Harmonic analysis

1. | Introduction

Refer to 7?7 77 for a reminder of the introductory concepts
of Fourier series.

Uniform convergence

Theorem 1. Let f be a continuous T-periodic function
such that f’ exists except for a finite number of points
and it is continuous and bounded. Then, Sy f converges
uniformly to f on [-T/2,T/2].

Proof. We have pointwise convergence towards f. More-
over:
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by ?? 7?7 and because f’ is bounded. Thus, the 7?7 ?7
implies that Sy f converges uniformly to f. O

Corollary 2. Let f € C"! be a T-periodic function such
that f(") exists except for a finite number of points and it
is continuous and bounded. Then:

|Sn f(z) = fl@)] < ﬁ

sup
z€[-T/2,T/2]
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for some sequence (en) — 0.

Proof. By 7?7 we have:
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with ey N=9° 0 because it is the tail of a convergent se-
quence. O

Poisson kernel

For most of the proofs in this section check the analogous
ones with the 77 ?7.

Definition 3 (Poisson kernel). Let r € [0, 1]. We define
the Poisson kernel as

P.(t) = Zr‘"le%
nez
Lemma 4. Let r € [0, 1]. Then:
_ 1—1r2
~ 1—2rcos (ZL) + 12

P (t)

Sketch of the proof. Use the geometric progression for-
mula. O

Proposition 5. The Poisson kernel has the following
properties:

1. P, is a T-periodic, even and non-negative function.
T/2
2. % / P.(t)dt=1 VN.
—T/2
3. V5 >0, Tlir{l_ sup{|P-(t)| : 0 < |t| < T/2} = 0.

Theorem 6. Let f € L'([-T/2,7/2]) be a function hav-
ing left- and right-sided limits at point z¢. Then:

~ fl@ot) + flzo7)

r—1- 2

In particular, if f is continuous at x, 111{1 f*P. = f(zo).
r—1"
Theorem 7. Let p > 1 and f € LP([-T/2,T/2]). Then:
i flon — fll, =0

li P.—f|l =0
Lim [|F fll,

2. | Fourier transform

Definition and first properties

Definition 8. Let f € L'(R).
transform of f as:

We define the Fourier

+o00
7o) = / fa)e2miE

The function f is also called inverse Fourier transform of
!
Proposition 9. Let f,g € L*(R) and «, 8 € R. Then:

~

L. (af + B9)(€) = af(&) + B3(¢)
2. Let h € R. We define Ty, f(z) = f(x + h). Then:

Thf(€) = > €h f(¢)



e27ri:1:hf(x),
9(&) =f(E—h)

3. Ifg(x) =

4. If A € R*, then:

Sketch of the proof. They follow from the linearity of the
integral and some change of variable. O

Definition 10. Let f € L(R).
transform operator as Ff = f.

We define the Fourier

Proposition 11. Let f € L'(R). Then:
1. Ff is uniformly continuous.

2. F is a continuous linear operator from L!'(R) to
L= (R) and [|Ffllo < [If];-
Proof.
we have:

1. Using [tem 9-3

—+oo

CFAE)] < / 270 1| ()| da

—00

|Ff(E+h)

By the 7?7 7?7 we have that the integral is bounded by
2| f||; and so entering the limit we obtain the bound
e||fll; Ye > 0. As the bound does not depend on the
point &, the convergence is uniform.

2. Clearly [|[Ff|l, < |Ifll;- Hence the operator is
bounded and therefore continuous.

O
Theorem 12 (Riemann-Lebesgue lemma). Let f €
L'(R). Then:

lim
[€] =00

7o) =
Sketch of the proof. Note that 2‘]?(5)‘ = ‘f(f) — ei”}\(f)
and:

17rf / f 72771§w+17r dIIZ
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So:
2oyl < L
o) /’f (o gg)| oo
Now use again the 77 77. Ol

Proposition 13. Let f, g € L'(R). Then, fg, fg € LY(R)

and: e
romone= [ o

Sketch of the proof. By Theorem 11, g is bounded. Hence,
fg € L*(R) and the same applies for fg. For the equality,
use 77 77. O

Proposition 14. Let f be a function such that ok f €
LY(R) for k = 0,...,r. Then, f is r times differentiable
and:

(FN® = F((=2mia)" f())
for k=0,1,...,7.
Proof. Note that the function h : & — e 277 f(g)
is C*°(R) and h(k)(f) = (—2riz)"e 272 f(z).  Since

|WF)(€)] < |a* f(x)| we can use ?? to conclude the result.
0

Proposition 15. Let f € L'(R) be such that f*)

L'(R) for k =1,...,r. Then:
FE(E) = (2mi8)" F ()

for k=0,1,...,7.

Proof. We’ll prove it by induction on k. The case k = 0
is clear. For the other ones note that 3(ay), (b,) € R with
lim a, = —oo and lim b, = +o00 and such that:

n—oo n—roo

lim f*=Y(a

n—oo

n) = lim f5Y(b,) =0

n—oo
Hence using integration by parts:
br
f(k) (x)e727ri§m dz
an

o |bn
— lim f(k—l) (x)e—megc

n— oo an
b?L

+ 2mi€ lim/
n—oo

f0(€) = 1im

n—roo

dx +

f(kfl) (1,)6727r15w dx

an

O

Remark. Note that there exists functions f € C(R)NL! (R)
for which the limit lim f(x) does not exist.
Tr—00

Proposition 16. Let f € L*(R) be such that it has com-
pact support. Then, Ff € C¥(R).

Sketch of the proof. Suppose f(z) € [-K,K], K > 0.

Then, expanding F f with the power series of e~27¢? cen-
tered at a € R we have:
T 2. (—2miz)" e~ 2miaz
Fr©) = [ @)Y S o) de



= Z Cn(f - a)n
n=0

where |¢,| < (227?)” || fIl;- Finally, use this to show that

the radius of convergences (see ?7) is co. O

Lemma 17. Let f(z) = e . Then, Ff(¢) =
r€)2

\/ge_( 2~ and moreover F2f = f. In particular if a = 7,

then Ff = f.

Sketch of the proof. f satisfies the ODE 3y’ = —2axy. Tak-
ing ~ on this expression and using Theorems 14 and 15
we obtain that f must satisfy the following ODE:

’ 2772§
B a
with initial condition y(0) = [T e " do = \/T. [
Lemma 18. Let f(z) = e~ . Then, Ff(¢) = (12431%
and moreover F2f = f.
Sketch of the proof.
+oo
FH©) =2 [ e coslanga)do = =
= e~ cos(2méx x_a2+47r2§2
0
U
Lemma 19. Let f(z) = 1j_44(z), a > 0. Then,

Fe) = =Gz,

The inverse Fourier transform

Theorem 20 (Inversion theorem). Let f € L!(R) such
that Ff € L'(R). Then:

+o0
fa) / Fle)emer ag

Moreover if f is continuous we can remove the “almost
everywhere”.

Proof. Consider the integral:
+oo
1 42
@) = [ S+ oo dy

Note that using Theorem 17 and Item 9-4, we have that
m2
F %67”72 = e~™’¢, On the one hand, using this lat-

ter thing and Theorem 13 we have:

+o0 +oo
@) = [ farnemmdy= [ o e d -

“+o0
_ /e2ﬂ'i§CEJ/[‘\(§)ef7Tt2§2 d¢

— 00

which by ?? 77 converges to fj:: f({“)ez”igw d€ ast — 0.

On the other hand with a change of variable we have:
“+o0
I(z) = / Ja+ ty)e ™" dy

Using ?7 it suffices to prove that }in% [ I:(x) — f(z)]|; = 0.
—
But using that fj;o e dy = 1:

“+oo| +oo
o)~ @)l = [ | [ (fa+ ) = s@pe " ay|do

“+oo +oo
< [ [1rt+u) - fa)ldedy

— 00
where we have used 77 77. Now use the 7?7 ?7. O

Corollary 21. Let f € L*(R) such that Ff *= 0. Then,
f=.

Corollary 22. Let f € L'(R). Then, F2f(z) = f(—z).
Hence, F* = id.

Proof. By the 20 Inversion theorem we have:
+o00
fea) = [ Femer ds = Ffla) = 721 (0)

O

Lemma 23. Let f,g € L*(R). Then, fxg € L*R),
1+ glly < If1ly llglly and F(f * g) = FfFg. In particular

- 2
if g(z) = f(—z) then F(f xg) = ‘f‘ .

Sketch of the proof. Show first that f(z —y)g(y) € L*(R?)
and then use 77 ?77. O

Pointwise convergence

Definition 24. Let f € L'(R).
inverse Fourier transform as:

We define the partial

R

Spf(z) = / Fle)emien ae

—R

Definition 25 (Dirichlet kernel). We define the Dirich-
let kernel of order R € Ry as:

R
omi sin(2m Rt
DR(t):/e 2 5tdg:(T)
"R

Proposition 26. The Dirichlet kernel has the following
properties:

1. Dpg is an even function.

+oo
2. / Dg(t)dt =1 for all R > 0.



Srf(@) = (f * Dr)(x)
+oo
| - 0Da)ar

+o0
- / [F@+ 1)+ f(x — D) Dr(t) dt

0

Theorem 27 (Dini’s theorem). Let f € L'(R) and
a,0 € R such that h(t) := VR0 ¢ p1(q 5))
for some ¢ > 0. Then, Rhm Srf(z )

—00

Sketch of the proof. Note that
Spf(z) — = /[f(a: L)+ fz—t) — 20Dg(t) dt
0

Now split this integral as a sum of the following ones:

N

I = /[f(x 1)+ f(o— 1) — 20Dp(t) dt

0

- / [F@+ 1)+ f(z — ))Dg(t) dt

N
Iy = —2€/DR(t) dt
N

Given € > 0 take N such that foo ‘w

mt

dt < e.

Since h is integrable in (0, N), by 12 Riemann-Lebesgue

R— .
lemma we have that I; "—» 0. Then, as we can write
R—

Iy = —20 [;° 0 220 qu we have that I; "5 0. O

U

Lemma 28. Let f € LP(R) with 1 < p < oo. Then,
tim | — T, fl,, = 0.

Sketch of the proof. Clearly is is true if f € Cg°(R)
using ?? ??7. Now use that since C§°(R) is dense in
Co(R), which is dense in LP(R), 3(f,) € C§°(R) such that
Tim |14, — f1, = 0. 0

Uniform convergence

Definition 29. Let f € L*(R) and R > 0. We define the
Fejér mean ogf(x) as:

orf(x) = —/Srf(x)dr

Definition 30. Let f € L}(R) and R > 0. We define the

Fejér kernel Frf(x) as

bc\'—‘
O\:’J
P

Lemma 31. Let f € L*(R) and R > 0. Then, opf =
f * Fr and moreover:

(sin (TRz))?
Fr(w) = T2 Ra?
Definition 32. Let t > 0. We define the Poisson kernel
P; as Py(z) := F~ (e 27HEl),

Lemma 33. Let f € L'(R) and ¢t > 0. Then:

t
P, - -
t(x) 7T(t2 + 1'2)
+o0o
(fxP)(x) = / e—27rt|€|f(£)e2ﬂ'i§w e
— 00
Proof. Check Theorem 18 for the first equality. For the
other one:
f *k Pt / f Pt xr — )
+o00 400
= [ [ fpe e agay
+o0
= / e—zwtlslf(g)e%iga; e
O

Definition 34. Let ¢ > 0. We deﬁne the WeierstrafS ker-
neth as Wt( )—f7 ( —dn? t§ )

Lemma 35. Let f € L'(R) and ¢ > 0. Then:

Wi(r) = ——e™ 4
(=) Vart
+oo
(£ W) = [ 7€ Fpermer ag
—o0
Proof. Check Theorem 17 for the first equality. For the
other one:
(f = Wi)( /f IWi(x —y)dy
“+o00 +oo
/ / f 747r 2¢¢2 271'15 z—Yy) dgdy
_ /ef4ﬂ' t§ f(f)e2m§$ df
O

Proposition 36. Let R > 0 and ¢ > 0. Then:
1. Fgr, P; and W; are non-negative even functions.

2. f+°° (z)dz = [TZ P(z)de = [TZWi(x)da =



3. For all § > 0, we have:

lim sup Fgr(x) = lim sup P, =
R—o0 |x|>p(5 R( ) t—>0|x‘>p(5 t( )
= lim sup Wi(z) =0

t—0 |z|>6

4. For all § > 0, we have:

lim / Fr(z)dz = lim / Py(z)dz =
R—o0 t—0
|z =6 lz[=6
= lim / Wi(z)dz =0
t—0
|z|=6

That is, Fr, P, and Wy are approzimations of the identity.

Sketch of the proof. The first two properties are straight-
forward. For the third one, note that:

1
F < —
MES ") S g
£2
sup Pi(z
\w\zpa o) = m(t2 +62)
sup T) = e 4
NECH 4
The last one is a consequence of the previous ones. O

Theorem 37. Let f € L*(R) be a function having left-
and right-sided limits at point xg. Then:

im0 f(ro) = lim(f = Po) (o) = lin(f + i) (0) =

_ fl@o®) + flxo™)
2

Moreover if f is uniformly continuous, the convergence is
uniform.

Sketch of the proof. Copy the proofs of 7?7 ?? and 77 77.
O

Lemma 38. Let £ C R™ be a measurable space, p > 1,
f € LP(E) and g be such that % + % = 1. Then:

171, =suw{ [ 7a:1sl, =
E
Proof. On the one hand using 77 77:

/ fa < Ifgl < A1 llgll, = A1,
E

MH‘%M Then, ||g||, = 1 and more-
f

o
E/fg_E/ 11,7

Now consider g =

over:

= IF1,P" % = II£Il,

Lemma 39 (Minkowski’s integral inequality). Let
E,F C R™ be measurable spaces, p > 1 and f €

LP(E x F). Then:
) dy </||h

/h

Proof. Let g be such that % + é =1and g € LY(E) with
lgll, = 1. Then, using ?? ?? and ?? ?7:

/ /hxydydx-//hxy x)dx dy

pll9llg dy

- / 1y, dy

Now use Theorem 38. O

y)ll, dy

Theorem 40. Let f € LP(R), 1 < p < oo, and ¢, be an
approximation of identity. Then:

lim |+ 6. — ], =

Sketch of the proof. Using 39 Minkowski’s integral inequal-
ity, we have:

If *de = fll, =

p

— [ 6017 - Ty sl 0y

< / 6. (y) If = Ty fIl dy +

lyl<o
21, / bely) dy

ly|>d

Given € > 0, by Theorem 28 36 > 0 such that the first
integral is bounded by €. Now use this § and Item 36-4
to conclude that the second integral goes to 0 as R — oo.

O

Corollary 41. Let f € LP(R) with 1 < p < co. Then:
li - =
Tim [lorf — f], =0
lim [[f P = fll, =0

lim |1+ W, — f]}, =0



Fourier transform on L*(R)

Lemma 42. Let f,g € L>(R). Then, f * g is continuous
and bounded. Moreover, ||f * gl < [/ fll5 195

Sketch of the proof. The inequality follows from 77 ?77.
Moreover:

[(f +g) (@

+oo
g/|f(m+h—y)—f(év—y)||g(y)|dy§

< lglla [If = T=nfll>
So f * g is continuous, by Theorem 28. O

Theorem 43 (Plancherel theorem). Let f € L'(R) N
L?(R). Then, f € L*(R) and:

+o0 +oo
[ 1r@ras= [ |7

Proof. Let f(z) := f(—z). Then }’:(5 = f(§) and so
by Theorem 42 we have that g := f * f is contmuous
and bounded. Moreover g(§) = f( f € = ‘ f(&)| and

9(0) = [T F(=y) f(y) dy = [ f],>. On the other hand,

by Theorem 35 we have:

+oo +oo
w0 = [ e e = [ ot flo) ag
h - )

And by Theorem 40, lim (g * W;)(0) = ¢(0) = ||f||22
t—0t

Thus, by the definition of limit taking ¢ = ||f||22, we have
that | [ e=17t€ G(¢) dg’ < 2||f,? for ¢ small enough.
Fmally, 1f t is that small, then 1 < 2e™ 478 and so:

/!f

Now use 7?7 ?7 in Eq. (1) and make ¢ — 0. O

+oo

d¢ <2 / G(€)e ™™ de < 4| f|l,” < oo

Corollary 44. Let f,g € L*(R) N L?(R). Then:
/ T = / fie

Proposition 45. Let f € L2(R). Then, 3(f,) € L*(R) N
L?(R) such that lim || f — fall, =0.
n—oo
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Sketch of the
f(.%')].[_n’n] (:L')
Proposition 46. Let f € L%(R) and (f,) € L*(R)NL?(R)
such that li_>m |lf = fully = 0. Then, the limit li_}rn fn(€

exists and we will call it ]?(f ).

proof. Take the sequence f,(x)

Ol

~—

Proof. Since L?(R) is Hilbert, (f,) is Cauchy. But by 43
Plancherel theorem, (ﬁ) is also Cauchy and so it has limit,
because (f,) € L2(R).

To see that the definition is well-defined, suppose
(9n) € LY(R) N L*(R) is another sequence such that
nh_}ngo |lf — gnlly = 0. But in this case:

g0 = fally < llgn = fllz + 11f = fall, =30

O

Remark. Note that the abuse of notation in the definition
of the limit make sense as it coincides with the ordinary
Fourier transform when f € LY(R) (by taking f, = f
Vn € N).

Theorem 47. Let f,g € L?*(R). Then:

n

f(x)efz’”g”” dz

2

L (&% lim

2. £, = || ],

+o0
3. [ fe)a)
4. /f g(z)dz = /f )9(z)

Proof. The first property follows from its definition. For
2
the second one, if f(x) L lim fn(z), by 43 Plancherel
n—o00
7.
of the norm. For the other properties, take the function
given in the proof of Theorem 45 and use the 7?7 ?7. [

theorem we have || f,|l, = . Now use the continuity

Proposition 48 (Jensen’s inequality). Let J: R —» R
be a convex function, f be a measurable function, and
1 €2 — R be measurable with fQ dp = 1. Then:

!ﬂﬁw>J !ﬁm

Sketch of the proof. We assume differentiability on J for
simplicity. Since J is convex we have that Va,b € R:

J(b) =z J(a) + J'(a)(b—a)
Taking a = [, fdp and b = f(x), we have:

@)z | [ran) | [ ra - [ ran
Q Q Q
Multiplying by du and integrating, yields the result. L[]

Lemma 49 (Generalized Holder’s inequality). Let
E CR™ be a measurable set, 1 < py,...,p, < 00 be such
- =1and f; € LP/(E). Then:

that 307, --
n n
117 <ITuzl,
i=1 i=1

1



Proof. We will prove it by induction on n. For n =1
the result is clear. For n > 2, note that the numbers
Gn = -2~ and p,, are Holder conjugates. Moreover, if we

pn—1
(1—i>zﬁwehavethatz L=1

define r; = p; ie1 7
and so using ?? 7?7 we have:

Uf - fally < I facilly, [ ful,,
1 Faa 1 (1l
< A 0 7 - I 1, 5 L
= 1fll, -~ Ifall,,

where in the penultimate step we have used the induction
hypothesis and in the last equality we have used the fact
that r;q, = p;. O

Lemma 50 (Young’s convolution inequality). Let
f e LPR™), g€ L1(R™) and take r such that

11 1
S+-=2+1
b q r

with 1 < p,q,r < oco. Then:

17> gl < A f1, llgll,

Sketch of the proof. Note that:

(F + ) )|
- /<'f<>'>|”|g<x—y>|qﬁ FOI g =)' dy
<[4t —nm? ror= .

-H|g<x—y>|%q .

where in the second inequality we have used the 49 Gen-
eralized Holder’s inequality because:

1 — — 1 1 1
1 r=—p r (1:7_‘_7_7:1
r pr qr p q T
Finally:
I£90" <171, gl ™ [ [ 17 lax =yl dy dx
R'IZ R’V'L
_ r—p r—q P q
= IIf1L," gl LA 11, llgl
=171, llgll,"
where in the second equality we have used the 77 77. [
Theorem 51. Let f € L*(R) and g € L'(R). Then,
f*g€ L*(R) and:
fg(&) = f(€)g(&)
Proof. By 50 Young’s convolution inequality with p = r =
2 and ¢ = 1 we have:
1S glly < Nl llglly < oo
The equality follows in the same way as in L!(R). O

Fourier transform on LP(R)

Lemma 52. Let f € LP(R) with 1 < p < 2. Then,
there exist functions f; € L'(R) and fo € L?(R) such
that f = f1 + fg.

Proof. The set E := {|f| > 1} has finite measure because
f € LP(R). Now consider the Functions

o) f(z) ifzekFE o) 0
f1()~{0 ST L {f@;)

By ??7 7?7, fi € L*(R) because |E| < co. On the other
hand:

/\f2 |d1?—/|f |dx</\f )P dz < oo

R\E R\E

ifxe F
ife ¢ E

because |f| <1in R\ E. So f> € L*(R). O

Definition 53. Let f = f1 + fo € LP(R) with 1 <p < 2,
fi € LY(R) and f» € L*(R). We define the Fourier trans-
form of f as:

~

F(&) == F1() + Ja(€)

Remark. This definition is well-defined. Indeed, suppose

f =91 +ge with1 < p < 2 with g € L'(R) and
ga € LQ(R) Then, f1 — g1 = g2 — fg S LI(R) n LQ(R)
and so

h—-n=fH-ga=fi—gp=Ff-0
Hence, f = fi + f2 = Gi + G-

Fourier transform on R"

In this section we will only expose the most important re-
sults of extending the Fourier transform to L' (R™). More-
over we will not prove any of the results of this section as
they are completely analogous to the previous ones.

Definition 54. Let f € L'(R™). We define the Fourier
transform of f as:

fle) = / F()e2mER) 4

Rn

The function f is also called inverse Fourier transform of
f
Proposition 55. Let f,g € L'(R") and «, 3 € R. Then:

1. (af + Bg)(€) = af(€) + B5(€)

2. Let h € R". We define Ty, f(z) = f(x + h). Then:

Tuf (&) ="M f(¢)
3. If g(x) = ™0 £(x), then:
3(6) = (&~ h)

4. If A € R*, then:

~

Li(X)©=foe



Theorem 56. Let f € L*(R") and denote also by F the
extension of the Fourier transform operator to L'(R™).
Then:

1. Ff is uniformly continuous.

2. F is a continuous linear operator from L!(R") to
L=(R™) and [[Ffllo < [1F1];-

Theorem 57 (Riemann-Lebesgue lemma). Let f €
LY(R™). Then:

e ‘f(g)‘ =0

Proposition 58. Let f be a function such that &;f €
LY(R™). Then, f is differentiable with respect to ¢; and:

I(Ff)
9§

Proposition 59. Let f € L'(R") be differentiable with
respect to z; such that a‘% € L*(R™). Then:

(&) = F((=2mi&;) f(x))

of s

87%(5) = 2mig; f(§)
Theorem 60 (Plancherel theorem). Let f € L'(R")N
L?(R™). Then, f € L?*(R") and:

s ax= [ |7ie)] a

Rn R

Applications of the Fourier transform

Remark. Probably the most important application of
Fourier series is the resolution of PDEs and it is a conse-
quence of Theorem 15, which reduces any order of a PDE
in the spatial variable to 1. The procedure is to compute
the Fourier transform F of the PDE, solve it, and then
get back to the first function using the inverse transform.

Theorem 61 (Uncertainty principle). Let f € L?(R)
be differentiable such that z|f|> € L*(R) and f’ € L(R).
Then:

o0 oo

[ r@ra | [ elfe]

— OO — OO

4
Wl
— 1672

and the equality holds if and only if f(z) = e’>‘2z2, AeR.

Proof. Let I be the left-hand-side term of the inequality.
First note that:

Z&Q\f(£>\2d5=4;z

o ac= 5 [Irerae

where the first equality is by the analogous Theorem 15 in
L?(R) and in the second one we have used 43 Plancherel
theorem. Now by the 7?7, we have:

2

1z 5| [ e
- 2
> 5| [ oRelt@F@) o
. 2
— o | [ g r@r

2

— o | [ @)

where in the third step we have used that:

(@) = 2Re( () T(0)

and in the last step we have integrated by parts (here we
use that z|f|* € L*(R)). O

Theorem 62 (Uncertainty principle in R™). Let
f € L?(R") be regular enough. Then:

4
n2||fH2
1672

7 Il 1£6o) 7 €1 | fle)| ae | >

Theorem 63 (Poisson summation formula). Let f €
C(R) N L*(R) be such that Y, ., f(x + k) converges uni-

formly for € [0,1] and such that Zkez‘f(k)‘ < o0.

Then: R
S fl k)= 3 Flk)erhe

kEZ keZ

In particular, for z = 0 we have:

S i) =3 k)

kezZ kEZL

Proof. Let F(x) := Y ey f(x + k). Note that F is 1-

periodic. If we see that F(n) = f(n) Vn € Z, the continu-
ity of f and the convergence of its Fourier series will imply

-~

F(z) =Y,y f(k)e?™*e But:

F(n) = /1

f(x + k)e—Qﬂ'inx dx

N

ke

f(.%‘ + k_)6727rinm dz

=
m
N

Il
—

1
f(x)e—QTrin(x—k‘) dz

I
[e=]
?r\i

o
m
N



11 Note that with this definition, f is N-periodic. We define

= Z / e 2N qy the discrete Fourier transform (DFT) of f as:
kEZ k
N-1
-~ _ 2mink
_ / f(l,)e—Zﬂ'inx dx f[k] = z_;) f[,n’}e N
= f(n) If we denote wy (= e~ % we can write:
O N-1
I _ kn
Definition 64. Let f € L?(R). We say that f is bandlim- flk] = HZ:% flnleon

ited if 3B € R such that supp f C [-B, BJ.

Theorem 65 (Nyquist-Shannon sampling theo- We will denote f := (f[0],..., f[N —1])

rem). Let f € L?(R) be bandlimited with constant B.

Then: Proposition 67. Let f,g:7Z — C. Then:

PEDM <2’;> sin(n(2Bz — k)) L. [ is linear.

w(2Bx — k)
hez 2. If n € Z and g[k] = f[k — n] Vk € Z, then:

Moreover:
2 ~ 27rlkn

glk] = flKle”

k
1712 = 55 |7 (55)
keZ L

Proof. An easy check shows that the Fourier series of 3. If g[k] = f[k] Vk € Z, then:
€ — 2™ on [~ B, B] is:

=

. sin(m(2Bx — k)) =ike glkl = FIN — k]
C27r1x§ — Z e B
= w(2Bx — k) R
Proposition 68. Let f : Z — C. Then, f = A(wn)f,
Thus: where
B
27TIE:E 1 1 1 T 1
= f dé 1 wN w2 e wyV-1
—B A((,LJN) _ ]_ UJN2 WN4 “ee WN2(N71)
B
sin(w(2Bx — k)) ~ . mike : : : . :
= % m f(§e 7 d¢ 1 wyN1 w20 (N DV
B s k \ sin(n(2Bz — k)) is a symmetric matrix.
B p 2B)  w(2Bx — k)
ez Lemma 69. Let N € N. Then:
The second equality follows from both 43 Plancherel the-
orem and 7?7 77: A(wn)A(wN) = A(Wn)A(wn) = N1y
Hf||2 = Hf” ‘f ( > ‘ Sketch of the proof. Remember that both wy and wy are
QBZ 2B roots of 1 + x4+ - + VN1, a

because by a similar argument as before, the Fourier co-
efficients of f ( ) (thought as periodically extended) are

a5/ (55)- =
1

Remark. In the context of signal processing, 65 Nyquist- f = —A(W)/f
Shannon sampling theorem tells us that if a function f
contains no frequencies higher than B hertz, then it can
be completely determined from its ordinates at a sequence

Definition 70. Let f : Z — C. We define the inverse
discrete Fourier transform as:

Theorem 71 (Plancherel theorem). Let f : Z — C.

of points spaced less than ﬁ seconds apart. Then: N1 N—1
1 —~
flklglk] = — [k]g[k]
Discrete Fourier transform k=0 N kz::

Definition 66. Consider a function f with support In particular, if f = g, we have:
{0,..., N —1}. We can think f as:
N-1 N—1
fiz— ¢ IRP =~ > |71k
k— f(k mod N)=: f[k] = N =



Proof. Using vector notation:

(1) = (i) (

1 1.,
= 1t A@Y) Adwn)

V()

because A (wy) is symmetric.

g

~T
f

=

8

N
O

Definition 72. Let f,g: Z — C. We define the convolu-
tion of f and g as:

(f*g)[K] ==Y flnlg[k —n]
n=0
Lemma 73. Let f,g:7Z — C. Then
f+ glk) = flkgIk]
Proof
- N-1N-1
fglk] = Flilgln = jlon™
n=0 j=0
N-1 N—
= ifl Z n — jlwy ™9k
7=0 n=0
= JIkIgIk]
Ol
Theorem 74 (Poisson summation formula). Let f :
Z — C. Then:
N-1
k=0
Proof.
N-1 N-1
= Y fllen™ = NF[0]
k=0 k,n=0

kn

= N if n = 0 and 0 otherwise be-
4+ N1 O

N-1
because Y, wn
cause wy™ are roots of 1 +x + - -

Fast Fourier transform

Definition 75. Let f : Z — C. Note that we need O (Nz)

operations in order to compute f The fast Fourier trans-
form (FFT) aims to minimize that number by using some
tricks.

Definition 76 (Radix-2 DIT Cooley-Tukey FFT al-
gorithm). Let f : Z — C and assume that N = 2m.
The radiz-2 decimation-in-time (DIT) FFT is defined as
follows. We can write:

N/2-1 N/2-1
— Z f[Qn]wNQ"k—F Z f[2n+1]wN(2n+1)k
n=0 n=0
N/2-1 N/2 1

)

=X flam) (e ¥%) "

ISometimes we will denote T'(¢) as <T, <p).

10

27r1k

= EL+e N O
for k=0,...,N/2 —1 even though the equality holds for
k=0,...,N — 1. For the other cases, we use the period-
icity of e~ to get:

flk+ NJ2] = B, — e %
fork=0,...,N/2—1. Note that E}, and Oy, are both N/2-

dimensional DFT of the even terms of f and the odd terms
of f, respectively. We can thus compute them recursively
until the respective m is odd. Using this method we can
get the DFT of f in at most (when N = 2¢) O (N log N)
time.

3. | Distributions

Introduction
Definition 77. Let @ C R™ and (¢n),¢ € D) =
Ce°(€2). The functions on D() are usually called bump

functions or test functions. We say that ¢, — ¢ in D(Q)
if:
1. There exists a compact
Supp ¢n,supp ¢ € K ¥n € N.

2. lim [0%pn = "¢l e (1) = 0 Yo € (NU{0})".

set such that

Definition 78 (Distribution). Let Q2 C R? be a set.
A distribution on Q is a continuous linear form on D((2).
The vector space of all distributions on 2 is denoted by
D*(Q).

Lemma 79. Let Q@ C R? and T : D(2) — C be linear.
Then, T is continuous if and only if V(y,) € D(2) with
©n — 0 in D(Q) we have that T(¢,) — 0.

Lemma 80 (Fundamental lemma of calculus of vari-
ations). Let Q2 C R? be a domain and f € L{ (2) such

that
/ F(x)p(x) dx =
Q

for all ¢ € D(R). Then, f *= 0 in Q.

Proposition 81. Let Q C R and T : D(Q2) — C be lin-
ear. Then, T € D*(Q) if and only if for all compact set
K C Q, there exist C > 0 and m € NU {0} such that
Vo € D(K) we have:

T(p) <C Y 0%l oo i)

laf<m

0

Proof. The right-to-left implication is clear. For the other
one, suppose that there exists a compact set K such that
VC > 0 and all m € N U {0} there exists a sequence

(pr) € D(Q) such that:
T ()| > C Z H3a90k||Loo(K) = C”Sﬁka,K
lee|<m
Now consider 9y, := W. Clearly Ya € (NU {0})d
k x©
|0~ wkHLoo(K) % —2 0 but [T (r)| = % > 1 by

considering the particular case of C' = k. Hence, T' cannot
be continuous, which is a contradiction. O



Proposition 82. Let Q C R™ and f € Li (Q).
the map

Then,

Tf : D(Q) —
o [ 1006 dx

Q

(2)

is a distribution.

(f ).

Hence, Ty(p) is usually denoted by
Sometimes we will do an abuse of notation de-

noting Ty as f (in view of the 80 Fundamental lemma of

calculus of variations).

Proof. Ty is clearly linear. Moreover:

Ty |</|f

Hence, T is bounded and therefore continuous.

x)| < I£ll; llelloo

0

Definition 83. The distributions that can be expressed
as in Eq. (2) are called regular distributions.

Proposition 84 (Dirac’s § distribution). Let Q C R?
be a set and x¢ € 2. Then, the map

0xo : D() — R

v > p(x0)

0

is a distribution and it is called Dirac’s § distribution. We
will denote dg simply by 6.

and bounded because
O

Proof. Clearly dx, 1is linear
1030 (2)] = lep(x0)] < [lell

Lemma 85. The Dirac’s dg distribution is not regular.

Proof. Suppose it is regular Then Elf 6 LIOC(Q) such
that § = T'. Hence, (0) fQ x) dx for all
p € D(Q). Then, if we take gan( )= go(nx) where

{

then ¢, € D(£) and have support B(

1
e 1-IxI?

0

if x| <1

T
e() it x| > 1

0,1/n). So

/ F(x)gn(x) dx| < / £(0)] dx "2 0
NB(0,1/n) llzll<%
]

Proposition 86 (Cauchy principal value). We define
the Cauchy principal value T := p.v. (%) as the distribu-

tion /

x| >e

de

T(p) = lim

e—0

Proof. First of all note that it is well defined because we
can write:

T(p) = lim #(2) ;‘P(*m) do — / o(x) ;@( ) .
¢ 0

11

which is well-defined because ¢ has compact support and
in a neighborhood of 0 the integrand is bounded (by the ??
??). Moreover it is clearly linear and continuous because

Tl < 2K ¢l

where | K| is the measure of the support of . O

Definition 87. Let Q C R™. We say that a distribu-
tion T' € D*(Q) is a distribution of order N € NU {0} if
IN € NU {0} such that for all compact set K 3Cx > 0
with

IT(p)| < Ck ol y x

for all ¢ € D(Q). We say that T is has infinite order if it
is not of order N for any N € N.

Definition 88. Let Q C R", T,S € D*(Q0), a € R and
f € C®(R™). We define the distributions 7'+ S, aT and
fT as:

<T +5, 90> = <T7 (P> + <S7 90>
(aT, ) := (T, ap)
<fT7 90> = <T7 f‘p>

Remark. In general the product of two distributions is not
associative. For example, one can check that dx = 0 and
Tp.v. (7) =1. So:

v (1) 20 (anv (1))

Convergence of distributions

Definition 89. Let Q C R™ be a set and (T},) € D*(Q).
We say that (T3,) converges to T € D*(Q) if Ty, (p) =3

T(p) for all p € D(Q).

Definition 90. Let Q C R" be a set. We say that a se-
quence of functions (¢.) € L .(Q2) is an approzimation of
identity if

1.9/@:1

2. /|¢8|§MVE>O
Q

3. lim ¢ (x)dx =0 Vo > 0.
e—0

lIx[I=8

Proposition 91. Let  C R" be a set and ¢ € LY(Q)
such that [,¢ = 1. Let ¢. := % ¢(%). Then, (¢.) is
an approximation of identity, ¢. € LL _(Q) Ve > 0 and

e—0

¢ — dp in D*(Q).

Sketch of the proof. Let ¢ € D(Q). Then:

—bo(p)] < / 62(2) o) —
Q

[P () ©(0)|dx



|9 (@)l (x) =

lIxll<é

»(0)|dx +

+ 0= (2)l(x) —

lIx[I=35

(0)] dx

Now use the properties of approximation of identity to see
that each interval goes to zero as ¢ — 0. Ol

el?

loc

Theorem 92. Let Q C R™ and (f,)

LP
fn = f (which means that || f, — fHLp(K) — 0 for any
compact set K C ). Then, Ty, converges to T in D(£2).

(Q) such that

0

Remark. Clearly if f,, converge uniformly to f, the condi-
tion of the theorem holds and we get the same result. But
it can be seen that only with pointwise convergence is not
enough (consider f,(z) = nfz"(1 — z)1p ) for k € N).
Moreover, T}, converges to Ty in D(2) does not imply
pointwise convergence of f,, towards f.

Support of a distribution

Definition 93. Let T € D*(R™). We define the support
of T, supp T, as the intersection of all closed sets K such
that if ¢ € D(R™) has support in R™\ K, then (T, ¢) = 0.

Lemma 94. Let T € D*(R™) and ¢ € D(R"™) be such
that supp ¢ Nsupp T = &. Then, (T, ) = 0.

C;. Then, by the compact-
in € I such that:

Proof. Assume supp T = (;¢;
ness of supp ¢, there exists iy, ...,

supp ¢ C U R™\ Cy)

Now take a partition of unity 1,...,%, € D(R™) sub-
ordinated to the open cover {R"\ C;, : j = 1,...,n}
(check ?77). These 1); satisfy (by definition) that supp1; C
R™\ Cj, for all j =1,...,n and Z?:ﬂbj =1 on supp .
Therefore, defining ¢ := Y77, ¢; we have that ¢» € D(R")
and ¢y = @ on supp . Therefore:

n

D (T, o) =0

Jj=1

(T, ) =(T,p¢) =

O

Definition 95. We denote E(R™) := C*°(R™) and £*(R")
its dual space.

Definition 96. Let T' € D*(R™) with compact support.
We can extent the definition of T to £(R™) in the following
way. Let ¢ € E(R™) and take p € D(R™) such that p =1
on supp 7T'. Then, we define:

<T7 90> = <T’ PSO>

Remark. Note that in view of Theorem 94, this defini-
tion is well defined because if p,w € D(R™) are two dif-
ferent test functions such that p,w = 1 on supp7, then
¢(p —w) =0 on suppT and therefore (T, p(p —w)) = 0.

12

Proposition 97. Let T € D*(R"™) with compact sup-
port. Then, T' € £*(R™) if and only if 3C > 0, N € N and
m € NU {0} such that:

el <c Y

laj<m
for all p € E(R™).

Proof. The implication to the left is clear. For the other
one, from the continuity in D*(R™) we know that for all
compact K, there exist C' > 0 and m € NU{0} such that:

(T )| = (T, pp) < C ) sup [0°(pp) (x)]

laj<m €K

Now take N > 0 such that suppp C suppT C B(0,N).
Thus:

(T, e 0% (x)] <

sup
xesupp p<N

<cy,

lo|<m

l|<m

Differentiation of distributions

Definition 98. Let Q C R™ be a set, T € D*(Q2) and «
be a multiindex. We define the distribution 9*T as:

(0°T,) = (T.(-1)"19)

for all ¢ € D(Q). The distribution 9*T is called distribu-
tional derivative.

Definition 99. We define the Heaviside step function as
the function H(x) = 1;50.

Proposition 100. We have that Ty =: H € D*(R) and:
H =6
Proof. For all ¢ € D(Q) we have:
_ / /
0

<H/,<p>= <p(a:)dx=

because ¢ has compact support.
Lemma 101. Let f € LL (R"). Then, (Ty) =Ty

Proposition 102 (Schwarz theorem). Let  C R” be
a set and T' € D*(Q2). Then:

o*T

8$ia.’£j o

0°T
83@8:@-

Proposition 103 (Leibnitz rule). Let  C R™ be a set,
T € D*(Q), f € C*(Q) and « be a multiindex. Then:

s (o

BLa
Proposition 104. Let T' € D*(R) be such that 77 = 0.
Then, T is constant (in the sense of distributions).

0 (fT) =



Proof. Let ¢ € D(R) with [, ¢ = 0. Then, ¢(z) :=
ffoo o(t)dt € D(R) and ¢’ = . Thus:
(T, ) =(T,¢') =(T",¢) =0

Now consider a general ¢ € D(R) and w € D(R) such that
Jgw = 1. Then, ¢(z) := ¢ —w [, ¢ integrates 0 and thus:

(T, o) = / (T w) = (C.p)

R

with C' := (T, w). O

Proposition 105. Let T € D*(R) be such that 2T =0
for some m € N. Then, T' = Z;ZOI ;0\ for some a; € R.

Proof. Let ¢ € D(R) with Taylor polynomial:

m—1 j m
ol L)
T
= m)!
with &, € (0,z). Then:
m=-l ()
¢ (0) L (m
= !
m—1
= a;(69, )
§=0
with a; = (71.—1,)j<T, z7). O

Schwartz class of functions

Definition 106. Let d € N. The Schwartz space or space
of rapidly decreasing functions on R™ is defined as:

S(RY) = {f € C®(R™) : ||f||,.5 < 00 Vo, B € (NU{0})*}

where:

11l := sup [x*(8” f)(x)]
xER™

Lemma 107. Let f € S(RY). Then, x*f,0%f € S(RY)
for all o € (NU {0})%.

Lemma 108. Let d € N. Then, D(R?%) C S(R?) C £(R?).

Definition 109. Let f,(f,) € S(R?). We say that
Fo =S FAE | fu = fllas — 0 forall a, 8 € (NU{0})"

Proposition 110. Let d € N. Then, S(R?) C LP(R?) for
all p € [1, o).

Proof. For p = oo the result is clear. Now suppose that

p € [1,00) and let ¢ € S(R?). Then:

R[W [oer+ |

B(0,1) RI\B(0,1)

1
< Ci+ Cy W

R4\ B(0,1)

k

[o1” lIx|I™
k
<™
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for some k € N yet to be determined. Here in the last
< |[fllgo = C2. Now if
Rj = {xeR?:27 <|x| <2/*1}, j € NU{0}, then:

/ IIXII'“” _Z/HXTI’“’

R4\ B(0,1)
< Z

< 0

step we have used ’\¢| ||x||k’

C2i+1)d
T 9kpj

if and only if kp — d > 0. So take k > 4.

Remark. In R™, the integrals of the form /

B(0,1)
converge if and only if k < n = dim R™ whereas the inte-

[1x[*

grals of the form / I ” —— dx converge if and only if

R™\B(0,1)
k > n. The limit case k = n is diverges in both cases.

Lemma 111. Let f be a function that has Fourier trans-
form. Then, f € S(RY) += f € S(R?).

Proof. By symmetry, it suffices to do one implication.
Moreover we will only do the case d =1 in order to keep
the notation simple. Let f € S(R) and «,8 € NU {0}.
Then, using Theorems 14 and 15:

£0°7(8)] = |&"F((—2rix)"1)(€)|
= g |1 (20 )6
< |l ((—2mix)’ 1)

< 0

where in the last inequality we have used that ||g|| <
gl - U

Tempered distributions

Definition 112. A tempered distribution is a linear and
continuous operator T : S(R?) — C. The space of all
tempered distributions is denoted by S*(R9).

Lemma 113. Let T : S(R?) — C be linear. Then,
T € S*(R?) if and only if there exists C > 0 and
m € NU {0} such that Vo € S(R?) we have:

T <C >

le[+[B]<m

[ella,5

Lemma 114. LP(R?) c S*(R?) C D*(R?).

Lemma 115. Let T € S*(R%). Then, 0°T € S*(R?) for
all a € (NU{0O}™

Definition 116. Let T € S*(R?) and ¢ € S(R?).
define the convolution T x 1 as:

(T 1, ) = (T, * )
for any ¢ € S(R?). Here 1(x) := 1(—x).

We



Lemma 117. Let a,b > 0 and m € NU {0}. Then:
(a+b)™ < 2™ Ha™ 4 b™)
and the equality holds if and only if a =b or m =0, 1.

Proof. For m = 0,1, the equality is true. Now suppose
m > 2 and b = Aa with A € [0,00). We need to show that:

(T+N)™ <2 H14A™)
Consider f(\) :=2™"1(1 4+ A™) — (1 +\)™. Then:
POy =m @) = (@)™
Note that Vm > 2, f/(A) < 0 for A € [0,1), f/(1) = 0
and f'(A) > 0 for A € (1,00). Moreover f(1) = 0. So
f(A) > 0 for all A € [0,00) and the equality holds if and
only if A =1. O

Lemma 118. Let T € S*(R?) and ¢ € S(R?).
T %1 € S*(RY).

Then,

Proof. Clearly T * 1 is linear. Let ¢, S50. Then, it

suffices to see that ) * ©n 5, 0. For the sake of simplicity
we only do the case d = 1. For all o, 5 € NU {0} we have:

|x“0° (1) % o) ()| = [x* (079 * o) (x)]
< / %0 Y (y)en(x — y)| dy
Rd

<2 [ |x — y|*|0%¢(y)|lon(x — y)|dy
Rd

+om / ¥1°[0P ()|l (x — ¥)] dy
Rd

< 2™ sup [x["loa(y)] [ [0°0(3)] ay
R

xER?

+ 27 sup [on(y)] / ¥1°[0P4(y)| dy
xcRd a

where in the second inequality we have used Theorem 117
with m = |a| + 1. Note that this latter terms tend to zero
as n — oo because of the properties of the Schwartz space.

O

Lemma 119. Let T € S*(R%), v € S(RY) and a €
(NU{0})*. Then:

0T xp) =0T xp =T % Y
Proof.
(BT *9), @) = (= 1)*NT x4, 8%9) = (~1)1*UT, J%8%p)
= (—1)I*NT, 0% * ) = (9T, + @) = (9°T x4, )

The other equality is analogous. Ol

Fourier transform of distributions

Definition 120. Let T € S*(RY). We define the Fourier
transform T (or FT') of T as

<Ta <)0> = <T7 9/5>

for all p € S(R?). We define the inverse Fourier transform
FIT of T as

<]:_1T, 90> = <T7.7:_1<p>

Lemma 121. Let T € S*(R?).
S*(RY).

Proposition 122. Let T € S*(RY), v € S(R?) and
a e (NU{0}H)?. Then:

Then, FT,F~ T €

1. 9°T = F((—2mix)T)
2. 9T = (27mi€)*T
3. T« =T

Proof. We prove the third one. The other are similar. We
have:

(T*d,0) = (T, @) = (T, 3) = (T, F 1 ($3)) =
= (T, F1()p) = (T, dp) = (T, o)

Lemma 123. We have that:

1. 5:—1 — e—27ria»x
2. L(0.00) = 7PV~ (3) + 300

3. p.v. (%) = —misgn(§)
4. §x f = f Vf € D(RY)

Proof. We prove the second one, the others are easier.
Note that (1(0700))’ = ¢. Taking Fourier transform and
using Theorem 122, we get 27rix® = 1. Hence, since

Tp.v. (i) =1, we have:

— 1
T (271'11(0)00) — p.v. <)> =0
T

By Theorem 105, we get that :@ = ﬁp.v. (%) + Céo,
for some C' € R. To find the constant change x — —z in
the equation or alternatively apply the distribution to the
function e™™*". O

Definition 124. Let T € D*(R™) and S € D*(R™).
We define the direct product T'S as the distribution in
D*(R™™™) given by:

(TS, ) = (T, (S, 0(x,")))
for all ¢ € D(R"*™). Usually we will dentote

(TS, p(x,y)) = (T(x),(S(y), p(x,¥)))

in order to distinguish the variables

Lemma 125. Let T' € D*(R") and S € D*(R™). Then:

14



L. ¢(x) (5(y), ¢(x,y))
(NU{0})"™ we have

Igd(x) = (S(¥), Ox p(x,y))
2. T'S is indeed a distribution.

3. TS=S5T

Proposition 126. Let T € D*(R™) and S € D*(R™).
Then, TS = TS.

Proof. Given ¢(x,y) € D(R™*™) we have:

€ DR") and Yo €

f(cp(x,y)) = w(x’y)672ﬂ'i(x,y)~(§,n) dx dy
Rn+7n
= / e imaee / p(x,y)e 2™ dy | dx
R™ m

= Fx(Fy(p)) = Fy Fxep

by ?? ?7?. Therefore:

~

<‘F(TS)790> = <T7 <Sv‘7:y]:x§0>> = <
= (ST, Fxp) = (S, (T, Fxp))

(

T,
=

Fxp)) =
(T, ¢)) = (ST, )
0

)
~
S,

Homogeneous distributions

Definition 127 (Homogeneous distribution). A dis-
tribution T' € S*(R"™) is said to be homogeneous of degree
reRif:

(T, p(Ax)) = A7"(T p(x))
for all A > 0 and all ¢ € S(R™).
Proposition 128. Let T' € S*(R™) be a homogeneous

distribution of degree r € R. Then, 0“T is homogeneous
of degree r — | for all « € (NU {0})".

Proof. Let ¢ € S(R™) and A > 0. Then:

(09T, p(Ax)) = (—1)!*NT, (8%p) (Ax)All) =
_ (_1)\a|>\—n—r+|a\<T’ 8a<p> — /\—n—(r—\a|)<8aT’ <P>
O

Proposition 129. Let T' € S*(R") and r € R. Then, T
is homogeneous of degree r if and only if T" is homogeneous
of degree —n — r.

Proof. We only check one implication, the other is analo-
gous. Using Theorem 55 we have:

(T p(Ax))

1
(T.8€/M 5 ) -
— \ntr-n <T, @> — \—n—(=r—n) <T\7 90>
O

Corollary 130. Let £k € R, n € N with & < n. Then,

W € §*(R™) and it is homogeneous of degree —k. More-
)

1 _ 1 . _
over, F (7\IXH’“> Ck’"il\ﬁ\l""“ with Cy Y

n—k

(2m) % I(
2% I

|

[SIE
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Differential operators over distributions

Definition 131. A differential operator over distributions
is an operator of the form:

L(z,0):= Y aq(x)0

la|<m

If the coefficients a, are constant, we will omit the z and
write L(0) instead of L(x,d).

Definition 132. Let L(z,0) be a differential operator
on an open set U C R? and f € D*(U). We say that
u € D*(R™) is a generalized solution of L(x,0)u = fin U
if

(L(x,0)u, 0) = (f, )
for all ¢ € D(U).

Definition 133. Let L(0) be a differential operator. We
say that £ € D*(R") is a fundamental solution of L(9) if
L(O)E = 6.

Theorem 134. Let E be a fundamental solution of
LOwu = f, f € S(R*). Then, E * f is a generalized
solution of L(d)u = f.

Proof.

L()(E  f) S aa(0°E) + f =

la]<m

—5xf=1f

where in the last equality we have used Theorem 123. [

Remark. In general we don’t have unicity of fundamen-
tal solutions. Indeed if Ey solves L(0)u = 0 and FE is a
fundamental solution, then F + Ej is also a fundamental
solution.

Theorem 135. Let L(9) be a differential operator and
E € §*(R™). Then, E is a fundamental solution of L(9)
if and only if L(27i&)E = 1.

Proof. Suppose E is a fundamental solution. Then,

L(0)E = ¢. Taking Fourier transforms we have:

> aaF(0°E)

la|<m

> a0 (27i€)"E = L(2mig)E = 1

la|<m

The other implication is similar using 7! instead. U

Definition 136. Let L(9) be a differential operator. We
say that F is a fundamental solution of the Cauchy prob-
L(O)u(t,x) =0

lem
{MQ@:f&)
it L(O)E(t,x) =0 and E(0,x) = §(x).

3)

Theorem 137. Let L(J) be a differential operator and
E be a fundamental solution of the Cauchy problem of
Fq. (3). Then, E * f is a solution of it.



Applications to some PDEs
Proposition 138. Consider the operator:

L(0) =0y —a®» 02
j=1

Then,
1[0,00) (t)
(4ma2t)"/?

is a fundamental solution the heat equation L(9)u = 0.

_ lx)?
4a2t

E(t) = e

Proof. Taking Fyx on the equation L(Q)E =
transform it to:

0 we can

OE +4m%a® ||¢|P E = 6,

because 6 = 640;. It can be seen that a solution of this

ODE is: R Y
E(t,€) = 1pg o0 (t)e*m €17
Taking the Fourier transform (in this case F~! = F) we
have: L )
o) () =12
E(t7x) = (0,003 /2@ 4a2t
(4ma2t)"
where we have used Item 9-4 and Theorem 17. O
Proposition 139. Consider the Laplace operator:
Then,
L(3-1) 4 IS
B(t) =9 &2 IxI" ifn=3
ogllx] if n =2
is a fundamental solution the Laplace equation L(9)u = 0.

Proof. Taking Fyx on the equation L(9)E = § we see that

F satisfies: )

2
Ar2 (€]
Let’s study the integrability of this latter function in a

E(€) =

neighbourhood of 0. Let R; := {x € R" : 277 < |jz|| <
2791} Then:
/ / (2~ J) _
(B3
B(0,1)

22 £ 60 = n>3

M8 HMS

1

.

Y

Let’s study first the case n

F-UE) = F(E). Recall that F(e~*IxI*) =
(try to generalize Theorem 17). Therefore:

(

3. We need to compute
n fr2nks||2

(B

™

k)% / e () de = (Fle M), g) =

R’n
- /e—kI\XHZ@(X) dx

R

16

Integrating both sides with respect to k and using 7?7 ?7?
we have that, on the one hand:

3¢ —kIE”® qrde = | (¢ 1d€<1,A>
/ A )O/ ’ / "Oer ¢~ \jer”

On the other hand:

o0

T\E _xle? _ T (2-1) (%)
R 0 R
where we have used the change of variable r = ”2152

Let’s do now the case n 2. Consider FE,,
%log(||x||2 + 1/n2) 5, log ||x|| (by the ?? ??). Hence,

— 2>
we have that AFE, = CEFEES)E
Vo € S(R?):

(Alog [|x]|, »)

S, Alog ||x||. Thus,

lim (AE,, o)
n— oo

2 2
lim / " p(x) dx
n—o00 (
R2

n? [|x]* +1)2

) 2
nl;ri;ﬂ@[( p(x/n)dx

2
1[I + 1)

o0 [ : &
J

TR
[Ix[I" + 1)2
= 2mp(0)

where in the forth equality we have used the 7?7 7?7 and at
the end we have calculated the integral using polar coor-
dinates. O

Corollary 140. Consider the Cauchy-Riemann opera-
tors:
1 , 1 .
0, = 3 (0z — 10y) Oz = 3 (Or +1i0y)
The fundamental solutions to 0,u = f and dzu = f are
respectively:

11 11
E=-> E=--
Tz Tz
Sketch of the proof. Recall that 0,0 = 00, = lA
E = log(zz) is a fundamental solution of the Laplace equa-
tlonandaE—Mz,éLE—m O
Proposition 141. Consider the Cauchy problem:
up = a?Au n (0,00) x R”
u(0,x) = f(x) inR"
Then, a fundamental solution is given by:
x 2
Etx) = — o ik
(4ra?t)?
And the general solution is:
(B
utx) = (B (e = [ Lo gy
s (4mat)2



Proof. Taking Fx on the equation we obtain:

E; = —4n’||¢|* E
Solving it we obtain, E = Ce4ml€l’t, Using the initial
condition we see that C' = 1. Now proceeding as in the
proof of the Theorem 138 we obtain the result. Ol

Theorem 142 (Malgrange-Ehrenpreis theorem).
Every non-zero linear partial differential operator with
constant coeflicients has a fundamental solution.

4. | Singular intergals

Hilbert transform

Definition 143. Let f € LP(R), 1 < p < co. The trun-
cated Hilbert transform is defined as:

Hof (o) = = q{(_y?yd

|z—y|>e

Definition 144. Let f € S(R).
transform of f as:

We define the Hilbert

M) = - (p.v. (i) . f) (&) = lim H* (@)

Remark. We can extend the definition of H to func-
tions that satisfy locally a Hélder condition: Vr € R,
3C,, a, 6, > 0 such that

|f(x) = f(Y)] < Colz —y[™  foralllz —y| <4,
In that case we write:
1 _
Hof(z) = — / f(yiz:i f
e<|z—y|<dy |ac y\>6

Lemma 145. Let a,b € R, a < b. Then:

r—a

r—0b

H(l[a,b])(x) =

1
— log
s

Proposition 146. Let f € LP(R), 1 < p < co. Then:

FHF)(E) = —isgn()F () = m(§)Ff(E)

Proof.

FOHN(©) = - F (p-v~ (i) * f) ©

1.
= —ip.v.
s

Lemma 147. Let f € L*(R).
[Hflly = 1]l

Proof. Using 43 Plancherel theorem:

st~ 5], = o1, = |, -

Then, Hf € L*(R) and

Lemma 148. We have that H? = —id on LP(R), 1 <p <

00.
Proof. H2f = H(F " (mf)) = F~ (m*f) = —f O
Lemma 149. Let f € S(R). Then, (Hf)2 = f2 +

2H(fHS).

Proof. We’ll prove the equality using the Fourier trans-
form and the uniqueness of it will imply the result.

In general we have that fg = f * g because:

(f*9) = FX(fxg) = FPA(F*fFg)

F = fg

Thus:
(mJf)

PP=Fxf  2F(H(fHS)) =2m] *

The first term is fR (5 1) dn whereas the second
(©)Fmm (5 ) F(E—n)dn =2 [;m() (&~

m(n) dn. Averaging those terms we have:

one is 2 [, m

) f(n)
P2+ 2F(H(FH) / Fn

/f

:”Hf*?-[f:

F(E =)L+ m(&)-

- (m(& —n) +m(n))] dn

m(& —n)m(n)dn

(#H1)?

where the second equality follows for all &, € R?\ {(0,0)}
U

Theorem 150 (Riesz theorem). Let f € LP(R), 1 <
p < 0o. Then, 3C}, > 0 such that:

1#11l, < CollfIl,

Proof. We will prove only the cases p = 2¥, k € N and
we’ll do it by induction. The case k = 1 is clear. Using
Theorem 149 we have:

170, = 002|112, + 207rmA), <
< S lly” +2Co 1FHI N, < 151, +2Cs 111y 17 1,

where the last inequality follows from the ??. This reduces
to find for which y we have y? — 2C,ay — a? < 0, where

a= ||f||2p2. An easy check shows that:

1512 < (Co+ \/C2+1) 1y

O
Lemma 151. Let P, be the Poisson kernel and f €
LP(R). Then, if z = = + iy:

ft)

z—t

(Py* f)(2) =Re dt

— =:ReF
- Re Fy(z)
R

[1 Moreover, Fy € H({Im f > 0}).

17



Sketch of the proof. The first part follows from: Proof. Let ¢ € S(R™) and write it as ¢ = @e + ¢o, where

) e is even and ¢, is odd. Then:
(o) =2 [

2

) (z—1t)"+y? 1 o

R S <aj ( n1> "P> = Jf rd
o . [l x|

To show the last part, note that F is R-differentiable and

OFy = 0. O — lim / Jjo
e—0 n—1
Definition 152. We define the conjugate Poisson kernel - R™\B(0,¢) el
Qy as: Iy
. Po
x = (1—-n)lim K
Y m(z? +y?) - R\ B(0,¢) Il
Lemma 153. Let f € LP(R), 1 < p < oo. Then, if — (1 - n) lim Zjp
z=x+1iy: - e—0 llx ||n+1
R™\B(0,¢)
t —t
Ime(z):/sz)dt -
J (x—1t)" +y?
Theorem 159. For each j = 1,...,n we have:
Theorem 154. Let f € LP(R), 1 < p < oco. Then:
e i ¢
W, = —— =L
Qe —Hf 50 AT
In particular: Proof. Using Theorems 130 and 158 we have:
. —0 . _— 1£. — —
Fy(x +iy) == o(x) + iHe(z) W, = Lf(aj x| = %HXHHL -
1—n 1—n
Riesz transform 2mi§; ™ ! i &
N T 1-nT () el T T (=) lled
Definition 155. We define W; := p.v. (W), j =
1,...,n. O

Lemma 156. For each n € Nand j = 1,...,n, W; € Corollary 160. For each j =1,...,n we have:
S*(R™).
&

Definition 157. We define the Riesz transform R;f as: F(R;[)(&) = —1m (f)
Rif(x) == cn(Wj x f)(x) = Proposition 161.
= lim ¢ / 7nf( ) dy - 2
=0 I =y LY R =—
”x_}’”>8 j=1
with ¢, = JCZ) 2. Forall 1 < j,k <n, ;0 = R;Ri.A
T2

Sketch of the proof. Apply F on each of the equations and

Lemma 158. 9; (W) = (1-n)W; use the Fourier transform properties. O
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