
Partial differential equations

1. | PDEs in Physics

Wave and membrane dynamics

Proposition 1 (Wave equation). Consider a one-
dimensional string of length L and constant k(x), ρ(x, t)
be its linear density and u(x, t) be the displacement of the
point x at the time t from its equilibrium point. Then,
the dynamics of the string are given by:

(ρut)t = (kux)x

If both k and ρ are constant, this equation is sometimes
written as:

utt = c2uxx (1)

These kinds of equations are called hyperbolic equations.

Proposition 2 (Navier-Cauchy equation). Consider
a solid of mass density ρ and let µ and λ be the so-called
Lamé coefficients that describe the material. If u(x, t) is
the displacement vector at the point x and the instant t,
the equation that describes the deformation of the solid
(elastodynamics) is:

ρutt = µ∆u + (λ+ µ)∇(∇· u)

Fluid dynamics

Definition 3. Given a vector field u(x, t), we define the
material derivative operator as:

Du
Dt := ut + (u · ∇)u

Definition 4. An incompressible flow is a flow in which
the material density is constant.

Proposition 5 (Continuous equation). Consider a
fluid of density ρ moving at a velocity u(x, t). The conser-
vation of mass implies that the following equation (called
continuous equation) must hold:

ρt + ∇·(ρu) = 0 (2)

If the fluid is incompressible, the previous equation be-
comes:

∇· u = 0

Proposition 6 (Cauchy momentum equation). Con-
sider an inviscid fluid of density ρ moving at a velocity
u(x, t) and undergoing a pressure of p(x, t). The conser-
vation of momentum implies that the following equation
(called Cauchy momentum equation) must hold:

ρ
Du
Dt + ∇p = 0 (3)

Theorem 7 (Inviscid flow). Consider an incompressible
inviscid flow of density ρ moving at a velocity u(x, t) and
undergoing a pressure of p(x, t). The equations describing
the dynamics of the flow are:ρ

Du
Dt + ∇p = 0

∇· u = 0

If however the flow is compressible, the equations become: ρ
Du
Dt + ∇p = 0

ρt + ∇·(ρu) = 0

Theorem 8 (Viscid flow). Consider an incompressible
viscid fluid of density ρ, viscosity η, moving at a velocity
u(x, t) and undergoing a pressure of p(x, t). The equations
describing the dynamics of the flow are:ρ

Du
Dt + ∇p = η∆u

∇· u = 0

If however the flow is compressible, the equations become: ρ
Du
Dt + ∇p = η

(
∆u + 1

3∇(∇· u)
)

ρt + ∇·(ρu) = 0

Potential theory

Proposition 9. Consider a body Ω ⊂ R3 with a density
of mass ρ. The gravitational force done by this body to a
mass m located at the position x ∈ R3 is given by:

F(x) = −Gm
ˆ

Ω

x − y
∥x − y∥3 ρ(y)d3y

Proposition 10. Consider a body Ω ⊂ R3 with a density
of mass ρ. Then, F(x) = m∇u(x) where

u(x) = G

ˆ

Ω

1
∥x − y∥

ρ(y)d3y

is the potential created by the body Ω at the point x ∈ R3.
Furthermore, if ρ is regular enough, we have ∇· F(x) =
−4πρ(x)1. Combining these two equation, we get:

∆u = −4πρ

which is the Poisson equation (and also it is a elliptic equa-
tion).

1That is, ∇· F(x) = 0 ∀x ∈ R3 \ Ω.
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Diffusion and heat equations
Proposition 11 (Fick’s law of diffusion). Consider a
material with diffusivity (or diffusion coefficient) D, diffu-
sion flux ϕ and concentration u. Then, Fick’s law states
that:

ϕ = −D∇u

Proposition 12 (Diffusion equation). Consider a ma-
terial with diffusivity D, the diffusion flux ϕ and concen-
tration u. Then, the concentration of the material satis-
fies:

∂u

∂t
= ∇· (D∇u)

In particular, if D = const., then we get ∂u
∂t = D∆u.

Proposition 13 (Fourier’s law). Consider a material
with thermal conductivity k, q be the heat flux and u(x, t)
its temperature. Then, Fourier’s law states that:

q = −k∇u

Proposition 14 (Heat equation). Consider a material
with thermal conductivity k and u be its temperature.
Then, the temperature of the material satisfies:

∂u

∂t
= 1
cρ

∇· (k∇u)

where c is the specific heat capacity and ρ is the density.
In particular, if k = const., then we get ∂u

∂t = α∆u, where
α := k

cρ is the thermal diffusivity.

Maxwell equations
Proposition 15 (Gauß’ law). Gauß’ law states that a
static electric field points away from positive charges and
towards negative charges, and the net outflow of the elec-
tric field through a closed surface ∂ Ω is proportional to
the enclosed charge.

∇· E = ρ

ε0
(Differential form)

‹

∂ Ω

E · dS = 1
ε0

ˆ

Ω

ρ dV (Integral form)

Proposition 16 (Gauß’ law for magnetism). Gauß’
law for magnetism states that for each volume element Ω
in space, there are exactly the same number of magnetic
field lines entering and exiting the volume. No total mag-
netic charge can build up in any point in space.

∇· B = 0‹

∂ Ω

B · dS = 0

Proposition 17 (Maxwell-Faraday equation).
Maxwell-Faraday equation states that a time-varying mag-
netic field always accompanies a spatially varying (also
possibly time-varying), non-conservative electric field, and
vice versa

∇× E = ∂B
∂t˛

∂ Σ

E · dℓ = − d
dt

ˆ

Σ

B · dS

Proposition 18 (Ampère-Maxwell circuital law).
The original Ampère’s law (∇× B = µ0J) stats a relation
between the total amount of magnetic field around some
closed path ∂ Σ due to the current that passes through that
enclosed path Σ. The second term on the right-hand-side
(added later by Maxwell) is the displacement current as-
sociated with the polarization of the individual molecules
of the dielectric material.

∇× B = µ0

(
J + ε0

∂E
∂t

)
˛

∂ Σ

B · dℓ = µ0

ˆ
Σ

J · dS + ε0
d
dt

ˆ

Σ

E · dS


Mechanics and optics

Definition 19. We define the refractive index is defined
as:

n(x) = c

v(x)

where c is the speed of the light in the vacuum and v(x)
the speed of the light at the position x (located in some
medium).

Proposition 20 (Fermat’s principle). Fermat’s prin-
ciple states that the path taken by a ray between two
given points a and b is the path that can be traveled in
the least time. Mathematically, we want to minimize the
functional:

T (x) =
bˆ

a

|dx|
v(x)

So we shall solve the equation δT = 0, which is equivalent
to solve:

δ

bˆ

a

n(x) ds = 0

where s is the arc-length parameter. From the Euler-
Lagrange equations, we get the following ODE:

d
ds

(
n

dx
ds

)
= ∇n

Proposition 21 (Eikonal equation). The time T (x)
taken by the light to travel from a fixed point x0 to x in
a medium of refractive index n is given by:

∥∇T∥2 = n2

Definition 22. The action S of a physical system is de-
fined as the integral of the Lagrangian L := T−V between
two instants of time t1 and t2. That is:

S(x, t) =
t2ˆ

t1

L(x(t), ẋ(t), t) dt =
t2ˆ

t1

(
1
2m∥ẋ∥2 − V (x)

)
dt

where m is the mass of the particle, T is the kinetic energy
of the particle and V is its potential energy.
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Proposition 23 (Principle of least action). The path
taken by a physical system between times t1 and t2 and
configurations x1 and x2 is the one for which the action
is stationary (no change) to first order. Mathematically,
δS = 0, where δ means a small change. This value S(x, t)
of the action satisfies the Hamilton-Jacobi equation:

∂S

∂t
+ 1

2m∥∇S∥2 + V = 0

Proposition 24 (Schrödinger equation). The
Schrödinger equation is a PDE that governs the wave
function Ψ, which describes the quantum state of an iso-
lated quantum system, of a quantum-mechanical system.
This is given by:

iℏ∂Ψ
∂t

=
(

− ℏ2

2m∆ + V

)
Ψ

where m is the mass of the particle and V is the poten-
tial in which the particle exists. Furthermore, |Ψ|2 is the
probability density function of the position of the particle.
Proposition 25. Substituting Ψ = √

ρei S
ℏ into the

Schrödinger equation and taking the limit ℏ → 0 in the
resulting equation yield the Hamilton-Jacobi equation.
Moreover, if we define v = ∇S

m , from one real equation
(from the original one complex equation) we get the con-
tinuous equation (Eq. (2)) and from the imaginary equa-
tion taking the limit ℏ → 0 we get the Cauchy momentum
equation (Eq. (3)).

2. | First order partial differential
equations

Vector calculus
Definition 26. Let Ω ⊆ Rn be a set. We define the space
C∞

0 (Ω) as the set of all compactly supported functions in
C∞(Ω).
Theorem 27 (Fundamental lemma of calculus of
variations). Let Ω ⊂ Rn be a domain and f : Ω → R be
a continuous function. Ifˆ

U

f(x) dx = 0

for any subset U ⊆ Ω, then f = 0 in Ω.
Proof. If there were a point x0 ∈ Ω such that (without
loss of generality) f(x0) > 0, the continuity would imply
the existence of an open set U containing x0 and a ε > 0
such that f(x) > ε ∀x ∈ U . But then we would have:

0 =
ˆ

U

f(x) dx > ε|U | > 0

□

Corollary 28. Let Ω ⊂ Rn be a domain and f : Ω → R
be a continuous function such thatˆ

Ω

f(x)φ(x) dx = 0

for all φ ∈ C∞
0 (Ω). Then, f = 0 in Ω.

Proof. If there were a point x0 ∈ Ω such that (without loss
of generality) f(x0) > 0, the continuity would imply the
existence of an open set U containing x0 and a ε > 0 such
that f(x) > ε ∀x ∈ U . Now take φ ∈ C∞

0 (Ω) such that
φ ≥ 0, suppφ ⊂ U and φ > 0 in some open set V ⊆ U .
And we would have:

0 =
ˆ

Ω

f(x)φ(x) dx =
ˆ

U

f(x)φ(x) dx > 0

□

Proposition 29. Let Ω ⊆ Rn be a compact set with a
piecewise smooth boundary, U ⊃ Ω be an open neighbor-
hood of Ω, k ∈ C1(U) and f, g ∈ C2(U). Then:ˆ

Ω

f div(k∇g) =
ˆ

∂ Ω

fk∇g · dS −
ˆ

Ω

k∇f · ∇g

ˆ

Ω

f div(k∇g) − g div(k∇f) =

=
ˆ

∂ Ω

k (f∇g − g∇f) · dS

Sketch of the proof. For the first one apply the ?? ?? with
the vector field kf∇g and for the second one, use the pre-
vious formula and the symmetry of f and g. □

Corollary 30 (Green identities). Let Ω ⊆ Rn be a
compact set with a piecewise smooth boundary, U ⊃ Ω be
an open neighborhood of Ω and f, g ∈ C2(U).ˆ

Ω

f∆g =
ˆ

∂ Ω

f∇g · dS −
ˆ

Ω

∇f · ∇g

ˆ

Ω

f∆g − g∆f =
ˆ

∂ Ω

(f∇g − g∇f) · dS

Method of characteristics
Proposition 31 (Method of characteristics). Let a,
b, c, x0, t0 and u0 be of class C1. Consider the following
quasilinear partial differential equation

a(x, t, u)∂u
∂x

+ b(x, t, u)∂u
∂t

= c(x, t, u) (4)

with initial condition u(x0(s), t0(s)) = u0(s), s ∈ I where
I ⊆ R is an interval. The solutions curves of the system

dx
dτ = a(x, t, u)

dt
dτ = b(x, t, u)

du
dτ = c(x, t, u)

with initial conditions x(0, s) = x0(s), t(0, s) = t0(s) and
u(0, s) = u0(s), form the surface of the graph u(x, t). Such
curves are called characteristic curves.

Sketch of the proof. Note that we can rewrite Eq. (4) as:

(
a(x, t, u) b(x, t, u) c(x, t, u)

)
·

 ∂u
∂x
∂u
∂t
−1

 = 0
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And ( ∂u
∂x ,

∂u
∂t ,−1)T is perpendicular to the surface of

u(x, t). Now for each s ∈ I it suffices to find a curve
C ⊂ R3 parametrized by τ whose tangent vector is
(a(x, t, u), b(x, t, u), c(x, t, u))T. □

Traffic flow equation

Proposition 32 (Traffic flow equation). Consider a
one lane motorway with one entry an one exit. Let ρ(x, t)
be the density of cars per unit of length, u(ρ) the average
speed of the cars and q = ρu be the flux of cars. Then, we
can model the traffic in the motorway with the equation:

ρt + (ρu)x = ρt + q′(ρ)ρx = 0

The integral form of the latter equation is:

∂

∂t

bˆ

a

ρ(x, t) dx = q(a, t) − q(b, t) (5)

Sketch of the proof. The integral form is due to the conser-
vation of “mass”. Thus, using the regularity of the func-
tions:

bˆ

a

ρt dx = ∂

∂t

bˆ

a

ρ(x, t) dx = q(a, t) − q(b, t) = −
bˆ

a

qx dx

Now use the 27 Fundamental lemma of calculus of varia-
tions. □

Proposition 33. In the hypothesis of the traffic equation,
if t2 ≥ t1, then:

bˆ

a

[ρ(x, t2) − ρ(x, t1)] dx =
t2ˆ

t1

[q(a, t) − q(b, t)] dt (6)

Sketch of the proof. Integrate Eq. (5) with respect to t
between t1 and t2. □

Proposition 34. In the hypothesis of the traffic equa-
tion, ρ is constant in each line of the form x(t) = x0 +
q′(ρ(x0, 0))t. This determines ρ(x, t) provided that we al-
ready know the initial condition ρ0(x) := ρ(x, 0), x ∈ R.
In other words, ρ(x, t) is the solution ξ of the density at the
appropriate x-intercept of the line passing through (x, t):

ξ = ρ0(x− q′(ξ)t)

Sketch of the proof. Apply the 31 Method of characteris-
tics. On the other hand, if ξ is the density at (x, t), we
have:

x = x0 + q′(ξ)t

where x0 is the x-intercept at t = 0 of the line passing
through (x, t) with slope q′(ξ). Rearranging the previous
equation and applying ρ0 we get the desired result:

x0 = x− q′(ξ)t =⇒ ξ = ρ(x0) = ρ0(x− q′(ξ)t)

□

x

t

0

ρmax

x

ρ(x, 0)

0

ρmax

q

ρ(x, 0)

Figure 1: Characteristics of the traffic flow. In each line
the density ρ is constant.

Proposition 35 (Rankine-Hugoniot equation). In
the hypothesis of the traffic equation, let xs(t) be the po-
sition at time t of a (jump) discontinuity in the function
ρ. Then:

dxs

dt = [q]
[ρ] =

(ρu)+ − (ρu)−
ρ+ − ρ−

where the notation [x(t)] refers to:

[x(t0)] := x+(t0) − x−(t0) := lim
t→t0+

x(t) − lim
t→t0−

x(t)

Sketch of the proof. Let a(t) ≤ xs(t) ≤ b(t) and t2 ≥ t1.
Then, using Eq. (6) we have:

b(t2)ˆ

a(t2)

ρ(x, t2) dx−
b(t1)ˆ

a(t1)

ρ(x, t1) dx =

=
t2ˆ

t1

[q(a(t), t) − q(b(t), t)] dt

=
t2ˆ

t1

[ρ(a(t), t)(u− a′) − ρ(b(t), t)(u− b′)] dt

Letting a(t) ↗ xs(t) ↙ b(t) and using the 27 Fundamental
lemma of calculus of variations we get:

[ρ(xs(t), t)(u− xs
′)]− − [ρ(xs(t), t)(u− xs

′)]+ = 0

Rearranging the terms we get the desired result. □

Lemma 36 (Entropy condition). In the hypothesis of
the traffic equation, we will have existence and uniqueness
of solutions for the traffic flow equation if:

q′(ρ+) < [q]
[ρ] < q′(ρ−)
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3. | Wave equation
Proposition 37. Let u : R2 → R be a two-times differ-
entiable function such that:

x2ˆ

x1

(ρut)(x, t2) dx−
x2ˆ

x1

(ρut)(x, t1) dx =
t2ˆ

t1

(kux)(x2, t) dt−

−
t2ˆ

t1

(kux)(x1, t) dt+
t2ˆ

t1

x2ˆ

x1

f(x, t) dx dt

for certain smooth functions ρ(x, t), k(x), f(x, t). Then,
u(x, t) is a solution to the wave equation with driven force
f :

(ρut)t − (kux)x = f(x, t)
If f = 0 and ρ and k are constant, the equation is some-
times rewritten as:

utt = c2uxx (7)

Sketch of the proof. Rewrite the equation as:
t2ˆ

t1

∂

∂t

x2ˆ

x1

ρut dx dt =
x2ˆ

x1

∂

∂x

t2ˆ

t1

kux dt dx+
t2ˆ

t1

x2ˆ

x1

f(x, t) dx dt

Now use the regularity of the functions and the 27 Funda-
mental lemma of calculus of variations to get the result.

□

Solution on R

Proposition 38 (D’Alembert formula). Let u0, v0 :
R → R be functions. The solution u(x, t) to the problem

utt = c2uxx

u(x, 0) = u0(x)
ut(x, 0) = v0(x)

is:

u(x, t) = u0(x+ ct) + u0(x− ct)
2 + 1

2c

x+ctˆ

x−ct

v0(s) ds (8)

Sketch of the proof. Eq. (7) with the coordinates (ξ, η) =
(x + ct, x − ct) is simplified to uξη = 0. Thus, u(x, t) =
ϕ(x + ct) + ψ(x − ct) for certain smooth functions ϕ, ψ.
Now use the initial conditions to conclude

ϕ(y) = 1
2u0(y) + 1

2c

yˆ

0

v0(s) ds+ C

ψ(y) = 1
2u0(y) − 1

2c

yˆ

0

v0(s) ds− C

for certain constant C ∈ R. □

Remark. 38 D’Alembert formula show us that the state at
(x, t) depends entirely on the quantities x+ ct and x− ct
and the functions ϕ(x+ ct), ψ(x− ct) represent two waves
traveling at velocities −c and c respectively. Hence, a
small perturbation far from (x, t) will not affect u(x, t) in
a neighborhood of (x, t) but it will do it eventually.

Theorem 39. Let u0, v0 : R → R and f : R2 → R be
functions. The solution u(x, t) to the problem

utt = c2uxx + f

u(x, 0) = u0(x)
ut(x, 0) = v0(x)

(9)

is:

u(x, t) = u0(x− ct) + u0(x+ ct)
2 + 1

2c

x+ctˆ

x−ct

v0(s) ds+

+ 1
2c

tˆ

0

x+c(t−τ)ˆ

x−c(t−τ)

f(s, τ) ds dτ

If we think u(t) : x → u(x, t), then we can write the ex-
pression above more compactly as:

u(t) = T ′(t)u0 + T (t)v0 +
tˆ

0

T (t− τ)f(τ) dτ

where the operator T (t) is defined as:

[T (t)φ] (x) = 1
2c

x+ctˆ

x−ct

φ(s) ds

Sketch of the proof. Eq. (9) with the coordinates (ξ, η) =
(x+ ct, x− ct) is simplified to uξη = − f

4c2 . Now integrate
this equation using the ?? ??. □

Theorem 40. Let U ⊆ R2 be an open set and u : U → R
be a function. Then, u satisfies the wave equation with
density ρ(x, t), constant k(x) and driven force f(x, t) if
and only if:

ˆ

∂ U

ρut dx+ kux dt = −
ˆ

U

f(x, t) dx dt

Sketch of the proof. It is a consequence of the ?? ?? with
the vector field X = (ρut, kux) and the 27 Fundamental
lemma of calculus of variations. □

Proposition 41. Let U ⊂ R2 be an open set, u : U → R
be a function. Then, u satisfies the wave equation with
constant c2 = k

ρ and no driven force if and only if for any
four points A, B, C and D delimiting the boundary of an
open set V ⊆ U (as in Fig. 2) we have:

u(A) − u(B) + u(C) − u(D) = 0 (10)

Sketch of the proof. Prove
ˆ

∂ V

ut dx+ c2ux dt = 2c(u(A) − u(B) + u(C) − u(D))

and then use Theorem 40. To show this latter equality
note that ux = uξ + uη, ut = c(uξ − uη) and use the fact
that dξ = dx + c dt = 0 and dη = dx − cdt = 0 in the
respective characteristic lines of ∂ V . □
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x−
ct
=
η1

x−
ct
=
η2

x+
ct =

ξ
1

x+
ct =

ξ
2

A

B

C

D

x

t

Figure 2: Characteristics of the waves equation.

Proposition 42 (Conservation of energy). Consider
the wave equation ρutt − kuxx = 0 and assume the func-
tions u0, v0 of the initial conditions have compact support.
Then:

d
dt

∞̂

−∞

(
1
2ρut

2 + 1
2kux

2
)

dx = 0

That is, the energy is conserved.

Sketch of the proof. Enter the derivate inside the integral
and integrate by parts. □

Corollary 43. The problem of Eq. (9) in which the func-
tions u0 and v0 have compact support has existence and
uniqueness of solutions.

Sketch of the proof. The existence has already been proved
for a sufficiently regular f . For the uniqueness, suppose u1
and u2 are two solutions. Then, u = u1 − u2 is a solution
to ρutt − kuxx = 0 with initial conditions u(x, 0) = 0 and
ut(x, 0) = 0. Moreover:

∞̂

−∞

(
1
2ρut

2 + 1
2kux

2
)

dx = 0

because it is constant and attains the value of 0 at t = 0.
This implies u = 0 using again the initial conditions. □

Solution with one fixed point
Proposition 44. Consider the problem:

utt = c2uxx

u(x, 0) = u0(x)
ut(x, 0) = v0(x)
u(0, t) = α(t)

where u0, v0 : (0,∞) → R. Then, the d’Alembert solution
is

u(x, t) = ϕ(x+ ct) + ψ(x− ct)

where:

ϕ(y) = 1
2u0(y) + 1

2c

yˆ

0

v0(s) ds for y ≥ 0

ψ(y) =


1
2u0(y) − 1

2c

yˆ

0

v0(s) ds if y ≥ 0

−ϕ(−y) + α(−y/c) if y < 0

In particular, if α(t) = 0 and we make the odd extension
of both u0 and v0, we have:

ψ(y) = 1
2u0(y) − 1

2c

yˆ

0

v0(s) ds ∀y ∈ R

Sketch of the proof. We already saw the expressions of ϕ
and ψ for y ≥ 0 in 38 D’Alembert formula. For y < 0,
note that we must have:

α(t) = u(0, t) = ϕ(ct) + ψ(−ct)

□

Proposition 45. Consider the problem:
utt = c2uxx

u(x, 0) = u0(x)
ut(x, 0) = v0(x)
ux(0, t) = β(t)

where u0, v0 : (0,∞) → R. Then, the d’Alembert solution
is

u(x, t) = ϕ(x+ ct) + ψ(x− ct)
where:

ϕ(y) = 1
2u0(y) + 1

2c

yˆ

0

v0(s) ds for y ≥ 0

ψ(y) =



1
2u0(y) − 1

2c

yˆ

0

v0(s) ds if y ≥ 0

ϕ(−y) +
yˆ

0

β(−s/c) ds if y < 0

In particular, if β(t) = 0 and we make the even extension
of both u0 and v0, we have:

ψ(y) = 1
2u0(y) − 1

2c

yˆ

0

v0(s) ds ∀y ∈ R

Sketch of the proof. We already saw the expressions of ϕ
and ψ for y ≥ 0 in 38 D’Alembert formula. For y < 0,
note that:

ψ′(y) = −ϕ′(y) + β(y/c)
because β(t) = ux(0, t) = ϕ′(ct) + ψ′(−ct). □

Solution with two fixed endpoints
Consider a string of length L with its two endpoints fixed.
In this section we will discuss how to obtain the solutions
of its movement solving the following initial-and-boundary
conditions problem:

utt = c2uxx

u(x, 0) = u0(x)
ut(x, 0) = v0(x)
u(0, t) = 0
u(L, t) = 0

(11)
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Definition 46. Let f : [0, T ] → R be a function. We
define the even periodic extension of f as the function fe
such that:

• fe(x) = f(x) for x ∈ [0, T ].

• fe is even.

• fe is 2T -periodic.

We define the odd periodic extension of f as the function
fo such that:

• fo(x) = f(x) for x ∈ [0, T ].

• fo is odd.

• fo is 2T -periodic.

Proposition 47. Consider the odd periodic extensions
for u0 and v0 of Eq. (11). Then, the solutions of that
equation are given by the 38 D’Alembert formula.

Sketch of the proof. Consequence of 38 D’Alembert for-
mula. □

Proposition 48. Suppose we want to know the displace-
ment u(x, t) of the string at the position A = (x, t) ∈
[0, L] × R≥0 (see Fig. 3). Then:

u(A) = −u0(D) + u0(C)
2 − 1

2c

D̂

C

v0(s) ds

Sketch of the proof. We will use Eq. (10) to determine
u(A). Construct the characteristic lines x±ct as shown in
Fig. 3. Then, by Eq. (10) we have that the u(A) = −u(B).
Since we are provided with the equation at t = 0, we
can determine u(B) using the points C and D and the 38
D’Alembert formula. □

0 L

A

B

C D

x

t

Figure 3: Scheme for Theorem 48 of solving the wave equa-
tion

Proposition 49 (Separation of variables). The solu-
tion u(x, t) to Eq. (11), using separation of variables (i.e.
assuming u(x, t) = X(x)T (t)), is:

u(x, t) =
∞∑

n=0
sin

(πnx
L

) [
an cos

(πnc
L
t
)

+ bn sin
(πnc
L
t
)]

where:

an = 1
L

L̂

−L

u0(x) sin
(πnx
L

)
dx

bn = 1
πnc

L̂

−L

v0(x) sin
(πnx
L

)
dx

Here we have thought u0 and v0 as the respective odd
periodic extensions.

Sketch of the proof. Assume u(x, t) = X(x)T (t). Then:

T ′′

c2T
= X ′′

X
= −λ

and λ = const. because the left-hand-side depends entirely
on t, whereas the right-hand-side depends entirely on x.
From X ′′ + λX = 0, we can deduce that λ > 0 by multi-
plying the equation by X and integrating (between 0 and
L) by parts the result. Finally, imposing the boundary
and initial conditions (using Fourier series) leads to the
solution. □

Remark. Note that with the wave equation the derivatives
ux and ut converge (if they do) more slowly than u. The
situation worsen with higher derivatives.

Variable coefficients
Theorem 50 (Sturm-Picone comparison theorem).
Let pi, qi : R → R, i = 1, 2, be functions such that
0 < p2 < p1 and q1 < q2. Suppose that the functions
u(x) and v(x) satisfy the following differential equations:

(p1(x)u′)′ + q1(x)u = 0
(p2(x)v′)′ + q2(x)v = 0

If α1, α2 are two successive roots of u, then one of the
following holds:

• ∃β ∈ (α1, α2) such that v(β) = 0.

• ∃λ ∈ R such that v(x) = λu(x) ∀x ∈ R.

Sketch of the proof. Suppose v and u are linearly indepen-
dent and that u > 0 and v > 0 (if v < 0, −v > 0 an is
also a solution of the same PDE) in (α1, α2). Then, mul-
tiplying the first equation by −u and the second one by
u2

v , adding them and integrating we get:

0 =
α2ˆ

α1

[
−(p1u

′)′
u+ (p2(x)v′)′u2

v
+ (q2 − q1)u2

]
dx

=
α2ˆ

α1

[
p1u

′2 + p2
u2v′2 − 2uu′vv′

v2 + (q2 − q1)u2

]
dx

Finally, observe that:

u2v′2 − 2uu′vv′

v2 = (uv′ − u′v)2

v2 − u′2

And from the hypothesis we conclude u = 0, which is a
contradiction. □
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Proposition 51. Let λ, µ ∈ R such that λ ̸= µ and
k, ρ : R → R. Suppose that the functions f, g : [0, L] → R
satisfy the following differential equations:

(k(x)f ′)′ + λρ(x)f = 0
(k(x)g′)′ + µρ(x)g = 0

and f(0) = f(L) = g(0) = g(L) = 0. Then, f and g are
orthogonal with inner product with weight ρ.

Sketch of the proof. Multiply the first equation by g, the
second by f , sum them and integrate (by parts) the re-
sulting equation between 0 and L to conclude:

L̂

0

ρ(x)f(x)g(x) dx = 0

□

Proposition 52. Consider the following problem of the
wave equation of non-constant coefficients:

ρutt = (kux)x

u(x, 0) = u0(x)
ut(x, 0) = v0(x)
u(0, t) = 0
u(L, t) = 0

(12)

Then, the general solution to this problem (assuming that
there is a solution for each λn number) is:

u(x, t) =
∞∑

n=0
Xn(x)

[
an cos

(√
λnt

)
+ bn sin

(√
λnt

)]
where Xn(x) is the solution to the problem

(kXn
′)′ + λnρXn = 0

Xn(0) = 0
Xn(L) = 0

and:

an =

L̂

0

u0(x)Xn(x)ρ(x) dx

L̂

0

Xn(x)2ρ(x) dx

bn =

L̂

0

v0(x)Xn(x)ρ(x) dx

√
λn

L̂

0

Xn(x)2ρ(x) dx

Sketch of the proof. Use separation of variables and The-
orem 51. □

4. | Heat equation
Basic solution
Proposition 53. Consider the following boundary prob-
lem of the heat equation:

ut = αuxx

u(0, t) = 0
u(L, t) = 0
u(x, 0) = u0(x)

(13)

with α = const. The solution u(x, t) to Eq. (13) is:

u(x, t) =
∞∑

n=1
ane− απ2n2

L2 t sin
(πnx
L

)

where:

an = 2
L

L̂

0

u0(x) sin
(πnx
L

)
dx

Sketch of the proof. Use separation of variables. □

Remark. Note that unlike the wave equation, the heat
equation is infinitely many times differentiable for any
time t > 0 although it is not defined for negative times.

Proposition 54. Consider the simplified Schrödinger
equation: 

iut = uxx

u(0, t) = 0
u(L, t) = 0
u(x, 0) = u0(x)

(14)

The solution u(x, t) to Eq. (14) is:

u(x, t) =
∞∑

n=1
ane−i π2n2

L2 t sin
(πnx
L

)

where:

an = 2
L

L̂

0

u0(x) sin
(πnx
L

)
dx

Sketch of the proof. Use separation of variables. □

Definition 55. A function f(x, t) is said to be self-similar
if ∃α, β ∈ R such that f(x, t) = tβφ

(
x
tα

)
for some function

φ : R → R.

Proposition 56. Consider the heat equation of constant
coefficients ut = αuxx on the whole real line. Then, if we
impose u being self-similar satisfying u(x, t) = u(λx, λ2t)
∀λ > 0, we obtain:

u(x, t) = C1

x√
tˆ

0

e− z2
4α dz + C2 (15)

for certain constants C1, C2 ∈ R.

Sketch of the proof. Observe that u(x, t) = f( x√
t
) =: f(s)

and the heat equation is transformed into −f ′s = 2αf ′′.
The solution of this ODE is straightforward. □
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Distributions
Definition 57. Let Ω ⊆ Rn be a set. We denote
C∞

0 (Ω) =: D(Ω). We define the space L1
loc(Ω) as the set of

all locally integrable functions on Ω.
Definition 58 (Distribution). Let Ω ⊆ Rn be a set.
A distribution on Ω is a continuous linear form on D(Ω).
The vector space of all distributions on Ω is denoted by
D∗(Ω).
Proposition 59. Let Ω ⊆ Rn be a set and f ∈ L1

loc(Ω).
Then, the map

Λf : D(Ω) −→ R

φ 7−→
ˆ

Ω

f(x)φ(x) dx

is a distribution. Hence, Λf (φ) is usually denoted by
⟨f, φ⟩. Sometimes we will do an abuse of notation de-
noting Λf as f (by the Theorem 28).
Proof. Λf is clearly linear. Moreover:

|Λf (φ)| ≤
ˆ

Ω

|f(x)φ(x)| ≤ ∥f∥1 ∥φ∥∞

Hence, Λf is bounded and therefore continuous. □

Proposition 60 (Dirac’s δ distribution). Let Ω ⊆ Rn

be a set and x0 ∈ Ω. Then, the map
δx0 : D(Ω) −→ R

φ 7−→ φ(x0)
is a distribution. We will denote δ0 simply by δ.
Proof. Clearly δx0 is linear and bounded because
|δx0(φ)| = |φ(x0)| ≤ ∥φ∥∞. □

Lemma 61. Let Ω ⊆ Rn be a set, x0 ∈ Ω and µx0 be the
measure that equals 1 on the set {x0} and 0 on the sets
disjoint from {x0}. Then, ∀φ ∈ D(Ω) we have:

δx0(φ) = φ(x0) =
ˆ

Ω

φ dµx0

Definition 62. Let Ω ⊆ Rn be a set and n ∈ N. We
define the differentiation operator Dn : D∗(Ω) → D∗(Ω)
by:

⟨DnΛ, φ⟩ = ⟨Λ, (−1)n
Dnφ⟩

for all Λ ∈ D∗(Ω) and all φ ∈ D(Ω). The distribution
DnΛ is called distributional derivative.
Definition 63. We define the Heaviside step function as
the function H(x) = 1x>0.
Proposition 64. We have that ΛH =: H ∈ D∗(R) and:

H ′ = δ

Proof. For all φ ∈ D(Ω) we have:

⟨H ′, φ⟩ = −⟨H,φ′⟩ = −
∞̂

−∞

H(x)φ′(x) dx

= −
∞̂

0

φ′(x) dx = φ(0) = δ(φ)

because φ has compact support. □

Fundamental solution

Definition 65. A fundamental solution (or heat kernel)
is a solution of the heat equation corresponding to the ini-
tial condition of an initial point source of heat at a known
position. That is, it is the solution to the problem:

{
ut = αuxx

lim
t→0

Λu(·,t)(φ) = δ(φ) ∀φ ∈ D(R) (16)

where δ is the Dirac delta distribution.

Theorem 66. The heat kernel of Eq. (16) is:

u(x, t) = 1√
4παt

e− x2
4αt (17)

Proof. An easy check shows that if u is a solution to the
heat equation, so it is ux. Thus, from this fact and Eq. (15)
we get the solution:

u(x, t) = C√
t
e− x2

4αt

Imposing
´ +∞

−∞ u(x, t) dx = 1 we get the desired result.
Let’s see now that lim

t→0
Λu(·,t)(φ) = δ(φ) ∀φ ∈ D(R). Let

φ ∈ D(R). Then, ∀ε > 0 ∃δ > 0 such that |φ(x) − φ(0)| <
ε

2K whenever |x| < δ, where K =
´

|x|<δ
1√

4παt
e− y2

4αt .

I =

∣∣∣∣∣∣
+∞ˆ

−∞

1√
4παt

e− y2
4αtφ(y) dy − φ(0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
+∞ˆ

−∞

1√
4παt

e− y2
4αt (φ(y) − φ(0)) dy

∣∣∣∣∣∣
≤
ˆ

|x|<δ

1√
4παt

e− y2
4αt |φ(y) − φ(0)| dy

+
ˆ

|x|≥δ

1√
4παt

e− y2
4αt |φ(y) − φ(0)| dy

The first integral is bounded by ε
2 , while for the sec-

ond one, given that δ we can find t > 0 such that´
|x|≥δ

1√
4παt

e− y2
4αt ≤ ε

4∥φ∥∞
. Finally, for t → 0:

I ≤ ε

2 + 2 ∥φ∥∞

ˆ

|x|≥δ

1√
4παt

e− y2
4αt < ε

This is valid ∀φ ∈ D(R). Hence, lim
t→0

Λu(·,t)(φ) = δ(φ)
∀φ ∈ D(R). □
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Corollary 67. Let [H(t)](x) be the heat kernel of Eq. (17)
at a fixed point t > 0. Then, the general solution to the
problem {

ut = αuxx

u(x, 0) = f(x)
(18)

where f : R → R is continuous and bounded is:

u(x, t) = [H(t) ∗ f ](x) =
+∞ˆ

−∞

1√
4παt

e− (x−y)2
4αt f(y) dy

Sketch of the proof. Clearly the heat equation holds by
construction. The proof of lim

t→0
∥H(t) ∗ f − f∥∞ = 0 fol-

lows in the same way as the one in Theorem 66. □

Proposition 68. Let [H(t)](x) be the heat kernel of
Eq. (17) at a fixed point t ≥ 0. Then, ∀s, t > 0 we have:

H(s+ t) = H(s) ∗H(t)

Proof. Let x ∈ R. Then:

[H(s) ∗H(t)](x) =

=
+∞ˆ

−∞

1√
4παs

e− (x−y)2
4αs

1√
4παt

e− y2
4αt dy

= 1√
4παs

1√
4παt

e− x2
4α(s+t)

+∞ˆ

−∞

e
x2

4α(s+t) − (x−y)2
4αs − y2

4αt dy

= 1√
4παs

1√
4παt

e− x2
4α(s+t)

+∞ˆ

−∞

e−
(s+t)(y− xt

s+t )2

4αst dy

= 1√
4παs

1√
4παt

e− x2
4α(s+t)

√
4πα st

s+ t

= 1√
4πα(s+ t)

e− x2
4α(s+t)

= [H(s+ t)](x)

□

Proposition 69. Consider the generalized n-th dimen-
sional heat equation:

ut = α∆u (19)

Then, the generalized heat kernel for this equation is:

[H(t)](x) = 1
(4παt)n/2 e− ∥x∥2

4αt

Its associated integral form can be written as the operator:

T (t)u0 =
ˆ

Rn

1
(4παt)n/2 e− ∥x−y∥2

4αt u0(y) dy (20)

?? ?? gives a representation of T (t) in the form T (t) = et∆.

Sketch of the proof. An easy check shows that [H(t)](x)
solves the heat equation ut = α∆u. To show that the
initial condition holds, use the 1-dimensional case (Theo-
rem 66) and ?? ??. □

Proposition 70. Consider the operator T (t) defined on
Eq. (20). Then, {T (t) : t ∈ R≥0} is a semigroup with the
composition. That is, T (0) = id and T (s)◦T (t) = T (s+t).
Sketch of the proof. It is a consequence of the generaliza-
tion of lim

t→0
∥H(t) ∗ f − f∥∞ = 0, which it can be proven

using the 1-dimensional case (Theorem 67) and ?? ??.
□

Lemma 71. The function

u(x, t) =

 1√
α|t|

e− x2
4αt if t ̸= 0

0 if t = 0 and x ̸= 0

is a solution to the heat equation for t > 0 and also for
t < 0.

Operators
Definition 72 (Explicit scheme in finite differ-
ences). Let E be a Banach space and A : E → E be
an linear operator. Consider the following ivp:{

ut = Au

u(x, 0) = u0(x)
(21)

We would like to extend the notion of ??. Thus for n ≫ t
we can rewrite the previous equation as:

u(t+ t/n) ≃
(
I + t

n
A

)
u(t)

Thus, taking the limit as n → ∞ we can conclude:

u(t) = lim
n→∞

(
I + t

n
A

)n

u(0) =: etAu(0)

Note that for this to be well-defined we need that A must
be a bounded operator. And in that case, the following
identity also holds:

etA =
∞∑

k=0

tkAk

k!

Definition 73 (Implicit scheme in finite differ-
ences). Let E be a Banach space and A : E → E be an
linear operator. Consider the ivp of Eq. (21) and rewrite
it this time as:

u(t) ≃
(
I − t

n
A

)−1
u(t− t/n)

for n ≫ t. Thus, taking the limit as n → ∞ we can
conclude:

u(t) = lim
n→∞

(
I − t

n
A

)−n

u(0) =: etAu(0)

Note that for this to be well-defined we need that A−1

must be a bounded operator2.
2It can be proved that this definition of exponential matrix for an operator is more appropriate for the differential operators than the

previous one. Also, computationally is more efficient.
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Proposition 74 (Duhamel principle). Let E be a Ba-
nach space, D : E → E be a linear differential operator
that involves no time derivatives and F : E → E be a
functional. Consider the following ivp:{

ut = Du+ F (u)
u(x, 0) = u0(x)

(22)

Then, the general solution to this problem is the solution
to the following integral equation:

u(t) = etDu0 +
tˆ

0

e(t−s)DF (u(s)) ds

Sketch of the proof. The solution of the homogeneous sys-
tem is etDu0. Let u(t) = etDg. We will use the variation
of constants method to find the solution. Imposing that
u(t) has to be the solution we have:

DetDg + etDg′ = DetDg + F (u) ⇐⇒ etDg′ = F (u)

And integrating we get:

g(t) = u0 +
tˆ

0

e−sDF (u(s)) ds

□

Maximum and minimum principles
Definition 75. Let U ⊂ Rn be open and bounded and
fix a time t = T . We define the parabolic cylinder as
UT := U × (0, T ]. We define the parabolic boundary as
ΓT = UT \ UT = ∂ UT \ (U × {T}).

Theorem 76 (Maximum principle). Let U ⊂ Rn

be open and bounded and fix a time t = T . Suppose
u ∈ C2

1(UT ) ∩ C(UT ) solve the heat equation in UT . Then:

max{u(x, t) : (x, t) ∈ UT } = max{u(x, t) : (x, t) ∈ ΓT }

Proof. Let v ∈ C2
1(UT ) ∩ C(UT ) such that vt − α∆v < 0.

Then, max{v(x, t) : (x, t) ∈ UT } = max{v(x, t) : (x, t) ∈
ΓT }. Indeed, if the maximum was in UT or U × {T}
we would have vt ≥ 0 and ∆v ≤ 0, which contradicts
vt − α∆v < 0 because α > 0.
Now take v = u− εt with ε > 0. We have that:

vt − α∆v = ut − ∆u− αε = −ε < 0

Thus:

u = v + εt

≤ max{v(x, t) : (x, t) ∈ ΓT } + εt

≤ max{u(x, t) : (x, t) ∈ ΓT } + εt

for all ε > 0 and all t ∈ [0, T ]. □

Theorem 77 (Minimum principle). Let U ⊂ Rn

be open and bounded and fix a time t = T . Suppose
u ∈ C2

1(UT )∩C(UT )3 solves the heat equation in UT . Then:

min{u(x, t) : (x, t) ∈ UT } = min{u(x, t) : (x, t) ∈ ΓT }

Sketch of the proof. Apply the 76 Maximum principle to
the function −u(x, t). □

Theorem 78 (Uniqueness of the heat equation). Let
U ⊂ Rn be open and bounded, g ∈ C(ΓT ) and f ∈ C(UT ).
Then, there exists at most one solution u ∈ C2

1(UT )∩C(UT )
of the problem: {

ut − α∆u = f in UT

u = g on ΓT

Sketch of the proof. Suppose u1 and u2 are two solutions
of this problem. Apply both 76 Maximum principle and
77 Minimum principle to the function u1 − u2. □

Theorem 79 (Maximum principle on unbounded
domains). Let g ∈ C(Rn). Suppose u ∈ C2(Rn × (0, T ])∩
C(Rn × [0, T ]) solves the problem{

ut − ∆u = 0 in Rn × (0, T ]
u = g on Rn × {0}

and satisfies that u(x, t) ≤ Aea∥x∥2 ∀(x, t) ∈ Rn × [0, T ]
and for some constants a,A > 0. Then:

sup{u(x, t) : (x, t) ∈ Rn × [0, T ]} = sup{g(x) : x ∈ Rn}

Proof. First divide [0, T ] into subintervals with size ℓ <
1

4a . It suffices to prove the claim on one of such subinter-
vals. So from now on assume T < 1

4a . Let y ∈ Rn and
consider the function

v(x, t) = u(x, t) − δ

(T + ε− t)n/2 e
∥x−y∥2

4(T +ε−t)

with ε > 0 such that T + ε < 1
4a and δ > 0. It can be

checked that vt − ∆v = 0. Now fix r > 0 and consider the
set UT = B(y, r) × (0, T ]. By the 76 Maximum principle,
we have that:

max{v(x, t) : (x, t) ∈ UT } =
= max{v(x, t) : (x, t) ∈ ΓT } =: M

Now let’s prove that we can bound M by supx∈Rn g(x). If
x ∈ Rn and t = 0, then:

v(x, 0) = u(x, 0) − δ

(T + ε)n/2 e
∥x−y∥2
4(T +ε) ≤ u(x, 0) = g(x)

And if ∥x − y∥ = r and t ∈ [0, T ], then:

v(x, t) = u(x, t) − δ

(T + ε− t)n/2 e
r2

4(T +ε−t)

≤ Aea∥x∥2
− δ

(T + ε)n/2 e
r2

4(T +ε)

≤ Aea∥y∥2+ar2
− δ

(T + ε)n/2 e
r2

4(T +ε)

≤ Aea∥y∥2+ar2
− δ

(T + ε)n/2 ear2+γr2

3Here the subindex 1 in C2
1(UT ) indicates that the differentiability is with respect to the first component of u, that is, with respect to x.
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where γ > 0 satisfies a+ γ = 1
4(T +ε) . Letting r → ∞ this

last inequality is bounded by supx∈Rn g(x). So ∀y ∈ Rn

and all t ∈ [0, T ] we have

v(y, t) ≤ sup
x∈Rn

g(x)

Finally, letting δ → 0 we get ∀y ∈ Rn and all t ∈ [0, T ]
the desired result:

u(y, t) ≤ sup
x∈Rn

g(x)

□

Theorem 80 (Minimum principle on unbounded
domains). Let g ∈ C(Rn). Suppose u ∈ C2(Rn × (0, T ])∩
C(Rn × [0, T ]) solves the problem{

ut − ∆u = 0 in Rn × (0, T ]
u = g on Rn × {0}

and satisfies that u(x, t) ≥ −Aea∥x∥2 ∀(x, t) ∈ Rn × [0, T ]
and for some constants a,A > 0. Then:

inf{u(x, t) : (x, t) ∈ Rn × [0, T ]} = inf{g(x) : x ∈ Rn}

Sketch of the proof. Apply the 79 Maximum principle on
unbounded domains to the function −u(x, t). □

Theorem 81 (Uniqueness of the heat equation on
the unbounded domains). Let g ∈ C(Rn) and f ∈
C(Rn × [0, T ]). Then, there exists at most one solution
u ∈ C2(Rn × (0, T ]) ∩ C(Rn × [0, T ]) of the problem:{

ut − ∆u = f in Rn × (0, T ]
u = g on Rn × {0}

satisfying |u(x, t)| ≤ Aea∥x∥2 ∀(x, t) ∈ Rn × [0, T ] and for
some constants a,A > 0.

Sketch of the proof. Suppose u1 and u2 are two solutions
of this problem. Apply both the 79 Maximum principle
on unbounded domains and 80 Minimum principle on un-
bounded domains to the function u1 − u2. □

5. | Laplace equation
General properties and solutions
Definition 82 (Laplace equation). Let u : R×R → R
be an unknown function. The Laplace equation is the PDE
defined by:

∆u = 0

Proposition 83 (Dirichlet problem in the disc).
Let f : [0, 2π] → R be a continuous function such that
f(0) = f(2π). Then, there exists a continuous function
v : D(0, ρ) → R that v ∈ C2(D(0, ρ) \ {0}) and such that:

1. v(r, 0) = v(r, 2π) ∀r ∈ [0, ρ]

2. ∆v = 0.

3. v(ρ, θ) = f(θ) ∀θ ∈ [0, 2π]

An example of such function is:

v(r, θ) =
∞∑

n=0

rn

ρn
[an cos (nθ) + bn sin (nθ)]

where:

an = 1
π

2πˆ

0

f(θ) cos (nθ) dθ

bn = 1
π

2πˆ

0

f(θ) sin (nθ) dθ

Sketch of the proof. The Laplacian in polar coordinates is:

∆u = 1
r

∂

∂r

(
r
∂u

∂r

)
+ 1
r2
∂2u

∂θ2

Now use separation of variables v(r, θ) = R(r)Θ(θ) impos-
ing that Θ(θ) must be 2π-periodic. □

Definition 84 (Dirichlet problem). Let U ⊆ Rn be an
open bounded set such that ∂ U is of class C1, f ∈ C(Ω)
and g ∈ C(∂ Ω). The Dirichlet problem is defined as the
following ivp: {

−∆u = f in U

u = g on ∂ U
(23)

Proposition 85 (Uniqueness of Dirichlet problem).
Let U ⊆ Rn be an open bounded set such that ∂ U is of
class C1, f ∈ C2(Ω) and g ∈ C2(∂ Ω). Then, there exists
at most one solution of Eq. (23).
Sketch of the proof. Suppose u1 and u2 are two solutions
of the problem. Apply the first of the 30 Green identities
to the functions f = g = u1 − u2. □

Definition 86. Let U ⊆ Rn be an open bounded set such
that ∂ U is of class C1, f ∈ C2(Ω) and g ∈ C2(∂ Ω). Con-
sidering Eq. (23) we define the energy functional as the
operator

Ew =
ˆ

U

1
2 ∥∇w∥2 − wf

defined on the set {w ∈ C2(U) : w = g on ∂ U}.
Theorem 87 (Dirichlet’s principle). Let U ⊆ Rn be
an open bounded set such that ∂ U is of class C1, f ∈ C2(Ω)
and g ∈ C2(∂ Ω). Then, u ∈ C2(U) solves Eq. (23) if and
only if u minimizes E.
Proof.

=⇒) Let u be a solution of Eq. (23) and take w ∈
dom(E) such that w = u + v. Thus, v = 0 on
∂ U . We need to show that Ew ≥ Eu. A calcula-
tion shows that:

Ew = Eu+
ˆ

U

1
2 ∥∇v∥2

where we have use the 30 Green identities to con-
clude that: ˆ

U

∇u · ∇v − vf = 0

Hence Ew ≥ Eu.
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⇐=) Let u be a minimizer of E and λ(t) = E(u + vt),
t ∈ R. By the definition of a minimum, we have
that λ′(0) = 0 and so:

0 = λ′(0) =
ˆ

U

∇u · ∇v − vf =
ˆ

U

v(−∆u− f)

again by the 30 Green identities. Since, this is
valid ∀v ∈ dom(E) it follows that −∆u = f by
Theorem 28.

□

6. | Sobolev spaces
Definition 88. Let Ω ⊆ Rn be a bounded subset. We de-
fine the Sobolev space H1(Ω) (or W 1,2(Ω)) as the following
space:

H1(Ω) := {f ∈ L2(Ω) : Dif ∈ L2(Ω), i = 1, . . . , n}

Here Di denotes the distributional derivative with respect
to the i-th component.

Proposition 89. Let Ω ⊆ Rn be a bounded subset. Then,
H1(Ω) with the inner product

⟨f, g⟩H1 :=⟨f, g⟩2 +
n∑

i=1
⟨Dif,Dig⟩2

=⟨f, g⟩2 +
ˆ

Ω

∇f · ∇g

and associated norm

∥f∥H1
2 = ∥f∥2

2 +
n∑

i=1
∥Dif∥2

2

is a Hilbert space.

Sketch of the proof. Clearly, H1(Ω) is pre-Hilbert. It’s
missing to show that H1(Ω) is complete. Let (fn) ∈
H1(Ω) be Cauchy. Then, (fn), (Difn) ∈ L2(Ω) are also
Cauchy as ∥f∥2 ≤ ∥f∥H1 and ∥Dif∥2 ≤ ∥f∥H1 ∀i =
1, . . . , n. Hence, lim

n→∞
fn

L2

= G and lim
n→∞

Difn
L2

= gi for
some G, gi ∈ L2(Ω), ∀i = 1, . . . , n. If we prove that
DiG = gi, we will be done. But this is clear from the
definition of distributional derivative as ∀φ ∈ D(Ω) we
have: ˆ

Ω

Difnφ =
ˆ

Ω

fnDiφ

And the ?? ?? allow us to conclude that:
ˆ

Ω

giφ =
ˆ

Ω

GDiφ

□

Definition 90. Let Ω ⊆ Rn be a bounded subset. We
define the space H1

0 (Ω) := ClH1(Ω)(D(Ω)).

Definition 91. Let Ω ⊆ Rn be a bounded subset and
u ∈ L2(Ω). We define the average of u over Ω as:

u := 1
|Ω|

ˆ

Ω

u

Theorem 92 (Trace theorem). Let Ω ⊆ Rn be a
bounded subset such that ∂ Ω is of class C1. Then, there
exists a bounded linear operator

T : H1(Ω) → L2(∂ Ω)

such that:

Tu = u|∂ Ω ∀u ∈ H1(Ω) ∩ C(Ω)

We call Tu the trace of u on ∂ Ω4.

Theorem 93. Let Ω ⊆ Rn be a bounded subset such that
∂ Ω is of class C1 and let u ∈ H1(Ω). Then:

u ∈ H1
0 (Ω) ⇐⇒ u|∂ Ω = 0

Proposition 94 (Poincaré inequality). Let Ω ⊆ Rn

be a bounded subset and u ∈ H1(Ω). Then, there exists
C ∈ R such that:

ˆ

Ω

(u− u)2 ≤ C

ˆ

Ω

∥∇u∥2

Proposition 95. Let Ω ⊆ Rn be a bounded subset. Con-
sider the map:

Q : H1(Ω) −→ H1(Ω) ⊖ R
u 7−→ u− u

Then, the space H(Ω) := Q(H1(Ω)) equipped with the
inner product

⟨f, g⟩H =
ˆ

Ω

∇f · ∇g

is Hilbert.

Proof. First of all the map is well-defined. Indeed, if
Q(u) = const., then u = const. But in this case u = u
and so Q(u) = 0. Let’s see now that H(Ω) is Hilbert.
Clearly H(Ω) is pre-Hilbert as Q is linear and continuous.
To show the completeness note that the norms on H(Ω)
and H1(Ω) are equivalent. Indeed by the 94 Poincaré in-
equality we have that ∀ũ ∈ H(Ω):
ˆ

Ω

∥∇u∥2 ≤
ˆ

Ω

(u2 + ∥∇u∥2) ≤ (C + 1)
ˆ

Ω

∥∇u∥2

for certain C ∈ R and because ũ = 0. Thus, the Cauchy
convergence is the same with both norms. And since
H1(Ω) is complete, so it is H(Ω). □

Proposition 96. Let Ω ⊆ Rn be a bounded subset. Then,
H0(Ω) := Q(H1

0 (Ω)) is closed in H(Ω).
4From now on we will call T u as u|∂ Ω.
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Proof. Let (wn) ∈ Q(H1
0 (Ω)) be a sequence that converges

in H1
0 (Ω) to w. We need to show that w ∈ Q(H1

0 (Ω)).
Note that wn = Q(un) = un−un for certain (un) ∈ H1

0 (Ω).
Thus, un = un − wn. By Theorem 93 we have that
un = −wn|∂ Ω which converges in L2(∂ Ω) by the con-
tinuity of the trace and therefore, as L2(∂ Ω), un con-
verges on R. Let c := lim

n→∞
un. Now, u = wn + un con-

verges in H1
0 (Ω) to w + c =: u. We claim that c = u,

which is clear by the continuity of the average. Hence,
w = u − u = Q(u) with u ∈ H1

0 (Ω) because H1
0 (Ω) is

closed. So w ∈ Q(H1
0 (Ω)). □

Proposition 97. Let Ω ⊆ Rn be a bounded subset and
g̃ ∈ H(Ω). Then, ∃!ũ ∈ H0(Ω)⊥ = H(Ω) ⊖ H0(Ω) such
that

ũ = arg min
w∈H0(Ω)


ˆ

Ω

1
2 ∥∇w∥2 : g̃ − w ∈ H0(Ω)



Sketch of the proof. Use the ?? ??. □

Theorem 98. Let Ω ⊆ Rn be a bounded subset. Con-
sider the Dirichlet problem of Eq. (23) with f = 0 and
g ∈ H1(Ω). Then, this problem has existence and unique-
ness of solutions.

Proof. Let g̃ = Q(g) = g − g ∈ H(Ω) and ũ ∈ H0(Ω)⊥ be
the minimizer of Theorem 97 given g̃. Thus, ũ−g̃ ∈ H0(Ω)
and so ũ − g̃ = v − v, v ∈ H1

0 (Ω). Define u := ũ + g + v.
Note that u − g = v ∈ H1

0 (Ω) and Theorem 93 implies
u = g on ∂ Ω. It’s missing to show that u minimizes E.
But this is clear from the fact that u − ũ ∈ R and so
∥u∥H(Ω) = ∥ũ∥H(Ω) and the existence and uniqueness of
ũ. □
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