Linear models

1. | Introduction

Sample coeffcients

(Sample variance and covariance). Let
{(xs,9:) i =1,...,n} be a set of data. We define the
sample covariance between the x; and the y; as:

We define the sample variance as:
1 n
Sp2 = e (x4 fT)Q
=1
Let {(x;,y;) :i=1,...,n} be aset of data.
We define the sample correlation coefficient between the

xz; and the y; as:
Say

SzSy
Let {(z;,y;) : i = 1,...,n} be a set of
data. Then, r? < 1.

ri=

Multivariate properties

Let x = (X;,. ..
We define its expectation as:

, X») be a random vector.

E(X1)
E(x) :=
E(Xn)

Analogously, the expectation of a matrix is defined com-
ponent by component.

Let x, y be random vectors of dimension n.
We have the following properties regarding the expecta-
tion:
L. E(ax+py+71) = aE(x)+BE(y)+71 Vo, B,y € R".
2. E(@a™ + b'y + cT1) = aTE(x) + b"E(y) +
cT1 Va,b,c € R".
3. E(Ax) = AE(x) VA € M;xn(R).
Let x = (X4,...,X,) be a random vec-

tor. We define the covariance matriz of x as the following
matrix:

3, = Var(x) := E ((x ~E(x))(x — E(x))T)

Let x = (X1,...,X,) be a random vec-
tor. Then, ¥, is symmetric and:
Var(Xl) COV(Xl, X2) COV(Xl, X”)
> COV(XQ,Xl) Var(Xg) COV(XQ,Xn)
Cov(X,,X1) Cov(X,,X>) Var(X,,)

IHere 1 represents the vector 1 := (1,..., l)T.
2Remember definition ?7.

Let x, y be random vectors. We define the
covariance between them as the following matrix:

Cov(x.y) = E ((x ~ E()(y ~ E(y))")

Let x, y be random vectors, a,b € R"
and A, B € M,,(R). Then:

1. Cov(x,y) = E(xyT) — E(x)E(x)"

2. Cov(x —a,y — b) = Cov(x,y)

3. Cov(Ax,By) = ACov(x,y)BT

4. E (xTAx) = tr(AZy) + E(x) " AE(x)

5. E ((x —a)(x — a)T) =3, + (E(x) —a)(E(x) —a)"

6. E(llx —af)) = tr 2 + [|E(x) — a|

7. a¥,a = Var(a™x). Thus, X, is positive semi-
definite.
8 If x = (X1,...,X,) and no Y; can be expressed as

a linear combination of the other ones, then 3y is
positive definite.

Multivariate normal

We say that x ~ N, (u, ), where p € R™
and ¥ € M,,(R) is symmetric and positive definite, if its
moment generating function” is:

dn() = b U By e R

Let z = (Z4,...,2Z,), where Z; ~
N(0,1) fori=1,...,n. Then, z ~ N,(0,1,).

Let A € M, (R) be symmetric and posi-
tive definite. Suppose the Jordan descomposition of A is
A =PAP ! where A = diag(\1,...,\,). Then Vo € R,

A% :=PA°P!
s An%).

Let x ~ Np(u,X), where p € R"
and ¥ € M, (R) is symmetric and positive definite’.
Then, z := X 2(x — pu) ~ N,(0,1,,). Analogously if
z ~ N, (0,1,), then x := 2z + p ~ N, (1, X).

Let x ~ N, (p,3). Then,
1 1

where A” := diag(\ 7, ...

_ —3-m)TE  (y-p)
x = n€ 2
Sx(y) s 202
Let x ~ Np(u,X) such that x =
(X1,...,X,). Then, the variables X; are normal for
1=1,...,n.

3From now on this hypothesis will be implicit in the definition of x.



2. | Simple regression

The model and estimations of the coefficients

(Simple model). Suppose we have a
sample of data {(z;,y;) : i = 1,...,n}. We can de-
scribe the relationship between z; and y; with the fol-
lowing model:
i=1

Yi = Bo + Prx; + & n

geeey

where we assume that y; and €; are random variables
whereas x; are known constants. Moreover in the model,
we suppose the following hypothesis:

1. E(g;) =0 and Var(e;) = 0%, i=1,...,n.

2. Cov(e;,ej) = 0 if for all ¢ # j.
Sometimes we add an additional condition of normality:
ei~ N(0,0%),i=1,...

, 1.

7yn)a X = (.’I/‘l,...,xn) and € =
€n) we can write the model in a more compact

If we write y = (y1,. ..
(817"'7
way:

(1)

From here, we would like to estimate the parameters [y
and (1 to make preditions gy, from new data xj,.

y =00+ pix+e

(Least-squares method). Given the
simple linear model of , we need to estimate the
parameters o, 51 and a . To do so, least-squares method
seek estimators 50 and 51 that minimize the sum of square
of the deviations y; — ¢; (also called residuals), where §j; is
the predicted value g; = 30 + Blmi. Hence:

Bo = arg min {Zn:

i=1

— Bo — Brx;) : Po, B1 € R2}

B _argmln{z — Bo — 1) : Po, P eRz}
i=1
And we obtain:
51 — Z?:l(xi —T)(¥i — ) _ Sy
D i (i — x)Q 52

Bo=7- b7

To estimate o2 we use:

i=1

Given the model of , if we consider
the hypothesis of normality for e;, then the estimates of
the least-squares method coincide with the MLEs.

3. | Multiple regression

(General linear model). Suppose we
have a sample of data {(z;1,...,Zi,y) : @ = 1,...,n}.

We can describe the relationship between x;1,...,x;, and
y; with the following model:
Yi = Bo + Prxin + - - + BrTik + € i=1,...,n

where we assume that y; and e; are random variables
whereas z; are known constants. Moreover in the model,
we suppose the following hypothesis:

1. E(g;) =0 and Var(g;) =02, i=1,...,n.
2. Cov(ei, ;) = 0if for all ¢ # j.

Sometimes we add an additional condition of normality:
1 e ~N(0,0%),i=1,...,n.

Analogously to what we did with the simple model, we
can write the relation in matrix notation as:

Y1 1 zpp T1k Bo €o

Yo 1z Tok b1 €1
= +

Yn 1 Tpk-1) Tnk) \Bk En
=XB+e (2)

where the matrix X is called design matriz (and its com-
ponents, regressor coefficients), and B, regression coeffi-
cients. From here, we would like to estimate the parame-
ters (Bo, . . ., Ox) with estimators B = (Bo, ce Bk) to make
preditions g, from new data x5 in the following way:

gn =xn" B

Least-squares estimation

(Least-squares method). Consider
the model y ~ N,(XB,0%1,) of We want to
minimize the value

n

Hny,HHg :Z(ﬂOJF/leilJF"'

i=1

+ BTk — yi)2

The value 8 = (307 ce 3k) that minimizes the previous
values is given by the solution of:

XTx8 =X"y
In particular, if XX is invertible, we get the explicit so-

lution

B— (XTX)AXTy

Consider the model y ~ N,,(X8, 01,,)

of . If E(y) = XA, then B is an unbiased estimator

for 3.

Consider the model y ~ N,,(X3,0°%1,,)
of . If Var(y) = 0”1, then the covariance matrix

for B is 2/3 =02 (XTX)7



MLE estimation

(MLE method). Consider the model
y ~ N,(XB,0%1,) of . We want to find the value
ﬁ that maximises the likelihood which in this case is:

L(y;B,0%) = ¥e—ﬁ ly—Xa|

(V2mo2)n
Solving for é and &2 we get:

XT™xB3=X"y
SSE

o Lo
5 = ~|ellI” =
n n

wheree=y—-9y=y — XB. Note that 62 is biased and if
we want an unbiased estimator we should use:
9 1

2
= — =: MSE
= —— el = NS

Here MSE stands for mean square error.

Consider the model y ~ N,,(X83,021,,) of
and suppose that XTX € GLg+1(R). We define
the following deterministic matrices:

-1
A=(X"X) X H-XA M-I-H
Hence, R
B=Ay §y=Hy e=My
Consider the model y ~ N,, (X8, 01,,)
of and suppose that X*X € GLj1(R). Then:
1. Bo, ceey Bk are independent normally distributed ran-
dom variables, as well as ¢1,...,9, and é1,...,é,
2. H and M are symmetric and idempotent. More-

over, MH = 0,,. Hence, they orthogonally project
R™ into orthogonal subspaces.

3. MX =0

4. e = Me

5. tankH=k%+ 1 and rankM =n — (k + 1)

6. X'e = 0. In particular, " e; = 0 and
> xijei = 0 Vj. So the sample covariance of
(x1j,...,2n;) and e is 0 Vj.

7. yTe = 0. Analogously, we have that the sample

covariance of ¥ and e is 0.

Consider the model y ~ N,,(X3, 0%1,,)
of , then B, s2 are unbiased estimator for 8 and o2,
respectively, and:

-1
B, =0 (XTX)

Moreover, and unbiased estimator for X g is:

3, = MSE (XTX)_l

4Here the normality hypothesis does not play any role.

Let A € M,(R) be symmetric and
idempotent. Then, A is positive semi-definite. If more-
over rank A = r, then A has r eigenvalues equal to 1 and
the rest are 0.

Let A € M,,(R) be symmetric and idempo-
tent of rank d and z ~ N, (0,1,). Then, ||Az||* ~ x42.

Consider the model y ~ N,,(X8, 01,,)
of . Then:

1. B~ Nip <B, o2 (XTX)_1>

n—k—1)s> 2
2. % ~ Xn—k—1

3. B and s? are independent.

Consider the model y ~ N,,(X8, 01,,)

of in which o2 is unknown. Then, for each
j=1,...,n we have
B — b ~tp—k—1
MSE "

Consider the model y ~ N, (X8, 0°1,)
of . Then, if the variables z;1, ..., x;; are uncorre-
lated Vi = 1,...,n, then the MLE estimators Bj coincide
with the ones of the equivalent simple models:

i=1,...

y = Bo + Bix; ,n

(Gauf3-Markov). Consider the model of
, then the least-squares estimators for 3;, j =

0,1,...,k, are BLUF (the Best Linear Unbiased Estima-

tor)”.

The predicted value gy is invariant to a
full-rank linear transformation on the x’s. That is:

A

gz = ZhT,Bz = XhT,B = gh

where z, = KTx;, and Z = XK is the full-rank linear
transformation.

Model in centered form

Consider the model y ~ N,,(X3,0?L,) of
. Then, for each i = 1,...,n we can write:

U =Y —y=P1Zi+ -+ Biulir + & (3)

where Z;; = x;; — ¥;. This way we obtain a no-intercept
linear model, which is a little bit easier to estimate. The
estimation of 3y will be:

A

BO :?—iTﬁl

where ,31 =(B,... ’@c)T

5That is, they have minimum variance among all linear unbiased estimators.



Consider the model y ~ N,,(X3,0%1,)
of in its centered form ( ). Then:

Bi— (X"X) X'5

where:
n—y 11 — 1 Tik — Tk
y=1 X =
Yn —Y Tn(k—1) — T1 Tnk — Tk
And so:
Bl = Sxi SXy
where:
1 n
(Sx)ij T Z (i — T3)(wej — T;)
=1
1 n
(sxy); = T Z (e — Ti)(Yei — )
=1

are the respective sample covariance matrices".

Coefficient of determination

Given the model of
coefficient of determination R as:

SSE _ Y (9 —3)°
> (yi — 5)2

, we define the

, SSR
TSST

SST *

where SSR = >0 (4 —7)% is the regression sum of
squares and SST = Y | (y; —y)2 is the total sum of
squares. Furthermore, we can partition SST into SST =
SSR + SSE, where SSE is the error sum of squares. That

is:
n n n
) L \2 )
=9 =D G-+ (i~
=1 =1 =1
Consider the model of

. Then, R? < 1

Given the simple model of
have that R? = r2.

, We

Given the model of , we define the
adjusted coefficient of determination Raq; as:

n—1 SSE
n—k—18SST

MSE
Radj2:1_mizl—

where we have defined the total mean of squares as MST =
n —\2
oo i (Wi = 7).

Consider the model of . The func-
tion Radjz(k) attains a maximum at k = kg which is the
optimal number of variables we should consider for our
model.

Analysis of variance

Let X; ~ x4, and X3 ~ x4, be indepen-
dent random variables. We define the F'-distribution with
degrees of freedom di and ds as the distribution of:

X1 /dy
F= ~ F,
Xg/dg dy,d2
Let X ~ t, be a random variable.
Then:
X%~ P,
Let xT = (z1,...,2,) € R™ Suppose

that > i, 22 = Q1 + -+ + Qk, where Q; = xTA x is
a quadratic form and Aj; is a symmetric positive semi-
definite matrix of rank r;, j = 1,..., k. If ri+--- 47 = n,
then there exists an orthogonal matrix C € M, (R) such
that if y = CTx, then:

Ql :y12+"'+yr12
Q2 = yr1+12 +-+ yr1+r22

Qk = yr1+‘-~+rk,1+12 + -+ yn2

(Cochran’s theorem). Let x =
(X1,...,X,) € N,u(0,0%L,). Suppose that 1| X;* =
Q1+ -+ Qp, where Q; = xTij is a quadratic form
and A; is a symmetric positive semi-definite matrix of
rank rj, 5 =1,...,k. If ri +--- + 1, = n, then:

1. Q1,...,Q are independent random variables.

2. %X i=1,..k

Hypothesis testing

(Bonferroni’s method). Consider the
model y ~ N,,(X3,0%1,,) of and suppose we want
a confidence k + 1-dimensional interval I for 8 of confi-
dence 1 — . Then, it suffices to take any interval I; for

each f3; of confidence 1 — k%_l and let I = Iy x -+ X If.

Let y ~ N, (0,0°L,) be a random variable.

Then:
SSE
o2 Xn—k—1

Moreover if 8, := (81, ... ,ﬂk)T = 0 we have:

SSR )
7 Xk
o

Hence in this case we have that:

SSR /k
SSE/(n—k—1

] ~ Fypn—k-1

Consider the model y ~ N,,(X3,0%1,,)
of and suppose we want to test the hypothesis
Ho : B =0 versus H; : B # 0. The statistic that we take
is:

SSR /k

=S /m—r-1)

~Fypn—k—1

6Note that the expression for [§1 is quite similar to the least-square estimate for 81 in the simple linear model.



Consider the model y ~ N,,(X83,0°1,)
of , R € M,yxp41(R) where r < k + 1, c € RFF!
and suppose we want to test the hypothesis Hy: R8 =c¢
versus Hi : RB # c. Without loss of generality suppose
we can eliminate the first 3, ..., 8, under Hy and so rear-
ranging the model equation we obtain:

yi=XuBy+e
where 8, = (Bry1, - -

p_ (SSE(—SSE)/r _ (SSR—SSRy)/r

TSSE/(n—k—-1) SSE/(n—k—1)

, Br)- The statistic that we take is:

~ Fr,n—k—l

(4)
where the subindex in SSE, and SSR, indicates that this
is the SSE and SSR for the model under Hg, respectively.

Dummy variables

(Model without interaction). Sup-
pose we have a linear model of the form of . We
would like to measure the change in the response when
adding a binary parameter (say men and women) to the
model. Hence we identify that deterministic variable with
a dummy variable as follows:

Joe {1 for men (5)

0 for women
And we consider the new model:
y=XB8+dyl+e

where 1 = (1,...,1). Finally we may want to conclude
whether the variable d is relevant or not. This can be
obtained by doing the t-test Hy : v = 0. Note that, in-
dependently of the conclusion of the test, both regression
lines (the one for men and the one for women) will be
parallel.

(Model with interaction). Suppose we
have a linear model of the form of We would
like to measure the change in the response when adding a
dummy variable d as in . Now, consider the follow-
ing model with interaction:

y=XB+dXd+¢

Let v := dg. And now we can do tests for § or for 7. Note
that, these regression lines won’t be in general parallel.

(Segmented regression). Suppose we
have a linear model of the form of and that for
some reason we have noticeable change of the slope at x*
(known). Then, defining the dummy variable

di = {1
0

we can consider the following model:

if v > 2"

(6)

y=XB8+Yv+e

"Note that this test is equivalent to the one in

due to

where:

di(zik — x1")

di(Tnk — ")

Figure 1: Segmented regression of a simple linear model

Predicted confidence intervals

Consider the model of and
suppose we have observed a new data value x,T =
(L, z1p, ..., Tkn). The response or prediction of this ob-

servation is
_ T _
Yn =Xp B+en=pun+en

where puy, is the average response. The estimated average
response fip, and the estimation of the prediction ¥ coin-
cide and they are:

gn = fin =x1," B

(Confidence interval for the average
response). Consider the model of and suppose we

have observed a new data value x,T = (1,215,..., %)
Then:
1. The random variable fi;, is a linear combination of
Yly-- -, Yn and:
E(fn) = pn  Var(in) = 0hnn

where we have defined the leverage as hp, =
-1
XhT (XTX) Xp-

2. fin ~ N(ph, 0%hpn)
fin — pn
vMSE hy,;,

Varying the value of x5 along the space of parameters
we obtain a family of confidence intervals for y; which is
called confidence band.

3. ~tp g1

(Confidence interval for the pre-

dicted wvalue). Consider the model of and
suppose we have observed a new data value x,T =
(1, z1p, -, Tkp). Then:
1. The random variable y;, — g5, is a linear combination
of y1,...,yn and:
E(yn —9n) =0  Var(yn — 9n) = 0° (1 + hnn)



2. yn — Gn ~ N(0,02(1 + hnp))

Yn — gh
MSE(1 + hhh)

~tp_g—1

Varying the value of x; along the space of parameters
we obtain a family of confidence intervals for y;, which is
called prediction band.

v b

Figure 2: Example of a confidence band (green-shaded re-
gion) and a prediction band (yellow-shaded region) for a
simple linear model. Note that always the prediction band
is greater than the confidence band

Consider the simple model of and
suppose we have observed a new data value xj. Then:

(zn —7)°

D iy (i — 7)°

1
hp :=hpp = = +
n

Lack of fit

Consider the simple model of
Then, the residuals e; = y; — ¥; satisfy:

1. Z?:l €; = 0
2. Z?:l €T;€; = 0

DG ENT o)

e =
They are pairwise correlated.
E(ei) =0

Var(e;) = o%(1 — h;)

BNl

Consider the simple model of
We will perceive a lack of fit in the model if the graph
of the e; in terms of the regressors coefficients z; and the
prediction g; follow a chaotic behavior inside of a rectangle
centered at § = 0 (see ).

(a) Absence of lack of fit (b) Lack of fit

Figure 3: Stability of limit cycles

(LOF test). Consider the simple model
of . The lack of fit test (LOF test) has a the follow-
ing null hypothesis:

Ho : For each z;, the mean of all outcomes obtained for

this fixed value lies on the regression line

Otherwise, H1 : There is a LOF. Suppose now that we
have m distinct x; and for each of those we have the ob-
servation y;;, 7 = 1,...,n,;. In order to properly do this
test we need to have at least one index i = ¢* such that
number n;« > 2. In this case, we have that:

m  n;

SSE=>"Y (yij—9:)° =) Z (o5 —7:)*+

i=1 j=1 i=1 j=1

+ ni(g; — §:)? = SSPE + SSLOF
=1

where g; := ;- 32" yi;. Finally the test that we take is

(under Hg):

S MSLOF
SSPE = MSPE ~ Fm72,n7m
Consider the simple model of . In

order to normalize the errors we define the internally stu-
dentized residuals as:

«/MSE(zl — h;)

We define the externally studentized residuals as:

TP = ~tp—g—1

&2

VMSE( (1 — hy)

1 & .
where MSE ;) = — Z (y; — yj)2.
j=1

i

d?“i =

~tn—k

Consider the simple model of
There are two types of atypical data: the high-leverage
points and the outliars. To detect them, we will say the
the data i is a high-leverage point if:

— Jk+1
hii >3h=3 i
n
We will say that the data j such that |dr;| =
max |dr;| : ¢ =1,...,n is an outliars if
2ny > a = 0.05

where v =1 —P(t,—x > |dr;|).

Consider the simple model of . We

will say that the influence of the i-th point on Bj is signi-
ficative if

Bi — By o 2

JMSE b, ~ v/n

where Bj(i) and MSE; are the estimator of Bj and MSE in
a model without the i-th point and b;i is the i-th element

on the diagonal of (XTX)il.



Consider the simple model of . We
will say that the influence of the i-th point on the predic-
tion is significative if

Ui — Tii) P
DFFITS. ;| i= ———t— > 24/ —
‘ J(l)‘ A /MSE(Z-) hit — n

where g;(;) is the prediction §; in a model without the i-th
point.

Consider the simple model of . We
will say that the i-th point has a global influence the in-
fluence on the model if the Cook’s distance

n ~ N 2
D, — > e (5 = D)) _ ri?  hi
! (k‘—l—l)MSE k+11—hy
satisfy:
D;>1
Multicollinearity

Consider the simple model of . We
will have maulticollinearity in our data if 3¢ € RF*! such
that Xc ~ 0. Thus, XTX will be approximately singular.

-1
In particular, since Eﬁ = o2 (XTX) , we will notice a
large variance on the approximations.

Consider the simple model of . We
define the variance inflation factor (or VIF) of the data
X5 = (l‘lj, N ,J)nl)T as:

1

VIF() 1=
J

where R; is the coefficient of determination of the regres-

sion of x; in terms of the data x1,...,X;_1,%X;41,...,Xk.
Consider the simple model of . Then:
~ o2
Var(8;) = WVIF(Xj)
where 5,2 := Var(x;) = 13 S0 | (245 — 7)°
Consider the simple model of . We

define the tolerance of multicollinearity as the inverse of
VIF.

Consider the simple model of . We
impose that the data x; is affected by multicollinearity if
VIF(x;) > 5. Or alternatively, if the tolerance if < 0.2.
Thus, we will proceed to remove it unless it is significant
for the model.

Let A,B € Mj(R) be symmetric matrices
such that A is positive semi-definite. and B is positive
definite. Let Q(v) = vIAv, v € R*. Then:

A = max{Q(v): vIBv = 1}
v; = argmax{Q(v) : vIBv = 1}

where v, is the eigenvector of the largest eigenvalue A of
B 'A.

Mallow’s C), statistic

Consider the model of and let
p—1 < k. We would like to compare the original model
with the model when the variables x;, 7 = p,...,k, are
removed. We define the following matrices:

1z Z1(p-1)
1z Ta(p—1

X, = (1.7 )
1 zm Tn(p—1)
Tip Tik

Xo= | z
Lnp Tnk

That is, X = (X; | X3), expressed as a block ma-

trix. Similarly we define 8; = (5o, ... ,Bp_l)T and B, =
(Bps - - - ,ﬂk)T‘ Finally, we define ﬁl to be the estimators
of the new model y = X8, + &1. That is:

R -1
B=(x"x1) XiTy

(Bias on the estimations). Consider
the model of and the new model considering only
the first p—1 < k columns of data. Then, the bias of each
the new estimation 8, is:

. —1
bias(8;) = (XlTX1) X, X, 8,

(Bias on the predictions). Consider
the model of and the new model considering only
the first p— 1 < k columns of data. Then, the bias of each
the predictions ¥, is:

bias(§,)*> = X8T (1 — H;)XB

—1
where we have defined Hy := X4 (XlTxl) x,T.

(Mallow’s C,, statistic). Consider the
model of and the new model considering only the
first p — 1 < k columns of data. We define the Mallow’s
C) statistic as:

—(n—2p)

where SSE,, is the error sum of squares of the new model
with p variables. From here, we can conclude that the
closer C, is to p (i.e. C, = p) the lower the bias is for
this new model. Moreover the smaller C, is, the lower the
mean square error is.

Given our initial data for the model of ,
we can get some submodels by considering the best ones
regarding the residuals, multicollinearity, C, statistic...
Once we have all these submodels My, ..., M, done, we
should choose only one of them among the others. To do
so, we randomly partitionate our data in ¢-folds to ob-
tain deterministic matrices Xy, ..., X, (each with k + 1
columns) and vectors yq,...,y,. Now, for each j €

8Note that if the submatrices X; and X are orthogonal we won’t have bias.



{1,...,¢} and for each model M; we measure how good is
the prediction of y; (with the SSE) taking all the other
data. We obtain thus a value SSE; ; for each 7, j. We will
take the the model ig such that:

¢
1o = argmin Z SSE; ;
ie{l,...,r} j=1
Information and entropy

(Information). The information of an event
in a probability space is a continuous function I(A) that
satisfies the following properties:

o It depends on P(A).

o It increases as P(A) decreases and if P(A) = 1, then
I(A) =0.

o I(ANB)=1(A)+ I(B) for any event A, B.

(Cauchy’s functional equation). Let
f R — R be a continuous function such that

f@+y) = flz)+ fy)
Then, 3¢ € R such that f(z) = cx Va € R.

We will prove that f(q) = cq Vg € Q and the den-
sity of Q in R will finish the proof.
First note that f(0) = f(0+0) = 2£(0), so f(0) = 0 and
therefore 0 = f(z—z) = f(x)+ f(—=z), which implies that
the function f is odd. Let n € N and = € R. Then:

flnz) = f((n—1z) + f(z) = =nf(x)
Ifz = 1 then f(1) = f(1) and define ¢ := f(1). Finally,
- € Q we have:

()= ()=

The information of an event A is
I(A) = —clogP(A)
for some ¢ € R<q .

By the first axiom of we have that
I(A) = f(P(A)) and by the third one that if A, B are
independent we have that:

fB(A)P(B)) = f(P(AN B)) = f(P(A)) + f(P(B))

That is, f(zy) = f(x) + f(y) Va,y € [0, 1]. Now consider
g(z) = f(e*). Then:

g(z +y) = f(e"e’) = f(e”) + f(e¥) = g(z) + g(y)

So by , we have that
g(x) = cx and so f(z) = clogz for some ¢ € R. The
second axiom of implies ¢ < 0.

(Entropy). Let X be a random variable.
We define the entropy of X as:

H(X) := E(I(X))

In particular if X has outcomes in X and it is discrete,

then:
H(X) = — 37 p() log, pl2)
reX

where p is the pmf. If it is continuous we have:

wa:—/fwm&ﬂmm

reX
where f is the pdf.

Let X, Y be two random variables of sup-
port X. We define the Kullback-Leibler divergence as the
quantity:

mmmm=2mm%ﬁ@)

= q(z)

where p, ¢ are the pmf of X and Y (in the discrete case)
or as:

Diu(f || 9) = /1f@ﬂbg<£83)dx
TEX

where f, g are the pdf of X and Y (in the continuous
case).

Observe that in both discrete and continuous
cases we have:

Dxi(p [ ¢) = H(X,Y) — H(Y)

where we have denoted H(X,Y) = =3 p(z)logq(x)
(or H(X,Y) = — [ _, p(2)log q(x) dz) the mixed entropy
between p and g. Thus, Dkr(p || ¢) expresses in some
sense how different is if p from g. The lower Dxy,(p || ¢)
is, the more closer is ¢ to p.

(Akaike information criterion). Con-
sider the model of . The Akaike information cri-
terion (AIC) is an estimator of prediction error that is
defined as:

ATC = 2k — 21og (@ (y; §,6%))

where @, is the pdf of N,, (XS, 0%1,).
The lower AIC is, the better a model is.

4. Generalized linear models

Box-Cox transformation

Consider a simple model like in
in which we have observed a notable LOF. We define the
Box-Cox transformation as the following transformation
on the y:

yr —

if A £ 0
if A =0

N =

logy

9Usually we take ¢ = 1 or @ in order to use the logarithm in base b.



Consider a simple model like in
in which we have observed a notable LOF. Making the
Box-Cox transformation and assuming that for some un-
known A the transformed observations satisfy the normal
hypothesis of a linear model, we will choose the MLE
A = \ that maximises the likelihood of the problem.

Exponential families

Let {f(x,0) : 0 € ©} be a family of pdfs
from a probability distribution. We say that this family is
exponential if f(x,0) can be expressed as:

J(x,0) = hw)e? TEI=A@)

where 7 is a function of 6.

(7)

Given a probability p € (0,1) we define
the odds as the value:

1-p

10Tn the Bernoulli’s case, n(p) = logit(p).

It measures how likely the event of probability p in a scale
of (0,00).

Given a probability p € (0,1), we define
the log-odds (or logit) as:

logit p := log <1p>
—-p

The families of Bernoulli'’, Poisson,
Binomial, normal, exponential, gamma, chi-squared and
beta distributions are all exponential families.

Let {f(x,0) : @ € ©} an exponential fam-
ily that can be written as . Then, the statistic T
is a sufficient statistic.
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