
Numerical integration of partial differential equations

1. | Finite difference schemes
Introduction
Definition 1. A linear system of n first order of PDEs
for u(t, x) is a system of the form:

A(t, x)ut + B(t, x)ux = C(t, x)u + D(t, x)

for certain matrices A,B,C,D ∈ Mq(R). The system is
called hyperbolic if A−1B is diagonalizable.

Definition 2. Let n ∈ N, m ∈ Z, h, k > 0 and u :
R2 → Rq be a function. We define un

m := u(tn, xm),
where (tn, xm) := (nk, x0 + mh), x0 ∈ R. We de-
note by vn

m an approximation to un
m. The set of points

G := {(tn, xm) : n ∈ N, m ∈ Z} is called a grid.

Definition 3. Let G be a grid. A finite difference scheme
is a function

v : G −→ R
(tn, xm) 7−→ vn

m

that aims to approximate un
m, where u : R2 → Rq is

a function. Here vn
m is a function of vn−j

m , m ∈ Z,
j = 0, . . . , J − 1. The number J is called the number
of steps. If J = 1, we say that the scheme is a one-step
scheme. Otherwise, we say that the scheme is multistep.

Proposition 4. Consider the one dimensional homoge-
neous traffic equation of constant coefficients

ut + aux = f (1)

where a ∈ R and f is a function. The following are satis-
fied:

1. Forward-time forward-space (FTFS):

un+1
m − un

m

k
+ a

un
m+1 − un

m

h
+ O (k) + O (h) = fn

m

2. Forward-time backward-space (FTBS):

un+1
m − un

m

k
+ a

un
m − un

m−1
h

+ O (k) + O (h) = fn
m

3. Forward-time central-space (FTCS):

un+1
m − un

m

k
+a

un
m+1 − un

m−1
2h + O (k) + O

(
h2)

= fn
m

4. Backward-time central-space (BTCS):

un+1
m − un

m

k
+a

un+1
m+1 − un+1

m−1
2h +O (k)+O

(
h2)

= fn+1
m

5. Leapfrog scheme:

un+1
m − un−1

m

2k + a
un

m+1 − un
m−1

2h +

+ O
(
k2)

+ O
(
h2)

= fn
m

6. Lax-Friedrichs scheme:

un+1
m − 1

2 (un
m+1 + un

m−1)
k

+ a
un

m+1 − un
m−1

2h +

+ O (k) + O
(
h2

k

)
+ O

(
h2)

= fn
m

Sketch of the proof. Use the Taylor expansion of u(t, x).
□

Corollary 5. Consider the traffic equation of Eq. (1) and
let λ := k/h. Then, we have the following schemes for
approximating the solution:

1. Forward-time forward-space

vn+1
m = (1 + λa)vn

m − λavn
m+1 + kfn

m

2. Forward-time backward-space

vn+1
m = (1 − λa)vn

m + λavn
m−1 + kfn

m

3. Forward-time central-space

vn+1
m = vn

m − λa

2 vn
m+1 + λa

2 vn
m−1 + kfn

m

4. Backward-time central-space

vn+1
m = vn

m − λa

2 vn+1
m+1 + λa

2 vn+1
m−1 + kfn

m

5. Leapfrog scheme:

vn+1
m = vn−1

m − λavn
m+1 + λavn

m−1 + kfn
m

6. Lax-Friedrichs scheme:

vn+1
m = 1

2
(
(1 − λa)vn

m+1 + (1 + λa)vn
m−1

)
+ kfn

m

Convergence and consistency

Definition 6. A stability region is a set Λ ⊆ R>0
2 such

that (0, 0) ∈ Λ′, that is (0, 0) in an accumulation point.

Definition 7. Let (Gj) be a sequence of grids such that
the time and space steps kj , hj > 0 of each one sat-
isfy lim

j→∞
kj = lim

j→∞
hj = 0. We say that a finite differ-

ence scheme v approximating a PDE with initial condi-
tion u0(x) is unconditionally convergent if for any solution
u(x, t) to the PDE we have:

• For all x ∈ dom u0 and all increasing sequence
(mj) ∈ N such that (·, xmj ) ∈ Gj and lim

j→∞
xmj

= x,

we have lim
j→∞

v0
mj

= u0(x).
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• For all (t, x) ∈ dom u and all increasing sequences
(mj), (nj) ∈ N such that (tnj

, xmj
) ∈ Gj and

lim
j→∞

xmj
= x, lim

j→∞
tnj

= t, we have lim
j→∞

vnj
mj

=
u(t, x).

The scheme is conditionally convergent if ∀j ∈ N,
(kj , hj) ∈ Λ, for some stability region Λ.
Definition 8. Let P be a partial differential operator and
f be a function. Given the PDE Pu = f and a finite differ-
ence scheme Pk,hv = Rk,hf with Rk,h1 = 1, we say that
the scheme is consistent with the PDE if for any smooth
function ϕ(t, x) we have:

lim
k,h→0

Rk,hPϕ − Pk,hϕ = 0

where the convergence is pointwise at each point (t, x) in
the domain of solutions. We say that the consistency is of
order (p, q) in time and space if:

lim
k,h→0

Rk,hPϕ − Pk,hϕ = O (kp) + O (hq)

The consistency is a conditional consistency if the limit is
for (k, h) ∈ Λ, for some stability region Λ. In that case,
it makes sense to say that the consistency is of order r in
k = λ(h) if:

lim
h→0

Rλ(h),hPϕ − Pλ(h),hϕ = O (hr)

Lemma 9. The Lax-Friedrichs scheme is consistent if and
only if lim

h,k→0

h2

k
= 0.

Remark. The consistency is not enough to guarantee con-
vergence. For example, consider the PDE ut + aux = 0,
with a > 0. The forward-time forward-space scheme is
consistent with the PDE, but it is not convergent if we take
the initial condition u0(x) = 1{x<0} on the domain [−1, 1].
Indeed, looking at Fig. 1 we see that from some instant
of time, the solution will be 0 everywhere, which cannot
be possible. In that case we should use the forward-time
backward-space scheme, which is convergent. The usage
of this latter method in these cases is called the upwind
condition.

u ̸= 0
v ̸= 0

u = 0
v = 0

u ̸= 0
v = 0

x

t

Figure 1: Infringement of the upwind condition. The ar-
rows inward a bullet come from the points from which it
depends.

Stability

Definition 10. Let Pk,hv = 0 be a finite difference
scheme with J steps, that is, a scheme in which we need
the last J values of vn to compute the next one, and Λ be
a stability region. We say that it is stable if given T > 0,
there exists CT > 0 such that for any grid with (k, h) ∈ Λ
and for any initial values vj

m, m ∈ Z, j = 0, . . . , J − 1 we
have ∑

m∈Z
∥vn

m∥2 ≤ CT

J−1∑
j=0

∑
m∈Z

∥∥vj
m

∥∥2

for all n ∈ N such that 0 ≤ nk ≤ T .

Lemma 11. If a finite difference scheme of the form of

vn+1
m = αvn

m + βvn
m+1

satisfies |α| + |β| ≤ 1, then it is stable.

Sketch of the proof.∑
m∈Z

∥∥vn+1
m

∥∥2 ≤
∑
m∈Z

(
|α|2 ∥vn

m∥2 + 2|α||β| ∥vn
m∥ ·

·
∥∥vn

m+1
∥∥ + |β|2

∥∥vn
m+1

∥∥2
)

≤
∑
m∈Z

(
|α|2 ∥vn

m∥2 + |α||β|(∥vn
m∥2 +

+
∥∥vn

m+1
∥∥2) + |β|2

∥∥vn
m+1

∥∥2
)

=
∑
m∈Z

(
|α|2 + 2|α||β| + |β|2

)
∥vn

m∥2

= (|α| + |β|)2 ∑
m∈Z

∥vn
m∥2

≤ (|α| + |β|)2(n+1) ∑
m∈Z

∥∥v0
m

∥∥2

□

Theorem 12 (Courant-Friedrichs-Lewy condition).
Consider the traffic equation

ut + Aux = 0

with A ∈ Mq(R) and a finite difference scheme of the
form

vn+1
m = αvn

m−1 + βvn
m + γvn

m+1

with k/h = λ = const. Then, if the scheme is convergent,
we have |aiλ| ≤ 1 ∀ai ∈ σ(A).

Proof. It suffices to study only the case q = 1. Suppose
|aλ| > 1 for some eigenvalue a of A and let u0(x) =
c1{|x|> 1

|λ| } with c = (c1, . . . , cq) and ci ̸= 0. As shown
in figure Fig. 2, by the form of the scheme, the numeri-
cal solution at (t, x) = (1, 0), vn

0 , will only depend on v0
m

with |m| ≤ n. But taking n such that kn = 1, we have
that |m|h ≤ nk/λ ≤ 1/λ. So vn

0 will depend on x for
|x| ≤ 1

λ < |a|. Thus, in general we will have the numerical
solution equal to 0, whereas the exact solution will not be.
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1

−|a| − 1
λ

1
λ

|a|
x

t

Figure 2: Finite difference scheme (blue) versus the char-
acteristic lines (red). The arrows inward a bullet come
from the points from which it depends.

□

Remark. The idea behind this is that one cannot obtain
convergence of the scheme if the numerical domain does
not include the analytic domain.

Semidiscrete Fourier transform

Definition 13 (Semidiscrete Fourier transform).
The semidiscrete Fourier transform of a function v ∈
ℓ2(hZ), i.e. defined in a mesh of step-size h > 0, is the
function v̂ ∈ L2 ([

− π
h ,

π
h

])
defined as the Fourier series:

v̂(ξ) =
∑
m∈Z

vme−imhξ

where

vm = h

2π

π/hˆ

−π/h

v̂(ξ)eimhξ dξ

This latter formula is called inverse semidiscrete Fourier
transform.

Proposition 14 (Semidiscrete Parseval identity).
Let h > 0 and v̂ ∈ L2 ([

− π
h ,

π
h

])
be the semidiscrete

Fourier transform of v ∈ ℓ2(hZ). Then

∑
m∈Z

|vm|2 = h

2π

π/hˆ

−π/h

|v̂(ξ)|2 dξ

Proof.

h

2π

π/hˆ

−π/h

|v̂(ξ)|2 dξ = h

2π

π/hˆ

−π/h

∑
m,n∈Z

vmvne−i(m−n)hξ dξ

= h

2π

π/hˆ

−π/h

∑
m∈Z

|vm|2 dξ

=
∑
m∈Z

|vm|2

where in the second step we exchanged the integral and
the sum in basis of the Cauchy-Schwarz inequality for se-
quences and the fact that v ∈ ℓ2(hZ). □

Von Neumann stability analysis
Definition 15. Let Pk,hv = f be a finite difference
scheme. For each n ∈ N, let v̂n ∈ L2 ([

− π
h ,

π
h

])
be the

function defined as the Fourier series:

v̂n(ξ) =
∑
m∈Z

vn
me−imhξ

Hence vn
m = h

2π

π/hˆ

−π/h

v̂n(ξ)eimhξ dξ. We denote by vn :=

(vn
m) ∈ ℓ2(Z) and ∥vn∥h

2 := h∥vn∥2
2. We define the am-

plification factor as the 2π-periodic function in θ, g(θ, k, h)
that satisfies:

v̂n+1(ξ) = g(ξh, k, h)v̂n(ξ)

Theorem 16. Let Pk,hv = f be a one-step finite differ-
ence scheme with constant coefficients whose amplification
factor g(θ, k, h) is continuous on R × Λ, where (k, h) ∈ Λ
is a stability region. Then:

1. If ∃K > 0 such that ∀θ ∈ R and ∀(k, h) ∈ Λ we have
|g(θ, k, h)| ≤ 1 +Kk, then the scheme is stable in Λ.

2. If ∀K > 0 and ∀ε > 0 ∃θ ∈ R and ∃(k, h) ∈ Λ
with k < ε such that |g(θ, k, h)| > 1 +Kk, then the
scheme is unstable.

Proof.

1. We have that

v̂n(ξ) = (g(ξh, k, h))n
v̂0(ξ)

Therefore applying twice the 14 Semidiscrete Parse-
val identity:

∑
m∈Z

|vn
m|2 = h

2π

π/hˆ

−π/h

|v̂n(ξ)|2 dξ

≤ (1 +Kk)2n h

2π

π/hˆ

−π/h

∣∣v̂0(ξ)
∣∣2 dξ

= (1 +Kk)2n
∑
m∈Z

∣∣v0
m

∣∣2

And note that ∀T > 0 with nk ≤ T we have that:

(1 +Kk)2n ≤ (1 +Kk)2 T
k =

(
(1 +Kk)

1
Kk

)2KT

≤

≤ e2KT =: CT

because supx>0 (1 + x)1/x = e.
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2. Let T ≥ 2, K > 0, and θ0, h, k be the ones of the
hypothesis with ε = min(1, 1

K ). Hence, k ≤ 1 and
Kk ≤ 1. By the continuity of g, ∃θ1, θ2 ∈ R such
that |g(θ, k, h)| > 1 +Kk ∀θ ∈ [θ1, θ2]. Let v̂0(ξ) :=√

h
2π(θ2−θ1) 1[ θ1

h ,
θ2
h ] and denote v0 := (v0

m) ∈ ℓ2(Z)
its inverse transform. An easy check shows that∥∥v0

∥∥ = 1. Now take n := ⌊T/k⌋. Thus:

∥vn∥2
2 = h

2π

π/hˆ

−π/h

|v̂n(ξ)|2 dξ

= h

2π

π/hˆ

−π/h

|g(hξ, k, h)|2n∣∣v̂0(ξ)
∣∣2 dξ

> (1 +Kk)2n

≥ (1 +Kk)
2
k

=
(

(1 +Kk)
1

Kk

)2K

≥ 22K

= 22K
∥∥v0∥∥

2
2

where in the forth inequality we used that n ≥
T/k − 1 = T −k

k ≥ 1 and in the penultimate step is
because infx∈[0,1] (1 + x)1/x = 2. Hence, the scheme
is unstable.

□

Corollary 17. Let Pk,hv = f be a one-step finite differ-
ence scheme with constant coefficients whose amplification
factor g(θ, k, h) is continuous on R × Λ, where (k, h) ∈ Λ
is a stability region. Then:

1. If |g(θ, k, h)| ≤ 1 ∀θ and ∀(k, h) ∈ Λ, then the
scheme is stable.

2. If ∃θ0 ∈ R and δ > 0 such that |g(θ0, k, h)| > 1 + δ
∀(k, h) ∈ Λ, then the scheme is unstable.

Lemma 18. Let Pk,hv = f be a one-step finite dif-
ference scheme with constant coefficients. Impose that
vn

m = g(θ, k, h)neimθ for certain function g(·, k, h). Then,
g is the amplification factor of the scheme.

Proof. We have:

v̂n+1(ξ) =
∑
m∈Z

vn+1
m e−imhξ

=
∑
m∈Z

g(θ, k, h)n+1eimθe−imhξ

= g(θ, k, h)v̂n(ξ)

□

Proposition 19. Consider the PDE of Eq. (1) with
λ = k/h = const. Then:

• The FTFS scheme is stable if and only if aλ ∈
[−1, 0].

• The FTBS scheme is stable if and only if aλ ∈ [0, 1].

• The FTCS scheme is always unstable.

• The BTCS scheme is unconditionally stable.

• The Lax-Friedrichs scheme is stable if and only if
|aλ| ≤ 1.

Proposition 20 (Lax-Wendroff). Consider the traffic
equation of Eq. (1). The Lax-Wendroff scheme is:

un+1
m − un

m

k
+ a

un
m+1 − un

m−1
2h − a2k

2
un

m+1 − 2un
m + un

m−1
h2

= fn+1
m + fn

m

2 − ak

4
fn

m+1 − fn
m−1

h
+ O

(
k2)

+ O
(
h2)

Sketch of the proof. Expand u(t + k, x) in Taylor series
and use that:

ut = −aux + f

utt = a2uxx − afx + ft

□

Proposition 21. The Lax-Wendroff scheme is a one-step
method that has order of consistency 2, and it is stable if
and only if |aλ| ≤ 1.

Sketch of the proof. Show that Pk,hϕ−Rk,hPϕ = O
(
h2)

+
O

(
k2)

using a Taylor expansion and is stable if aλ ≤ 1.
For the stability, assume vn

m = gneimθ. We need to study
the homogeneous part.

0 = g − 1
k

+ a

2h
(
eiθ − e−iθ)

− a2k

2h2

(
eiθ − 2 + e−iθ)

g = 1 − aλi sin θ + a2λ2(cos θ − 1)

g = 1 − 2aλi sin θ2 cos θ2 − 2a2λ2
(

sin θ2

)2

Hence:

|g|2 = 1 − 4a2λ2
(

sin θ2

)2
+ 4a4λ4

(
sin θ2

)4
+

+ 4a2λ2
(

sin θ2 cos θ2

)2

= 1 + 4a2λ2(1 − a2λ2)
(

sin θ2

)4

If |aλ| ≤ 1, then |g|2 ≤ 1 because x2(1 − x2) ≤ 1/4 for
x ∈ [−1, 1]. If |aλ| > 1, then by taking θ = π we have
|g|2 > 1. □

Proposition 22 (Crank-Nicolson). Consider the traf-
fic equation of Eq. (1). The Crank-Nicolson scheme is:

un+1
m − un

m

k
+ a

un+1
m+1 − un+1

m−1 + un
m+1 − un

m−1
4h =

= fn+1
m + fn

m

2 + O
(
k2)

+ O
(
h2)

Note that it is an implicit scheme.

Proposition 23. The Crank-Nicolson scheme is a one-
step method that has order of consistency 2, and it is
unconditionally stable.
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Sketch of the proof. Let P = ∂
∂t + a ∂

∂x . Let’s start with
the consistency. Using ϕ = ϕ(t, x) = vn

m we can simplify
the first term as:

ϕ(t+ k, x) − ϕ

k
= ϕt + k

2ϕtt + O
(
k2)

For the second term note that:

ϕ(t+ k, x+ h) = ϕ(t+ k, x) + hϕx(t+ k, x)+

+ h2

2 ϕxx(t+ k, x) + O
(
h3)

−ϕ(t+ k, x− h) = −ϕ(t+ k, x) + hϕx(t+ k, x)−

− h2

2 ϕxx(t+ k, x) + O
(
h3)

ϕ(t, x+ h) = ϕ+ hϕx + h2

2 ϕxx + O
(
h3)

−ϕ(t, x− h) = −ϕ+ hϕx − h2

2 ϕxx + O
(
h3)

Summing these equations and multiplying by a
4h we get:

a

2 [ϕx+ϕx(t+k, x)]+O
(
h2)

=aϕx+a

2kϕxt+O
(
h2)

+O
(
k2)

Thus:

Pk,hϕ = ϕt + aϕx + k

2ϕtt + a

2kϕxt + O
(
k2)

+ O
(
h2)

On the other hand:

Rk,hPϕ = ϕt(t+ k, x) + aϕx(t+ k, x) + ϕt + aϕx

2
= ϕt + aϕx + 1

2kϕtt + a

2kϕxt + O
(
k2)

Finally:

Pk,hϕ−Rk,hPϕ = O
(
k2)

+ O
(
h2)

For the stability, substitute vn
m = gneimθ in the scheme.

Simplifying we get:

g =
1 + aλi

2 sin θ
1 − aλi

2 sin θ

which has always modulus 1. □

Definition 24. Given scheme Pk,hv = f , usually we can-
not use the recurrence to compute the last term of the (fi-
nite) grid, with n ∈ {0, . . . , N} and m ∈ {0, . . . ,M}, vn

M

for each n ∈ N. Thus, the numerical boundary condition
is used in these cases. A numerical boundary condition of
order p is an extrapolation of order O (hp) of the last term
of the grid in terms of the orther ones. Each u(t, x − ℓh)
can be expressed as:

u(t, x− ℓh) =
p−1∑
k=0

(−1)k
ℓkhk

k! u(k) + O (hp)

If we want to get a linear approximation of the form

u(t, x) =
p∑

k=1
λku(x− kh)

we need to solve the following linear system:
1 1 · · · 1
1 2 · · · (p− 1)
...

... . . . ...
1 2p−1 · · · (p− 1)p−1



λ1
λ2
...
λp

 =


1
0
...
0


Note that the solution always exists because the matrix is
a Vandermonde matrix. For example, numerical boundary
conditions of order 1, 2 and 3 are respectively:

vn
M = vn

M−1

vn
M = 2vn

M−1 − vn
M−2

vn
M = 3vn

M−1 − 3vn
M−2 + vn

M−3

Proposition 25. Consider the following initial value and
boundary problem with constant coefficients:
ut = L(u)
u(0,x) = u0(x) if x ∈ Ω ⊆ Rd

u(t,x) = g(t,x) if (t,x) ∈ [0,∞) × ∂Ω1 ⊆ [0,∞) × ∂Ω
(2)

where L is a differential operator and g is a function.
Let M(Ω) be the set of indices that we compute vn =
(vn

m)m∈M(Ω). Consider a finite difference scheme of the
form

B1vn+1 = B0vn + fn (3)
where B0 and B1 are matrices and fn is a vector. Then,
the scheme is stable with stability region Λ ⊆ R≥0 ×R≥0

d

if and only if ∀T > 0 ∃CT > 0 such that ∀(k, h) ∈ Λ and
∀ℓ ∈ N with 0 ≤ ℓk ≤ T we have

∥∥∥(
B1

−1B0
)ℓ

∥∥∥ ≤ CT .

Proof. An easy check show that if v0 and w0 are such
that satisfy the recurrence of Eq. (3), then vℓ − wℓ =
A(v0 − w0), where A :=

(
B1

−1B0
)ℓ.

=⇒) We will prove by contradiction. Suppose that
∃T > 0 such that ∀CT > 0 exist (k, h) ∈ Λ and
ℓ ∈ N with 0 ≤ ℓk ≤ T such that

∥∥∥(
B1

−1B0
)ℓ

∥∥∥ >
CT . Then, taking x∗ such that ∥x∗∥ = 1 and
∥A∥ = ∥Ax∗∥ we have that for any v0, defining
w0 := v0 + x∗ we have that:∥∥vℓ − wℓ

∥∥ = ∥Ax∗∥ = ∥A∥ > CT

∥∥v0 − w0∥∥
where the first equality follows from expanding
recursively the norm

∥∥vℓ − wℓ
∥∥ and using the

scheme Eq. (3). Hence, the scheme is not stable.

⇐=) Note that if∥∥vℓ − wℓ
∥∥ ≤ CT

∥∥v0 − w0∥∥
then necessarily ∥A∥ ≤ CT .

□

Theorem 26 (Lax-Richtmyer equivalence theo-
rem). Consider the problem of Eq. (2) and define

Tn := B1un+1 − B0un − fn

Suppose that:
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1. ∥Tn∥ = O (kp + ∥h∥q) independent of n and
∀(k, h) ∈ Λ and all (t, x) ∈ [0, T ] × Ω (consistency
condition)

2. ∀(k, h) ∈ Λ, B1 is invertible and
∥∥B1

−1∥∥ ≤ C1k for
certain C1 > 0 independent of (k, h).

3. The scheme is stable.

4. v0 is such that
∥∥v0 − u0

∥∥ = O (kp + ∥h∥q) uni-
formly for (k, h) ∈ Λ and (t, x) ∈ [0, T ] × Ω.

Then, ∀n ∈ N with 0 ≤ nk ≤ T we have:

∥vn − un∥ = O (kp + ∥h∥q)

uniformly for (k, h) ∈ Λ and (t, x) ∈ [0, T ] × Ω.
Proof. We have that

B1vn = B0vn−1 + fn−1

B1un = B0un−1 + fn−1 + Tn−1

Then if A = B1
−1B0 we have that

vn − un = An(v0 − u0) −
n−1∑
ℓ=0

An−1−ℓB1
−1Tℓ

And so:

∥vn − un∥ ≤ CT O (kp + ∥h∥q)+
n−1∑
ℓ=0

CTC1kO (kp + ∥h∥q)

where we have used Theorem 25 for noting that ∀ℓ =
0, . . . , n−1

∥∥∥An−1−ℓ
∥∥∥ ≤ CT . Finally, observe that kn ≤ T

and the uniformity of the O (kp + ∥h∥q) allows us to con-
clude the proof. □

Remark. It can also be shown that the consistency and
convergence imply stability.
Theorem 27. Consider a scheme of J steps for a 1st-
order-in-time linear PDE of constant coefficients whose
amplification factor is g. Let Φ(θ, g) be the amplification
polynomial, that is the polynomial that satisfies g of degree
J − 1. Then, the scheme is stable if and only if:

• for any root gj(θ) of Φ we have |gj(θ)| ≤ 1-

• if ∃θ0 and k such that |gk(θ0)| = 1, then this root is
simple.

Proposition 28. The Leapfrog scheme for the one-
dimensional wave equation of Eq. (1) is stable if and only
if |aλ| < 1.
Proof. An easy check (substituting vm

n = gneimθ into the
scheme) shows that the amplification polynomial is:

Φ(θ, g) = g2 + g(2aλi sin θ) − 1

The roots are:

g± = −aλi sin θ ±
√

1 − a2λ2(sin θ)2

If |aλ| < 1, then |g±|2 = 1 and the two roots are simple
∀θ ∈ R. If |aλ| > 1 and θ = π

2 , then either |g+| > 1 or
|g−| > 1 and the scheme is unstable. Finally, if |aλ| = 1
and θ = π

2 , then the scheme is unstable because there is a
double root. □

Second order PDEs

Definition 29. Consider a second order PDE of the form:

Autt + 2Butx + Cuxx +Dut + Eux + Fu = G (4)

where A,B,C,D,E, F,G : R2 → R are smooth functions.
The ivp defined in a curve γ(s) = (t, x) = (f(s), g(s)) is
given by the extra conditions:


u(f(s), g(s)) = h(s)
ut(f(s), g(s)) = ϕ(s)
ux(f(s), g(s)) = ψ(s)

which are tied to the compatibility condition h′ = ϕf ′+ψg′

that follows from the chain rule. The characteristic curves
are the curves from which we cannot find the highest or-
der derivatives of u from the initial conditions and the
PDE. Differentiating ut(s) and ux(s) we get the system of
equations for utt, utx and uxx:


Autt + 2Butx + Cuxx = G−Dϕ− Eψ − Fh

f ′utt + g′utx = ϕ′

f ′utx + g′uxx = ψ′

The determinant of the matrix associated of the system is
∆ = A(g′)2 −2Bf ′g′ +C(f ′)2. Equating this determinant
to zero and using the chain rule we get:

A

(
dx
dt

)2
− 2B dx

dt + C = 0

The PDE is called elliptic if AC − B2 > 0, hyperbolic if
AC −B2 < 0 and parabolic if AC −B2 = 0.

Definition 30. Consider a finite difference scheme with
J steps for a 2n order homogeneous PDE and Λ be a sta-
bility region. We say that it is stable is given T > 0, there
exists CT > 0 such that for any grid with (k, h) ∈ Λ and
for any initial values vj

m, m ∈ Z, j = 0, . . . , J − 1 we have

∑
m∈Z

∥vn
m∥2 ≤ (1 + n2)CT

J−1∑
j=0

∑
m∈Z

∥∥vj
m

∥∥2

for all n ∈ N such that 0 ≤ nk ≤ T .

Theorem 31. Consider a finite difference scheme with J
steps for a 2n order homogeneous PDE whose amplifica-
tion factor is g and Φ(θ, g) is the amplification polynomial.
Then, the scheme is stable if and only if:

• for any root gj(θ) of Φ we have |gj(θ)| ≤ 1.

• if ∃θ0 and k such that |gk(θ0)| = 1 then this root is
at most double.
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Parabolic equations
Proposition 32. Consider the heat equation ut = αuxx+
f . We have the following schemes for approximating the
solution:

1. Forward-time central-space:

vn+1
m − vn

m

k
= α

vn
m+1 − 2vn

m + vn
m−1

h2 + fn
m

2. Backward-time central-space:

vn+1
m − vn

m

k
= α

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2 + fn+1
m

3. Crank-Nicolson scheme:

vn+1
m − vn

m

k
= α

2
vn

m+1 − 2vn
m + vn

m−1
h2 +

+ α

2
vn+1

m+1 − 2vn+1
m + vn+1

m−1
h2 + 1

2(fn+1
m + fn

m)

4. Leapfrog scheme:

un+1
m − un−1

m

2k = α
vn

m+1 − 2vn
m + vn

m−1
h2 + fn

m

5. Du-Fort-Frankel scheme:
vn+1

m − vn−1
m

2k = α
vn

m+1 − [vn+1
m +vn−1

m ] + vn
m−1

h2 +fn
m

Elliptic equations
Definition 33. Let Pu = f be an elliptic PDE on Ω. We
define the following boundary conditions on ∂ Ω:

1. Dirichlet: u = f

2. Neumann: ∂u
∂n = g

3. Robin: αu+ ∂u
∂n = h

Definition 34. Consider the following scheme for the
Poisson equation uxx + uyy = f :

vℓ+1,m − 2vℓ,m + vℓ−1,m

h2 + vℓ,m+1 − 2vℓ,m + vℓ,m−1

h2 =fℓ,m

(5)
where we have chosen the same step size h for both x and
y directions. We define the discrete laplacian as:

(∆hv)ℓ,m := vℓ+1,m + vℓ−1,m + vℓ,m+1 + vℓ,m−1 − 4vℓ,m

h2

Theorem 35 (Discrete maximum principle). Con-
sider the Poisson equation uxx + uyy = f , let v = (vℓ,m)
be the scheme of Eq. (5) and suppose that ∆hv ≥ 0 on a
region Ω. Then:

max
Ω

v = max
∂ Ω

v

Sketch of the proof. The condition ∆hv ≥ 0 is equivalent
to:

vℓ,m ≤ 1
4(vℓ+1,m + vℓ−1,m + vℓ,m+1 + vℓ,m−1)

Now note that if there is a maximum in the interior of the
region, its four neighbours must be equal to it. □

Corollary 36 (Discrete minimum principle). Con-
sider the Poisson equation uxx + uyy = f , let v = (vℓ,m)
be the scheme of Eq. (5) and suppose that ∆hv ≤ 0 on a
region Ω. Then:

min
Ω
v = min

∂ Ω
v

Proof. Apply 35 Discrete maximum principle to −v. □

Theorem 37. Consider the Poisson equation uxx +uyy =
f , let v = (vℓ,m) be the scheme of Eq. (5) defined on
Ω = [0, 1]2. If v = 0 on ∂ Ω then:

∥v∥∞ ≤ 1
8 ∥∆hv∥∞

Proof. From (∆hv)ℓ,m = fℓ,m in the internal nodes of the
grid, we have that |∆hv| ≤ ∥f∥∞. Now consider the non-
negative function wℓ,m defined as:

wℓ,m := 1
4

[
(xℓ − 1/2)2 + (ym − 1/2)2

]
An easy check shows that (∆hw)ℓ,m = 1 and ∥w∥L∞(∂ Ω) =
1
8 . So on the one hand, ∆h(v − ∥f∥∞ w) ≤ 0 and by the
36 Discrete minimum principle:

− ∥f∥∞ ∥w∥L∞(∂ Ω) ≤ vℓ,m − ∥f∥∞ wℓ,m

And on the other hand, ∆h(v + ∥f∥∞ w) ≥ 0 and by the
35 Discrete maximum principle:

∥f∥∞ ∥w∥L∞(∂ Ω) ≥ vℓ,m

Thus:

∥v∥∞ ≤ ∥w∥L∞(∂ Ω) ∥f∥∞ = 1
8 ∥∆hv∥∞

□

Theorem 38. Let u be the solution to ∆u = f with
Dirichlet boundary condition on the unit square and let
vℓ,m be the solution to ∆hv = fℓ,m with vℓ,m = u(xℓ, ym)
on the boundary. Then:

∥u− v∥∞ ≤ Ch2 ∥∥∂4u
∥∥

∞

for some constant C ∈ R, where
∥∥∂4u

∥∥
∞ :=

max
{∥∥∂x

4u
∥∥

∞ ,
∥∥∂y

4u
∥∥

∞

}
Proof. Note that ∆hu = f+ε, with |ε| ≤ C̃h2

∥∥∂4u
∥∥

∞ for
some constant C̃ ∈ R. Since u − v = 0 on the boundary,
by Theorem 37 we have:

∥u− v∥∞ ≤ 1
8 ∥f + ε− f∥∞ ≤ Ch2 ∥∥∂4u

∥∥
∞

□
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2. | Introduction to finite element
methods

The finite element method is one of the most popular, gen-
eral, powerful and elegant approaches for approximating
the solutions of PDEs. Unlike finite difference methods,
it naturally handles complicated domains (useful for en-
gines and aeroplanes) and minimally regular data (such as
discontinuous forcing terms).
There are four basic ingredients in the finite element
method:

1. A variational formulation of the problem in an
infinite-dimensional space V .

2. A variational formulation of the problem in a finite-
dimensional space Vh ⊂ V .

3. The construction of a basis for Vh.

4. The assembly and solution of the resulting linear
system of equations.

The variational formulation
Definition 39. Let Ω ⊆ Rn be an open bounded con-
nected set such that ∂ U is of class C1, f ∈ C(Ω) and
g ∈ C(∂ Ω). Consider the following Dirichlet problem of
finding u ∈ C2(Ω) ∩ C(Ω) such that:{

−∆u = f in U

u = 0 on ∂ U
(6)

Let

V := {v : Ω → R : ∥v∥L2(Ω) + ∥∇v∥L2(Ω) < ∞, v|∂ Ω = 0}

The variational formulation (or weak formulation) of the
problem is to find u ∈ V such that:

ˆ

Ω

∇u · ∇v dx =
ˆ

Ω

fv dx ∀v ∈ V (7)

Remark. The variational formulation can be obtained by
multiplying Eq. (6) by v and using the ?? ??.

Theorem 40. If f ∈ C(Ω), then the solutions to Eq. (7)
are C2(Ω).

Lemma 41. If u ∈ V is a solution to Eq. (7), then u is a
solution to Eq. (6).

Proof. Note that ∇u·∇v = div(v∇u)−v∆u. Thus, using
the ?? ?? we have:

0 =
ˆ

Ω

∇u · ∇v − fv dx

=
ˆ

Ω

v(−∆u− f) dx +
ˆ

∂ Ω

v∇u · n ds

=
ˆ

Ω

v(−∆u− f) dx

because v = 0 on ∂ Ω. Now using the ?? ??, we conclude
that we must have −∆u = f in Ω. □

Definition 42 (Galerkin approximation). Let Vh ⊂ V
be a finite-dimensional subspace of V . The Galerkin ap-
proximation of Eq. (7) is to find uh ∈ Vh such that:ˆ

Ω

∇uh · ∇vh dx =
ˆ

Ω

fvh dx ∀vh ∈ Vh (8)

Construction of function spaces
Definition 43 (Mesh). A mesh is a geometric decompo-
sition of a domain Ω into a finite collection of cells {Ki}N

i=1
such that:

1. Int(Ki) ∩ Int(Kj) = ∅ for all i ̸= j.

2.
⋃N

i=1 Ki = Ω.
The cells are usually chosen to be n-simplexes or n-
parallelepipeds.
Definition 44. The finite element method (FEM) is a
particular choice of Galerkin approximation, where the
discrete function space Vh is:

Vh := {v ∈ C(Ω) : v is piecewise linear when restricted
to a cell}

Note that the functions in Vh are uniquely determined by
its values at the vertices of the cell because of the unicity
of the interpolating polynomial. The vertices of the cells
are called nodes.
Definition 45. Given the locations xi of the M nodes in
Int Ω, we define the nodal basis (ϕ1, . . . , ϕM ) as the func-
tions ϕi such that:

ϕi(xj) = δij

Lemma 46. The nodal basis is indeed a basis of Vh.
Proof. Let v ∈ Vh. Then, v can be written as:

v =
M∑

i=1
v(xi)ϕi

Since it is uniquely determined by its values at the nodes,
the equality holds. So, ⟨ϕ1, . . . , ϕM ⟩ = Vh. Furthermore,
if we have

∑M
i=1 ciϕi = 0, then evaluating at xj we have

cj = 0 ∀j = 1, . . . ,M . □

Linear algebraic formulation
Proposition 47. Given a mesh of Ω, consider the space
Vh ⊂ V and its associate nodal basis. Suppose:

uh =
M∑

i=1
uiϕi vh =

M∑
i=1

viϕi

Then, if u = (u1, . . . , uM )T we have:
Au = b

where A = (aij) and b = (bi) are defined as:

aij =
ˆ

Ω

∇ϕi · ∇ϕj dx bi =
ˆ

Ω

fϕi dx

The matrix A is usually called the stiffness matrix and b
the load vector.
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Proof. Since, uh ∈ Vh, and using the linearity of the inte-
gral we have: ˆ

Ω

∇uh · ∇vh dx =
ˆ

Ω

fvh dx

M∑
i=1

vi

ˆ

Ω

∇uh · ∇ϕi dx =
M∑

i=1
vi

ˆ

Ω

fϕi dx

As this holds for all vh ∈ Vh, we have that this is equiva-
lent to ˆ

Ω

∇uh · ∇ϕi dx =
ˆ

Ω

fϕi dx

for i = 1, . . . ,M , which implies:
M∑

j=1
uj

ˆ

Ω

∇ϕj · ∇ϕi dx =
ˆ

Ω

fϕi dx

□

Remark. Solving this system of linear equations we ob-
tain the approximation by finite elements of the Dirichlet
problem for the Poisson equation (Eq. (6)). Note that the
approximate solution is a piecewise linear function which
may not be differentiable at the vertices of the cells. Even
so, the approximate solution converges to the exact solu-
tion as the mesh is refined.
Remark. On the computation of the coefficients aij we
should proceed as follows:

aij =
N∑

m=1

ˆ

Km

∇ϕi · ∇ϕj dx

Note, however, that many of these integrals will be zero.
Indeed, if {Pi}i=1,...,M are the nodes of the mesh and
Pi /∈ Km for some i, then φi = 0 on the nodes of Km, and
therefore φi = 0 and ∇φi = 0 on Km. Thus, we only need
to compute the integrals for Km such that Pi, Pj ∈ Km.
For these (a priori) non-zero integrals, we use a reference
n-simplex to compute them.

Proposition 48. Let S be an n-simplex with vertices at
Q0 = 0, Qi = ei (thought as a point), i = 1, . . . , n, where
ei is the i-th vector of the canonical basis of Rn. Consider
the FEM method for the Eq. (6). Then:
ˆ

Km

∇φKm,ℓ·∇φKm,k dx = dm

n! ∇ψℓ

(
Dσm

TDσm

)−1
∇ψk

T

where σm is the affine transformation that carries the ref-
erence simplex S onto Km, dm = |det Dσm|, ϕKm,ℓ denote
that basis function such that evaluates to 1 at the ℓ-th ver-
tex of Km (with an ordering fixed), ℓ = 0, . . . , n, and:

ψk(x) =
{

1 −
∑n

i=1 xi k = 0
xk k = 1, . . . , n

Proof. Note ψk(Qk) = δij and so by the unicity of the in-
terpolation we have φKm,ℓ ◦ σm = ψℓ, ℓ = 0, . . . , n. Thus,
by the chain rule, ∇ψℓ = ∇φKm,ℓDσm, and so:
ˆ

Km

∇φKm,ℓ · ∇φKm,k dy =
ˆ

S

∇φKm,ℓ · (∇φKm,k)T
dm dx

=
ˆ

S

∇ψℓ(Dσm)−1
[
(Dσm)−1

]T
∇ψk

Tdm dx

= dm

n! ∇ψℓ

(
Dσm

TDσm

)−1
∇ψk

T

where we used that the volume of the n-simplex S is 1/n!
and all the terms inside the integral is constant. □

Remark. With the same idea, the integrals bi can be com-
puted as: ˆ

Km

fφKm,ℓ = dm

ˆ

S

f ◦ σmψℓ

and we use a quadrature formula to approximate over a
triangle.
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