
Linear models

1. | Introduction
Sample coeffcients
Definition 1 (Sample variance and covariance). Let
{(xi, yi) : i = 1, . . . , n} be a set of data. We define the
sample covariance between the xi and the yi as:

sxy := 1
n

n∑
i=1

(xi − x)(yi − y)

We define the sample variance as:

sx
2 := 1

n

n∑
i=1

(xi − x)2

Definition 2. Let {(xi, yi) : i = 1, . . . , n} be a set of data.
We define the sample correlation coefficient between the
xi and the yi as:

r := sxy

sxsy

Proposition 3. Let {(xi, yi) : i = 1, . . . , n} be a set of
data. Then, r2 ≤ 1.

Multivariate properties
Definition 4. Let x = (X1, . . . , Xn) be a random vector.
We define its expectation as:

E(x) :=

E(X1)
...

E(Xn)


Analogously, the expectation of a matrix is defined com-
ponent by component.
Theorem 5. Let x, y be random vectors of dimension n.
We have the following properties regarding the expecta-
tion:

1. E(αx+βy+γ1) = αE(x)+βE(y)+γ1 ∀α, β, γ ∈ R1.

2. E(aTx + bTy + cT1) = aTE(x) + bTE(y) +
cT1 ∀a,b, c ∈ Rn.

3. E(Ax) = AE(x) ∀A ∈ Mm×n(R).
Definition 6. Let x = (X1, . . . , Xn) be a random vec-
tor. We define the covariance matrix of x as the following
matrix:

Σx := Var(x) := E
(

(x − E(x))(x − E(x))T
)

Proposition 7. Let x = (X1, . . . , Xn) be a random vec-
tor. Then, Σx is symmetric and:

Σx =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xn)
...

... . . . ...
Cov(Xn, X1) Cov(Xn, X2) · · · Var(Xn)



Definition 8. Let x, y be random vectors. We define the
covariance between them as the following matrix:

Cov(x,y) := E
(

(x − E(x))(y − E(y))T
)

Proposition 9. Let x, y be random vectors, a,b ∈ Rn

and A,B ∈ Mn(R). Then:

1. Cov(x,y) = E(xyT) − E(x)E(x)T

2. Cov(x − a,y − b) = Cov(x,y)

3. Cov(Ax,By) = ACov(x,y)BT

4. E
(
xTAx

)
= tr(AΣx) + E(x)TAE(x)

5. E
(

(x − a)(x − a)T
)

= Σx + (E(x) − a)(E(x) − a)T

6. E(∥x − a∥) = tr Σx + ∥E(x) − a∥

7. aTΣxa = Var(aTx). Thus, Σx is positive semi-
definite.

8. If x = (X1, . . . , Xn) and no Yj can be expressed as
a linear combination of the other ones, then Σx is
positive definite.

Multivariate normal
Definition 10. We say that x ∼ Nn(µ,Σ), where µ ∈ Rn

and Σ ∈ Mn(R) is symmetric and positive definite, if its
moment generating function2 is:

ψx(u) = eµTue 1
2 uTΣu ∀u ∈ Rn

Proposition 11. Let z = (Z1, . . . , Zn), where Zi ∼
N(0, 1) for i = 1, . . . , n. Then, z ∼ Nn(0, In).

Definition 12. Let A ∈ Mn(R) be symmetric and posi-
tive definite. Suppose the Jordan descomposition of A is
A = PΛP−1, where Λ = diag(λ1, . . . , λn). Then ∀α ∈ R,

Aα := PΛαP−1

where Λα := diag(λ1
α, . . . , λn

α).

Proposition 13. Let x ∼ Nn(µ,Σ), where µ ∈ Rn

and Σ ∈ Mn(R) is symmetric and positive definite3.
Then, z := Σ−1/2(x − µ) ∼ Nn(0, In). Analogously if
z ∼ Nn(0, In), then x := Σ1/2z + µ ∼ Nn(µ,Σ).

Proposition 14. Let x ∼ Nn(µ,Σ). Then,

fx(y) = 1√
det Σ

1
(2π) n

2
e− 1

2 (y−µ)TΣ−1(y−µ)

Proposition 15. Let x ∼ Nn(µ,Σ) such that x =
(X1, . . . , Xn). Then, the variables Xi are normal for
i = 1, . . . , n.

1Here 1 represents the vector 1 := (1, . . . , 1)T.
2Remember definition ??.
3From now on this hypothesis will be implicit in the definition of x.
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2. | Simple regression
The model and estimations of the coefficients

Definition 16 (Simple model). Suppose we have a
sample of data {(xi, yi) : i = 1, . . . , n}. We can de-
scribe the relationship between xi and yi with the fol-
lowing model:

yi = β0 + β1xi + εi i = 1, . . . , n

where we assume that yi and εi are random variables
whereas xi are known constants. Moreover in the model,
we suppose the following hypothesis:

1. E(εi) = 0 and Var(εi) = σ2, i = 1, . . . , n.

2. Cov(εi, εj) = 0 if for all i ̸= j.

Sometimes we add an additional condition of normality:

1. εi ∼ N(0, σ2), i = 1, . . . , n.

If we write y = (y1, . . . , yn), x = (x1, . . . , xn) and ε =
(ε1, . . . , εn) we can write the model in a more compact
way:

y = β0 + β1x + ε (1)

From here, we would like to estimate the parameters β0
and β1 to make preditions ŷh from new data xh.

Proposition 17 (Least-squares method). Given the
simple linear model of Eq. (1), we need to estimate the
parameters β0, β1 and σ2. To do so, least-squares method
seek estimators β̂0 and β̂1 that minimize the sum of square
of the deviations yi − ŷi (also called residuals), where ŷi is
the predicted value ŷi = β̂0 + β̂1xi. Hence:

β̂0 = arg min
β0

{
n∑

i=1
(yi − β0 − β1xi) : β0, β1 ∈ R2

}

β̂1 = arg min
β1

{
n∑

i=1
(yi − β0 − β1xi) : β0, β1 ∈ R2

}

And we obtain:

β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1 (xi − x)2 = sxy

sx
2

β̂0 = y − β̂1x

To estimate σ2 we use:

s2 = 1
n− 2

n∑
i=1

(yi − ŷi)2

Theorem 18. Given the model of Eq. (1), if we consider
the hypothesis of normality for εi, then the estimates of
the least-squares method coincide with the MLEs.

3. | Multiple regression
Definition 19 (General linear model). Suppose we
have a sample of data {(xi1, . . . , xik, yi) : i = 1, . . . , n}.

We can describe the relationship between xi1, . . . , xik and
yi with the following model:

yi = β0 + β1xi1 + · · · + βkxik + εi i = 1, . . . , n

where we assume that yi and εi are random variables
whereas xi are known constants. Moreover in the model,
we suppose the following hypothesis:

1. E(εi) = 0 and Var(εi) = σ2, i = 1, . . . , n.

2. Cov(εi, εj) = 0 if for all i ̸= j.

Sometimes we add an additional condition of normality:

1. εi ∼ N(0, σ2), i = 1, . . . , n.

Analogously to what we did with the simple model, we
can write the relation in matrix notation as:

y1
y2
...
yn

 =


1 x11 · · · x1k

1 x21 x2k

... . . . ...
1 · · · xn(k−1) xnk



β0
β1
...
βk

 +


ε0
ε1
...
εn


= Xβ + ε (2)

where the matrix X is called design matrix (and its com-
ponents, regressor coefficients), and β, regression coeffi-
cients. From here, we would like to estimate the parame-
ters (β0, . . . , βk) with estimators β̂ = (β̂0, . . . , β̂k) to make
preditions ŷh from new data xh in the following way:

ŷh = xh
Tβ̂

Least-squares estimation

Proposition 20 (Least-squares method). Consider
the model y ∼ Nn(Xβ, σ2In) of Eq. (2). We want to
minimize the value

∥y − Xβ∥2
2 =

n∑
i=1

(β0 + β1xi1 + · · · + βkxik − yi)2

The value β̂ = (β̂0, . . . , β̂k) that minimizes the previous
values is given by the solution of:

XTXβ̂ = XTy

In particular, if XTX is invertible, we get the explicit so-
lution

β̂ =
(

XTX
)−1

XTy

Proposition 21. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2). If E(y) = Xβ, then β̂ is an unbiased estimator
for β.

Proposition 22. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2). If Var(y) = σ2In, then the covariance matrix
for β̂ is Σβ̂ = σ2

(
XTX

)−1
.
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MLE estimation
Proposition 23 (MLE method). Consider the model
y ∼ Nn(Xβ, σ2In) of Eq. (2). We want to find the value
β̂ that maximises the likelihood which in this case is:

L(y; β, σ2) = 1
(
√

2πσ2)n
e− 1

2σ2 ∥y−Xβ∥

Solving for β̂ and σ̂2 we get:

XTXβ̂ = XTy

σ̂2 = 1
n

∥e∥2 = SSE
n

where e = y − ŷ = y − Xβ̂. Note that σ̂2 is biased and if
we want an unbiased estimator we should use:

s2 = 1
n− k − 1∥e∥2 =: MSE

Here MSE stands for mean square error.

Definition 24. Consider the model y ∼ Nn(Xβ, σ2In) of
Eq. (2) and suppose that XTX ∈ GLk+1(R). We define
the following deterministic matrices:

A =
(

XTX
)−1

XT H = XA M = I − H

Hence,
β̂ = Ay ŷ = Hy e = My

Proposition 25. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2) and suppose that XTX ∈ GLk+1(R). Then:

1. β̂0, . . . , β̂k are independent normally distributed ran-
dom variables, as well as ŷ1, . . . , ŷn and ê1, . . . , ên

2. H and M are symmetric and idempotent. More-
over, MH = 0n. Hence, they orthogonally project
Rn into orthogonal subspaces.

3. MX = 0

4. e = Mε

5. rank H = k + 1 and rank M = n− (k + 1)

6. XTe = 0. In particular,
∑n

i=1 ei = 0 and∑n
i=1 xijei = 0 ∀j. So the sample covariance of

(x1j , . . . , xnj) and e is 0 ∀j.

7. ŷTe = 0. Analogously, we have that the sample
covariance of ŷ and e is 0.

Proposition 26. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2), then β̂, s2 are unbiased estimator for β and σ2,
respectively, and:

Σβ̂ = σ2
(

XTX
)−1

Moreover, and unbiased estimator for Σβ̂ is:

Σβ̂ = MSE
(

XTX
)−1

Proposition 27. Let A ∈ Mn(R) be symmetric and
idempotent. Then, A is positive semi-definite. If more-
over rank A = r, then A has r eigenvalues equal to 1 and
the rest are 0.

Lemma 28. Let A ∈ Mn(R) be symmetric and idempo-
tent of rank d and z ∼ Nn(0, In). Then, ∥Az∥2 ∼ χd

2.

Proposition 29. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2). Then:

1. β̂ ∼ Nk+1

(
β, σ2

(
XTX

)−1
)

2. (n−k−1)s2

σ2 ∼ χn−k−1
2

3. β̂ and s2 are independent.

Proposition 30. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2) in which σ2 is unknown. Then, for each
j = 1, . . . , n we have

βj − β̂j√
MSE

∼ tn−k−1

Proposition 31. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2). Then, if the variables xi1, . . . , xik are uncorre-
lated ∀i = 1, . . . , n, then the MLE estimators β̂j coincide
with the ones of the equivalent simple models:

y = β0 + βixi i = 1, . . . , n

Theorem 32 (Gauß-Markov). Consider the model of
Eq. (2)4, then the least-squares estimators for βj , j =
0, 1, . . . , k, are BLUE (the Best Linear Unbiased Estima-
tor)5.

Corollary 33. The predicted value ŷh is invariant to a
full-rank linear transformation on the x’s. That is:

ŷz = zh
Tβ̂z = xh

Tβ̂ = ŷh

where zh = KTxh and Z = XK is the full-rank linear
transformation.

Model in centered form

Definition 34. Consider the model y ∼ Nn(Xβ, σ2In) of
Eq. (2). Then, for each i = 1, . . . , n we can write:

ỹi = yi − y = β1x̃i1 + · · · + βkx̃ik + εi (3)

where x̃ij = xij − xi. This way we obtain a no-intercept
linear model, which is a little bit easier to estimate. The
estimation of β0 will be:

β̂0 = y − xTβ̂1

where β̂1 = (β1, . . . , βk)T

4Here the normality hypothesis does not play any role.
5That is, they have minimum variance among all linear unbiased estimators.
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Proposition 35. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2) in its centered form (Eq. (3)). Then:

β̂1 =
(

X̃TX̃
)−1

X̃Tỹ

where:

ỹ =

y1 − y
...

yn − y

 X̃ =

 x11 − x1 · · · x1k − xk

... . . . ...
xn(k−1) − x1 · · · xnk − xk


And so:

β̂1 = SX
−1sXy

where:

(SX)ij = 1
n− 1

n∑
ℓ=1

(xℓi − xi)(xℓj − xj)

(sXy)i = 1
n− 1

n∑
ℓ=1

(xℓi − xi)(yℓi − y)

are the respective sample covariance matrices6.

Coefficient of determination

Definition 36. Given the model of Eq. (2), we define the
coefficient of determination R as:

R2 := SSR
SST := 1 − SSE

SST :=
∑n

i=1 (ŷi − y)2∑n
i=1 (yi − y)2

where SSR =
∑n

i=1 (ŷi − y)2 is the regression sum of
squares and SST =

∑n
i=1 (yi − y)2 is the total sum of

squares. Furthermore, we can partition SST into SST =
SSR + SSE, where SSE is the error sum of squares. That
is:

n∑
i=1

(yi − y)2 =
n∑

i=1
(ŷi − y)2 +

n∑
i=1

(yi − ŷi)2

Lemma 37. Consider the model of Eq. (2). Then, R2 ≤ 1

Proposition 38. Given the simple model of Eq. (1), we
have that R2 = r2.

Definition 39. Given the model of Eq. (2), we define the
adjusted coefficient of determination Radj as:

Radj
2 = 1 − MSE

MST := 1 − n− 1
n− k − 1

SSE
SST

where we have defined the total mean of squares as MST =
1

n−1
∑n

i=1 (yi − y)2.

Lemma 40. Consider the model of Eq. (2). The func-
tion Radj

2(k) attains a maximum at k = k0 which is the
optimal number of variables we should consider for our
model.

Analysis of variance
Definition 41. Let X1 ∼ χd1 and X2 ∼ χd2 be indepen-
dent random variables. We define the F -distribution with
degrees of freedom d1 and d2 as the distribution of:

F = X1/d1

X2/d2
∼ Fd1,d2

Proposition 42. Let X ∼ tn be a random variable.
Then:

X2 ∼ F1,n

Lemma 43. Let xT = (x1, . . . , xn) ∈ Rn. Suppose
that

∑n
i=1 xi

2 = Q1 + · · · + Qk, where Qj = xTAjx is
a quadratic form and Aj is a symmetric positive semi-
definite matrix of rank rj , j = 1, . . . , k. If r1+· · ·+rk = n,
then there exists an orthogonal matrix C ∈ Mn(R) such
that if y = CTx, then:

Q1 = y1
2 + · · · + yr1

2

Q2 = yr1+1
2 + · · · + yr1+r2

2

...
Qk = yr1+···+rk−1+1

2 + · · · + yn
2

Theorem 44 (Cochran’s theorem). Let x =
(X1, . . . , Xn) ∈ Nn(0, σ2In). Suppose that

∑n
i=1 Xi

2 =
Q1 + · · · + Qk, where Qj = xTAjx is a quadratic form
and Aj is a symmetric positive semi-definite matrix of
rank rj , j = 1, . . . , k. If r1 + · · · + rk = n, then:

1. Q1, . . . , Qk are independent random variables.

2. Qj

σ2 ∼ χrj
, j = 1, . . . , k.

Hypothesis testing
Proposition 45 (Bonferroni’s method). Consider the
model y ∼ Nn(Xβ, σ2In) of Eq. (2) and suppose we want
a confidence k + 1-dimensional interval I for β of confi-
dence 1 − α. Then, it suffices to take any interval Ij for
each βj of confidence 1 − α

k+1 and let I = I0 × · · · × Ik.

Theorem 46. Let y ∼ Nn(0, σ2In) be a random variable.
Then:

SSE
σ2 ∼ χn−k−1

2

Moreover if β1 := (β1, . . . , βk)T = 0 we have:

SSR
σ2 ∼ χk

2

Hence in this case we have that:
SSR /k

SSE /(n− k − 1) ∼ Fk,n−k−1

Proposition 47. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2) and suppose we want to test the hypothesis
H0 : β = 0 versus H1 : β ̸= 0. The statistic that we take
is:

F = SSR /k

SSE /(n− k − 1) ∼ Fk,n−k−1

6Note that the expression for β̂1 is quite similar to the least-square estimate for β1 in the simple linear model.
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Proposition 48. Consider the model y ∼ Nn(Xβ, σ2In)
of Eq. (2), R ∈ Mr×k+1(R) where r ≤ k + 1, c ∈ Rk+1

and suppose we want to test the hypothesis H0 : Rβ = c
versus H1 : Rβ ̸= c. Without loss of generality suppose
we can eliminate the first β, . . . , βr under H0 and so rear-
ranging the model equation we obtain:

yℓ = Xℓβℓ + ε

where βℓ = (βr+1, . . . , βk). The statistic that we take is:

F = (SSEℓ − SSE)/r
SSE /(n− k − 1) = (SSR − SSRℓ)/r

SSE /(n− k − 1) ∼ Fr,n−k−1

(4)
where the subindex in SSEℓ and SSRℓ indicates that this
is the SSE and SSR for the model under H0, respectively.

Dummy variables
Definition 49 (Model without interaction). Sup-
pose we have a linear model of the form of Eq. (2). We
would like to measure the change in the response when
adding a binary parameter (say men and women) to the
model. Hence we identify that deterministic variable with
a dummy variable as follows:

d :=
{

1 for men
0 for women

(5)

And we consider the new model:

y = Xβ + dγ1 + ε

where 1 = (1, . . . , 1). Finally we may want to conclude
whether the variable d is relevant or not. This can be
obtained by doing the t-test H0 : γ = 07. Note that, in-
dependently of the conclusion of the test, both regression
lines (the one for men and the one for women) will be
parallel.

Definition 50 (Model with interaction). Suppose we
have a linear model of the form of Eq. (2). We would
like to measure the change in the response when adding a
dummy variable d as in Eq. (5). Now, consider the follow-
ing model with interaction:

y = Xβ + dXδ + ε

Let γ := δ0. And now we can do tests for δ or for γ. Note
that, these regression lines won’t be in general parallel.

Definition 51 (Segmented regression). Suppose we
have a linear model of the form of Eq. (2) and that for
some reason we have noticeable change of the slope at x∗

(known). Then, defining the dummy variable

di :=
{

1 if xki ≥ xi
∗

0 if xki ≤ xi
∗ (6)

we can consider the following model:

y = Xβ + Yγ + ε

where:

Y =

d1(x11 − x1
∗) · · · dk(x1k − xk

∗)
... . . . ...

d1(xn1 − x1
∗) · · · dk(xnk − xk

∗)



x∗
x

y

Figure 1: Segmented regression of a simple linear model

Predicted confidence intervals
Definition 52. Consider the model of Eq. (2) and
suppose we have observed a new data value xh

T =
(1, x1h, . . . , xkn). The response or prediction of this ob-
servation is

yh = xh
Tβ + εh = µh + εh

where µh is the average response. The estimated average
response µ̂h and the estimation of the prediction ŷh coin-
cide and they are:

ŷh = µ̂h = xh
Tβ̂

Proposition 53 (Confidence interval for the average
response). Consider the model of Eq. (2) and suppose we
have observed a new data value xh

T = (1, x1h, . . . , xkn).
Then:

1. The random variable µ̂h is a linear combination of
y1, . . . , yn and:

E(µ̂h) = µh Var(µ̂h) = σ2hhh

where we have defined the leverage as hhh :=
xh

T
(

XTX
)−1

xh.

2. µ̂h ∼ N(µh, σ
2hhh)

3. µ̂h − µh√
MSEhhh

∼ tn−k−1

Varying the value of xh along the space of parameters
we obtain a family of confidence intervals for yh which is
called confidence band.

Proposition 54 (Confidence interval for the pre-
dicted value). Consider the model of Eq. (2) and
suppose we have observed a new data value xh

T =
(1, x1h, . . . , xkn). Then:

1. The random variable yh − ŷh is a linear combination
of y1, . . . , yn and:

E(yh − ŷh) = 0 Var(yh − ŷh) = σ2(1 + hhh)
7Note that this test is equivalent to the one in Eq. (4) due to Theorem 42.
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2. yh − ŷh ∼ N(0, σ2(1 + hhh))

3. yh − ŷh√
MSE(1 + hhh)

∼ tn−k−1

Varying the value of xh along the space of parameters
we obtain a family of confidence intervals for yh which is
called prediction band.

x

y

x

y

Figure 2: Example of a confidence band (green-shaded re-
gion) and a prediction band (yellow-shaded region) for a
simple linear model. Note that always the prediction band
is greater than the confidence band

Corollary 55. Consider the simple model of Eq. (1) and
suppose we have observed a new data value xh. Then:

hh := hhh = 1
n

+ (xh − x)2∑n
i=1 (xi − x)2

Lack of fit
Definition 56. Consider the simple model of Eq. (1).
Then, the residuals ei = yi − ŷi satisfy:

1.
∑n

i=1 ei = 0

2.
∑n

i=1 xiei = 0

3. σ̂e =
∑n

i=1
(ei−e)

n−2 = MSE.

4. They are pairwise correlated.

5. E(ei) = 0

6. Var(ei) = σ2(1 − hi)

Proposition 57. Consider the simple model of Eq. (1).
We will perceive a lack of fit in the model if the graph
of the ei in terms of the regressors coefficients xi and the
prediction ŷi follow a chaotic behavior inside of a rectangle
centered at ŷ = 0 (see Fig. 3).

x

y

(a) Absence of lack of fit

x

y

(b) Lack of fit

Figure 3: Stability of limit cycles

Proposition 58 (LOF test). Consider the simple model
of Eq. (1). The lack of fit test (LOF test) has a the follow-
ing null hypothesis:

H0 : For each xi, the mean of all outcomes obtained for
this fixed value lies on the regression line

Otherwise, H1 : There is a LOF. Suppose now that we
have m distinct xi and for each of those we have the ob-
servation yij , j = 1, . . . , ni. In order to properly do this
test we need to have at least one index i = i∗ such that
number ni∗ ≥ 2. In this case, we have that:

SSE =
m∑

i=1

ni∑
j=1

(yij − ŷi)2 =
m∑

i=1

ni∑
j=1

(yij − yi)
2+

+
m∑

i=1
ni(yi − ŷi)2 =: SSPE + SSLOF

where yi := 1
ni

∑ni

j=1 yij . Finally the test that we take is
(under H0):

SSLOF
m−2
SSPE
n−m

=: MSLOF
MSPE ∼ Fm−2,n−m

Definition 59. Consider the simple model of Eq. (1). In
order to normalize the errors we define the internally stu-
dentized residuals as:

ri = ei√
MSE(1 − hi)

∼ tn−k−1

We define the externally studentized residuals as:

dri = ei√
MSE(i)(1 − hi)

∼ tn−k

where MSE(i) = 1
n− k

n∑
j=1
j ̸=i

(yj − ŷj)2.

Definition 60. Consider the simple model of Eq. (1).
There are two types of atypical data: the high-leverage
points and the outliars. To detect them, we will say the
the data i is a high-leverage point if:

hii ≥ 3h = 3k + 1
n

We will say that the data j such that |drj | =
max |dri| : i = 1, . . . , n is an outliars if

2nγ ≥ α = 0.05

where γ = 1 − P(tn−k > |drj |).

Definition 61. Consider the simple model of Eq. (1). We
will say that the influence of the i-th point on β̂j is signi-
ficative if∣∣DFBETASj(i)

∣∣ :=
β̂j − β̂j(i)√
MSE(i) bjj

≥ 2√
n

where β̂j(i) and MSE(i) are the estimator of β̂j and MSE in
a model without the i-th point and bii is the i-th element
on the diagonal of (XTX)−1.
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Definition 62. Consider the simple model of Eq. (1). We
will say that the influence of the i-th point on the predic-
tion is significative if∣∣DFFITSj(i)

∣∣ :=
ŷj − ŷi(i)√
MSE(i) hii

≥ 2
√
p

n

where ŷi(i) is the prediction ŷi in a model without the i-th
point.

Definition 63. Consider the simple model of Eq. (1). We
will say that the i-th point has a global influence the in-
fluence on the model if the Cook’s distance

Di =
∑n

j=1 (ŷj − ŷj(i))2

(k + 1) MSE = ri
2

k + 1
hii

1 − hii

satisfy:
Di ≥ 1

Multicollinearity
Definition 64. Consider the simple model of Eq. (2). We
will have multicollinearity in our data if ∃c ∈ Rk+1 such
that Xc ≃ 0. Thus, XTX will be approximately singular.
In particular, since Σβ̂ = σ2

(
XTX

)−1
, we will notice a

large variance on the approximations.

Definition 65. Consider the simple model of Eq. (2). We
define the variance inflation factor (or VIF) of the data
xj = (x1j , . . . , xn1)T as:

VIF(xj) := 1
1 −Rj

2

where Rj is the coefficient of determination of the regres-
sion of xj in terms of the data x1, . . . ,xj−1,xj+1, . . . ,xk.

Lemma 66. Consider the simple model of Eq. (2). Then:

Var(β̂j) = σ2

(n− 1)sj
2 VIF(xj)

where sj
2 := Var(xj) = 1

n−1
∑n

i=1 (xij − xj)2.

Definition 67. Consider the simple model of Eq. (2). We
define the tolerance of multicollinearity as the inverse of
VIF.

Definition 68. Consider the simple model of Eq. (2). We
impose that the data xj is affected by multicollinearity if
VIF(xj) ≥ 5. Or alternatively, if the tolerance if ≤ 0.2.
Thus, we will proceed to remove it unless it is significant
for the model.

Theorem 69. Let A,B ∈ Mk(R) be symmetric matrices
such that A is positive semi-definite. and B is positive
definite. Let Q(v) = vTAv, v ∈ Rk. Then:

λ1 = max{Q(v) : vTBv = 1}
v1 = arg max{Q(v) : vTBv = 1}

where v1 is the eigenvector of the largest eigenvalue λ1 of
B−1A.

Mallow’s Cp statistic
Definition 70. Consider the model of Eq. (2) and let
p − 1 < k. We would like to compare the original model
with the model when the variables xj , j = p, . . . , k, are
removed. We define the following matrices:

X1 =


1 x11 · · · x1(p−1)
1 x21 x2(p−1)
... . . . ...
1 xn1 · · · xn(p−1)


X2 =

x1p · · · x1k

... . . . ...
xnp · · · xnk


That is, X = (X1 | X2), expressed as a block ma-
trix. Similarly we define β1 = (β0, . . . , βp−1)T and β2 =
(βp, . . . , βk)T. Finally, we define β̂1 to be the estimators
of the new model y = X1β1 + ε1. That is:

β̂ =
(

X1
TX1

)−1
X1

Ty

Proposition 71 (Bias on the estimations). Consider
the model of Eq. (2) and the new model considering only
the first p−1 < k columns of data. Then, the bias of each
the new estimation β̂1 is:

bias(β̂1) =
(

X1
TX1

)−1
X1

TX2β2
8

Proposition 72 (Bias on the predictions). Consider
the model of Eq. (2) and the new model considering only
the first p−1 < k columns of data. Then, the bias of each
the predictions ŷ1 is:

bias(ŷ1)2 = XβT(1 − H1)Xβ

where we have defined H1 := X1

(
X1

TX1

)−1
X1

T.

Theorem 73 (Mallow’s Cp statistic). Consider the
model of Eq. (2) and the new model considering only the
first p − 1 < k columns of data. We define the Mallow’s
Cp statistic as:

Cp := SSEp

MSE − (n− 2p)

where SSEp is the error sum of squares of the new model
with p variables. From here, we can conclude that the
closer Cp is to p (i.e. Cp ≈ p) the lower the bias is for
this new model. Moreover the smaller Cp is, the lower the
mean square error is.

Remark. Given our initial data for the model of Eq. (2),
we can get some submodels by considering the best ones
regarding the residuals, multicollinearity, Cp statistic...
Once we have all these submodels M1, . . . ,Mr done, we
should choose only one of them among the others. To do
so, we randomly partitionate our data in ℓ-folds to ob-
tain deterministic matrices X1, . . . ,Xℓ (each with k + 1
columns) and vectors y1, . . . ,yℓ. Now, for each j ∈

8Note that if the submatrices X1 and X2 are orthogonal we won’t have bias.
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{1, . . . , ℓ} and for each model Mi we measure how good is
the prediction of yj (with the SSE) taking all the other
data. We obtain thus a value SSEi,j for each i, j. We will
take the the model i0 such that:

i0 = arg min
i∈{1,...,r}

ℓ∑
j=1

SSEi,j

Information and entropy
Axiom 74 (Information). The information of an event
in a probability space is a continuous function I(A) that
satisfies the following properties:

• It depends on P(A).

• It increases as P(A) decreases and if P(A) = 1, then
I(A) = 0.

• I(A ∩B) = I(A) + I(B) for any event A, B.

Theorem 75 (Cauchy’s functional equation). Let
f : R → R be a continuous function such that

f(x+ y) = f(x) + f(y)

Then, ∃c ∈ R such that f(x) = cx ∀x ∈ R.

Proof. We will prove that f(q) = cq ∀q ∈ Q and the den-
sity of Q in R will finish the proof.
First note that f(0) = f(0 + 0) = 2f(0), so f(0) = 0 and
therefore 0 = f(x−x) = f(x)+f(−x), which implies that
the function f is odd. Let n ∈ N and x ∈ R. Then:

f(nx) = f((n− 1)x) + f(x) = · · · = nf(x)

If x = 1
n , then f( 1

n ) = f(1) 1
n and define c := f(1). Finally,

∀ n
m ∈ Q we have:

f
( n
m

)
= nf

(
1
m

)
= c

n

m

□

Lemma 76. The information of an event A is

I(A) = −c logP(A)

for some c ∈ R>0
9.

Proof. By the first axiom of 74 Information we have that
I(A) = f(P(A)) and by the third one that if A, B are
independent we have that:

f(P(A)P(B)) = f(P(A ∩B)) = f(P(A)) + f(P(B))

That is, f(xy) = f(x) + f(y) ∀x, y ∈ [0, 1]. Now consider
g(x) = f(ex). Then:

g(x+ y) = f(exey) = f(ex) + f(ey) = g(x) + g(y)

So by 75 Cauchy’s functional equation, we have that
g(x) = cx and so f(x) = c log x for some c ∈ R. The
second axiom of 74 Information implies c < 0. □

Definition 77 (Entropy). Let X be a random variable.
We define the entropy of X as:

H(X) := E(I(X))

In particular if X has outcomes in X and it is discrete,
then:

H(X) = −
∑
x∈X

p(x) logb p(x)

where p is the pmf. If it is continuous we have:

H(X) = −
ˆ

x∈X

f(x) logb f(x) dx

where f is the pdf.

Definition 78. Let X, Y be two random variables of sup-
port X . We define the Kullback-Leibler divergence as the
quantity:

DKL(p ∥ q) =
∑
x∈X

p(x) log
(
p(x)
q(x)

)
where p, q are the pmf of X and Y (in the discrete case)
or as:

DKL(f ∥ g) =
ˆ

x∈X

f(x) log
(
f(x)
g(x)

)
dx

where f , g are the pdf of X and Y (in the continuous
case).

Remark. Observe that in both discrete and continuous
cases we have:

DKL(p ∥ q) = H(X,Y ) − H(Y )

where we have denoted H(X,Y ) = −
∑

x∈X p(x) log q(x)
(or H(X,Y ) = −

´
x∈X p(x) log q(x) dx) the mixed entropy

between p and q. Thus, DKL(p ∥ q) expresses in some
sense how different is if p from q. The lower DKL(p ∥ q)
is, the more closer is q to p.

Definition 79 (Akaike information criterion). Con-
sider the model of Eq. (2). The Akaike information cri-
terion (AIC) is an estimator of prediction error that is
defined as:

AIC = 2k − 2 log
(

Φn(y; β̂, σ̂2)
)

where Φn is the pdf of Nn(Xβ, σ2In).

Remark. The lower AIC is, the better a model is.

4. | Generalized linear models
Box-Cox transformation
Definition 80. Consider a simple model like in Eq. (1)
in which we have observed a notable LOF. We define the
Box-Cox transformation as the following transformation
on the y:

y(λ) :=


yλ − 1
λ

if λ ̸= 0
log y if λ = 0

9Usually we take c = 1 or 1
log b

in order to use the logarithm in base b.
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Proposition 81. Consider a simple model like in Eq. (1)
in which we have observed a notable LOF. Making the
Box-Cox transformation and assuming that for some un-
known λ the transformed observations satisfy the normal
hypothesis of a linear model, we will choose the MLE
λ = λ̂ that maximises the likelihood of the problem.

Exponential families
Definition 82. Let {f(x,θ) : θ ∈ Θ} be a family of pdfs
from a probability distribution. We say that this family is
exponential if f(x,θ) can be expressed as:

f(x,θ) = h(x)eθT·T(x)−A(θ) (7)
where η is a function of θ.
Definition 83. Given a probability p ∈ (0, 1) we define
the odds as the value:

p

1 − p

It measures how likely the event of probability p in a scale
of (0,∞).

Definition 84. Given a probability p ∈ (0, 1), we define
the log-odds (or logit) as:

logit p := log
(

p

1 − p

)

Proposition 85. The families of Bernoulli10, Poisson,
Binomial, normal, exponential, gamma, chi-squared and
beta distributions are all exponential families.

Theorem 86. Let {f(x,θ) : θ ∈ Θ} an exponential fam-
ily that can be written as Eq. (7). Then, the statistic T
is a sufficient statistic.

10In the Bernoulli’s case, η(p) = logit(p).
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