp(E) be a sequence of functions and 1 ≤ p < ∞.
Then:

1. If lim
k→∞

fk(x) a.e.= f(x) with |fk|
a.e.
≤ g ∈ Lp(E), then

f ∈ Lp(E) and lim
k→∞

∥fk − f∥p = 0, and we will

write fk
Lp

→ f .

2. If
∑∞

k=1 ∥fk∥p < ∞, then
∑∞

k=1 |fk(x)|
a.e.
< ∞ and

∃f ∈ Lp(E) such that
∑∞

k=1 fk(x) a.e.= f(x) and∑N
k=1 fk

Lp

→ f . In particular, (Lp, ∥·∥p) is a Banach
space.

3. If fk
Lp

→ f , then ∃(fkj
) such that lim

j→∞
fkj

(x) a.e.=
f(x).

Sketch of the proof.

1. A direct application of the 53 Dominated conver-
gence theorem shows that f ∈ Lp(E). Moreover,
|fk − f |p ≤ 2gp ∈ L1(E). So again the 53 Dom-
inated convergence theorem allows us to conclude
fk

Lp

→ f .
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2. Let gN (x) :=
∑N

k=1 |fk(x)| ↗ g(x) (possibly infin-
ity). Then:

∥gN ∥p =

ˆ
E

|gN |p
1/p

≤
N∑

k=1
∥fk∥p

≤
∞∑

k=1
∥fk∥p < ∞

where we have used the Triangular inequality. Thus,
∥gN ∥p

p
< ∞ and by the 45 Monotone convergence

theorem we have ∥g∥p
p

< ∞ which implies:

∞∑
k=1

|fk(x)|
a.e.
< ∞

Now use Item 131-1 to show that FN
Lp

→ f , where
FN =

∑N
k=1 fk.

3. The Cauchy condition for (fk) implies that ∀m ∈ N
∃km such that if p, q > km then ∥fp − fq∥p < 1

2m .
Now consider the partial sequence defined by the se-
ries of partial sums:

fk1 + (fk2 − fk1) + · · · + (fkm+1 − fkm) + · · ·

Now use Item 131-2.

□

Theorem 132. Let 1 ≤ p < ∞, E ⊆ Rn be a measurable
set and U ⊆ Rn be an open set. Then:

1. S(E) is dense in Lp(E).

2. C0(U) is dense in Lp(U).

Sketch of the proof.

1. Consequence of Item 131-1 and Theorem 37.

2.

□

Theorem 133. Let E ⊆ Rn be a measurable space and
1 ≤ p < ∞. Then, Lp(E) is separable.

Operators
Definition 134. Let E, F be normed vector spaces. An
operator T is a linear function T : E → F .

Definition 135. Let E, F be normed vector spaces and
T : E → F be an operator. We define the norm of T as:

∥T∥ := sup{∥Tx∥F : ∥x∥E ≤ 1} (1)

Lemma 136. Let E, F be normed vector spaces and
T : E → F be an operator. Then:

∥T∥ = sup{∥Tx∥F : ∥x∥E < 1}
= sup {∥Tx∥F : ∥x∥E = 1}

= sup
{

∥Tx∥F

∥x∥E

: x ̸= 0
}

Sketch of the proof. Note that due to the linearity of T we
have

∥Tx∥F = lim
ε→0

∥T ((1 − ε)x)∥F ≤ sup
∥x∥E<1

∥Tx∥F

And this proves the first equality as the reverse inequality
is clear. For the second one, use the latter one and the
fact that:

∥Tx∥F = ∥x∥E

∥∥∥∥T

(
x

∥x∥E

)∥∥∥∥
F

≤ sup
∥x∥E=1

∥Tx∥F

The last one follows from applying the second equality to
x

∥x∥E
. □

Theorem 137. Let E, F be normed vector spaces and
T : E → F be an operator. The following are equivalent:

1. T is continuous at 0.

2. T is continuous.

3. T (BE) is bounded on F , where BE := {x ∈ E :
∥x∥E ≤ 1}.

4. ∥T∥ < ∞.

5. ∃C ≥ 0 such that ∀x ∈ E we have:
∥Tx∥F ≤ C ∥x∥E

If, moreover, T is continuous, ∥T∥ is the least of such
constants C.

Sketch of the proof.
1 =⇒ 2: Let x ∈ E and (xn) ∈ E such that lim

n→∞
xn = x.

Then lim
n→∞

(xn − x) = 0 and the continuity and
linearity imply lim

n→∞
(Txn − Tx) = 0.

2 =⇒ 3: The continuity at the origin of T implies that
given ε = 1, ∃δ > 0 such that:

T (BE(0, δ)) ⊆ BF (0, 1)
The linearity of T implies that T (BE(0, 1)) ⊆
BF (0, 1/δ).

3 =⇒ 4: Consequence of Theorem 136.

4 =⇒ 5: By the definition of supremum we have:∥∥∥∥T

(
x

∥x∥E

)∥∥∥∥
F

≤ ∥T∥

And so ∥Tx∥F ≤ ∥T∥ ∥x∥E .

5 =⇒ 1: Evident.
□

Definition 138. Let T be an operator. We say that T is
sublinear if:

∥T (f + g)∥ ≤ ∥Tf∥ + ∥Tg∥ ∀f, g ∈ Lp

Theorem 139 (Marcinkiewicz interpolation theo-
rem). Let T be a sublinear operator. Then:

1. |{x ∈ Rn : |Tf(x)| > t}| ≤ A

t
∥f∥1

2. ∥Tf∥∞ ≤ A∞ ∥f∥∞

Corollary 140. Let T be a sublinear operator. Then,
∥Tf∥p ≤ Ap ∥f∥p ∀1 < p < ∞ and ∀f ∈ Lp.
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Finite dimensional normed vector spaces
Definition 141. A topological homeomorphism is a linear
homeomorphism between any two normed vector spaces.
If there exists such a homeomorphism we will say that the
two normed vector spaces are isomorphic.

Definition 142. Let E be a normed vector space and
∥·∥1, ∥·∥2 be two norms on E. We say that ∥·∥1 is finer
than ∥·∥2 if ∃α > 0 such that:

∥x∥1 ≤ α ∥x∥2 ∀x ∈ E

Definition 143. Let E be a normed vector space and
∥·∥1, ∥·∥2 be two norms on E. We say that the norms
∥·∥1, ∥·∥2 are equivalent if ∃α, β > 0 such that:

α ∥x∥2 ≤ ∥x∥1 ≤ β ∥x∥2 ∀x ∈ E

Theorem 144. Let E be a normed vector space over K
of dimension n ∈ N. Then, any algebraic isomorphism
T : Kn → E is a topological isomorphism.

Proof. We need to show that the Euclidean norm ∥·∥ and
the norm ∥x∥′ := ∥Tx∥E are equivalent. Let (u1, . . . , un)
be a basis of Kn and suppose x =

∑n
i=1 xjuj . Then:

∥x∥′ ≤
n∑

i=1
|xj | ∥uj∥ ≤ ∥x∥

n∑
i=1

∥uj∥ =: C ∥x∥

To show the other inequality, consider the function f(x) =
∥x∥′ defined on B = {x ∈ Kn : ∥x∥ = 1}. Then, f is con-
tinuous and ?? ?? implies the existence of and absolute
minimum c ∈ B such that f

(
x

∥x∥

)
≥ c, i.e. ∥x∥′ ≥ c ∥x∥.

□

Corollary 145. In a finite-dimensional normed vector
space any two norms are always equivalent.

Corollary 146. In a normed vector space any finite-
dimensional subspace is complete and therefore closed.

Sketch of the proof. The topological isomorphisms pre-
verve the completeness. □

Corollary 147. Let E, F be normed vector spaces and
T : E → F be an operator. If T is linear and dim E < ∞,
then T is continuous.

Sketch of the proof. Since T is linear, it is the composition
of continuous functions T : E → Kn → Km → F . □

Lemma 148 (Almost orthogonality lemma). Let E
be a normed vector space and F ⊆ E be a proper sub-
space of E. Then, ∀ε > 0 ∃u ∈ E such that ∥u∥ = 1 and
d(u, F ) ≥ 1 − ε.

Proof. We may suppose ε < 1. Let v ∈ E such that
d(v, F ) = δ > 0. Then, consider u = v−x0

∥v−x0∥ , where
x0 ∈ F satisfies δ ≤ ∥v − x0∥ ≤ δ

1−ε . Finally, ∀x ∈ F :

∥u − x∥ = ∥v − (x0 + ∥v − x0∥ x)∥
∥v − x0∥

≥ δ

∥v − x0∥
≥ 1 − ε

□

Theorem 149 (Riesz’s theorem). Let E be a normed
vector space. If the unit closed sphere {x ∈ E : ∥x∥ = 1}
is compact, then dim E < ∞.
Proof. Suppose dim E = ∞. Then, there exists a strictly
increasing sequence (En) of closed finite-dimensional sub-
spaces of E. Using the 148 Almost orthogonality lemma
to the spaces En ⊂ En+1 with ε = 1

2 , we can construct a
sequence (xn) such that ∥xn∥ = 1, xn ∈ En+1 \ En and
d(xn, En) > 1

2 . That is, ∥xi − xj∥ > 1
2 ∀i, j ∈ N, i ̸= j.

Therefore, S is not compact because there is no convergent
subsequence of (xn). □

Space of bounded operators
Definition 150. Let E, F be normed vector spaces. We
define the following set:

L(E, F ) := {T : E → F : T is a bounded operator}
= {T : E → F : T is continuous}

Theorem 151. Let E, F be normed vector spaces. Then,
L(E, F ) is a vector normed space with the norm of Eq. (1)
and the usual operations. Moreover, if F is Banach, so is
L(E, F ).
Sketch of the proof. An easy check shows that L(E, F ) is
a vector space and that the associated norm is indeed a
norm. It’s missing to show that L(E, F ) is Banach when-
ever F is Banach. Let

∑∞
n=1 ∥Tn∥ < ∞. Then, ∀x ∈ E,∑∞

n=1 ∥Tnx∥F ≤
∑∞

n=1 ∥Tn∥ ∥x∥E < ∞. Since F is Ba-
nach, ∃y ∈ F with y =

∑∞
n=1 Tnx. By the linearity and

continuity of Tn, the operator
T : E −→ F

x 7−→
∑∞

n=1 Tnx

is linear and continuous. So T =
∑∞

n=1 Tn and finally
∀ε > 0 if x ∈ E ∃N ∈ N such that:∥∥∥∥∥T −

N∑
n=1

Tn

∥∥∥∥∥ ≤
∞∑

n=N+1
∥Tnx∥F ≤ ∥x∥E

∞∑
n=N+1

∥Tn∥ < ε

because is the tail of a convergent series. □

Proposition 152. Let E, F , G be normed vector spaces
and T : E → F , S : F → G be operators. Then:

∥S ◦ T∥ ≤ ∥S∥ ∥T∥

Proof.

∥(S ◦ T )x∥ ≤ ∥S∥ ∥Tx∥ ≤ ∥S∥ ∥T∥ ∥x∥

□

Definition 153. We denote L(E) := L(E, E) which, to-
gether with the composition, has a structure of normed
algebra. That is, ∀T, S ∈ L(E), we have:

1. T ◦ S ∈ L(E)

2. ∥S ◦ T∥ ≤ ∥S∥ ∥T∥
Definition 154. Let E be a normed vector space. The
Banach space E∗ := L(E,K) is called dual space of E.
The bidual space of E is E∗∗ := (E∗)∗.
Definition 155. Let E be a normed vector space. We
say that E is reflexive if E = E∗∗.
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Compact operators
Definition 156. Let E, F be Banach spaces and T ∈
L(E, F ) be an operator. We say that T is a compact op-
erator if T (BE) is relatively compact on F where:

BE := {x ∈ E : ∥x∥E ≤ 1}

Definition 157. Let X, Y ⊆ Rn be compact metric
spaces and K ∈ C(X × Y ). We define the Fredholm op-
erator with kernel K as the operator T : C(Y ) → C(X)
defined by:

Tf(x) =
ˆ

Y

K(x, y)f(y) dy

Definition 158. Let K ∈ C(∆), where ∆ := {(x, y) ∈
R2 : a ≤ y ≤ x ≤ b}. We define the Volterra operator with
kernel K as the operator T : C([a, b]) → C([a, b]) defined
by:

Tf(x) =
xˆ

a

K(x, y)f(y) dy

Definition 159. Let X, Y ⊆ Rn be measurable spaces
and K ∈ L2(X × Y ). We define the Hilbert-Schmidt op-
erator with kernel K as the operator T : L2(Y ) → L2(X)
defined by:

Tf(x) a.e.=
ˆ

Y

K(x, y)f(y) dy

Proposition 160. Let X, Y be compact metric spaces
and K ∈ C(X ×Y ). The Fredholm operator T with kernel
K is compact and satisfies ∥T∥ ≤ ∥K∥X×Y |Y |

Sketch of the proof. It is a direct application of 129 Arzelà-
Ascoli theorem. The proof of the equicontinuity follows
from the inequality

|Tf(a) − Tf(b)| ≤ ∥f∥ sup
y∈Y

{|K(a, y) − K(b, y)|}|Y |

and the fact that ∥f∥ ≤ 1 and that K is uniformly con-
tinuous. The pointwise boundedness follows from:

|Tf(a)| ≤ sup
(x,y)∈X×Y

{|K(x, y)|}|Y |

because ∥f∥ ≤ 1. And from here the inequality of the
norm is clear. □

Proposition 161. Let K ∈ C(∆). The Volterra operator
T with kernel K is compact and ∥T∥ ≤ ∥K∥∆ (b − a).

Sketch of the proof. Use 129 Arzelà-Ascoli theorem and a
similar scheme of the proof of Theorem 160. □

Proposition 162. Let X, Y ⊆ Rn be measurable spaces
and K ∈ L2(X × Y ). The Hilbert-Schmidt operator T
with kernel K satisfies ∥T∥ ≤ ∥K∥L2(X×Y ).

Proof. By 104 Hölder’s inequality we have:

∥Tf∥2 =
ˆ

X

ˆ
Y

K(x, y)f(y) dy

2

≤
ˆ

X

ˆ
Y

K(x, y)2 dy

ˆ
Y

|f(y)|2 dy


=
(

∥K∥L2(X×Y ) ∥f∥L2(Y )

)2

□

Definition 163. Let E, F be Banach spaces and T ∈
L(E, F ) be an operator. We say that T is a finite-rank
operator if dim T (E) < ∞.

Lemma 164. Let E, F be Banach spaces and T ∈
L(E, F ) be a finite-rank bounded operator. Then, T is
compact.

Sketch of the proof. Since dim T (E) < ∞, the bounded
spaces on T (E) are the relatively compact sets and since
T (BE) is bounded, it is relatively compact. □

Proposition 165. Let E, F be Banach spaces and (Tn) ∈
L(E, F ) be a sequence of compact operators with limit
T ∈ L(E, F ). Then, T is compact. In particular, the
limit of any sequence of finite-rank bounded operators is
compact.

Sketch of the proof. Let (xk) ∈ BE be a sequence. Since
T1 is compact, there exists a subsequence (xk,1) of (xk)
such that T1xk,1 converges. Similarly, there exists a sub-
sequence (xk,2) of (T1xk,1) such that T2xk,2 converges. In
general for each n ∈ N, there exists a subsequence (xk,n)
of (Tn−1xk,n−1) such that Tnxk,n converges. Now consider
the sequence (xk,k) and show that (Txk,k) is Cauchy.
The particularity follows from Theorem 164. □

Neumann series
Remark. In Theory of Differential Equations, many times
we need to find the solution of Tu−u = v, with T ∈ L(E)
and E = C([a, b]). Here, we will describe a general ap-
proach. Let E be a normed vector space, T ∈ L(E) and
v ∈ E. We would like to find the solution of the equation:

(T − λid)u = v

for some λ ∈ K∗.

Definition 166. Let E be a Banach space, T ∈ L(E) and
λ ∈ K∗. We define the Neumann series as the series:

− 1
λ

∞∑
n=0

1
λn

T n

Theorem 167. Let E be a Banach space, T ∈ L(E) and
λ ∈ K∗. If the Neumann series converges absolutely, then
(T − λid)−1 ∈ L(E) and:

(T − λid)−1 = − 1
λ

∞∑
n=0

1
λn

T n

Sketch of the proof. Remember that L(E) is Banach and
note that:

lim
N→∞

− 1
λ

N∑
n=0

1
λn

T n(T − λid) = id − lim
N→∞

T N+1

λN+1

□
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Theorem 168. Let T : C([a, b]) → C([a, b]) be the
Volterra operator of kernel K(x, y). Then, ∀λ ̸= 0 the
series

(T − λid)−1 = − 1
λ

∞∑
n=0

1
λn

T n

is absolutely convergent on L(C([a, b])).

Sketch of the proof. Use induction to prove:

∥T nf(x)∥ ≤ Mn(x − a)n

n! ∥f∥

where |K(x, y)| ≤ M . □

Duality
Definition 169. Let E be a real vector space. A convex
functional p : E → R is a function that satisfies:

1. p(x + y) ≤ p(x) + p(y) ∀x, y ∈ E

2. p(αx) = αp(x) ∀x ∈ E, α ≥ 0

Theorem 170 (Hahn-Banach theorem). Let E be a
real vector space, F ⊆ E be a subspace, p : E → R be a
convex functional and u ∈ F ∗. If u(z) ≤ p(z) ∀z ∈ F , then
∃v ∈ E∗ such that v(z) = u(z) ∀z ∈ F and v(x) ≤ p(x)
∀x ∈ E (v is called an extension of u).

Definition 171 (Seminorm). Let E be a vector space
over K. A seminorm p : E → [0, ∞) is a functional that
satisfies:

1. p(x + y) ≤ p(x) + p(y) ∀x, y ∈ E

2. p(λx) = |λ|p(x) ∀x ∈ E, λ ∈ K

Lemma 172. Let E be a vector space over K. A norm
defined on E is a seminorm.

Theorem 173 (Hahn-Banach theorem). Let E be
a vector space over K = R,C, F ⊆ E be a subspace,
p : E → R be a seminorm and u ∈ F ∗. If |u(z)| ≤ p(z)
∀z ∈ F , then ∃v ∈ E∗ such that v(z) = u(z) ∀z ∈ F and
|v(x)| ≤ p(x) ∀x ∈ E. That is, v extends u.

Theorem 174 (Hahn-Banach theorem). Let E ̸= {0}
be a normed vector space.

1. If F ⊆ E is a subspace and u ∈ F ∗, then ∃v ∈ E∗

such that extends u and ∥v∥ = ∥u∥.

2. For all a ∈ E, ∃v ∈ E∗ such that v(a) = ∥a∥ and
∥v∥ = 1.

3. If F ⊆ E is a closed subspace and a ∈ E \ F , then
∃v ∈ E∗ such that v(a) = 1 and v(F ) = {0}.

Definition 175. Let E be a normed vector space, x ∈ E
and v ∈ E∗. We denote ⟨x, v⟩ := v(x) and x̂ := ⟨x, ·⟩.
Thus, x̂(v) = ⟨x, v⟩ and x̂ is a bilinear form on E∗ that
satisfies:

|x̂(v)| ≤ ∥v∥E∗ ∥x∥E

Thus, x̂ ∈ E∗∗ with ∥x̂∥E∗∗ ≤ ∥x∥E .

Proposition 176. Let E be a normed vector space and
x ∈ E with x ̸= 0. Then, ∥x̂∥E∗∗ = ∥x∥E .

Proposition 177. Let E be a normed vector space. The
function

J : E −→ E∗∗

x 7−→ x̂

is linear, continuous, injective and isometric. Thus,
J(E) = E ⊆ E∗∗. Moreover, if J is surjective, we have
E = E∗∗. In this case, E is called reflexive.

Definition 178. Let E, F be normed vector spaces and
T ∈ L(E, F ). We define the dual map, T ∗ ∈ L(F ∗, E∗), of
T as T ∗(v) = v ◦ T .

Proposition 179. Let E, F be normed vector spaces and
T ∈ L(E, F ). Then, ∀x ∈ E and v ∈ F ∗ we have:

⟨T (x), v⟩ = ⟨x, T ∗(v)⟩

Proposition 180. Let E, F be normed vector spaces.
The function

L(E, F ) −→ L(F ∗, E∗)
T 7−→ T ∗

is linear, bijective and isometric. That is, ∥T∥ = ∥T ∗∥.

Theorem 181. Let Ω ⊆ Rn be a measurable set, 1 ≤ p ≤
∞ and q be the Hölder conjugate of p. Then:

• If 1 < p < ∞, then (Lp(Ω))∗ = Lq(Ω).

• If p = 1, then (L1(Ω))∗ = L∞(Ω).

• If p = ∞, then (L∞(Ω))∗ ⊋ L1(Ω).

In particular, for 1 < p < ∞, Lp(Ω) is reflexive, while
L1(Ω) and L∞(Ω) are not.

Spectrum and eigenvalues

Proposition 182. Let E be a Banach space and T ∈
L(E). Then, ∀α ∈ K, im(T − αid) and ker(T − αid) are
invariant over T . Moreover, if α ̸= 0, the function

S : ker(T − αid) −→ ker(T − αid)
x 7−→ αx

is an isomorphism.

Proof. Let y ∈ im(T − αid). Then, y = Tx − αx for some
x ∈ E and so:

Ty = T (Tx − αx) = (T − αid)(Tx) ∈ im(T − αid)

Similarly if x ∈ ker(T − αid), then:

(T − αid)(Tx) = (T − αid)(αx) = α(Tx − αx) = 0

The function S = αid is clearly an isomorphism because
α ̸= 0. □

Definition 183. Let E be a Banach space, T ∈ L(E) and
α ∈ K. If ker(T − αid) ̸= {0}, we say that ker(T − αid) is
a proper subspace of T and that its non-zero elements are
the eigenvectors of eigenvalue α of T .

18



Definition 184. Let E be a Banach space and T ∈ L(E).
We define the spectrum of T as:

σ(T ) := {α ∈ K : T − αid is not bijective}

The elements of σ(T ) are called spectral values of T .
Proposition 185. Let E be a finite-dimensional Banach
space and T ∈ L(E). Then:

σ(T ) = {α ∈ K : α is eigenvalue of T} =: Λ(T )

Proof. The inclusion Λ(T ) ⊆ σ(T ) is always true. For the
other inclusion note that if α /∈ Λ(T ), then Tx ̸= αx
∀x ∈ E, x ̸= 0, and so ker(T − αid) = {0}. Hence,
α /∈ σ(T ) as in finite dimension injectivity in L(E) is
equivalent to bijectivity in L(E). □

Proposition 186. Let E be a Banach space and T ∈
L(E). Then, σ(T ) is compact and:

σ(T ) ⊆ {w ∈ K : |w| ≤ ∥T∥}

Proof. Let’s first check that σ(T ) ⊆ {w ∈ K : |w| ≤ ∥T∥}.
Let α /∈ {w ∈ K : |w| ≤ ∥T∥} (i.e. satisfies |α| > ∥T∥),
z ∈ E and define f(x) = 1

α (Tx − z). Then, f is a contrac-
tion and by the ?? ?? ∃!x ∈ E such that Tx − αx = z, i.e.
T − αid is bijective, and so α /∈ σ(T ).
Now let’s see that σ(T )c is open. Let β /∈ σ(T ) and
α, z ∈ E be such that |α − β| < 1

∥(T −βid)−1∥ . Now con-
sider the function:

g(x) = (T − βid)−1(αz − βx + z)

We have that g is a contraction and by the ?? ?? ∃!x ∈ E
such that Tx − (α − β)x = z, i.e. T − (α − β)id is bijec-
tive. This is true ∀α ∈ E satisfying |α − β| < 1

∥(T −βid)−1∥ .
Hence, σ(T )c is open.
Finally, since σ(T ) is a bounded closed subset of C, it is
compact. □

3. | General theorems on linear maps
Open mapping and closed graph theorems
Theorem 187 (Baire’s theorem). Let (Un) be a se-
quence of dense open sets on a metric space X. Then,⋂∞

n=1 Un is dense on X.
Corollary 188. Let X be a metric space such that
X =

⋃∞
n=1 Cn, where Cn ⊆ X are closed sets. Then,

∃n0 such that Int Fn0 ̸= ∅.
Sketch of the proof. If a closed set C has empty interior,
then X \ C is an open dense set. □

Theorem 189 (Open mapping theorem). Let E, F be
a Banach spaces and T : E → F be a surjective bounded
operator. Then, T is open.
Theorem 190 (Closed graph theorem). Let E, F be
a Banach spaces and T : E → F be an operator. Consider
the graph of T :

graph(T ) = {(x, y) ∈ E × F : y = Tx}

Then, T is bounded if and only if graph(T ) is a closed set
on E × F .

Uniform boundedness principle

Theorem 191. Let E, F be a Banach spaces and {Ti :
i ∈ I} ⊂ L(E, F ) be a family of bounded operators. Then,
one of the following statements holds:

1. sup{∥Ti∥ : i ∈ I} < ∞

2. ∃A ⊆ E such that it is a countable intersection of
dense open subsets (and therefore dense) such that:

sup{∥Tix∥F : i ∈ I} = ∞ ∀x ∈ A

Corollary 192 (Banach-Steinhaus theorem). Let E,
F be a Banach spaces and (Tn) ∈ L(E, F ) be sequence of
bounded operators such that:

• The limit Tx := lim
n→∞

Tnx exists ∀x ∈ D ⊆ E, where
D is a dense set in E.

• The sequence (Tnx) is bounded ∀x ∈ E.

Then, T can be extended into a bounded operator such
that:

∥T∥ ≤ lim inf
n→∞

∥Tn∥

4. | Hilbert spaces
Inner products

Definition 193. Let E, F be vector spaces over K = R,C
and u : E → F be a function. We say that u is semilinear
if ∀x, y ∈ E and ∀λ ∈ K we have:

1. u(x + y) = u(x) + u(y)

2. u(λx) = λu(x)

Definition 194. Let E be a vector space over K = R,C.
An inner product ⟨·, ·⟩ : E ×E → K is a function such that
∀x, y ∈ E we have:

1. ⟨·, y⟩ is linear and ⟨x, ·⟩ is semilinear.

2. ⟨x, y⟩ = ⟨y, x⟩

3. ⟨x, x⟩ > 0 ⇐⇒ x ̸= 0

We denote the norm associated with this inner product as
∥x∥ :=

√
⟨x, x⟩.

Definition 195. A pre-Hilbert space (H, ⟨·, ·⟩H) is a vec-
tor space H over K = R,C together with an inner product
⟨·, ·⟩H

6.

Proposition 196. Let (H, ⟨·, ·⟩) be a pre-Hilbert space
and x, y ∈ H. Then:

1. |⟨x, y⟩| ≤ ∥x∥ ∥y∥ (Cauchy-Schwarz inequality)

2. ∥x + y∥ ≤ ∥x∥ + ∥y∥ (Minkowski inequality)

Proof.
6In order to simplify the notation, if the context is clear, we will denote the inner product of H simply as ⟨·, ·⟩.

19



1. Note that ∥x + λy∥2 ≥ 0 ∀λ ∈ K. Taking λ = − ⟨x,y⟩
∥y∥2

we have:

0 ≤ ∥x + λy∥2

= ∥x∥2 + λ⟨x, y⟩ + λ⟨x, y⟩ + |λ|2 ∥y∥2

= ∥x∥2 − |⟨x, y⟩|2

∥y∥2 − |⟨x, y⟩|2

∥y∥2 + |⟨x, y⟩|2

∥y∥2

= ∥x∥2 − |⟨x, y⟩|2

∥y∥2

2. Using Cauchy-Schwarz inequality we have:

∥x + y∥2 = ∥x∥2 + ⟨x, y⟩ + ⟨y, x⟩ + ∥y∥2

= ∥x∥2 + 2 Re ⟨x, y⟩ + ∥y∥2

≤ ∥x∥2 + 2|⟨x, y⟩| + ∥y∥2

≤ (∥x∥ + ∥y∥)2

□

Lemma 197 (Polarization identity). Let (H, ⟨·, ·⟩) be
a pre-Hilbert space and x, y ∈ H. Then if K = C we have:

⟨x, y⟩ = ∥x + y∥2 − ∥x − y∥2 + i∥x + iy∥2 − i∥x − iy∥2

4
If K = R we have:

⟨x, y⟩ = 1
4

(
∥x + y∥2 − ∥x − y∥2

)
Sketch of the proof. Expand the right-hand side of the
equalities using the definition of norm. □

Proposition 198. Let (H, ⟨·, ·⟩) be a pre-Hilbert space.
Then:

• The inner product is a continuous function.

• The map
H −→ H∗

x 7−→ ⟨·, x⟩

is semilinear, injective and isometric.

Definition 199. Let (H, ⟨·, ·⟩) be a pre-Hilbert space and
x, y ∈ H. We say that x and y are orthogonal if ⟨x, y⟩ = 0.
Moreover, we define the orthogonal complement of a sub-
space A ⊆ H as:

A⊥ := {x ∈ H : ⟨x, a⟩ = 0 ∀a ∈ A}

Lemma 200. Let (H, ⟨·, ·⟩) be a pre-Hilbert space and
A ⊆ H be a subspace. Then:

A⊥ =
⋂

a∈A

ker ⟨·, a⟩

Hence, A⊥ is a closed subspace of H.

Proof.

x ∈ A⊥ ⇐⇒ ⟨x, a⟩ = 0 ∀a ∈ A ⇐⇒ x ∈ ker ⟨·, a⟩ ∀a ∈ A

□

Proposition 201 (Pythagorean theorem). Let
(H, ⟨·, ·⟩) be a pre-Hilbert space and x1, . . . , xn ∈ H be
pairwise orthogonal elements of H. Then:

∥x1∥2 + · · · + ∥xn∥2 = ∥x1 + · · · + xn∥2

Proof.

∥x1 + · · · + xn∥2 = ⟨x1 + · · · + xn, x1 + · · · + xn⟩

= ∥x1∥2 + · · · + ∥xn∥2 +
n∑

i,j=1
i̸=j

⟨xi, xj⟩

= ∥x1∥2 + · · · + ∥xn∥2

□

Lemma 202 (Parallelogram law). Let (H, ⟨·, ·⟩) be a
pre-Hilbert space and x, y ∈ H. Then:

∥x + y∥2 + ∥x − y∥2 = 2 ∥x∥2 + 2∥y∥2

Definition 203 (Hilbert space). A Hilbert space is a
complete pre-Hilbert space.

Proposition 204. Let X ⊆ R and A = N,Z, {1, . . . , m}.
Then:

1. Rn and Cn are Hilbert spaces with the inner prod-
uct:

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =
n∑

i=1
xiyi

2. The L2(X) space with the inner product

⟨f, g⟩2 =
ˆ

X

f(x)g(x) dx

is a Hilbert space.

3. The ℓ2(A) space with the inner product

⟨(x1, x2, . . .), (y1, y2, . . .)⟩ =
∑
a∈A

xaya

is a Hilbert space.

Projection theorem
Definition 205. Let X be a metric space and A ⊆ X be
a subset. We say that y ∈ A is a minimizer of x in A if
d(x, A) = ∥x − y∥.

Proposition 206. Let (H, ⟨·, ·⟩) be a Hilbert space and
C ⊆ H be a convex subset. Then, each x ∈ H has at most
one minimizer in C.

Proof. Suppose there are two minimizers y, z ∈ C and let
δ := d(x, A). Then, using 202 Parallelogram law we have:

4δ2 = ∥2x − (y + z)∥2 + ∥y − z∥2 ≥ 4δ4 + ∥y − z∥2

because y+z
2 ∈ C as C is convex. Thus, ∥y − z∥ and so

y = z. □
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Theorem 207. Let (H, ⟨·, ·⟩) be a Hilbert space and
C ⊆ H be a nonempty convex complete subset. Then,
∀x ∈ H, there exists a unique minimizer of x in C, which
is denoted by PCx ∈ C.

Sketch of the proof. The uniqueness has been proved in
Theorem 206. To show the existence, let δ := d(x, C)
and let (yn) ∈ C such that ∥yn − x∥ → δ. By the 202
Parallelogram law:

∥yn − ym∥2 ≤ 2 ∥yn − x∥2 + 2 ∥ym − x∥2 − 4δ2 → 0

Hence (yn) is Cauchy and so its limit y ∈ C satisfies
δ = d(x, y) by the continuity of the norm. □

Theorem 208 (Projection theorem). Let (H, ⟨·, ·⟩) be
a Hilbert space and F ⊆ H be a closed subspace. Then:

1. H = F ⊕ F ⊥ and ∀x ∈ H, we can write x =
PF x + PF ⊥x.

2. If x ∈ H and y ∈ F , then y = PF x ⇐⇒ x−y ∈ F ⊥.

Proof.

1. The equality F ∩ F ⊥ = {0} follows from noting that
⟨u, u⟩ = 0 ∀u ∈ F ∩ F ⊥. Now let x ∈ H and
y = PF x. We need to show that z := x − y ∈ F ⊥.
Let u ∈ F . Then, ∃λ ∈ K such that ∥λ∥ = 1 and
λ⟨u, z⟩ = |⟨u, z⟩|. Now consider f(t) = ∥z − vt∥2,
where v = λu ∈ F . Note that f has a minimum at
the origin because:

f(t) = ∥x − y − vt∥2 ≥ ∥x − y∥2 = ∥z∥2 = f(0)

because y + vt ∈ F and y is the minimizer of x in
F . Thus, 0 = f ′(0) = −2⟨v, z⟩ and so ⟨u, z⟩ = 0
∀u ∈ F . Moreover, z is the minimizer of x in F ⊥

because ∀w ∈ F ⊥ we have by the 201 Pythagorean
theorem:

∥x − w∥2 = ∥x − z∥2 + ∥z − w∥2 ≥ ∥z − w∥2

2. We have just seen the implication to the right. For
the other one note that by Item 208-1 we can write
x = PF x+PF ⊥x. But, x−y = PF x+PF ⊥x−y ∈ F ⊥

and F ∩ F ⊥ = {0}, so y = PF x.

□

Corollary 209. Let (H, ⟨·, ·⟩) be a Hilbert space and
F ⊆ H be a closed subspace. The function PF : H → H,
called orthogonal projection on F , satisfy the following
properties:

1. PF
2 = PF

2. ⟨PF x1, x2⟩ = ⟨x1, PF x2⟩ ∀x1, x2 ∈ H

3. PF is linear, ∥PF x∥ ≤ ∥x∥ and the equality holds if
and only if x ∈ F .

4. If F ̸= {0}, ∥PF ∥ = 1.

5. im PF = F = {y ∈ H : PF y = y}

6. ker PF = F ⊥

7. ∥x∥2 = d(x, F )2 + d(x, F ⊥)2 ∀x ∈ H

Proof.

1. Note that PF |F = id and im PF ⊆ F .

2.

⟨PF x1, x2⟩ = ⟨PF x1, PF x2 + PF ⊥x2⟩
= ⟨PF x1, PF x2⟩
= ⟨PF x1 + PF ⊥x1, PF x2⟩
= ⟨x1, PF x2⟩

3. Let x1, x2, y ∈ H, λ, µ ∈ K. Then using Item 209-2:

⟨PF (λx1 + µx2), y⟩ = ⟨λx1 + µx2, PF y⟩
= λ⟨x1, PF y⟩ + µ⟨x2, PF y⟩
= λ⟨PF x1, y⟩ + µ⟨PF x2, y⟩
= ⟨λPF x1 + µPF x2, y⟩

for all y ∈ H. Thus, PF (λx1 + µx2) = λPF x1 +
µPF x2. Moreover, using Item 209-1 and the Cauchy-
Schwarz inequality:

∥PF x∥2 = ⟨PF x, PF x⟩ = ⟨PF x, x⟩ ≤ ∥PF x∥ ∥x∥

and the inequality follows if and only if PF x = λx,
for some λ ∈ K, that is, x ∈ F .

4. Consequence of the equality case in Item 209-3.

5. Clearly im PF ⊆ F . The other follows from the fact
that if u ∈ F , then PF u = u by the 208 Projection
theorem.

6. Clearly ker PF ⊇ F ⊥. Moreover, if x ∈ ker PF , the
208 Projection theorem implies x ∈ F ⊥.

7. By the 201 Pythagorean theorem we have:

∥x∥2 = ∥PF x∥2 + ∥PF ⊥x∥2

= ∥x − PF ⊥x∥2 + ∥x − PF x∥2

= d(x, F ⊥)2 + d(x, F )2

□

Proposition 210. Let (H, ⟨·, ·⟩) be a Hilbert space and
A ⊆ H be subset. Then:

1. A⊥ = ⟨A⟩
⊥7

2. A⊥⊥ = ⟨A⟩

In particular if F ⊆ H is a subspace, then F ⊥⊥ = F .

Proposition 211. Let (H, ⟨·, ·⟩) be a Hilbert space, F ⊆
H be a closed subspace and x /∈ F . Then:

max{|⟨x, u⟩| : u ∈ F ⊥, ∥u∥ ≤ 1} = d(x, F )

=
〈

x,
PF ⊥x

∥PF ⊥x∥

〉
7Here ⟨A⟩ denotes the space generated by A.
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Duality and adjoint operator

Theorem 212 (Riesz representation theorem). Let
(H, ⟨·, ·⟩) be a Hilbert space. The map

H −→ H∗

x 7−→ ⟨·, x⟩

is semilinear, bijective and isometric.

Corollary 213. Let H1, H2 be Hilbert spaces and T ∈
L(H1, H2). Then, ∀y ∈ H2 ∃!T ∗y ∈ H1 such that:

⟨Tx, y⟩H2
= ⟨x, T ∗y⟩H1

(2)

Definition 214. Let H1, H2 be Hilbert spaces and T ∈
L(H1, H2). We define the adjoint operator of T as the
unique map

T ∗ : H2 −→ H1
y 7−→ T ∗y

such that Eq. (2) is held.

Proposition 215. Let H1, H2 be Hilbert spaces and
T ∈ L(H1, H2). Then:

1. T ∗ ∈ L(H2, H1), ∥T ∗∥ = ∥T∥ and ∥T ∗ ◦ T∥ =
∥T ◦ T ∗∥ = ∥T∥2.

2. The map

L(H1, H2) −→ L(H2, H1)
T 7−→ T ∗

is semilinear.

3. (T ∗)∗ = T .

4. If H3 is Hilbert and S ∈ L(H2, H3), then (S ◦ T )∗ =
T ∗ ◦ S∗.

Proposition 216. Let H1, H2 be Hilbert spaces and
T ∈ L(H1, H2). Then:

1. (im T )⊥ = ker T ∗

2. im T = (ker T ∗)⊥

3. (im T ∗)⊥ = ker T

4. im T ∗ = (ker T )⊥

Definition 217. Let H be a Hilbert space and T ∈ L(H).
We say that T is self-adjoint if T ∗ = T .

Lemma 218. Let H be a Hilbert space. The orthogo-
nal projections PF on a closed subspace F ⊆ H are self-
adjoint.

Proposition 219. Let H be a Hilbert space and T ∈
L(H) be self-adjoint. Then:

∥T∥ = sup{|⟨Tx, x⟩| : ∥x∥ = 1} = max{M(T ), −m(T )}

where M(T ) := sup{⟨Tx, x⟩ : ∥x∥ = 1} and m(T ) :=
inf{⟨Tx, x⟩ : ∥x∥ = 1}

Orthonormal systems
Definition 220. Let H be a Hilbert space. An orthogo-
nal system on H is a nonempty subset E ⊆ H such that
its vectors are pairwise orthogonal. If moreover ∥e∥ = 1
∀e ∈ E, we will say that E is an orthonormal system.
Definition 221. Let H be a Hilbert space and E be an or-
thonormal system. We say that E is complete if E⊥ = {0}.
Lemma 222. Let H be a Hilbert space. E is complete
if and only if there is no other orthogonal system E′ ⊆ H
such that E ⊊ E′.
Definition 223. Let H be a Hilbert space. A complete
orthonormal system is called a Hilbert basis.
Lemma 224. Let H be a Hilbert space and E =
{e1, . . . , en} be an orthonormal system and F = ⟨E⟩.
Then, each x ∈ H can be written as:

PF x =
n∑

k=1
⟨x, ek⟩ek

Definition 225. Let H be a Hilbert space and {ei : i ∈ I}
be an orthonormal system. We define the Fourier coeffi-
cients of an element x ∈ H as the numbers x̂(i) := ⟨x, ei⟩ ∈
K. We will denote x̂ := {x̂(i) : i ∈ I} and we will say that∑

i∈I

x̂(i)ei

is the Fourier series of x.
Proposition 226. Let H be a Hilbert space, E = {ei :
i ∈ I} be a finite orthonormal system, x ∈ H and
s =

∑
i∈I diei ∈ ⟨E⟩. Then, ∥x − s∥ is minimum if and

only if di = x̂(i) ∀i ∈ I.
Proposition 227 (Gram-Schmidt process). Let H be
a Hilbert space, B = {x1, x2, . . .} ⊂ H be a finite or
countable sequence. The orthonormalization of B is the
orthonormal sequence U = {u1, u2, . . .} ⊂ H such that for
each n ∈ N, we have ⟨x1, . . . , xn⟩ = ⟨u1, . . . , un⟩. It is
built as follows:

• For n = 1, define y1 := x1 and then u1 := y1
∥y1∥

• For n ≥ 2, define

yn = xn −
n−1∑
i=1

⟨xn, ui⟩ui

and then un := yn

∥yn∥ .

Theorem 228 (Bessel’s inequality). Let H be a
Hilbert space and {ei : i ∈ I} be an orthonormal system.
Then, ∀x ∈ H we have:∑

i∈I

|x̂(i)|2 ≤ ∥x∥2

Lemma 229. Let H be a Hilbert space and {ei : i ∈ I}
be an orthonormal system. The map

H −→ ℓ2(I)
x 7−→ x̂

is linear, surjective and satisfies ∥x̂∥2 ≤ ∥x∥H . This map
is called Fourier transform.

22



Definition 230. Let H be a Hilbert space, {ek : k ∈ N}
be an orthonormal system and x ∈ H. We define:

sk(x) :=
n∑

k=1
x̂(k)ek

Lemma 231. Let H be a Hilbert space, {ek : k ∈ N}
be an orthonormal system and x ∈ H. Then, the limit
z = lim

n→∞
sn(x) exists and satisfies ẑ = x̂, but x and z may

be different.

Theorem 232 (Riesz-Fischer theorem). Let H be a
Hilbert space and E = {ei : i ∈ I} be an orthonormal
system. The following statements are equivalent:

1. E is complete.

2. For all x ∈ H, x = lim
n→∞

sn(x) =
∑
i∈I

x̂(i)ei on H.

3. Parseval identity: For all x ∈ H, we have:

∥x∥2 =
∑
i∈I

|x̂(i)|2

4. ⟨x, y⟩H = ⟨x̂, ŷ⟩2 ∀x, y ∈ H

Proposition 233. Let X, Y ⊆ Rn be measurable spaces
and K ∈ L2(X × Y ). The Hilbert-Schmidt operator T
with kernel K is compact. Moreover, if K(x, y) = K(y, x)
∀(x, y) ∈ X × Y , then T is self-adjoint.

Spectral theorem
Proposition 234. Let H be a Hilbert space and T ∈
L(H) be self-adjoint. Then:

1. Any eigenvalue of T belongs to [m(T ), M(T )] ⊂ R.

2. Eigenvectors of distinct eigenvalues are orthogonal.

3. If F ⊆ H is a closed subspace such that T (F ) ⊆ F ,
then T (F ⊥) ⊆ F ⊥.

Theorem 235 (Spectral theorem). Let H be a Hilbert
space and T ∈ L(H) be compact and self-adjoint. Then,
∃α ∈ K such that α is eigenvalue of T with |α| = ∥T∥.

Corollary 236. Let H be a Hilbert space and T ∈ L(H)
be compact and self-adjoint. Suppose α1 is an eigenvalue
of T with |α1| = ∥T∥. Now consider T1 := T |ker(T −α1id)⊥ .
By Theorem 235, we obtain an eigenvalue α2 of T1 (and
therefore of T ) such that |α1| ≥ |α2|. Iterating the process,
we get a sequence of eigenvalues (αn) with the property
that |α1| ≥ |α2| ≥ |α3| ≥ · · · .

Theorem 237. Let H be a Hilbert space and T ∈ L(H)
be compact and self-adjoint. The sequence (αn) of eigen-
values of T (each repeated according its multiplicity) is
a sequence of real numbers. If the sequence is countable
(i.e. not finite), then lim

n→∞
αn = 0. Moreover, for each

eigenvalue αn, dim ker(T − αnid) < ∞.

Lemma 238. Let H be a Hilbert space and T ∈ L(H) be
compact and self-adjoint. Consider the sequence (vn) of
orthonormal eigenvectors associated with the eigenvalues
(αn) of T . Then:

H = ⟨v1, v2, . . .⟩ ⊕ ker(T )

and ⟨v1, v2, . . .⟩ = ker(T )⊥.

Theorem 239 (Hilbert-Schmidt spectral represen-
tation theorem). Let H be a Hilbert space and T ∈
L(H) be compact and self-adjoint. Consider the se-
quence (vn) of orthonormal eigenvectors associated with
the eigenvalues (αn) of T . Then:

Tx =
∞∑

n=1
αn⟨x, vn⟩vn

assuming that αn = 0 eventually if the sequence (αn) is
finite.

Theorem 240 (Fredholm alternative). Let H be a
Hilbert space, T ∈ L(H) be compact and self-adjoint and
α ∈ K∗. Consider the sequence (vn) of orthonormal eigen-
vectors associated with the eigenvalues (αn) of T . Then:

1. If α ̸= αn ∀n ∈ N, then ∀y ∈ H the unique solution
to Tx − αx = y is:

x = 1
α

( ∞∑
n=1

αn

αn − α
⟨y, vn⟩vn − y

)

2. If α = αn0 for some n0 ∈ N, then the equa-
tion Tx − αx = y has solution if and only if y ∈
ker(T − αid)⊥. In this case the solution is:

x = 1
α

 ∞∑
n≥1

αn ̸=α

αn

αn − α
⟨y, vn⟩vn − y

+
∞∑

n≥1
βnun

where βn ∈ K are arbitrary coefficients and the un

are the eigenvectors associated with αn0 .
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