Numerical integration of partial differential equations

1. | Finite difference schemes

Introduction

Definition 1. A linear system of n first order of PDEs
for u(t, z) is a system of the form:

A(t,z)u; + B(t,2)u, = C(t,z)u+ D(t, x)

for certain matrices A, B, C,D € M (R). The system is
called hyperbolic if A~'B is diagonalizable.

Definition 2. Let n € Ny m € Z, h,k > 0 and u :
R? — R? be a function. We define u?, := u(t,,rm),
where (tn,zm) = (nk,zo + mh), zg € R. We de-
note by v}, an approximation to u],,. The set of points
G :={(tn,xm) :n €N, m € Z} is called a grid.

Definition 3. Let G be a grid. A finite difference scheme

is a function
v G — R

(tny Tim) —> VI,

that aims to approximate u?, where u : R? — RY is

a function. Here v?, is a function of v.7, m € Z,
j = 0,...,J —1. The number J is called the number
of steps. If J = 1, we say that the scheme is a one-step
scheme. Otherwise, we say that the scheme is multistep.

Proposition 4. Consider the one dimensional homoge-
neous traffic equation of constant coefficients

(1)

where a € R and f is a function. The following are satis-
fied:

up + aug = f

1. Forward-time forward-space (FTFS):

n

n+1 _ n . n
S LT O (k) + O (h) = £,

2. Forward-time backward-space (FTBS):
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n

m=L L O(k)+O(h)=f"

3. Forward-time central-space (FTCS):

n+l _ ,n n _an
iz 7 i +aum+12hum_1 +0(k)+0 (h?*) = f1

4. Backward-time central-space (BTCS):

n+1
=40 (k)40 (h?) = fi™!

n+1 n n+l
U = — Uy +a Up+1 U
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5. Leapfrog scheme:

n+l _ ,n—1
U U

2k

n n
um+1 — Upy—1
2h

+a +

+0(k*) + 0O (h?) = fr

6. Lax-Friedrichs scheme:
n+1 1 n n
U — 5 (Up g + Uy, q) auﬁzﬂ — U1
k 2h

+O(k)+0(}:>+0(h2)=fﬁq

+

Sketch of the proof. Use the Taylor expansion of u(t, ).
O

Corollary 5. Consider the traffic equation of Eq. (1) and
let A := k/h. Then, we have the following schemes for
approximating the solution:

1. Forward-time forward-space

ottt = (14 Aa)vl, — vl o + kf2

2. Forward-time backward-space

o = (1 = Xa)v™ + Xav”_, + kf"

3. Forward-time central-space

Aa Aa
1
Ut = v, — 7”34—1 + 7”%—1 +kf,
4. Backward-time central-space
Aa Aa
vt =g, — 7”3#1 ?U:lntﬁ +Efm

5. Leapfrog scheme:

ot = ot — Xavl L+ Al + kf

6. Lax-Friedrichs scheme:

1
U:LnJrl = 5 ((1 - )‘a)vfn—l-l +(1+ Aa)”fn—l) +kf,

Convergence and consistency

Definition 6. A stability region is a set A C R>02 such
that (0,0) € A/, that is (0,0) in an accumulation point.

Definition 7. Let (G;) be a sequence of grids such that

the time and space steps kj,h; > 0 of each one sat-

isfy lim k; = lim h; = 0. We say that a finite differ-
j—oo J

— 00
ence scheme v approximating a PDE with initial condi-

tion ug(x) is unconditionally convergent if for any solution
u(x,t) to the PDE we have:

e For all x € domug and all increasing sequence
(m;) € N such that (-,z,,,) € Gj and lim z,,, = ,
J

— 00

s .0
we have lim v, = uo(z).
j—oo J



e For all (¢,2) € domu and all increasing sequences
(mj),(n;) € N such that (t,,,z,,) € G; and

. _ : n; o __
lim @p,, = 2, lim ¢y, = t, we have lim vj =

u(t, x).
The scheme is conditionally convergent if Vj € N,
(kj, hj) € A, for some stability region A.

Definition 8. Let P be a partial differential operator and
f be a function. Given the PDE Pu = f and a finite differ-
ence scheme Py, v = Ry pf with Ri, 1 = 1, we say that
the scheme is consistent with the PDE if for any smooth
function ¢(t,x) we have:

k,lflgo Ry nPp— Prpp =0

where the convergence is pointwise at each point (¢, ) in
the domain of solutions. We say that the consistency is of
order (p,q) in time and space if:

lim Rk,hp¢ — Pk,h¢ = O (kp) + O (hq)
k,h—0

The consistency is a conditional consistency if the limit is
for (k,h) € A, for some stability region A. In that case,
it makes sense to say that the consistency is of order r in
k= A(h) if:

hHlRA )hP@ — Pyxny,n@ = O (h")

Lemma 9. The Lax-Friedrichs scheme is consistent if and

only if hm h— =0.
k—0 k

Remark. The consistency is not enough to guarantee con-
vergence. For example, consider the PDE w; + au, = 0,
with @ > 0. The forward-time forward-space scheme is
consistent with the PDE, but it is not convergent if we take
the initial condition ug(z) = 1{z<o} on the domain [-1,1].
Indeed, looking at Fig. 1 we see that from some instant
of time, the solution will be 0 everywhere, which cannot
be possible. In that case we should use the forward-time
backward-space scheme, which is convergent. The usage
of this latter method in these cases is called the upwind
condition.

#0 | u=20 x
1)7&0 v=20

Figure 1: Infringement of the upwind condition. The ar-
rows inward a bullet come from the points from which it
depends.

Stability

Definition 10. Let P, ;v = 0 be a finite difference
scheme with J steps, that is, a scheme in which we need
the last J values of v™ to compute the next one, and A be
a stability region. We say that it is stable if given T > 0,
there exists Cr > 0 such that for any grid with (k,h) € A
and for any initial values v/, ,m € Z, 7 =0,...,J — 1 we
have

J—1
SivilP<or S S v

mez =0 mez
for all n € N such that 0 < nk <T.
Lemma 11. If a finite difference scheme of the form of
Vi = avi + Vi

satisfies |a| + |B] < 1, then it is stable.

Sketch of the proof.
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Theorem 12 (Courant-Friedrichs-Lewy condition).
Consider the traffic equation

u +Au, =0

with A € M,(R) and a finite difference scheme of the
form

Vi = AVl BV AV
with k/h = A = const. Then, if the scheme is convergent,
we have |a;A\| < 1 Va; € o(A).

Proof. Tt suffices to study only the case ¢ = 1. Suppose
laX| > 1 for some eigenvalue a of A and let ug(xz) =
cl {lol> k) with ¢ = (c1,...,¢4) and ¢; # 0. As shown
in ﬁgure Flg 2, by the form of the scheme, the numeri-
cal solution at (¢,z) = (1,0), v#, will only depend on v?,
with |m| < n. But taking n such that kn = 1, we have
that |m|h < nk/X < 1/X. So v} will depend on z for
|z] < & < la|. Thus, in general we will have the numerical
solutlon equal to 0, whereas the exact solution will not be.
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Figure 2: Finite difference scheme (blue) versus the char-
acteristic lines (red). The arrows inward a bullet come
from the points from which it depends.

O

Remark. The idea behind this is that one cannot obtain
convergence of the scheme if the numerical domain does
not include the analytic domain.

Semidiscrete Fourier transform

Definition 13 (Semidiscrete Fourier transform).
The semidiscrete Fourier transform of a function v €
(?(RZ), i.e. defined in a mesh of step-size h > 0, is the
function v € L? ([—%, %]) defined as the Fourier series:

BE) = 3 vme e
meZ
where
7/h
h .
o= [ O dg
—7/h

This latter formula is called inverse semidiscrete Fourier
transform.

Proposition 14 (Semidiscrete Parseval identity).

Let h > 0 and v € L2 ([—%,%]) be the semidiscrete

Fourier transform of v € ¢2(hZ). Then

7/h
2 h / e 2
D loml =0 [ 0] d
meZ —x/h
Proof.
w/h 7/h
o [ Bera= ot [ 3 et
27 21 men
—m/h —n/h m,ne’

w/h

_ % / S o[ de

—n/h meZ
= loml”
meEZ

where in the second step we exchanged the integral and
the sum in basis of the Cauchy-Schwarz inequality for se-
quences and the fact that v € (2(hZ). O

Von Neumann stability analysis

Definition 15. Let P, v = f be a finite difference
scheme. For each n € N, let o € L? ([—%, %]) be the
function defined as the Fourier series:

€)= 3 e

meZ
w/h
h .
Hence v,, = o / " (€)el™"E d¢. We denote by v" :=
™
—x/h

(v) € ¢*(Z) and ||v”||h2 = h||v”\|22. We define the am-
plification factor as the 2m-periodic function in 8, g(0, k, h)
that satisfies:

0" (E) = g(&h, k, h)T" (€)

Theorem 16. Let Py v = f be a one-step finite differ-
ence scheme with constant coefficients whose amplification
factor g(@, k, h) is continuous on R x A, where (k,h) € A
is a stability region. Then:

1. If 3K > 0 such that V0 € R and V(k, h) € A we have
lg(8,k,h)| <14 KE, then the scheme is stable in A.

2. If VK > 0 and Ve > 0 30 € R and 3(k,h) € A
with k < e such that |g(0,k, h)| > 1 + Kk, then the
scheme is unstable.

Proof.
1. We have that
0"(€) = (g(&h, k, h))"0°(€)

Therefore applying twice the 14 Semidiscrete Parse-
val identity:

7/h
h ~n
S =g [ P
™
meEZ —x/h
7/h
2n h ~0 2
<t iR [ ) ae
—n/h
=1+ KR Y |0
meEZL

And note that VT > 0 with nk < T we have that:

T 1 2KT
1+ Kk)> < (1+ Kk)*F = ((1 v Kk)ﬂ)

< KT = O

1/z _

because sup, (1 + ) e.



2. Let T > 2, K > 0, and 0, h, k be the ones of the
hypothesis with £ = min(1, +). Hence, k¥ < 1 and
Kk < 1. By the continuity of g, 301,05 € R such
that |g(l9 k,h)| > 1+ Kk V0 € [01,0]. Let 0°(¢) :=

m [91 o] and denote v° := (vY,) € (*(Z)
its inverse transform. An easy check shows that
|[v°]| = 1. Now take n := [T'/k]. Thus:

7/h
ot = e [ R ag
2 2
—n/h
7/h
h n 2
~ o [ latne kPl ag
7
—n/h
> (14 Kk)*"
> (1+ Kk)t

Y

(1+Kk )K
92K
92

“[le°,”

where in the forth inequality we used that n >
T/k—1= TT_" > 1 and in the penultimate step is
because inf,cpo,1) (1 + z)'/e
is unstable.

= 2. Hence, the scheme

O

Corollary 17. Let P, nv = f be a one-step finite differ-
ence scheme with constant coefficients whose amplification
factor g(0,k, h) is continuous on R x A, where (k,h) € A
is a stability region. Then:

1. If |g(0,k,h)] < 1 VO and V(k,h) € A, then the
scheme is stable.

2. If 30y € R and 6 > 0 such that |g(fg, k, k)| > 1+ 0
V(k,h) € A, then the scheme is unstable.

Lemma 18. Let P, v = f be a one-step finite dif-
ference scheme with constant coefficients. Impose that
o = g(0,k,h)"e™ for certain function g(-, k,h). Then,
g is the amplification factor of the scheme.

Proof. We have:

(e =

E Un+1 —imh§

mEZ

_ Z g(@,k:, h)n+1eim9€—imh§

meZ

O

Proposition 19. Consider the PDE of Eq. (1) with
A = k/h = const. Then:

e The FTFS scheme is stable if and only if a\ €
[-1,0].

o The FTBS scheme is stable if and only if aX € [0,1].

e The FTCS scheme is always unstable.
e The BTCS scheme is unconditionally stable.

e The Lax-Friedrichs scheme is stable if and only if
lax| < 1.

Proposition 20 (Lax-Wendroff). Consider the traffic
equation of Eq. (1). The Lax- Wendroff scheme is:

uptt —ul, n au%-;-l — U1 a?k up, g — 2up, +up, g
K 2h 2 h2
n+1 n k n _ £
:fm 2+fm_azfm+1hfm—1 +O(k2)+0(h2)

Sketch of the proof. Expand u(t 4+ k,z) in Taylor series
and use that:

U = —auy + f

af:c +ft

Uty = a Ugy —
(]

Proposition 21. The Lax-Wendroff scheme is a one-step
method that has order of consistency 2, and it is stable if
and only if |a)| < 1.

Sketch of the proof. Show that Py ,¢— Ry P¢ = O (h2) +
(@) (k2) using a Taylor expansion and is stable if aA < 1.
For the stability, assume v?, = g"e™?. We need to study
the homogeneous part.
g — i6
0=t g (e
g=1—alisinf 4 a* *(cosf — 1)

—igy _ *
) 2h2 €

o 0 0\?

g=1—2alisin 5 cos 5~ 2a%\? (Sin 2)

Hence:
A% 0\ *
lg]* =1 — 44>\ (Sin 2) + 4a*\ <sin 2> +
0 6\’
+ 4a\? <Sin 5 Cos 2)
o\ 4
=1+4a*)*(1 — a®\?) <sin 2)

If |aA| < 1, then |g]> < 1 because 22(1 — 22) < 1/4 for

€ [-1,1]. If |aA| > 1, then by taking § = 7 we have
g > 1. O

Proposition 22 (Crank-Nicolson). Consider the traf-
fic equation of Eq. (1). The Crank-Nicolson scheme is:

1 n+1 n+1 u™
Uy Uy Uy Uy — Uy
ta =
k 4h
n+1 n
It

5" O (F) +0 (1)

Note that it is an implicit scheme.

Proposition 23. The Crank-Nicolson scheme is a one-
step method that has order of consistency 2, and it is
unconditionally stable.



Let’s start with
we can simplify

Sketch of the proof. Let P = % + a%.

the consistency. Using ¢ = ¢(t,z) = v},
the first term as:

k

=6+ 0w+ O ()
For the second term note that:
ot+k,x+h)=0ot+kx)+ho,(t+k x)+
+ h;%x(t +k,2) + 0O (h?)
—¢(t+k,x—h)=—d(t+k,z)+hoy(t +k,x)—

h2
- ?d)mr(t + k, SC) + 0] (hg)

h? .
¢(t,$ + h) = ¢+ hoy + ?d)mm +0 (hs)
h2
7¢(t’ T = h) =—¢+ho, — ?(bzz +0 (hs)
Summing these equations and multiplying by g we get:
5 (0040 (t4+k, 2)]+0 (h?) =agu+Shou+0 (h2)+0 (k?)
Thus:
k a
Pind = 6u + age + 5éu + 5kew + 0 (k%) + O (r)

On the other hand:

(bt(t + k,:L') + a¢m(t+ kvx) + ¢t + a¢:c
2

1
= b0+ ady + Shéu + gkasxt +0 (k)

Ry nPo =

Finally:
Pend — RpnPo = 0O (k%) + O (h?)

For the stability, substitute v?, = g"e!™’ in the scheme.

Simplifying we get:

14 %sing
9= 1-— “TA‘ sin 0
which has always modulus 1. O

Definition 24. Given scheme Py v = f, usually we can-
not use the recurrence to compute the last term of the (fi-
nite) grid, with n € {0,..., N} and m € {0,..., M}, v},
for each n € N. Thus, the numerical boundary condition
is used in these cases. A numerical boundary condition of
order p is an extrapolation of order O (hP) of the last term
of the grid in terms of the orther ones. Each wu(t,z — ¢h)
can be expressed as:

p—1 k ok 1k
—1)%Rh
u(t,x — th) = :%W + O (hP)
k=0 ’

If we want to get a linear approximation of the form

u(t,z) = Z Apu(x — kh)
k=1

we need to solve the following linear system:

11 1 A 1
12 (p—1) A2 0
1 ot p—-1)"") \\, 0

Note that the solution always exists because the matrix is
a Vandermonde matrix. For example, numerical boundary
conditions of order 1, 2 and 3 are respectively:

n _ .n
Unr = V-1
n __ n n
Unp = 2Uhr1 — Voo
n __ n n n
U = 3Upp_q — 3Up_o + Upy_g

Proposition 25. Consider the following initial value and
boundary problem with constant coefficients:

up = L(u)
u(0,X) = ug(x) ifx € QCR?
u(t,x) = g(t,x) if (¢,x) € [0,00) x 9 C [0,00) x N

2
where L is a differential operator and g is a functi(gn).
Let M(£2) be the set of indices that we compute v =
(v )mem(). Consider a finite difference scheme of the
form

3)

where By and B; are matrices and f™ is a vector. Then,
the scheme is stable with stability region A C Rxo x R>q?
if and only if VI' > 0 3C7 > 0 such that V(k,h) € A and

Vvl € N with 0 < £k < T we have H(Bl_lBo)eH < Cyp.

Bv't! = Bov" + "

Proof. An easy check show that if v¥ and w® are such
that satisfy the recurrence of Eq. (3), then v/ —w’ =

A(v? —wY), where A := (Bl_lBO)E.

=) We will prove by contradiction. Suppose that
3T > 0 such that VCr > 0 exist (k,h) € A and

£ N with 0 < 0k < T such that |[(B:~'Bo)|| >

Cr. Then, taking x* such that ||x*|| = 1 and
|A|l = ||Ax*|| we have that for any v, defining
w0 := v% + x* we have that:

HVE—WZH = [[AX*|| = ||A] > CTHVO—WOH

where the first equality follows from expanding
recursively the norm Hvz —w! || and using the
scheme Eq. (3). Hence, the scheme is not stable.

<=) Note that if
v = wil| < Cr [[v* = v
then necessarily ||A|| < Cr.
O

Theorem 26 (Lax-Richtmyer equivalence theo-
rem). Consider the problem of Eq. (2) and define

T" := Bllln+1 — Bou” —f"

Suppose that:



L |T" = O(k?+ |h||?) independent of n and
V(k,h) € A and all (¢t,z) € [0,T] x Q (consistency
condition)

2. V(k,h) € A, B is invertible and HB1_1|| < C1k for
certain C7 > 0 independent of (k, h).

3. The scheme is stable.

4. v is such that [[v?—u®|| = O(K* +|h|?) uni-
formly for (k,h) € A and (¢,2) € [0,T] x Q.

Then, Vn € N with 0 < nk < T we have:
Iv" = u"| = O (k" + |[]|")
uniformly for (k,h) € A and (¢,2) € [0,T] x Q.
Proof. We have that
Bv' =Bov" 147!
Bju” = Bu" ' "t T
Then if A = B; !B, we have that

n—1

Vvl —u” = An(VO _ uO) _ ZAn—l—éBl—lTZ
£=0
And so:
n—1
v —u"| < CrO (K + |b]|") + Y CrCikO (K + |h]")
£=0

where we have used Theorem 25 for noting that V¢ =
0,...,n—1 HA"_l_EH < Cr. Finally, observe that kn < T

and the uniformity of the O (k? + ||h||?) allows us to con-
clude the proof. O

Remark. Tt can also be shown that the consistency and
convergence imply stability.

Theorem 27. Consider a scheme of J steps for a 1st-
order-in-time linear PDE of constant coefficients whose
amplification factor is g. Let ®(0, g) be the amplification
polynomial, that is the polynomial that satisfies g of degree
J — 1. Then, the scheme is stable if and only if:

o for any root g;(#) of ® we have |g;(6)] < 1-
e if 30y and k such that |gi(6p)| = 1, then this root is
simple.

Proposition 28. The Leapfrog scheme for the one-
dimensional wave equation of Eq. (1) is stable if and only
if JaA| < 1.

Proof. An easy check (substituting v* = ¢g"e™? into the
scheme) shows that the amplification polynomial is:
®(0,9) = g*> + g(2aAisinf) — 1

The roots are:

g+ = —aXisind £ /1 — a2)\2(sin )

If [aX| < 1, then |g+|* = 1 and the two roots are simple
VO € R. If [aA| > 1 and § = 7, then either |g;| > 1 or
|g—| > 1 and the scheme is unstable. Finally, if |aA| = 1
and 6 = 7, then the scheme is unstable because there is a
double root. g

Second order PDEs

Definition 29. Consider a second order PDE of the form:

Aug + 2Busy + Cgy + Duy + Euy + Fu=G (4)
where A, B,C,D,E, F,G : R?> = R are smooth functions.
The ivp defined in a curve v(s) = (¢,2) = (f(s),9(s)) is
given by the extra conditions:

which are tied to the compatibility condition h’ = ¢ f'+1pg’
that follows from the chain rule. The characteristic curves
are the curves from which we cannot find the highest or-
der derivatives of u from the initial conditions and the
PDE. Differentiating u;(s) and u,(s) we get the system of
equations for g, Uy and Ugy:

Autt—l—QBum—l-Cum :G—D¢—E¢—Fh
flue + g'ue = ¢
f/utm + g/uzm = 7//

The determinant of the matrix associated of the system is
A= A(g’)2 —2Bf'¢' + C(f’)z. Equating this determinant
to zero and using the chain rule we get:

dz\? dx
Al = | —-2B— —
(dt> dt +0=0

The PDE is called elliptic if AC — B? > 0, hyperbolic if
AC — B? < 0 and parabolic if AC — B? = 0.

Definition 30. Consider a finite difference scheme with
J steps for a 2n order homogeneous PDE and A be a sta-
bility region. We say that it is stable is given T > 0, there
exists C'r > 0 such that for any grid with (k,h) € A and

for any initial values v{,, m € Z, j =0,...,J — 1 we have
J—1 )
5 .
SO IvilF < @t 30N |[vh
mez j=0 mez

for all n € N such that 0 < nk <T.

Theorem 31. Consider a finite difference scheme with J
steps for a 2n order homogeneous PDE whose amplifica-
tion factor is g and ®(0, g) is the amplification polynomial.
Then, the scheme is stable if and only if:

o for any root g;(#) of ® we have |g;(6)| < 1.

o if 30y and k such that |gx(6p)| = 1 then this root is
at most double.



Parabolic equations

Proposition 32. Consider the heat equation u; = Qug,+
f. We have the following schemes for approximating the
solution:

1. Forward-time central-space:

U:znﬂ — o :avm —2v) + vy +fm
k h?

2. Backward-time central-space:

1 1
— o opth = 20mtt 4ot

ot N
k h2

fn+1
m

3. Crank-Nicolson scheme:

vt a0 — 208
k 2 h2
6] ’U:.,l"bill 21};?_1 + 'qutll l(fn—o—l + fn)
2 h? 2
4. Leapfrog scheme:
U;Ln+1 _ ’LL:L,;l _ avm 2’U + Um 1 + fn
2k h?

5. Du-Fort-Frankel scheme:

optt — ot a”ﬁwﬂ [t ot + o))

m—1
2k N h? /i

Elliptic equations

Definition 33. Let Pu = f be an elliptic PDE on Q. We
define the following boundary conditions on 0 :

1. Dirichlet: uw= f

. Ou _
2. Neumann: 5= =g

3. Robin: au—i—a“ =h

Definition 34. Consider the following scheme for the
Poisson equation ug, + uyy = f:

200m +Vo—1,m . Vemt1 — 2V0m + Vem—1
+ :fﬁ,m

h? h2
()

where we have chosen the same step size h for both = and
y directions. We define the discrete laplacian as:

Ve+1,m —

vé+1m+”£ 1m+vlm+1+vém 1 _4U€m
h2

Theorem 35 (Discrete maximum principle). Con-

sider the Poisson equation ugy + uyy = f, let v = (vp,n,)

be the scheme of Eq. (5) and suppose that Apv > 0 on a

region 2. Then:

(Arv)gm

maxv = max?v
b5} o0

Sketch of the proof. The condition Apv > 0 is equivalent
to:
1
Ve,m S Z(UZ—Q—l,m + Ve—1,m + Ve, m+1 + U@,m—l)

Now note that if there is a maximum in the interior of the
region, its four neighbours must be equal to it. O

Corollary 36 (Discrete minimum principle). Con-
sider the Poisson equation g, + uyy = f, let v = (ve,m)
be the scheme of Eq. (5) and suppose that Apv < 0 on a
region 2. Then:

minv = minwv
Q o0

Proof. Apply 35 Discrete maximum principle to —v.  [J

Theorem 37. Consider the Poisson equation g 41y, =
f, let v = (vgm) be the scheme of Eq. (5) defined on
Q=1[0,1% If v = 0 on 9N then:

1
ol < 5 18R]

Proof. From (Apv), ., = fe,m in the internal nodes of the
grid, we have that |Ahv| <||fll.- Now consider the non-
negative function wy ., defined as:

[0 =1/2)" + (ym — 1/2)°

=

Wy m =

An easy check shows that (Apw), ,,, = 1and [|w|| w5 q) =
4. So on the one hand, Ap(v — || f|l, w) < 0 and by the
36 Discrete minimum principle:

—1fllow 11l

Hw||L°°(8Q) < Vem — We,m

And on the other hand, Ay (v + || f]l

35 Discrete maximum principle:

w) > 0 and by the

[ lloo 10l L 0.0y = vem
Thus:
lolloe < Nl oy 1511 = 5 1011
O
Theorem 38. Let u be the solution to Au = f with

Dirichlet boundary condition on the unit square and let
vg,m be the solution to Apv = fi m With v = u(ze, Ym)
on the boundary. Then:
u— vl <Ch? H84u||oo
for some constant C € R,
4 4
max { [0 ul| ., |9, ul| . }

Proof. Note that Apu = f+4¢, with |g| < Ch? H64uHOO for
some constant C' € R. Since u — v = 0 on the boundary,
by Theorem 37 we have:

where ||84u||oo =

1
lu=vllo < 2 IIf +e = fllo < CR?[|0%ul|



2. | Introduction to finite element

methods

The finite element method is one of the most popular, gen-
eral, powerful and elegant approaches for approximating
the solutions of PDEs. Unlike finite difference methods,
it naturally handles complicated domains (useful for en-
gines and aeroplanes) and minimally regular data (such as
discontinuous forcing terms).

There are four basic ingredients in the finite element
method:

1. A variational formulation of the problem in an
infinite-dimensional space V.

2. A variational formulation of the problem in a finite-
dimensional space V, C V.

3. The construction of a basis for Vj,.
4. The assembly and solution of the resulting linear
system of equations.
The variational formulation

Definition 39. Let 2 C R” be an open bounded con-
nected set such that QU is of class C', f € C(Q) and

g € C(09). Consider the following Dirichlet problem of
finding u € C2(2) N C(Q) such that:
—Au=f inU (6)
u=0 on 0U

Let
Vi={v: Q= Rl 2q) + VOl 2(q) < 00,v[00 =0}

The variational formulation (or weak formulation) of the
problem is to find u € V' such that:

/Vu~Vvdx:/fvdx YoeV (7)

Remark. The variational formulation can be obtained by
multiplying Eq. (6) by v and using the 7?7 ?7?.

Theorem 40. If f € C(Q2), then the solutions to Eq. (7)
are C2(Q).

Lemma 41. If u € V is a solution to Eq. (7), then u is a
solution to Eq. (6).

Proof. Note that Vu-Vv = div(vVu)—vAu. Thus, using

the 77 7?7 we have:

O:/Vu-vafvdx

v(—Au— f dx+/vVu~nds
2Q

v(—Au — f)dx

:o\ :0\

because v = 0 on 0€2. Now using the ??7 7?7, we conclude
that we must have —Au = f in Q. O

Definition 42 (Galerkin approximation). Let V), C V
be a finite-dimensional subspace of V. The Galerkin ap-
prozimation of Eq. (7) is to find wy € V}, such that:

/Vuh Vo, dx = /fvh dx Vv, eV, (8)

Construction of function spaces

Definition 43 (Mesh). A mesh is a geometric decompo-

sition of a domain €2 into a finite collection of cells { K}
such that:

1. Int(K;) NInt(K;) = @ for all ¢ # j.

2. UY, Ki = Q.

The cells are usually chosen to be n-simplexes or n-
parallelepipeds.

Definition 44. The finite element method (FEM) is a
particular choice of Galerkin approximation, where the
discrete function space V}, is:

Vi, i={v € C(Q) : v is piecewise linear when restricted
to a cell}

Note that the functions in V}, are uniquely determined by
its values at the vertices of the cell because of the unicity
of the interpolating polynomial. The vertices of the cells
are called nodes.

Definition 45. Given the locations x; of the M nodes in
Int Q, we define the nodal basis (¢1,...,dnr) as the func-
tions ¢; such that:

¢i(x;) = bij
Lemma 46. The nodal basis is indeed a basis of V.

Proof. Let v € V},. Then, v can be written as:

M
= Z v(x;)P
i=1

Since it is uniquely determined by its values at the nodes,
the equality holds. So, (¢1,...,¢n) = Vi. Furthermore,

if we have Zf\il c;¢; = 0, then evaluatmg at x; we have
c;=0Vj=1,..., M. O

Linear algebraic formulation

Proposition 47. Given a mesh of €, consider the space
Vi, C V and its associate nodal basis. Suppose:

M M
up = Zui¢i vp = Z’Uz'fbi
i—1 i1

Then, if u = (ug,... ,uM)T we have:
Au=b>
where A = (a;;) and b = (b;) are defined as:

Q5 = /V¢1 . V¢] dx
Q

b = !f@- dx

The matrix A is usually called the stiffness matriz and b
the load vector.



Proof. Since, up € V5, and using the linearity of the inte-
gral we have:

/Vuh-Vvth:/fvhdx
Q Q

M
> v | Vup - Vidx =Y v [ foidx
/ 2]

i=1

As this holds for all v, € V},, we have that this is equiva-
lent to

/Vuh-ng,»dx: /fqbidx

Q Q

for i =1,..., M, which implies:

M
[ Vo; Voidx = [ fo,d
g_;uﬂ/ ' XQ/ x

O

Remark. Solving this system of linear equations we ob-
tain the approximation by finite elements of the Dirichlet
problem for the Poisson equation (Eq. (6)). Note that the
approximate solution is a piecewise linear function which
may not be differentiable at the vertices of the cells. Even
so, the approximate solution converges to the exact solu-
tion as the mesh is refined.

Remark. On the computation of the coefficients a;; we
should proceed as follows:

N
wi= 3 [ Vo Voix

m:lK

m

Note, however, that many of these integrals will be zero.
Indeed, if {P,};=1,. m are the nodes of the mesh and
P, ¢ K,, for some i, then ¢; = 0 on the nodes of K,,, and
therefore p; = 0 and V; = 0 on K,,. Thus, we only need
to compute the integrals for K, such that P;, P; € K,,.
For these (a priori) non-zero integrals, we use a reference
n-simplex to compute them.

Proposition 48. Let S be an n-simplex with vertices at
Qo =0, Q; = e; (thought as a point), i = 1,...,n, where
e; is the i-th vector of the canonical basis of R™. Consider
the FEM method for the Eq. (6). Then:

d, -1
/ Vi, Vi, . dx = LV, (DamTDam) Vi T
Km

where o, is the affine transformation that carries the ref-
erence simplex S onto K,,, d,,, = |det Doy, |, ¢k, ¢ denote
that basis function such that evaluates to 1 at the ¢-th ver-
tex of K,, (with an ordering fixed), £ =0,...,n, and:

Gr(x) = {1 Sl k=0

Tk k=1,....n

Proof. Note ¢1(Qk) = 0;; and so by the unicity of the in-
terpolation we have ¢g, ¢ 00, =1, £ =0,...,n. Thus,
by the chain rule, Vi, = Vyg, (Do, and so:

/VWKm,e Vg, rdy = /Vme,tz (Ver, ) dndx
Ko S

- / vw(mm)—l[(Dam)‘lrwfdm dx
S

d -1
= ﬁvwf (DUWLTDU"L) Vwk:T

where we used that the volume of the n-simplex S is 1/n!
and all the terms inside the integral is constant. O

Remark. With the same idea, the integrals b; can be com-
puted as:

[ terni=dn [ 100

Km s

and we use a quadrature formula to approximate over a
triangle.
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