
Numerical calculus

1. | Initial value problems
Definition 1. An initial-value problem is said to be well-
posed in the Hadamard sense (or simply well-posed) if it
has existence and uniqueness of solutions, and if it has
continuous dependence on initial conditions and parame-
ters.

One-step methods
Consider the ivp {

x′ = f(t, x)
x(t0) = x0

(1)

For n ∈ N ∪ {0} let tn+1 := tn + h, where h > 0 is called
step size. We would like to create a sequence (x̃n) (mesh-
points) that approximates (in some sense) xn := x(tn)
from a first iterate x̃0 := x0. In this section we will de-
scribe several algorithms that intend to do so. We will
denote fn := f(tn, xn) and f̃n := f(tn, x̃n). Note that
solving Eq. (1) is equivalent to solve the integral problem:

x(t) = x0 +
tˆ

0

f(t, x(s)) ds

Choosing different numerical-integration methods for ap-
proximating this latter integral will lead to different meth-
ods for solving the ivp.

Definition 2. A numerical method is called explicit if the
n-th iterate can be computed directly in terms of some
previous iterates. A method is called implicit if the n-th
iterate depends implicitly on itself.

Definition 3. A one-step method Φ for the approxima-
tion of Eq. (1) can be cast in the concise form

x̃n+1 = Φ(tn, x̃n, x̃n+1, f , h) = x̃n + hϕ(tn, x̃n, x̃n+1, f , h)
(2)

The remarkable fact is that the n-th iterate only depends
on the previous one. The function ϕ is called incremen-
tal function. From here we can define the local truncation
errors as

τ n(h) = xn+1 − xn − hϕ(tn, xn, xn+1, f , h)
h

We define τ(h) as:

τ(h) = sup
n≥1
∥τ n(h)∥

Finally, we define the global truncation error as:

en = xn − x̃n

We can also define the iterates x̃∗
n as defined by:

x̃∗
n = xn + hϕ(tn, xn, xn+1, f , h)

Remark. In reality in Eq. (2) we should add a term of the
form hqεnK with K > 0, q ∈ N and ∥ε∥ ≤ 1 on account of
the approximation errors due to the float-precision arith-
metic. But from here on, we should omit it in order to
simplify the notation.
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Figure 1: Geometrical interpretation of the local and
global truncation errors

Definition 4 (Euler method). Consider the ivp of
Eq. (1). The forward Euler method or explicit Euler
method is defined as:

x̃n+1 = x̃n + hf̃n

The backward Euler method or implicit Euler method is
defined as:

x̃n+1 = x̃n + hf̃n+1

Note that the forward method is explicit, whereas the
backward method is implicit.

t

x

Exact solution
Explicit Euler method with 5 steps
Explicit Euler method with 10 steps
Explicit Euler method with 100 steps

Figure 2: Explicit Euler method for approximating the ivp
{x′ = x, x(0) = 1} with different number of steps.
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Definition 5 (Trapezoidal method). Consider the ivp
of Eq. (1). The Trapezoidal method is defined as:

x̃n+1 = x̃n + h

2
(
f̃n + f̃n+1

)
Definition 6 (Heun method). Consider the ivp of
Eq. (1). The Heun method is defined as:

x̃n+1 = x̃n + h

2
(
f̃n + f(tn+1, x̃n + hf̃n)

)
Definition 7 (Taylor method). Consider the ivp of
Eq. (1) and suppose that f ∈ Cr(R × Rd). The Taylor
method of order r is the method constructed from the Tay-
lor series of the solution x(t). Thus, the Taylor method of
order r is:

x̃n+1 = x̃n +
r∑

k=1

hk

k! x(k)
n

We should then substitute each unknown derivative x(k)
n

by a function of fn. For example the Taylor method of
order 2 would be:

x̃n+1 = x̃n + hf̃n + h2

2
(
f t(tn, x̃n) + D2f(f̃n)

)
Note that the Taylor method of order 1 is precisely the 4
Euler method.

Definition 8. A one-step method for the approximation
of Eq. (1) is said to be consistent if lim

h→0
τ(h) = 0. More-

over, we say that the algorithm has order of consistency
(or order of accuracy, or simply order) p if τ(h) = O (hp).

Definition 9. A one-step method for the approximation
of Eq. (1) is convergent if

lim
h→0

sup
n≥1
∥en∥ = 0

Moreover, we say that the algorithm has order of conver-
gence p if ∥en∥ = O (hp).

Remark. Note that in a consistent method the difference
equation for the method approaches the ODE as the step
size goes to zero, whereas in a convergent method is the
solution to the difference equation that approaches the so-
lution to the ODE as the step size goes to zero.

Theorem 10. Consider a consistent one-step explicit
method such that its incremental function ϕ is Lipschitz
continuous (with constant L) with respect to x. Then:

∥en+1∥ ≤
eL(tn+1−t0) − 1

L
τ(h)

Proof.

∥en+1∥ ≤
∥∥xn+1 − x̃∗

n+1
∥∥+

∥∥x̃∗
n+1 − x̃n+1

∥∥
≤ h ∥τ n+1(h)∥+ ∥en∥+

+ h ∥ϕ(tn, xn, f , h)− ϕ(tn, x̃n, f , h)∥
≤ h ∥τ n+1(h)∥+ (1 + hL) ∥en∥

Iterating the process (note that e0 = 0) we have:

∥en+1∥ ≤ h[1 + (1 + hL) + · · ·+ (1 + hL)n]τ(h)

= (1 + hL)n+1 − 1
L

τ(h)

≤ eL(tn+1−t0) − 1
L

τ(h)

where the last inequality follows from 1 + x ≤ ex. □

Corollary 11. Consider a one-step method with order of
consistency p such that its incremental function ϕ is Lip-
schitz continuous with respect to x. Then, if tn ≤ T for a
fixed T ∈ R, the convergence of the method has also order
p.

Lemma 12. Euler method has order of consistency 1,
whereas Heun method has order of consistency 2.

Proof. Using the Taylor series expansion of x(t) we have
that:

x(t + h)− x(t)− hf(t, x)
h

= hx′′(t)
2

Hence, Euler method has order 1. For the Heun method
we will describe a general procedure for constructing meth-
ods of arbitrary order. Let

k1 = fn k2 = f(tn + c2h, xn + ha21k1)
xn+1 = xn + h(b1k1 + b2k2) + O

(
h3)

Expanding k2 we have that:

k2 = f + c2hf t + a21hD2f(k1) + O
(
h2)

So:

xn+1 = xn+(b1+b2)hf +h2(b2c2f t+b2a21D2f(f))+O
(
h3)
(3)

But from x′ = f(t, x) we have:

xn+1 = xn + hf + h2

2 (f t + D2f(f)) + O
(
h3) (4)

Matching coefficients from Eqs. (3) and (4), we get the
desired result. □

Remark. For a method of order s (see Theorem 14), just
start with r ≥ s values k1, . . . , kr of the form:

ki = f(tn + csh, xn + h(as1k1 + · · ·+ ai(i−1)ki−1))

for i ≥ 2 and k1 = fn, and impose:

xn+1 = xn + h

r∑
i=1

biki + O
(
hs+1)

There are tables that determine the smallest r necessary
for a given order s (see Table 1).
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Runge-Kutta methods
Definition 13. The family of s-stage Runge-Kutta meth-
ods (or RK methods) is defined by

ϕ(t, x, f , h) = x + h

s∑
i=1

biki

where the stages ki ∈ Rd are the solutions to the coupled
system of (generally nonlinear) equations

ki = f

t + cih, x + h

s∑
j=1

aijkj

 i = 1, . . . , s

where ci :=
∑s

j=1 aij for i = 1, . . . , s. Denoting c = (ci),
b = (bi) and A = (aij) we can construct the Butcher
tableau

c A
bT

to summarize the information about the method. The
method is explicit if aij = 0 ∀j ≥ i. Otherwise, it is
implicit.

Lemma 14. A Runge-Kutta method is consistent if and
only if

∑s
i=1 bi = 1. If moreover,

∑s
i=1 bici = 1

2 , then
it has order of consistency 2. And if the conditions∑s

i=1 bici
2 = 1

3 and
∑s

i=1 bi

∑s
j=1 aijcj = 1

6 are also sat-
isfied, then the consistency is of order 3.

Proof. In the following equations we omit the evaluation
at (tn, xn). On the one hand we have:

x′ = f
x′′ = f t + fxf =: F
x′′′ = f tt + 2fxtf + fxxf2 + fx(f t + fxf) =: G + fxF

Note that here fxx ∈ L(Rd,L(Rd,Rd)). That is, is a vec-
tor of matrices. And the vector product fxxf2 is done as
follows: (fxx)if , for each i = 1, . . . , d, which result in d-
column vectors that form a matrix that gets multiplied by
f . And on the other hand:

ki = f + cihf t + fx

h

s∑
j=1

aijkj

+ ci
2h2

2 f tt+

+ cih
2fxt

 s∑
j=1

aijkj

+ h2

2 fxx

 s∑
j=1

aijkj

2

+ O
(
h3)

= f + cihF + ci
2

2 h2G + h2

 s∑
j=1

aijcj

 fxF + O
(
h3)

Therefore:

τ n(h) = f + 1
2hF + 1

6h2 (G + fxF) + O
(
h3)− s∑

i=1
biki

Matching coefficients we get the desired result. □

Lemma 15. The consistency order p of an s-stage Runge-
Kutta method is bounded by p ≤ 2s. If the Runge-Kutta
method is explicit, then p ≤ s.

Remark. Looking at Table 1 we see why the RK4, i.e. the
RK method with 4 stages, is so widely known.

Order 1 2 3 4 5 6 7 8
s 1 2 3 4 6 7 9 11

Table 1: Number of stages of an explicit RK method
needed for a given order of consistency

Step-size control for Runge-Kutta methods

Theorem 16. Let f : [t0, tn]× Rd → Rd be a function of
class CN+1 with respect to the second variable and let x̃(t)
be the numerical solution to the ivp Eq. (1) obtained by
a one-step method of order p ≤ N with step-size h. Then,
x̃(t) has an asymptotic expansion of:

x̃(t) = x(t) + ep(t)hp + · · ·+ eN (t)hN + EN+1(t, h)hN+1

with ek(t0) = 0 ∀k ≥ p. This is valid ∀t ∈ [t0, tn] and all
h > 0. Moreover, the functions ek are differentiable and
independent of h and ∥EN+1(t, ·)∥∞ <∞ ∀t ∈ [t0, tn].

Theorem 17 (Richardson extrapolation). Consider
the ivp of Eq. (1) and let x̃(t; h) be the numerical solu-
tion obtained by a one-step method of order p ≤ N with
step-size h. Then:

x(t) = x̃(t; h/2)− x̃(t; h)− x̃(t; h/2)
2p − 1 + O

(
hp+1)

Proof. By Theorem 16 we have that:

x(t; h) = x(t) + ep(t)hp + O
(
hp+1)

x(t; h/2) = x(t) + ep(t)
(

h

2

)p

+ O
(
hp+1)

Subtracting the two equations we have:

ep(t)
(

h

2

)p

= x̃(t; h)− x̃(t; h/2)
2p − 1 + O

(
hp+1)

□

Theorem 18 (Runge-Kutta-Fehlberg method).
Consider two explicit RK methods of orders p and p + 1
with incremental functions ϕ̂ and ϕ respectively such that
their Butcher tableaus have the same (aij) coefficients
(and therefore the same (cij) coefficients):

c A
bT

b̂
T

These methods ϕ and ϕ̂ are called embedded methods1.
Denote by x̃ and x̂ the numerical solutions using the re-
spective incremental functions. Then, given a tolerance ϵ
and an older step-size h, we would like to choose a new

1Usually the notation RKp(q)s is used to refer for a method of order p with an embedded method of order q < p and a total of s stages.
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step size hnew for which our approximate solutions differ
no more than ϵ between them. At the time tn we have:

x̃n+1 = x̃n + hϕ(tn, x̃n, f , h)
x̂n+1 = x̃n + hϕ̂(tn, x̂n, f , h)

To obtain this we have to choose the new step-size

hnew ≃ h p+1

√
ϵ

∥x̂(tn + h)− x̃(tn + h)∥ (5)

If this new step-size was not successful, i.e. we have

∥x̂(tn+1 + hnew)− x̃(tn+1 + hnew)∥ > ϵ

we will have to repeat the last step with another step-size
h∗

new < hnew.

Proof. We assume that the n-th iteration was successful,
i.e.:

∥x̂(tn + h)− x̃(tn + h)∥ ≤ ϵ

From the hypothesis and Theorem 16 we have:

∥x̂(tn + h)− x̃(tn + h)∥ ≤ c(x(tn))hp+1

Moreover, up to errors of first order, we have c(x(tn)) ≈
c(x(tn + h)). Finally, imposing∥∥c(x(tn + h))hnew

p+1∥∥ ≲ ϵ

yields to:

∥x̂(tn + h)− x̃(tn + h)∥
(

hnew

h

)p+1
≲ ϵ

□

Remark. Note that there exist RK embedded methods by
the following argument. Start with a RK method of or-
der p + 1 that has s stages. Then we can construct a RK
method of order p with s stages by copying the coefficients
A and c and adjusting the coefficients b properly to make
it “less” consistent.

Remark. In practice in order to avoid many unsuccess-
ful steps, instead of the new step in Eq. (5) we use the
following:

hnew ≃ αh p+1

√
ϵ

∥x̂(tn + h)− x̃(tn + h)∥

with α ≃ 0.9. Furthermore, in order to avoid rapid oscil-
lations of the step-size, h should not, however, be changed
by more than a factor of 2 to 5 from one step to the next.

Stability of Runge-Kutta methods
Definition 19. Consider a RK method applied to the ivp
y′ = λy. We can express it as:

ỹn+1 = g(hλ)ỹn

for some function g : R → R. This function is called sta-
bility function. Given h and λ, the method is said to be
stable if |g(hλ)| ≤ 1 and absolutely stable if |g(hλ)| < 1.

Definition 20. Consider a RK method with stability
function g. We define the stability region of the method
as the set:

A := {z ∈ C : |g(z)| < 1}

We say that the method is A-stable (or unconditionally
absolutely stable) if {Re(z) < 0} ⊆ A. Otherwise, we say
that the method is conditionally absolutely stable

Remark. The motivation behind this definition of stability
is on the stiff equations, which are differential equations
for which certain numerical methods for solving the equa-
tion are numerically unstable, unless the step size is taken
extremely small. A-stable methods do not exhibit these
instability problems.

Theorem 21 (Lax theorem). Consider a consistent and
stable RK method. Then, the method is convergent.

Proof. We will prove it only for the test problem y′ = λy.
We have:

en+1 = yn+1 − ỹn+1 = yn+1 − g(hλ)ỹn =
= yn+1 − g(hλ)(yn − en) = hτn(h) + g(hλ)en

Iterating the process and taking norms we have:

|en| ≤
n∑

j=0
|g(hλ)|jh|τn−j(h)| ≤ nhτ(h) h→0−→ 0

because nh = tn − t0 is bounded. □

Multistep method

Definition 22. A k-step method is a method that uses
the previous k steps to compute the next step.

Definition 23 (Linear multistep method). Consider
the ivp of Eq. (1). A linear k-step method is a method of
the form:

k∑
j=0

αjỹn+j = h

k∑
j=0

βj f̃n+j (6)

that computes the (n + k)-th iterate from the previous
k iterates. Here αj , βj ∈ R are such that αk ̸= 0 and
α0

2 + β0
2 ̸= 0. Observe that we need k initial values in

order to use the method. Finally, note that if βk = 0 then
the method is explicit.

Remark. Since in practice we only have one initial value,
we can use a one-step method to compute the first k iter-
ates and then use the k-step method.

Definition 24. Consider the multistep method of Eq. (6).
We define the first and second characteristic polynomials
of the method as:

ρ(z) =
k∑

j=0
αjzj σ(z) =

k∑
j=0

βjzj

Definition 25. A linear k-step method is said to be zero-
stable if there is a constant C > 0 such that for every
N ∈ N sufficiently large and for any two different sets

4



of initial data ỹ0, . . . , ỹk−1 and ŷ0, . . . , ŷk−1, the two re-
spective sequences (ỹn)0≤n≤N and (ŷn)0≤n≤N of iterates
satisfy

max
0≤n≤N

∥ỹn − ŷn∥ ≤ C max
0≤n≤k−1

∥ỹn − ŷn∥

as h→ 0.

Definition 26. A linear k-step method satisfies the root
condition if all zeros of its first characteristic polynomial
ρ(z) lie inside the closed unit disc, and every zero that lies
on the unit circle is simple.

Theorem 27. Consider the ivp of Eq. (1) and suppose
that f is Lipschitz continuous. Then, a linear k-step
method is zero-stable if and only if it satisfies the root
condition.

Remark. This theorem implies that zero-stability of a mul-
tistep method can be determined by merely considering its
behavior when applied to the trivial differential equation
y′ = 0. It is for this reason that it is called zero-stability.

Definition 28 (Adams method). Consider the ivp of
Eq. (1). The Adams method is a linear multistep method
of the form:

ỹn+k = ỹn+k−1 + h

k∑
j=0

βj f̃n+j (7)

If βk = 0 then the method is explicit, and it is called
Adams-Bashforth method. If βk ̸= 0 then the method is
implicit, and it is called Adams-Moulton method. The co-
efficients βj are found by integrating the Lagrange inter-
polating polynomial between tn+k−1 and tn+k constructed
from the nodes (tn+j , f̃n+j) for j = 0, . . . , k − 1, for the
Adams-Bashforth method, and for j = 0, . . . , k for the
Adams-Moulton method. That is, the respective incre-
mental functions are given by:

ϕAB =
tn+kˆ

tn+k−1

k−1∑
j=0

fn+j

k−1∏
i=0
i̸=j

t− tn+i

tn+j − tn+i
dt

ϕAM =
tn+kˆ

tn+k−1

k∑
j=0

fn+j

k∏
i=0
i̸=j

t− tn+i

tn+j − tn+i
dt

In the following table we expose the first three Adams’ in-
cremental functions for the explicit and implicit methods:

k Adams-Bashforth Adams-Moulton

1 fn fn+1

2 3fn+1 − fn

2
fn+1 + fn

2
3 23fn+1 − 16fn + 5fn−1

12
5fn+2 + 8fn+1 − fn

12
Definition 29. Consider the k-step method of Eq. (6).
We define the local truncation error of the method as:

τ n(h) =
∑k

j=0[αjyn+j − hβjfn+j ]
h

We define τ(h) as:

τ(h) = sup
n≥1
∥τ n(h)∥

We say that the method is consistent if lim
h→0

τ(h) = 0.
Moreover, we say that the algorithm has order of consis-
tency or order of accuracy p if τ(h) = O (hp).

Remark. The global error of the method and the conver-
gence of it are the same as in the one-step case.

Proposition 30. The Adams-Bashforth k-step method
has order of consistency k, whereas the Adams-Moulton
method has order of consistency k + 1.

Theorem 31. A necessary condition for the convergence
of the linear multistep method of Eq. (6) is that it has to
be zero-stable and consistent.

Theorem 32 (Dahlquist’s theorem). Let f be a Lip-
schitz continuous function and consider the multistep
method of Eq. (6). Suppose the method is consistent.
Then, the method is zero-stable if and only if it is conver-
gent. Moreover, if the solution y is of class Cp+1 and the
consistency error is O (hp), then the global error is O (hp).

2. | Nonlinear systems of equations
Newton method

Definition 33 (Newton method). Let F : Rd → Rd be
a differentiable field. We would like to find the solutions
of F(x) = 0. The Newton method is a recurrence of the
form:

xn+1 = xn −DF−1(xn)F(xn)
which starts with an initial guess x0. Rather than actu-
ally computing the inverse of the Jacobian matrix, one
may save time and increase numerical stability by solving
the system of linear equations

DF(xn)(xn+1 − xn) = −F(xn)

for the unknown xn+1 − xn.

Lemma 34. Let C ⊆ Rd be an open convex set and
F ∈ C0(C) be such that DF(x) exists and satisfies:

∥DF(x)−DF(y)∥ ≤ L ∥x− y∥

for some L > 0 and for all x, y ∈ C. Then, ∀x, y ∈ C we
have:

∥F(x)− F(y)−DF(y)(x− y)∥ ≤ L

2 ∥x− y∥2

Proof. Consider φ : [0, 1] → Rd defined by φ(t) =
F(y + t(x− y)). Then, φ is differentiable,

φ′(t) = DF(y + t(x− y))(x− y)

and satisfies:

∥φ′(t)−φ(0)∥ ≤ ∥DF(y + t(x− y))−DF(y)∥ ∥x− y∥
≤ Lt ∥x− y∥2
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Moreover:

∆ := F(x)− F(y)−DF(y)(x− y) =

= φ(1)−φ(0)−φ′(0) =
1ˆ

0

φ′(t)−φ′(0) dt

Therefore:

∥∆∥ ≤
1ˆ

0

Lt ∥x− y∥2 dt = L

2 ∥x− y∥2

□

Theorem 35. Let C ⊆ Rd be an open convex set and
F ∈ C1(C) with a zero x∗ ∈ C. Suppose that DF(x∗) is
invertible and satisfies:

1.
∥∥DF−1(x∗)

∥∥ ≤M for some M > 0.

2. ∥DF(x)−DF(y)∥ ≤ L ∥x− y∥ for some L > 0 and
for all x, y ∈ B(x∗, R), for some R.

Then, ∃r > 0 such that ∀x0 ∈ B(x∗, r), the Newton
method sequence is well-defined and converges quadrat-
ically (at least) to x∗.

Proof. Let r := min
(
R, 1

2ML

)
. We prove first that if

y ∈ B(x∗, r), then DF(y) is invertible. Recall that from
??, if ∥A∥ < 1, then I+A is invertible and

∥∥∥(I + A)−1
∥∥∥ ≤

1
1−∥A∥ . With that in mind, if A := DF−1(x∗)DF(y)−Id,
then:

∥A∥ ≤
∥∥DF−1(x∗)

∥∥ ∥DF(y)−DF(x∗)∥ ≤MLr ≤ 1
2

Hence, A + Id = DF−1(x∗)DF(y) is invertible and there-
fore so is DF(y). Furthermore:∥∥DF−1(y)

∥∥ ≤ ∥∥DF−1(x∗)
∥∥

1− ∥A∥ ≤ 2M (8)

Now we prove by induction that any term xn on the se-
quence is well-defined and satisfies:

∥xn+1 − x∗∥ ≤ML ∥xn − x∗∥2

By hypothesis, we know that x0 ∈ B(x∗, r), so DF(x0) is
invertible and x1 = x0 −DF−1(x0)F(x0) is well-defined.
Moreover:

∥x1 − x∗∥ =
∥∥x0 − x∗ −DF−1(x0)[F(x0)− F(x∗)]

∥∥
=
∥∥DF−1(x0)[F(x∗)− F(x0)−

− DF(x0)(x∗ − x0)]∥

≤ 2M
L

2 ∥x0 − x∗∥2

≤ ∥x0 − x∗∥
2

where in the penultimate step we used Eq. (8) and The-
orem 34. Thus, x1 ∈ B(x∗, r) and so x2 is well-defined.
Recursively, we prove that xn+1 is well-defined and:

∥xn+1 − x∗∥ ≤ ∥xn − x∗∥
2 ≤ · · · ≤ ∥x0 − x∗∥

2n+1
n→∞−→ 0

So the limit exists, and it is x∗. □

Quasi-Newton methods

Definition 36. A quasi-Newton method for finding the
zero of a function F : Rd → Rd is a method that uses an
approximation DFn of the Jacobian DF(xn) to compute
the next iterate xn+1, instead of computing the Jacobian
directly, as in Newton’s method. Once solved the sys-
tem DFny = −F(xn), the next iterate in a quasi-Newton
method is given by xn+1 = xn +αny, where αn is a damp-
ing parameter.

Remark. Computing the Jacobian is a difficult and ex-
pensive operation. Broyden proposed a method that com-
putes the whole Jacobian only at the first iteration and
does rank-one updates at other iterations.

Definition 37 (Broyden’s method). Let F : Rd → Rd.
The Broyden’s method is secant-like method which uses a
recurrence for the Jacobian matrix of the form:

DFn+1 = DFn + Fn −DFn∆xn

∥∆xn∥2 (∆xn)T

where ∆xn = xn+1 − xn and Fn = F(xn). We then pro-
ceed with the Newton method:

xn+1 = xn −DFn
−1Fn

A variant to the Broyen’s method for computing directly
the inverse of the Jacobian matrix is:

DFn+1
−1 = DFn

−1+ ∆xn −DFn
−1∆Fn

(∆xn)TDFn
−1∆Fn

(∆xn)TDFn
−1

where ∆Fn = Fn+1 − Fn.

Remark. Another alternative for the computation of the
Jacobian matrix would be to use the finite difference
method for each column of the matrix:

DjF(xn) ≃ F(xn + hej)− F(xn)
h

Optimization

Definition 38 (Descent method). Let f : Rd → R be
a differentiable function. We want to find the minimum of
f , or equivalently, the zeros of ∇f . A descent method is a
method for finding the minimum of f using the following
iteration:

xn+1 = xn + αndn

where αn is a step size and dn is a descent direction, i.e.
satisfying dn

T∇f(xn) < 0 whenever ∇f(xn) ̸= 0 and
dn = 0 otherwise. Some of the most common descent
methods are:

• Newton method: dn = −(Hf)−1(xn)∇f(xn)

• Inexact Newton method: dn = −Bn
−1(xn)∇f(xn),

where Bn is an approximation of the Hessian matrix
Hf(xn).
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• Steepest descent or Gradient descent: dn =
−∇f(xn).

• Conjugate gradient method: dn = −∇f(xn) +
βndn−1, where βn is a parameter chosen such that
the directions (dn) are pairwise conjugate by the
Hessian matrix Hf(xn), that is, dℓ

THf(xn)dk = 0
for ℓ, k ≤ n.

In order to find a suitable step size αn, we need to solve
the following optimization problem:

minimize ϕ(α) = f(xn + αdn)

Remark. In practice, this latter problem is solved using a
line search method. For n ≥ 1, if f(xn+1) < f(xn), then
αn is accepted, and we choose αn+1 = αn. Otherwise,
αn ← αn/2 and we repeat the proces until the difference
between f(xn+1) and f(xn) is sufficiently small. We shall
start with α0 sufficiently large.

Definition 39 (Broyden-Fletcher-Goldfarb-Shanno
method). Let f : Rd → R be a differentiable function.
The Broyden-Fletcher-Goldfarb-Shanno method (BFGS
method) is a quasi-Newton descent method for finding the
minimum of f using an approximation of the Hessian ma-
trix. The algorithm is as follows. Start with an approxi-
mation B0 of Hf(x0). Then, for n ≥ 0:

1. Solve Bndn = −∇f(xn).

2. Perform a line search to find αn.

3. Update xn+1 = xn + αndn.

4. Define yn = ∇f(xn+1)−∇f(xn).

5. Update Bn:

Bn+1 = Bn + ynyn
T

αnyn
Tdn

− Bndndn
TBn

T

dn
TBndn

Remark. There is also a variant of the BFGS method that
computes recursively an approximation of the inverse of
the Hessian matrix.

3. | Boundary value problems
Shooting method
Definition 40 (Shooting method). Suppose we want
to solve the boundary value problem:{

x′ = f(t, x)
r(x(t0), x(t1)) = 0

(9)

where r : Rn × Rn → Rn is a function that defines the
boundary conditions. Let x(t; t0, s) be the flow of the ivp:{

x′ = f(t, x)
x(t0) = s

If
r(s, x(t1; t0, s)) = 0 (10)

then x(t; t0, s) will also be a solution to the boundary value
problem. The shooting method is the process of solving the
initial value problem for many values of s until one finds
the solution x(t; t0, s) that satisfies the desired boundary
conditions of Eq. (10). That is, the solutions s correspond
to roots of:

F(s) := r(s, x(t1; t0, s))
Remark. Given several initial guesses, we can use interpo-
lation with these nodes, find the root of the interpolating
polynomial and use it as the new guess. Alternatively, one
can use the Newton’s method or a quasi-Newton method
for finding a root of F.

Multiple shooting method
Definition 41 (Multiple shooting method). Suppose
we want to solve the problem of Eq. (9) and consider the
partition of the time-interval of integration t0 < t1 < · · · <
tN . The multiple shooting method starts by guessing the
solution sk of the BVP at tk, k = 0, . . . , N . Now let,
x(t; tk, xk) be the flow of the ivp:{

x′ = f(t, x)
x(tk) = xk

All these solutions can be pieced together to form a con-
tinuous trajectory if the functions x(t; tk, sk) match at the
grid points t1, . . . , tN−1. Thus, solutions of the bound-
ary value problem correspond to solutions of the following
system of N equations:

x(t1; t0, s0) = s1
...
x(tN ; tN−1, sN−1) = sN

Finite difference method
Definition 42. Suppose we want to solve the BVP:

x′′ + λ(t)x′ + µ(t)x = f(t, x)
x(a) = α

x(b) = β

(11)

Consider an equally-spaced partition of the time-interval
of integration tn = t0 + kn, k = 0, . . . , N , with t0 = a and
tN = b. The finite difference method starts by approxi-
mating the derivatives of x by finite differences (usually
centered derivatives). For example, the centered deriva-
tives of orders 1 and 2 are:

x′(tn) ≃ xn+1 − xn−1

2h
x′′(tn) ≃ xn+1 − 2xn + xn−1

h2

with error terms
∥∥x(3)

∥∥
∞

h2

6 and
∥∥x(4)

∥∥
∞

h2

12 , respectively,
where xn := x(tn). We then solve the resulting iterative
system of equations

xn+1 − 2xn + xn−1

h2 +λn
xn+1 − xn−1

2h
+µnxn =f(tn, xn)

x0 = α

xN = β

which can be concise in a matrix form:
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

−2 + M 1 + L 0 · · · 0

1− L −2 + M 1 + L
. . . ...

0 1− L −2 + M
. . . 0

... . . . . . . . . . 1 + L
0 · · · 0 1− L −2 + M


·

·


x1
x2
x3
...

xN−1

 =


h2f(t1, x1)− α (1− L)

h2f(t2, x2)
...

h2f(tN−2, xN−2)
h2f(tN−1, xN−1)− β (1 + L)


where L := λnh

2 , M := µnh2, λn := λ(tn) and µn := µ(tn).

4. | Numerical linear algebra

Singular value decomposition

Lemma 43. Let A ∈ Mm×n(R). Then, all the eigenval-
ues of ATA are non-negative.

Proof. Assume ATAv = λv, with v unitary. Then:

λ = ⟨λv, v⟩ =
〈

ATAv, v
〉

= ⟨Av, Av⟩ = ∥Av∥2 ≥ 0

□

Definition 44 (Singular value). Let m ≥ n and
A ∈ Mm×n(R). The singular values of A are the square
roots of the eigenvalues of ATA, which are real and non-
negative by 43.

Theorem 45 (Singular value decomposition). Let
m ≥ n and A ∈ Mm×n(R). Then there exist orthogo-
nal matrices V ∈ On(R), U ∈ Mm×n(R) and a diagonal
matrix Σ ∈Mn(R) such that:

A = UΣVT

where Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
are the singular values of A. A decomposition of this form
is called singular value decomposition (SVD) of A. The
columns of U are called left singular vectors, while the
columns of V are called right singular vectors. Writing
U = (u1, . . . , un) and V = (v1, . . . , vn), we have another
expression for the singular value decomposition:

A =
n∑

i=1
σiuivi

T (12)

Proof. For simplicity we assume σn > 0 and m ≥ n. From
linear algebra (check ??) we know that since ATA is sym-
metric, it admits a decomposition of the form ATA =
VΛVT, where Λ is diagonal and V ∈ On(R). Thus, we
have that (AV)T(AV) = Λ =: Σ2 is diagonal and so
U := AVΣ−1 is orthonormal. □

Remark. From here one, we will assume that the singu-
lar values are ordered in decreasing order. Thus, σ1 will
always be the largest singular value and σn the smallest.

Remark. Note that the SVD is not unique, even though
having the same ordering of the singular values. For exam-
ple, we can replace ui and vi by −ui and −vi in Eq. (12).
The singular values, on the other hand, are unique.

Corollary 46. Let m ≥ n, A ∈ Mm×n(R) and consider
a SVD A = UΣVT. Then:

1. The columns of V are the eigenvectors of ATA.

2. The columns of U are the eigenvectors of AAT.

3. If A is symmetric, then σi = |λi|, ∀λi ∈ σ(A).

Proof. The third property is easy, and the first and sec-
ond one are similar, so we only prove the second one. Note
that from the identity AV = UΣ we have Avi = σiui,
for i = 1, . . . , n. Similarly, from ATU = VΣ we have
ATui = σivi, for i = 1, . . . , n. Thus:

AATui = σiAvi = σi
2ui

□

Proposition 47. Let m ≥ n and A ∈ Mm×n(R). Then,
∥A∥2 = σ1 and

∥∥A−1∥∥
2 = 1

σn
.

Proof. Let A = UΣVT be a SVD of A and x ∈ Rn be
such that ∥x∥2 = 1. We know that if y = VTx, then
∥y∥2 = 1. Thus:

∥Ax∥2
2 =

∥∥∥UΣVTx
∥∥∥

2

2
=
∥∥∥ΣVTx

∥∥∥
2

2
= ∥Σy∥2

2 =

=
n∑

i=1
σi

2yi
2 ≤ σ1

2∥y∥2
2 = σ1

2

And this value is reachable by taking x = v1. The second
part is analogous. □

Remark. Note that similarly to Eq. (12) we can write
A−1 =

∑n
i=1

1
σi

viui
T, and therefore if we want to solve

the system Ax = b, we can write:

x =
n∑

i=1

ui
Tb

σi
vi

Theorem 48. Let A ∈ GLn(R) and x, b ∈ Rn be such
that Ax = b. Then, the error ∆x in the equation
A(x + ∆x) = b + ∆b, ∆b ∈ Rn, can be controlled by:

1
κ(A)

∥∆b∥
∥b∥ ≤

∥∆x∥
∥x∥ ≤ κ(A)∥∆b∥

∥b∥

where κ(A) = ∥A∥
∥∥A−1∥∥ is the condition number of A.

Proof. The second inequality is a consequence of ??. For
the first one, note that from x = A−1b and A∆x = ∆b
we have:

∥x∥ ≤
∥∥A−1∥∥ ∥b∥ ∥∆b∥ ≤ ∥A∥ ∥∆x∥

Hence, ∥∆b∥ ∥x∥ ≤ ∥A∥
∥∥A−1∥∥ ∥∆x∥ ∥b∥. □

Proposition 49. Let A, C ∈ Mn(R) and let R :=
In − AC. If ∥R∥ < 1, then A and C are non-singular
and:

A−1 = ∥C∥
1− ∥R∥

∥R∥
∥A∥ ≤

∥∥C−A−1∥∥ ≤ ∥C∥ ∥R∥1− ∥R∥
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Proof. If ∥R∥ < 1, then ρ(R) < 1, and so In − R is in-
vertible and so are A and C (taking the determinant).
Moreover,

∥∥A−1∥∥ ≤ ∥C∥ ∥∥∥(In + R)−1
∥∥∥ from which the

first inequality follows. For the second one, note that:

∥R∥ ≤ ∥A∥
∥∥C−A−1∥∥

ANd using the previous one, we get the last one:∥∥C−A−1∥∥ =
∥∥A−1R

∥∥ ≤ ∥∥A−1∥∥ ∥R∥. □

Truncated singular value decomposition
Remark. In practice however, doing a full SVD is not al-
ways possible, since it requires a lot of memory and time.
A truncated version of it is often used, where we only keep
the k largest singular values and their associated singular
vectors.
Definition 50. Let A ∈ Mm×n(R). The truncated sin-
gular value decomposition (TSVD) of A is an inexact de-
composition of A of the form:

Ã = UkΣkVT
k

where Σ = diag(σ1, . . . , σk), Uk ∈ Mm×k(R) is created
selecting the k left singular vectors of A associated with
σ1, . . . , σk, and Vk ∈ Mn×k(R) is created selecting the k
right singular vectors of A associated with σ1, . . . , σk.
Remark. In this case the general solution of Ax ≃ Akx =
b is given by:

x =
k∑

i=1

ui
Tb

σi
vi +

n∑
i=k+1

ξivi

with ξi ∈ R arbitrary.
Proposition 51. Let A ∈ Mm×n(R) and b ∈ Rm. Sup-
pose that

xλ = arg min
x∈Rn

∥Ax− b∥2
2 + λ∥x∥2

2

where λ > 0 is a regularization parameter. Then:

xλ =
n∑

i=1

σi
2

σi
2 + λ2

ui
Tb

σi
vi

Proof. First note that we can express xλ as:

xλ = arg min
x∈Rn

∥∥∥∥( A
λIn

)
x−

(
b
0

)∥∥∥∥
2

2

Suppose a SVD of A is A = UΣVT. Then, from ?? ??
we know that this solution is given by:

xλ =
((

A
λIn

)T( A
λIn

))−1(
A

λIn

)T(b
0

)
=
(

ATA + λ2In

)−1
ATb

=
(

VΣ2VT + λ2VVT
)−1

VΣUTb

= V
(
Σ2 + λ2In

)−1ΣUTb

=
n∑

i=1

σi
2

σi
2 + λ2

ui
Tb

σi
vi

□

QR decomposition

Lemma 52. Let Q ∈ On(R). Then, ∀λ ∈ σ(Q), |λ| = 1.
Moreover, σi = 1, i = 1, . . . , n.

Proof. Let v be a unitary eigenvector of Q associated to
λ. Then:

λ2 = ⟨λv, λv⟩ = ⟨Qv, Qv⟩ =
〈

v, QTQv
〉

= ⟨v, v⟩ = 1

To see that all the singular values are 1, note that if
λ ∈ σ(Q) with eigenvector v, then λ−1 ∈ σ(QT) with
eigenvector v. Thus, ∀λ ∈ σ(Q) with associated eigenvec-
tor v, we have:

QTQv = QTλv = v

□

Lemma 53. Let Q ∈ On(R). Then:

1. det Q = ±1.

2. ∥Q∥2 = 1.

Proof. Note that QQT = In. Taking determinants, we
obtain the first equality. The second equality, follows
from the preservation of the norm by orthogonal matri-
ces: ∥Qv∥2 = ∥v∥2, ∀v ∈ Rn. □

Definition 54 (QR descompostion). Let A ∈Mn(R)
be a matrix. A QR decomposition of A is an expression
A = QR, where Q ∈ On(R) and R ∈ Mn(R) is upper
triangular.

Proposition 55. Let A ∈ Mm×n(R) be a full-rank
matrix with m ≥ n. Then, there exist matrices Q ∈
Mm×n(R) and R ∈ Mn(R) such that Q is orthogonal,
R is upper triangular and A = QR.

Proof. We use the ?? ??. Assume A = (a1, . . . , an). We

define q1 = a1
∥a1∥2

and qj = aj−
∑j−1

k=1
⟨aj ,qk⟩qk∥∥aj−

∑j−1
k=1

⟨aj ,qk⟩qk

∥∥
2

for

j = 2, . . . , n. Then, Q = (q1, . . . , qn) is orthonormal and
R := QTA is upper triangular because if R = (rij), then
rij := ⟨qi, aj⟩ and from the above expression of qj , we
have:

aj =
j−1∑
k=1

rkjqk + rjqj

for j = 1, . . . , n, with rj :=
∥∥∥aj −

∑j−1
k=1 ⟨aj , qk⟩qk

∥∥∥
2
.
□

Remark. In the literature, this latter decomposition is
sometimes called thin QR decomposition to distinguish it
from the full QR decomposition where Q and R are square
matrices. In the thin QR decomposition, we can write:

A = QR =
(
Q1 Q2

)(R1
0

)
= Q1R1

with Q1 ∈ Mm×n(R), Q2 ∈ Mm×(m−n)(R) and R1 ∈
Mn(R). Note that both Q1 and Q2 have orthogonal
columns, and R1 is upper triangular.
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Lemma 56. Let A ∈ GLn(R), b ∈ Rn and Ax = b be
a system of linear equations. Suppose A = QR for some
orthogonal matrix Q and some upper triangular matrix
R, both of size n. Then, solving the system Ax = b is
equivalent to solving the triangular system Rx = QTb.

Proposition 57. Let A ∈ Mm×n(R) be a full-rank ma-
trix with m > n. The least-squares problem

x∗ = arg min
x∈Rn

∥Ax− b∥2

has a solution x∗ given by:

x∗ = R−1QTb

Proof. Let A = (Q, Q⊥)
(

R
0

)
= QR be the full QR de-

composition of A. Then:

∥Ax− b∥2
2 =

∥∥∥∥( QT

Q⊥
T

)
(Ax− b)

∥∥∥∥
2

2

=
∥∥∥∥(R

0

)
x−

(
QTb

Q⊥
Tb

)∥∥∥∥
2

2

And so, by ?? ?? we have:

x∗ =
((

R 0
)(R

0

))−1 (
R 0

)( QTb
Q⊥

Tb

)
= R−1QTb

□
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