
Harmonic analysis

1. | Introduction
Refer to ?? ?? for a reminder of the introductory concepts
of Fourier series.

Uniform convergence

Theorem 1. Let f be a continuous T -periodic function
such that f ′ exists except for a finite number of points
and it is continuous and bounded. Then, SNf converges
uniformly to f on [−T/2, T/2].

Proof. We have pointwise convergence towards f . More-
over:∑

n∈Z

∣∣∣f̂(n)
∣∣∣ ≤

∣∣∣f̂(0)
∣∣∣+

∑
n∈Z\{0}

1
n
n
∣∣∣f̂(n)

∣∣∣
≤
∣∣∣f̂(0)

∣∣∣+ 1
2

∑
n∈Z\{0}

(
1
n2 + n2

∣∣∣f̂(n)
∣∣∣2)

=
∣∣∣f̂(0)

∣∣∣+ 1
2

∑
n∈Z\{0}

1
n2 + T 2

8π2

∑
n∈Z

∣∣∣f̂ ′(n)
∣∣∣2

≤
∣∣∣f̂(0)

∣∣∣+ 1
2

∑
n∈Z\{0}

1
n2 + T

8π2 ∥f ′∥2

< ∞

by ?? ?? and because f ′ is bounded. Thus, the ?? ??
implies that SNf converges uniformly to f . □

Corollary 2. Let f ∈ Cr−1 be a T -periodic function such
that f (r) exists except for a finite number of points and it
is continuous and bounded. Then:

sup
x∈[−T/2,T/2]

|SNf(x) − f(x)| ≤ εN

Nr−1/2

for some sequence (εN ) N→∞−→ 0.

Proof. By ?? we have:

|SNf(x) − f(x)| ≤
∑

n>|N |

1
nr
nr
∣∣∣f̂(n)

∣∣∣
≤

 ∑
n>|N |

1
n2r

 1
2
 ∑

n>|N |

n2r
∣∣∣f̂(n)

∣∣∣2
 1

2

≲

 ∞̂

N

1
x2r

dx

 1
2
 ∑

n>|N |

∣∣∣f̂r(n)
∣∣∣2
 1

2

= C̃

Nr−1/2 εN

with εN
N→∞−→ 0 because it is the tail of a convergent se-

quence. □

Poisson kernel
For most of the proofs in this section check the analogous
ones with the ?? ??.

Definition 3 (Poisson kernel). Let r ∈ [0, 1]. We define
the Poisson kernel as

Pr(t) =
∑
n∈Z

r|n|e 2πint
T

Lemma 4. Let r ∈ [0, 1]. Then:

Pr(t) = 1 − r2

1 − 2r cos
( 2πt

T

)
+ r2

Sketch of the proof. Use the geometric progression for-
mula. □

Proposition 5. The Poisson kernel has the following
properties:

1. Pr is a T -periodic, even and non-negative function.

2. 1
T

T/2ˆ

−T/2

Pr(t) dt = 1 ∀N .

3. ∀δ > 0, lim
r→1−

sup{|Pr(t)| : δ ≤ |t| ≤ T/2} = 0.

Theorem 6. Let f ∈ L1([−T/2, T/2]) be a function hav-
ing left- and right-sided limits at point x0. Then:

lim
r→1−

f ∗ Pr = f(x0
+) + f(x0

−)
2

In particular, if f is continuous at x0, lim
r→1−

f ∗Pr = f(x0).

Theorem 7. Let p ≥ 1 and f ∈ Lp([−T/2, T/2]). Then:

lim
N→∞

∥σNf − f∥p = 0

lim
r→1−

∥f ∗ Pr − f∥p = 0

2. | Fourier transform
Definition and first properties

Definition 8. Let f ∈ L1(R). We define the Fourier
transform of f as:

f̂(ξ) =
+∞ˆ

−∞

f(x)e−2πiξx dx

The function f is also called inverse Fourier transform of
f̂ .

Proposition 9. Let f, g ∈ L1(R) and α, β ∈ R. Then:

1. ̂(αf + βg)(ξ) = αf̂(ξ) + βĝ(ξ)

2. Let h ∈ R. We define Thf(x) = f(x+ h). Then:

T̂hf(ξ) = e2πiξhf̂(ξ)
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3. If g(x) = e2πixhf(x), then:

ĝ(ξ) = f̂(ξ − h)

4. If λ ∈ R∗, then:

1
λ

̂
f
(x
λ

)
(ξ) = f̂(λξ)

5. If g(x) = f(x), then:

ĝ(ξ) = f̂(−ξ)

Sketch of the proof. They follow from the linearity of the
integral and some change of variable. □

Definition 10. Let f ∈ L1(R). We define the Fourier
transform operator as Ff = f̂ .

Proposition 11. Let f ∈ L1(R). Then:

1. Ff is uniformly continuous.

2. F is a continuous linear operator from L1(R) to
L∞(R) and ∥Ff∥∞ ≤ ∥f∥1.

Proof.

1. Using Item 9-3 we have:

|Ff(ξ + h) − Ff(ξ)| ≤
+∞ˆ

−∞

∣∣e−2πixh − 1
∣∣|f(x)| dx

By the ?? ?? we have that the integral is bounded by
2 ∥f∥1 and so entering the limit we obtain the bound
ε ∥f∥1 ∀ε > 0. As the bound does not depend on the
point ξ, the convergence is uniform.

2. Clearly ∥Ff∥∞ ≤ ∥f∥1. Hence the operator is
bounded and therefore continuous.

□

Theorem 12 (Riemann-Lebesgue lemma). Let f ∈
L1(R). Then:

lim
|ξ|→∞

∣∣∣f̂(ξ)
∣∣∣ = 0

Sketch of the proof. Note that 2
∣∣∣f̂(ξ)

∣∣∣ =
∣∣∣f̂(ξ) − eiπ f̂(ξ)

∣∣∣
and:

eiπ f̂(ξ) =
+∞ˆ

−∞

f(x)e−2πiξx+iπ dx

=
+∞ˆ

−∞

f

(
u+ 1

2ξ

)
e−2πiξu du

So: ∣∣∣f̂(ξ)
∣∣∣ ≤ 1

2

+∞ˆ

−∞

∣∣∣∣f(x) − f

(
x+ 1

2ξ

)∣∣∣∣dx
Now use again the ?? ??. □

Proposition 13. Let f, g ∈ L1(R). Then, fĝ, f̂g ∈ L1(R)
and:

+∞ˆ

−∞

f̂(x)g(x) dx =
+∞ˆ

−∞

f(x)ĝ(x) dx

Sketch of the proof. By Theorem 11, ĝ is bounded. Hence,
fĝ ∈ L1(R) and the same applies for f̂g. For the equality,
use ?? ??. □

Proposition 14. Let f be a function such that xkf ∈
L1(R) for k = 0, . . . , r. Then, f̂ is r times differentiable
and:

(Ff)(k) = F((−2πix)k
f(x))

for k = 0, 1, . . . , r.

Proof. Note that the function h : ξ → e−2πiξxf(x)
is C∞(R) and h(k)(ξ) = (−2πix)ke−2πiξxf(x). Since∣∣h(k)(ξ)

∣∣ ≤
∣∣xkf(x)

∣∣ we can use ?? to conclude the result.
□

Proposition 15. Let f ∈ L1(R) be such that f (k) ∈
L1(R) for k = 1, . . . , r. Then:

f̂ (k)(ξ) = (2πiξ)k
f̂(ξ)

for k = 0, 1, . . . , r.

Proof. We’ll prove it by induction on k. The case k = 0
is clear. For the other ones note that ∃(an), (bn) ∈ R with
lim

n→∞
an = −∞ and lim

n→∞
bn = +∞ and such that:

lim
n→∞

f (k−1)(an) = lim
n→∞

f (k−1)(bn) = 0

Hence using integration by parts:

f̂ (k)(ξ) = lim
n→∞

bnˆ

an

f (k)(x)e−2πiξx dx

= lim
n→∞

f (k−1)(x)e−2πiξx
∣∣∣bn

an

dx+

+ 2πiξ lim
n→∞

bnˆ

an

f (k−1)(x)e−2πiξx dx

= (2πiξ) f̂ (k−1)(n)

= (2πiξ)k
f̂(ξ)

□

Remark. Note that there exists functions f ∈ C(R)∩L1(R)
for which the limit lim

x→∞
f(x) does not exist.

Proposition 16. Let f ∈ L1(R) be such that it has com-
pact support. Then, Ff ∈ Cω(R).

Sketch of the proof. Suppose f(x) ∈ [−K,K], K > 0.
Then, expanding Ff with the power series of e−2πiξx cen-
tered at a ∈ R we have:

Ff(ξ) =
K̂

−K

f(x)
∞∑

n=0

(−2πix)ne−2πiax

n! (ξ − a)n dx
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=
∞∑

n=0
cn(ξ − a)n

where |cn| ≤ (2πK)n

n! ∥f∥1. Finally, use this to show that
the radius of convergences (see ??) is ∞. □

Lemma 17. Let f(x) = e−ax2 . Then, Ff(ξ) =√
π
a e− (πξ)2

a and moreover F2f = f . In particular if a = π,
then Ff = f .

Sketch of the proof. f satisfies the ODE y′ = −2axy. Tak-
ing ̂ on this expression and using Theorems 14 and 15
we obtain that f̂ must satisfy the following ODE:

y′ = −2π2ξ

a
y

with initial condition y(0) =
´ +∞

−∞ e−ax2 dx =
√

π
a . □

Lemma 18. Let f(x) = e−a|x|. Then, Ff(ξ) = 2a
a2+4π2ξ2

and moreover F2f = f .

Sketch of the proof.

Ff(ξ) = 2
+∞ˆ

0

e−ax cos(2πξx) dx = 2a
a2 + 4π2ξ2

□

Lemma 19. Let f(x) = 1[−a,a](x), a > 0. Then,
Ff(ξ) = sin(2πaξ)

πξ .

The inverse Fourier transform

Theorem 20 (Inversion theorem). Let f ∈ L1(R) such
that Ff ∈ L1(R). Then:

f(x) a.e.=
+∞ˆ

−∞

f̂(ξ)e2πiξx dξ

Moreover if f is continuous we can remove the “almost
everywhere”.

Proof. Consider the integral:

It(x) =
+∞ˆ

−∞

f(x+ y)1
t
e−π y2

t2 dy

Note that using Theorem 17 and Item 9-4, we have that
F
(

1
λ e−π x2

λ2
)

= e−πλ2ξ2 . On the one hand, using this lat-
ter thing and Theorem 13 we have:

It(x) =
+∞ˆ

−∞

f(x+ y)1
t
e−π y2

t2 dy =
+∞ˆ

−∞

f(x+ ξ)ê−πt2ξ2 dξ =

=
+∞ˆ

−∞

e2πiξxf̂(ξ)e−πt2ξ2
dξ

which by ?? ?? converges to
´ +∞

−∞ f̂(ξ)e2πiξx dξ as t → 0.

On the other hand with a change of variable we have:

It(x) =
+∞ˆ

−∞

f(x+ ty)e−πy2
dy

Using ?? it suffices to prove that lim
t→0

∥It(x) − f(x)∥1 = 0.

But using that
´ +∞

−∞ e−πy2 dy = 1:

∥It(x) − f(x)∥1 =
+∞ˆ

−∞

∣∣∣∣∣∣
+∞ˆ

−∞

(f(x+ ty) − f(x))e−πy2
dy

∣∣∣∣∣∣dx
≤

+∞ˆ

−∞

e−πy2
+∞ˆ

−∞

|f(x+ ty) − f(x)| dxdy

where we have used ?? ??. Now use the ?? ??. □

Corollary 21. Let f ∈ L1(R) such that Ff a.e.= 0. Then,
f

a.e.= 0.

Corollary 22. Let f ∈ L1(R). Then, F2f(x) a.e.= f(−x).
Hence, F4 a.e.= id.

Proof. By the 20 Inversion theorem we have:

f(−x) a.e.=
+∞ˆ

−∞

f̂(ξ)e−2πiξx dξ = F f̂(x) = F2f(x)

□

Lemma 23. Let f, g ∈ L1(R). Then, f ∗ g ∈ L1(R),
∥f ∗ g∥1 ≤ ∥f∥1 ∥g∥1 and F(f ∗ g) = FfFg. In particular

if g(x) = f(−x) then F(f ∗ g) =
∣∣∣f̂ ∣∣∣2.

Sketch of the proof. Show first that f(x−y)g(y) ∈ L1(R2)
and then use ?? ??. □

Pointwise convergence

Definition 24. Let f ∈ L1(R). We define the partial
inverse Fourier transform as:

SRf(x) =
R̂

−R

f̂(ξ)e2πiξx dξ

Definition 25 (Dirichlet kernel). We define the Dirich-
let kernel of order R ∈ R>0 as:

DR(t) =
R̂

−R

e−2πiξt dξ = sin(2πRt)
πt

Proposition 26. The Dirichlet kernel has the following
properties:

1. DR is an even function.

2.
+∞ˆ

−∞

DR(t) dt = 1 for all R > 0.
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3.

SRf(x) = (f ∗DR)(x)

=
+∞ˆ

−∞

f(x− t)DR(t) dt

=
+∞ˆ

0

[f(x+ t) + f(x− t)]DR(t) dt

Theorem 27 (Dini’s theorem). Let f ∈ L1(R) and
x, ℓ ∈ R such that h(t) := |f(x+t)+f(x−t)−2ℓ|

t ∈ L1((0, δ))
for some δ > 0. Then, lim

R→∞
SRf(x) = ℓ.

Sketch of the proof. Note that

SRf(x) − ℓ =
∞̂

0

[f(x+ t) + f(x− t) − 2ℓ]DR(t) dt

Now split this integral as a sum of the following ones:

I1 =
N̂

0

[f(x+ t) + f(x− t) − 2ℓ]DR(t) dt

I2 =
∞̂

N

[f(x+ t) + f(x− t)]DR(t) dt

I3 = −2ℓ
∞̂

N

DR(t) dt

Given ε > 0 take N such that
´∞

N

∣∣∣ f(x+t)+f(x−t)
πt

∣∣∣dt < ε.
Since h is integrable in (0, N), by 12 Riemann-Lebesgue
lemma we have that I1

R→∞−→ 0. Then, as we can write
I3 = −2ℓ

´∞
2πRN

sin(u)
πu du we have that I3

R→∞−→ 0. □

Lemma 28. Let f ∈ Lp(R) with 1 ≤ p < ∞. Then,
lim
a→0

∥f − Taf∥p = 0.

Sketch of the proof. Clearly is is true if f ∈ C∞
0 (R)

using ?? ??. Now use that since C∞
0 (R) is dense in

C0(R), which is dense in Lp(R), ∃(fn) ∈ C∞
0 (R) such that

lim
n→∞

∥fn − f∥p = 0. □

Uniform convergence

Definition 29. Let f ∈ L1(R) and R > 0. We define the
Fejér mean σRf(x) as:

σRf(x) = 1
R

R̂

0

Srf(x) dr

Definition 30. Let f ∈ L1(R) and R > 0. We define the
Fejér kernel FRf(x) as:

FR(x) = 1
R

R̂

0

Dr(x) dr

Lemma 31. Let f ∈ L1(R) and R > 0. Then, σRf =
f ∗ FR and moreover:

FR(x) = (sin (πRx))2

π2Rx2

Definition 32. Let t > 0. We define the Poisson kernel
Pt as Pt(x) := F−1(e−2πt|ξ|).

Lemma 33. Let f ∈ L1(R) and t > 0. Then:

Pt(x) = t

π(t2 + x2)

(f ∗ Pt)(x) =
+∞ˆ

−∞

e−2πt|ξ|f̂(ξ)e2πiξx dξ

Proof. Check Theorem 18 for the first equality. For the
other one:

(f ∗ Pt)(x) =
+∞ˆ

−∞

f(y)Pt(x− y) dy

=
+∞ˆ

−∞

+∞ˆ

−∞

f(y)e−2πt|ξ|e2πiξ(x−y) dξ dy

=
+∞ˆ

−∞

e−2πt|ξ|f̂(ξ)e2πiξx dξ

□

Definition 34. Let t > 0. We define the Weierstraß ker-
nel Wt as Wt(x) := F−1(e−4π2tξ2).

Lemma 35. Let f ∈ L1(R) and t > 0. Then:

Wt(x) = 1√
4πt

e− x2
4t

(f ∗Wt)(x) =
+∞ˆ

−∞

e−4π2tξ2
f̂(ξ)e2πiξx dξ

Proof. Check Theorem 17 for the first equality. For the
other one:

(f ∗Wt)(x) =
+∞ˆ

−∞

f(y)Wt(x− y) dy

=
+∞ˆ

−∞

+∞ˆ

−∞

f(y)e−4π2tξ2
e2πiξ(x−y) dξ dy

=
+∞ˆ

−∞

e−4π2tξ2
f̂(ξ)e2πiξx dξ

□

Proposition 36. Let R > 0 and t > 0. Then:

1. FR, Pt and Wt are non-negative even functions.

2.
´ +∞

−∞ FR(x) dx =
´ +∞

−∞ Pt(x) dx =
´ +∞

−∞ Wt(x) dx =
1
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3. For all δ > 0, we have:

lim
R→∞

sup
|x|≥δ

FR(x) = lim
t→0

sup
|x|≥δ

Pt(x) =

= lim
t→0

sup
|x|≥δ

Wt(x) = 0

4. For all δ > 0, we have:

lim
R→∞

ˆ

|x|≥δ

FR(x) dx = lim
t→0

ˆ

|x|≥δ

Pt(x) dx =

= lim
t→0

ˆ

|x|≥δ

Wt(x) dx = 0

That is, FR, Pt and Wt are approximations of the identity.

Sketch of the proof. The first two properties are straight-
forward. For the third one, note that:

sup
|x|≥δ

FR(x) ≤ 1
π2Rδ2

sup
|x|≥δ

Pt(x) = t2

π(t2 + δ2)

sup
|x|≥δ

Wt(x) = 1√
4πδ

e− x2
4δ

The last one is a consequence of the previous ones. □

Theorem 37. Let f ∈ L1(R) be a function having left-
and right-sided limits at point x0. Then:

lim
R→∞

σRf(x0) = lim
t→0

(f ∗ Pt)(x0) = lim
t→0

(f ∗Wt)(x0) =

= f(x0
+) + f(x0

−)
2

Moreover if f is uniformly continuous, the convergence is
uniform.

Sketch of the proof. Copy the proofs of ?? ?? and ?? ??.
□

Lemma 38. Let E ⊆ Rn be a measurable space, p ≥ 1,
f ∈ Lp(E) and q be such that 1

p + 1
q = 1. Then:

∥f∥p = sup


ˆ

E

fg : ∥g∥q = 1


Proof. On the one hand using ?? ??:

ˆ

E

fg ≤ ∥fg∥1 ≤ ∥f∥p ∥g∥q = ∥f∥p

Now consider g = |f |p−1 sgn f

∥f∥p

p
q

. Then, ∥g∥q = 1 and more-
over: ˆ

E

fg =
ˆ

E

|f |p

∥f∥p

p
q

= ∥f∥p
p− p

q = ∥f∥p

□

Lemma 39 (Minkowski’s integral inequality). Let
E,F ⊆ Rn be measurable spaces, p ≥ 1 and f ∈
Lp(E × F ). Then:∥∥∥∥∥∥

ˆ

F

h(·,y) dy

∥∥∥∥∥∥
p

≤
ˆ

F

∥h(·,y)∥p dy

Proof. Let q be such that 1
p + 1

q = 1 and g ∈ Lq(E) with
∥g∥q = 1. Then, using ?? ?? and ?? ??:

ˆ

E

g(x)
ˆ

F

h(x,y) dy dx =
ˆ

F

ˆ

E

h(x,y)g(x) dx dy

≤
ˆ

F

∥h(·,y)∥p ∥g∥q dy

=
ˆ

F

∥h(·,y)∥p dy

Now use Theorem 38. □

Theorem 40. Let f ∈ Lp(R), 1 ≤ p ≤ ∞, and ϕε be an
approximation of identity. Then:

lim
ε→0

∥f ∗ ϕε − f∥p = 0

Sketch of the proof. Using 39 Minkowski’s integral inequal-
ity, we have:

∥f ∗ ϕε − f∥p =

∥∥∥∥∥∥
∞̂

−∞

ϕε(y)(f(x − y) − f(x)) dy

∥∥∥∥∥∥
p

≤
∞̂

−∞

 ∞̂

−∞

ϕε(y)p|f(x − y) − f(x)|p dx

1
p

dy

=
∞̂

−∞

ϕε(y) ∥f − T−yf∥p dy

≤
ˆ

|y|<δ

ϕε(y) ∥f − T−yf∥p dy +

+ 2 ∥f∥p

ˆ

|y|≥δ

ϕε(y) dy

Given ε > 0, by Theorem 28 ∃δ > 0 such that the first
integral is bounded by ε. Now use this δ and Item 36-4
to conclude that the second integral goes to 0 as R → ∞.

□

Corollary 41. Let f ∈ Lp(R) with 1 ≤ p ≤ ∞. Then:

lim
R→∞

∥σRf − f∥p = 0

lim
t→0

∥f ∗ Pt − f∥p = 0

lim
t→0

∥f ∗Wt − f∥p = 0
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Fourier transform on L2(R)

Lemma 42. Let f, g ∈ L2(R). Then, f ∗ g is continuous
and bounded. Moreover, ∥f ∗ g∥∞ ≤ ∥f∥2 ∥g∥2.

Sketch of the proof. The inequality follows from ?? ??.
Moreover:

|(f ∗ g)(x+ h) − (f ∗ g)(x)| ≤

≤
+∞ˆ

−∞

|f(x+ h− y) − f(x− y)||g(y)| dy ≤

≤ ∥g∥2 ∥f − T−hf∥2

So f ∗ g is continuous, by Theorem 28. □

Theorem 43 (Plancherel theorem). Let f ∈ L1(R) ∩
L2(R). Then, f̂ ∈ L2(R) and:

+∞ˆ

−∞

|f(x)|2 dx =
+∞ˆ

−∞

∣∣∣f̂(ξ)
∣∣∣2 dξ

Proof. Let f̃(x) := f(−x). Then, ̂̃f(ξ) = f̂(ξ) and so
by Theorem 42 we have that g := f ∗ f̃ is continuous
and bounded. Moreover ĝ(ξ) = f̂(ξ)̂̃f(ξ) =

∣∣∣f̂(ξ)
∣∣∣2 and

g(0) =
´ +∞

−∞ f̃(−y)f(y) dy = ∥f∥2
2. On the other hand,

by Theorem 35 we have:

(g ∗Wt)(0) =
+∞ˆ

−∞

e−4π2tξ2
ĝ(ξ) dξ =

+∞ˆ

−∞

e−4π2tξ2
∣∣∣f̂(ξ)

∣∣∣2 dξ

(1)
And by Theorem 40, lim

t→0+
(g ∗ Wt)(0) = g(0) = ∥f∥2

2.

Thus, by the definition of limit taking ε = ∥f∥2
2, we have

that
∣∣∣´ +∞

−∞ e−4π2tξ2
ĝ(ξ) dξ

∣∣∣ ≤ 2∥f∥2
2 for t small enough.

Finally, if t is that small, then 1 ≤ 2e−4π2tξ2 and so:

+∞ˆ

−∞

∣∣∣f̂(ξ)
∣∣∣2 dξ ≤ 2

+∞ˆ

−∞

ĝ(ξ)e−4π2tξ2
dξ ≤ 4∥f∥2

2
< ∞

Now use ?? ?? in Eq. (1) and make t → 0. □

Corollary 44. Let f, g ∈ L1(R) ∩ L2(R). Then:

+∞ˆ

−∞

f(x)g(x) dx =
+∞ˆ

−∞

f̂(ξ)ĝ(ξ) dξ

Proof. Use 43 Plancherel theorem and ?? ??. □

Proposition 45. Let f ∈ L2(R). Then, ∃(fn) ∈ L1(R) ∩
L2(R) such that lim

n→∞
∥f − fn∥2 = 0.

Sketch of the proof. Take the sequence fn(x) =
f(x)1[−n,n](x). □

Proposition 46. Let f ∈ L2(R) and (fn) ∈ L1(R)∩L2(R)
such that lim

n→∞
∥f − fn∥2 = 0. Then, the limit lim

n→∞
f̂n(ξ)

exists and we will call it f̂(ξ).

Proof. Since L2(R) is Hilbert, (fn) is Cauchy. But by 43
Plancherel theorem, (f̂n) is also Cauchy and so it has limit,
because (f̂n) ∈ L2(R).
To see that the definition is well-defined, suppose
(gn) ∈ L1(R) ∩ L2(R) is another sequence such that
lim

n→∞
∥f − gn∥2 = 0. But in this case:

∥gn − fn∥2 ≤ ∥gn − f∥2 + ∥f − fn∥2
n→∞−→ 0

□

Remark. Note that the abuse of notation in the definition
of the limit make sense as it coincides with the ordinary
Fourier transform when f ∈ L1(R) (by taking fn = f
∀n ∈ N).

Theorem 47. Let f, g ∈ L2(R). Then:

1. f̂(ξ) L2

= lim
n→∞

n̂

−n

f(x)e−2πiξx dx

2. ∥f∥2 =
∥∥∥f̂∥∥∥

2

3.
+∞ˆ

−∞

f(x)ĝ(x) dx =
+∞ˆ

−∞

f̂(x)g(x) dx

4.
+∞ˆ

−∞

f(x)g(x) dx =
+∞ˆ

−∞

f̂(x)ĝ(x) dx

Proof. The first property follows from its definition. For
the second one, if f(x) L2

= lim
n→∞

fn(x), by 43 Plancherel

theorem we have ∥fn∥2 =
∥∥∥f̂∥∥∥

2
. Now use the continuity

of the norm. For the other properties, take the function
given in the proof of Theorem 45 and use the ?? ??. □

Proposition 48 (Jensen’s inequality). Let J : R → R
be a convex function, f be a measurable function, and
µ : Ω → R be measurable with

´
Ω dµ = 1. Then:

ˆ

Ω

J(f) dµ ≥ J

ˆ
Ω

f dµ


Sketch of the proof. We assume differentiability on J for
simplicity. Since J is convex we have that ∀a, b ∈ R:

J(b) ≥ J(a) + J ′(a)(b− a)

Taking a =
´

Ω f dµ and b = f(x), we have:

J(f(x)) ≥ J

ˆ
Ω

f dµ

+J ′

ˆ
Ω

f dµ

f(x) −
ˆ

Ω

f dµ


Multiplying by dµ and integrating, yields the result. □

Lemma 49 (Generalized Hölder’s inequality). Let
E ⊆ Rn be a measurable set, 1 ≤ p1, . . . , pn ≤ ∞ be such
that

∑n
i=1

1
pi

= 1 and fi ∈ Lpi(E). Then:∥∥∥∥∥
n∏

i=1
fi

∥∥∥∥∥
1

≤
n∏

i=1
∥fi∥pi
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Proof. We will prove it by induction on n. For n = 1
the result is clear. For n ≥ 2, note that the numbers
qn = pn

pn−1 and pn are Hölder conjugates. Moreover, if we

define ri = pi

(
1 − 1

pn

)
= pi

qn
we have that

∑n−1
i=1

1
ri

= 1
and so using ?? ?? we have:

∥f1 · · · fn∥1 ≤ ∥f1 · · · fn−1∥qn
∥fn∥pn

= ∥|f1 · · · fn−1|qn∥1
1

qn ∥fn∥pn

≤ ∥|f1|qn∥r1

1
qn · · · ∥|f1|qn∥r1

1
qn ∥fn∥pn

= ∥f1∥p1
· · · ∥fn∥pn

where in the penultimate step we have used the induction
hypothesis and in the last equality we have used the fact
that riqn = pi. □

Lemma 50 (Young’s convolution inequality). Let
f ∈ Lp(Rn), g ∈ Lq(Rn) and take r such that

1
p

+ 1
q

= 1
r

+ 1

with 1 ≤ p, q, r ≤ ∞. Then:

∥f ∗ g∥r ≤ ∥f∥p ∥g∥q

Sketch of the proof. Note that:

|(f ∗ g)(x)|

≤
ˆ

Rn

(|f(y)|p|g(x − y)|q)
1
r |f(y)|1− p

r |g(x − y)|1− q
r dy

≤
∥∥∥(|f(y)|p|g(x − y)|q)

1
r

∥∥∥
r

∥∥∥|f(y)|
r−p

r

∥∥∥
pr

r−p

·

·
∥∥∥|g(x − y)|

r−q
r

∥∥∥
qr

r−q

where in the second inequality we have used the 49 Gen-
eralized Hölder’s inequality because:

1
r

+ r − p

pr
+ r − q

qr
= 1
p

+ 1
q

− 1
r

= 1

Finally:

∥f ∗ g∥r
r ≤ ∥f∥p

r−p∥g∥q
r−q
ˆ

Rn

ˆ

Rn

|f(y)|p|g(x − y)|q dy dx

= ∥f∥p
r−p∥g∥q

r−q∥f∥p
p∥g∥q

q

= ∥f∥p
r∥g∥q

r

where in the second equality we have used the ?? ??. □

Theorem 51. Let f ∈ L2(R) and g ∈ L1(R). Then,
f̂ ∗ g ∈ L2(R) and:

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ)

Proof. By 50 Young’s convolution inequality with p = r =
2 and q = 1 we have:

∥f ∗ g∥2 ≤ ∥f∥2 ∥g∥1 < ∞

The equality follows in the same way as in L1(R). □

Fourier transform on Lp(R)
Lemma 52. Let f ∈ Lp(R) with 1 < p < 2. Then,
there exist functions f1 ∈ L1(R) and f2 ∈ L2(R) such
that f = f1 + f2.

Proof. The set E := {|f | ≥ 1} has finite measure because
f ∈ Lp(R). Now consider the Functions

f1(x) :=
{
f(x) if x ∈ E

0 if x /∈ E
f2(x) :=

{
0 if x ∈ E

f(x) if x /∈ E

By ?? ??, f1 ∈ L1(R) because |E| < ∞. On the other
hand:

∞̂

−∞

|f2(x)|2 dx =
ˆ

R\E

|f(x)|2 dx ≤
ˆ

R\E

|f(x)|p dx < ∞

because |f | < 1 in R \ E. So f2 ∈ L2(R). □

Definition 53. Let f = f1 + f2 ∈ Lp(R) with 1 < p < 2,
f1 ∈ L1(R) and f2 ∈ L2(R). We define the Fourier trans-
form of f as:

f̂(ξ) := f̂1(ξ) + f̂2(ξ)

Remark. This definition is well-defined. Indeed, suppose
f = g1 + g2 with 1 < p < 2 with g1 ∈ L1(R) and
g2 ∈ L2(R). Then, f1 − g1 = g2 − f2 ∈ L1(R) ∩ L2(R)
and so

f̂1 − ĝ1 = f̂1 − g1 = f̂2 − g2 = f̂2 − ĝ2

Hence, f̂ = f̂1 + f̂2 = ĝ1 + ĝ2.

Fourier transform on Rn

In this section we will only expose the most important re-
sults of extending the Fourier transform to L1(Rn). More-
over we will not prove any of the results of this section as
they are completely analogous to the previous ones.

Definition 54. Let f ∈ L1(Rn). We define the Fourier
transform of f as:

f̂(ξ) =
ˆ

Rn

f(x)e−2πi⟨ξ,x⟩ dx

The function f is also called inverse Fourier transform of
f̂ .

Proposition 55. Let f, g ∈ L1(Rn) and α, β ∈ R. Then:

1. ̂(αf + βg)(ξ) = αf̂(ξ) + βĝ(ξ)

2. Let h ∈ Rn. We define Thf(x) = f(x + h). Then:

T̂hf(ξ) = e2πi⟨ξ,h⟩f̂(ξ)

3. If g(x) = e2πi⟨x,h⟩f(x), then:

ĝ(ξ) = f̂(ξ − h)

4. If λ ∈ R∗, then:

1
λn

̂
f
(x
λ

)
(ξ) = f̂(λξ)
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5. If g(x) = f(x), then:

ĝ(ξ) = f̂(−ξ)

Theorem 56. Let f ∈ L1(Rn) and denote also by F the
extension of the Fourier transform operator to L1(Rn).
Then:

1. Ff is uniformly continuous.

2. F is a continuous linear operator from L1(Rn) to
L∞(Rn) and ∥Ff∥∞ ≤ ∥f∥1.

Theorem 57 (Riemann-Lebesgue lemma). Let f ∈
L1(Rn). Then:

lim
∥ξ∥→∞

∣∣∣f̂(ξ)
∣∣∣ = 0

Proposition 58. Let f be a function such that ξjf ∈
L1(Rn). Then, f̂ is differentiable with respect to ξj and:

∂(Ff)
∂ξj

(ξ) = F((−2πiξj)f(x))

Proposition 59. Let f ∈ L1(Rn) be differentiable with
respect to xj such that ∂f

∂xj
∈ L1(Rn). Then:

∂̂f

∂xj
(ξ) = 2πiξj f̂(ξ)

Theorem 60 (Plancherel theorem). Let f ∈ L1(Rn)∩
L2(Rn). Then, f̂ ∈ L2(Rn) and:

ˆ

Rn

|f(x)|2 dx =
ˆ

Rn

∣∣∣f̂(ξ)
∣∣∣2 dξ

Applications of the Fourier transform

Remark. Probably the most important application of
Fourier series is the resolution of PDEs and it is a conse-
quence of Theorem 15, which reduces any order of a PDE
in the spatial variable to 1. The procedure is to compute
the Fourier transform F of the PDE, solve it, and then
get back to the first function using the inverse transform.

Theorem 61 (Uncertainty principle). Let f ∈ L2(R)
be differentiable such that x|f |2 ∈ L1(R) and f ′ ∈ L2(R).
Then: ∞̂

−∞

x2|f(x)|2 dx

 ∞̂

−∞

ξ2
∣∣∣f̂(ξ)

∣∣∣2 dξ

 ≥
∥f∥2

4

16π2

and the equality holds if and only if f(x) = e−λ2x2 , λ ∈ R.

Proof. Let I be the left-hand-side term of the inequality.
First note that:

∞̂

−∞

ξ2
∣∣∣f̂(ξ)

∣∣∣2 dξ = 1
4π2

∞̂

−∞

∣∣∣f̂ ′(ξ)
∣∣∣2 dξ = 1

4π2

∞̂

−∞

|f ′(ξ)|2 dξ

where the first equality is by the analogous Theorem 15 in
L2(R) and in the second one we have used 43 Plancherel
theorem. Now by the ??, we have:

I ≥ 1
4π2

 ∞̂

−∞

x|f(x)f ′(x)| dx

2

≥ 1
4π2

 ∞̂

−∞

xRe(f(x)f ′(x)) dx

2

= 1
16π2

 ∞̂

−∞

x
d

dx (|f(x)|2) dx

2

= 1
16π2

 ∞̂

−∞

|f(x)|2 dx

2

where in the third step we have used that:

d
dx (|f(x)|2) = 2 Re(f(x)f ′(x))

and in the last step we have integrated by parts (here we
use that x|f |2 ∈ L1(R)). □

Theorem 62 (Uncertainty principle in Rn). Let
f ∈ L2(Rn) be regular enough. Then: ∞̂

−∞

∥x∥2 |f(x)|2 dx

 ∞̂

−∞

∥ξ∥2
∣∣∣f̂(ξ)

∣∣∣2 dξ

 ≥
n2∥f∥2

4

16π2

Theorem 63 (Poisson summation formula). Let f ∈
C(R) ∩ L1(R) be such that

∑
k∈Z f(x + k) converges uni-

formly for x ∈ [0, 1] and such that
∑

k∈Z

∣∣∣f̂(k)
∣∣∣ < ∞.

Then: ∑
k∈Z

f(x+ k) =
∑
k∈Z

f̂(k)e2πikx

In particular, for x = 0 we have:∑
k∈Z

f(k) =
∑
k∈Z

f̂(k)

Proof. Let F (x) :=
∑

k∈Z f(x + k). Note that F is 1-
periodic. If we see that F̂ (n) = f̂(n) ∀n ∈ Z, the continu-
ity of f and the convergence of its Fourier series will imply
F (x) =

∑
k∈Z f̂(k)e2πikx. But:

F̂ (n) =
1ˆ

0

∑
k∈Z

f(x+ k)e−2πinx dx

=
∑
k∈Z

1ˆ

0

f(x+ k)e−2πinx dx

=
∑
k∈Z

k+1ˆ

k

f(x)e−2πin(x−k) dx
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=
∑
k∈Z

k+1ˆ

k

f(x)e−2πinx dx

=
∞̂

−∞

f(x)e−2πinx dx

= f̂(n)

□

Definition 64. Let f ∈ L2(R). We say that f is bandlim-
ited if ∃B ∈ R such that supp f̂ ⊆ [−B,B].

Theorem 65 (Nyquist-Shannon sampling theo-
rem). Let f ∈ L2(R) be bandlimited with constant B.
Then:

f(x) L2

=
∑
k∈Z

f

(
k

2B

)
sin(π(2Bx− k))
π(2Bx− k)

Moreover:

∥f∥2
2 = 1

2B
∑
k∈Z

∣∣∣∣f ( k

2B

)∣∣∣∣2
Proof. An easy check shows that the Fourier series of
ξ 7→ e2πixξ on [−B,B] is:

e2πixξ =
∑
k∈Z

sin(π(2Bx− k))
π(2Bx− k) e

πikξ
B

Thus:

f(x) =
B̂

−B

f̂(ξ)e2πiξx dξ

=
∑
k∈Z

sin(π(2Bx− k))
π(2Bx− k)

B̂

−B

f̂(ξ)e
πikξ

B dξ

=
∑
k∈Z

f

(
k

2B

)
sin(π(2Bx− k))
π(2Bx− k)

The second equality follows from both 43 Plancherel the-
orem and ?? ??:

∥f∥2
2 =

∥∥∥f̂∥∥∥
2

2
= 1

2B
∑
k∈Z

∣∣∣∣f ( k

2B

)∣∣∣∣2
because by a similar argument as before, the Fourier co-
efficients of f̂(k) (thought as periodically extended) are

1
2B f

(−k
2B

)
. □

Remark. In the context of signal processing, 65 Nyquist-
Shannon sampling theorem tells us that if a function f
contains no frequencies higher than B hertz, then it can
be completely determined from its ordinates at a sequence
of points spaced less than 1

2B seconds apart.

Discrete Fourier transform
Definition 66. Consider a function f with support
{0, . . . , N − 1}. We can think f as:

f : Z −→ C
k 7−→ f(k mod N) =: f [k]

Note that with this definition, f is N -periodic. We define
the discrete Fourier transform (DFT) of f as:

f̂ [k] :=
N−1∑
n=0

f [n]e− 2πink
N

If we denote ωN := e− 2πi
N we can write:

f̂ [k] =
N−1∑
n=0

f [n]ωN
kn

We will denote f := (f [0], . . . , f [N − 1])

Proposition 67. Let f, g : Z → C. Then:

1. f̂ is linear.

2. If n ∈ Z and g[k] = f [k − n] ∀k ∈ Z, then:

ĝ[k] = f̂ [k]e− 2πikn
N

3. If g[k] = f [k] ∀k ∈ Z, then:

ĝ[k] = f̂ [N − k]

Proposition 68. Let f : Z → C. Then, f̂ = A(ωN )f ,
where

A(ωN ) =


1 1 1 · · · 1
1 ωN ωN

2 · · · ωN
N−1

1 ωN
2 ωN

4 · · · ωN
2(N−1)

...
...

...
. . .

...
1 ωN

N−1 ωN
2(N−1) · · · ωN

(N−1)(N−1)


is a symmetric matrix.

Lemma 69. Let N ∈ N. Then:

A(ωN )A(ωN ) = A(ωN )A(ωN ) = NIN

Sketch of the proof. Remember that both ωN and ωN are
roots of 1 + x+ · · · + xN−1. □

Definition 70. Let f : Z → C. We define the inverse
discrete Fourier transform as:

f = 1
N

A(ωN )f̂

Theorem 71 (Plancherel theorem). Let f : Z → C.
Then:

N−1∑
k=0

f [k]g[k] = 1
N

N−1∑
k=0

f̂ [k]ĝ[k]

In particular, if f = g, we have:

N−1∑
k=0

|f [k]|2 = 1
N

N−1∑
k=0

∣∣∣f̂ [k]
∣∣∣2
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Proof. Using vector notation:〈
fT,g

〉
=
(

1
N

A(ωN )f̂
)T( 1

N
A(ωN )ĝ

)
= 1
N2 f̂

T
A(ωN )TA(ωN )ĝ

= 1
N

〈
f̂

T
, ĝ
〉

because A(ωN ) is symmetric. □

Definition 72. Let f, g : Z → C. We define the convolu-
tion of f and g as:

(f ∗ g)[k] :=
N−1∑
n=0

f [n]g[k − n]

Lemma 73. Let f, g : Z → C. Then:

f̂ ∗ g[k] = f̂ [k]ĝ[k]

Proof.

f̂ ∗ g[k] =
N−1∑
n=0

N−1∑
j=0

f [j]g[n− j]ωN
nk

=
N−1∑
j=0

f [j]ωN
jk

N−1∑
n=0

g[n− j]ωN
(n−j)k

= f̂ [k]ĝ[k]

□

Theorem 74 (Poisson summation formula). Let f :
Z → C. Then:

N−1∑
k=0

f̂ [k] = Nf [0]

Proof.
N−1∑
k=0

f̂ [k] =
N−1∑

k,n=0
f [n]ωN

kn = Nf [0]

because
∑N−1

k=0 ωN
kn = N if n = 0 and 0 otherwise be-

cause ωN
n are roots of 1 + x+ · · · + xN−1. □

Fast Fourier transform

Definition 75. Let f : Z → C. Note that we need O
(
N2)

operations in order to compute f̂ . The fast Fourier trans-
form (FFT) aims to minimize that number by using some
tricks.

Definition 76 (Radix-2 DIT Cooley-Tukey FFT al-
gorithm). Let f : Z → C and assume that N = 2m.
The radix-2 decimation-in-time (DIT) FFT is defined as
follows. We can write:

f̂ [k] =
N/2−1∑

n=0
f [2n]ωN

2nk +
N/2−1∑

n=0
f [2n+ 1]ωN

(2n+1)k

=
N/2−1∑

n=0
f [2n]

(
e− 2πi

N/2

)nk

+e− 2πik
N

N/2−1∑
n=0

f [2n+1]
(

e− 2πi
N/2

)nk

=: Ek + e− 2πik
N Ok

for k = 0, . . . , N/2 − 1 even though the equality holds for
k = 0, . . . , N − 1. For the other cases, we use the period-
icity of e− 2πik

N to get:

f̂ [k +N/2] = Ek − e− 2πik
N Ok

for k = 0, . . . , N/2−1. Note that Ek and Ok are both N/2-
dimensional DFT of the even terms of f and the odd terms
of f , respectively. We can thus compute them recursively
until the respective m is odd. Using this method we can
get the DFT of f in at most (when N = 2ℓ) O (N logN)
time.

3. | Distributions
Introduction
Definition 77. Let Ω ⊆ Rn and (φn), φ ∈ D(Ω) :=
C∞

0 (Ω). The functions on D(Ω) are usually called bump
functions or test functions. We say that φn → φ in D(Ω)
if:

1. There exists a compact set such that
suppφn, suppφ ⊆ K ∀n ∈ N.

2. lim
n→∞

∥∂αφn − ∂αφ∥L∞(K) = 0 ∀α ∈ (N ∪ {0})d.

Definition 78 (Distribution). Let Ω ⊆ Rd be a set.
A distribution on Ω is a continuous linear form on D(Ω).
The vector space of all distributions on Ω is denoted by
D∗(Ω).
Lemma 79. Let Ω ⊆ Rd and T : D(Ω) → C be linear.
Then, T is continuous if and only if ∀(φn) ∈ D(Ω) with
φn → 0 in D(Ω) we have that T (φn) → 01.
Lemma 80 (Fundamental lemma of calculus of vari-
ations). Let Ω ⊆ Rd be a domain and f ∈ L1

loc(Ω) such
that ˆ

Ω

f(x)φ(x) dx = 0

for all φ ∈ D(Ω). Then, f a.e.= 0 in Ω.
Proposition 81. Let Ω ⊆ Rd and T : D(Ω) → C be lin-
ear. Then, T ∈ D∗(Ω) if and only if for all compact set
K ⊆ Ω, there exist C > 0 and m ∈ N ∪ {0} such that
∀φ ∈ D(K) we have:

|T (φ)| ≤ C
∑

|α|≤m

∥∂αφ∥L∞(K)

Proof. The right-to-left implication is clear. For the other
one, suppose that there exists a compact set K such that
∀C > 0 and all m ∈ N ∪ {0} there exists a sequence
(φk) ∈ D(Ω) such that:

|T (φk)| > C
∑

|α|≤m

∥∂αφk∥L∞(K) =: C ∥φk∥m,K

Now consider ψk := φk

k∥φk∥m,K
. Clearly ∀α ∈ (N ∪ {0})d

∥∂αψk∥L∞(K) ≤ 1
k

k→∞−→ 0 but |T (ψk)| = |T (φk)|
k∥φk∥m,K

> 1 by
considering the particular case of C = k. Hence, T cannot
be continuous, which is a contradiction. □

1Sometimes we will denote T (φ) as ⟨T, φ⟩.
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Proposition 82. Let Ω ⊆ Rn and f ∈ L1
loc(Ω). Then,

the map

Tf : D(Ω) −→ C

φ 7−→
ˆ

Ω

f(x)φ(x) dx (2)

is a distribution. Hence, Tf (φ) is usually denoted by
⟨f, φ⟩. Sometimes we will do an abuse of notation de-
noting Tf as f (in view of the 80 Fundamental lemma of
calculus of variations).

Proof. Tf is clearly linear. Moreover:

|Tf (φ)| ≤
ˆ

Ω

|f(x)φ(x)| ≤ ∥f∥1 ∥φ∥∞

Hence, Tf is bounded and therefore continuous. □

Definition 83. The distributions that can be expressed
as in Eq. (2) are called regular distributions.

Proposition 84 (Dirac’s δ distribution). Let Ω ⊆ Rd

be a set and x0 ∈ Ω. Then, the map

δx0 : D(Ω) −→ R
φ 7−→ φ(x0)

is a distribution and it is called Dirac’s δ distribution. We
will denote δ0 simply by δ.

Proof. Clearly δx0 is linear and bounded because
|δx0(φ)| = |φ(x0)| ≤ ∥φ∥∞. □

Lemma 85. The Dirac’s δ0 distribution is not regular.

Proof. Suppose it is regular. Then, ∃f ∈ L1
loc(Ω) such

that δ = Tf . Hence, φ(0) = δ(φ) =
´

Ω f(x)φ(x) dx for all
φ ∈ D(Ω). Then, if we take φn(x) := φ(nx), where:

φ(x) =
{

e− 1
1−∥x∥2 if ∥x∥ ≤ 1

0 if ∥x∥ > 1

then φn ∈ D(Ω) and have support B(0, 1/n). So:

e−1 =

∣∣∣∣∣∣∣
ˆ

Ω∩B(0,1/n)

f(x)φn(x) dx

∣∣∣∣∣∣∣ ≤
ˆ

∥x∥< 1
n

|f(x)| dx n→∞−→ 0

□

Proposition 86 (Cauchy principal value). We define
the Cauchy principal value T := p.v.

( 1
x

)
as the distribu-

tion
T (φ) = lim

ε→0

ˆ

|x|≥ε

φ(x)
x

dx

Proof. First of all note that it is well defined because we
can write:

T (φ) = lim
ε→0

∞̂

ε

φ(x) − φ(−x)
x

dx =
∞̂

0

φ(x) − φ(−x)
x

dx

which is well-defined because φ has compact support and
in a neighborhood of 0 the integrand is bounded (by the ??
??). Moreover it is clearly linear and continuous because

|T (φ)| ≤ 2|K| ∥φ′∥∞

where |K| is the measure of the support of φ. □

Definition 87. Let Ω ⊆ Rn. We say that a distribu-
tion T ∈ D∗(Ω) is a distribution of order N ∈ N ∪ {0} if
∃N ∈ N ∪ {0} such that for all compact set K ∃CK > 0
with

|T (φ)| ≤ CK ∥φ∥N,K

for all φ ∈ D(Ω). We say that T is has infinite order if it
is not of order N for any N ∈ N.

Definition 88. Let Ω ⊆ Rn, T, S ∈ D∗(Ω), a ∈ R and
f ∈ C∞(Rn). We define the distributions T + S, aT and
fT as:

⟨T + S, φ⟩ := ⟨T, φ⟩ + ⟨S, φ⟩
⟨aT, φ⟩ := ⟨T, aφ⟩
⟨fT, φ⟩ := ⟨T, fφ⟩

Remark. In general the product of two distributions is not
associative. For example, one can check that δx = 0 and
xp.v.

( 1
x

)
= 1. So:

(δx) p.v.
(

1
x

)
̸= δ

(
xp.v.

(
1
x

))

Convergence of distributions

Definition 89. Let Ω ⊆ Rn be a set and (Tn) ∈ D∗(Ω).
We say that (Tn) converges to T ∈ D∗(Ω) if Tn(φ) n→∞−→
T (φ) for all φ ∈ D(Ω).

Definition 90. Let Ω ⊆ Rn be a set. We say that a se-
quence of functions (ϕε) ∈ L1

loc(Ω) is an approximation of
identity if

1.
ˆ

Ω

ϕε = 1

2.
ˆ

Ω

|ϕε| ≤ M ∀ε > 0

3. lim
ε→0

ˆ

∥x∥≥δ

ϕε(x) dx = 0 ∀δ > 0.

Proposition 91. Let Ω ⊆ Rn be a set and ϕ ∈ L1(Ω)
such that

´
Ω ϕ = 1. Let ϕε := 1

εnϕ( x
ε ). Then, (ϕε) is

an approximation of identity, ϕε ∈ L1
loc(Ω) ∀ε > 0 and

ϕε
ε→0−→ δ0 in D∗(Ω).

Sketch of the proof. Let φ ∈ D(Ω). Then:

|ϕε(φ) − δ0(φ)| ≤
ˆ

Ω

|ϕε(x)||φ(x) − φ(0)| dx

11



=
ˆ

∥x∥<δ

|ϕε(x)||φ(x) − φ(0)| dx +

+
ˆ

∥x∥≥δ

|ϕε(x)||φ(x) − φ(0)| dx

Now use the properties of approximation of identity to see
that each interval goes to zero as ε → 0. □

Theorem 92. Let Ω ⊆ Rn and (fn) ∈ Lp
loc(Ω) such that

fn

Lp
loc−→ f (which means that ∥fn − f∥Lp(K) → 0 for any

compact set K ⊆ Ω). Then, Tfn converges to Tf in D(Ω).

Proof. Use ?? ??. □

Remark. Clearly if fn converge uniformly to f , the condi-
tion of the theorem holds and we get the same result. But
it can be seen that only with pointwise convergence is not
enough (consider fn(x) = nkxn(1 − x)1[0,1] for k ∈ N).
Moreover, Tfn

converges to Tf in D(Ω) does not imply
pointwise convergence of fn towards f .

Support of a distribution
Definition 93. Let T ∈ D∗(Rn). We define the support
of T , suppT , as the intersection of all closed sets K such
that if φ ∈ D(Rn) has support in Rn \K, then ⟨T, φ⟩ = 0.

Lemma 94. Let T ∈ D∗(Rn) and φ ∈ D(Rn) be such
that suppφ ∩ suppT = ∅. Then, ⟨T, φ⟩ = 0.

Proof. Assume suppT =
⋂

i∈I Ci. Then, by the compact-
ness of suppφ, there exists i1, . . . , in ∈ I such that:

suppφ ⊆
n⋃

j=1
(Rn \ Cij )

Now take a partition of unity ψ1, . . . , ψn ∈ D(Rn) sub-
ordinated to the open cover {Rn \ Cij

: j = 1, . . . , n}
(check ??). These ψj satisfy (by definition) that suppψj ⊆
Rn \ Cij for all j = 1, . . . , n and

∑n
j=1 ψj = 1 on suppφ.

Therefore, defining ψ :=
∑n

j=1 ψj we have that ψ ∈ D(Rn)
and φψ = φ on suppφ. Therefore:

⟨T, φ⟩ = ⟨T, φψ⟩ =
n∑

j=1
⟨T, φψj⟩ = 0

□

Definition 95. We denote E(Rn) := C∞(Rn) and E∗(Rn)
its dual space.

Definition 96. Let T ∈ D∗(Rn) with compact support.
We can extent the definition of T to E(Rn) in the following
way. Let φ ∈ E(Rn) and take ρ ∈ D(Rn) such that ρ = 1
on suppT . Then, we define:

⟨T, φ⟩ := ⟨T, ρφ⟩

Remark. Note that in view of Theorem 94, this defini-
tion is well defined because if ρ, ω ∈ D(Rn) are two dif-
ferent test functions such that ρ, ω = 1 on suppT , then
φ(ρ− ω) = 0 on suppT and therefore ⟨T, φ(ρ− ω)⟩ = 0.

Proposition 97. Let T ∈ D∗(Rn) with compact sup-
port. Then, T ∈ E∗(Rn) if and only if ∃C > 0, N ∈ N and
m ∈ N ∪ {0} such that:

|⟨T, φ⟩| ≤ C
∑

|α|≤m

sup
∥x∥≤N

|∂αφ(x)|

for all φ ∈ E(Rn).

Proof. The implication to the left is clear. For the other
one, from the continuity in D∗(Rn) we know that for all
compact K, there exist C > 0 and m ∈ N∪ {0} such that:

|⟨T, φ⟩| = |⟨T, ρφ⟩| ≤ C
∑

|α|≤m

sup
x∈K

|∂α(ρφ)(x)|

Now take N > 0 such that supp ρ ⊆ suppT ⊆ B(0, N).
Thus:

|⟨T, φ⟩| ≤ C
∑

|α|≤m

sup
x∈supp ρ≤N

|∂αφ(x)| ≤

≤ C
∑

|α|≤m

sup
∥x∥≤N

|∂αφ(x)|

□

Differentiation of distributions
Definition 98. Let Ω ⊆ Rn be a set, T ∈ D∗(Ω) and α
be a multiindex. We define the distribution ∂αT as:

⟨∂αT, φ⟩ =
〈
T, (−1)|α|

∂αφ
〉

for all φ ∈ D(Ω). The distribution ∂αT is called distribu-
tional derivative.

Definition 99. We define the Heaviside step function as
the function H(x) = 1x>0.

Proposition 100. We have that TH =: H ∈ D∗(R) and:

H ′ = δ

Proof. For all φ ∈ D(Ω) we have:

⟨H ′, φ⟩ = −⟨H,φ′⟩ = −
∞̂

0

φ′(x) dx = φ(0) = δ(φ)

because φ has compact support. □

Lemma 101. Let f ∈ L1
loc(Rn). Then, (Tf )′ = Tf ′ .

Proposition 102 (Schwarz theorem). Let Ω ⊆ Rn be
a set and T ∈ D∗(Ω). Then:

∂2T

∂xi∂xj
= ∂2T

∂xj∂xi

Proposition 103 (Leibnitz rule). Let Ω ⊆ Rn be a set,
T ∈ D∗(Ω), f ∈ C∞(Ω) and α be a multiindex. Then:

∂α(fT ) =
∑
β≤α

(
α

β

)
∂βf∂α−βT

Proposition 104. Let T ∈ D∗(R) be such that T ′ = 0.
Then, T is constant (in the sense of distributions).
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Proof. Let φ ∈ D(R) with
´
R φ = 0. Then, ϕ(x) :=´ x

−∞ φ(t) dt ∈ D(R) and ϕ′ = φ. Thus:

⟨T, φ⟩ = ⟨T, ϕ′⟩ = ⟨T ′, ϕ⟩ = 0

Now consider a general φ ∈ D(R) and ω ∈ D(R) such that´
R ω = 1. Then, ϕ(x) := φ− ω

´
R φ integrates 0 and thus:

⟨T, φ⟩ =
ˆ

R

φ⟨T, ω⟩ = ⟨C,φ⟩

with C := ⟨T, ω⟩. □

Proposition 105. Let T ∈ D∗(R) be such that xmT = 0
for some m ∈ N. Then, T =

∑m−1
j=0 ajδ

(j) for some aj ∈ R.

Proof. Let φ ∈ D(R) with Taylor polynomial:

Pφ(x) =
m−1∑
j=0

φ(j)(0)
j! xj + φ(m)(ξx)

m! xm

with ξx ∈ (0, x). Then:

⟨T, φ⟩ =
m−1∑
j=0

φ(j)(0)
j! ⟨T, xj⟩ + 1

m! ⟨x
mT, φ(m)(ξx)⟩

=
m−1∑
j=0

aj⟨δ(j), φ⟩

with aj = (−1)j

j! ⟨T, xj⟩. □

Schwartz class of functions

Definition 106. Let d ∈ N. The Schwartz space or space
of rapidly decreasing functions on Rn is defined as:

S(Rd) := {f ∈ C∞(Rn) : ∥f∥α,β < ∞ ∀α, β ∈ (N ∪ {0})d}

where:
∥f∥α,β := sup

x∈Rn

∣∣xα(∂βf)(x)
∣∣

Lemma 107. Let f ∈ S(Rd). Then, xαf, ∂αf ∈ S(Rd)
for all α ∈ (N ∪ {0})d.

Lemma 108. Let d ∈ N. Then, D(Rd) ⊂ S(Rd) ⊂ E(Rd).

Definition 109. Let f, (fn) ∈ S(Rd). We say that
fn

S−→ f if ∥fn − f∥α,β → 0 for all α, β ∈ (N ∪ {0})d.

Proposition 110. Let d ∈ N. Then, S(Rd) ⊂ Lp(Rd) for
all p ∈ [1,∞].

Proof. For p = ∞ the result is clear. Now suppose that
p ∈ [1,∞) and let ϕ ∈ S(Rd). Then:

ˆ

Rd

|ϕ|p =
ˆ

B(0,1)

|ϕ|p +
ˆ

Rd\B(0,1)

|ϕ|p ∥x∥kp

∥x∥kp

≤ C1 + C2

ˆ

Rd\B(0,1)

1
∥x∥kp

for some k ∈ N yet to be determined. Here in the last
step we have used

∣∣∣|ϕ| ∥x∥k
∣∣∣ ≤ ∥f∥k,0 =: C2. Now if

Rj := {x ∈ Rd : 2j ≤ ∥x∥ ≤ 2j+1}, j ∈ N ∪ {0}, then:
ˆ

Rd\B(0,1)

1
∥x∥kp

≤
∞∑

j=0

ˆ

Rj

1
∥x∥kp

≤
∞∑

j=0

C2(j+1)d

2kpj

< ∞

if and only if kp− d > 0. So take k > d
p . □

Remark. In Rn, the integrals of the form
ˆ

B(0,1)

1
∥x∥k

dx

converge if and only if k < n = dimRn whereas the inte-
grals of the form

ˆ

Rn\B(0,1)

1
∥x∥k

dx converge if and only if

k > n. The limit case k = n is diverges in both cases.

Lemma 111. Let f be a function that has Fourier trans-
form. Then, f ∈ S(Rd) ⇐⇒ f̂ ∈ S(Rd).

Proof. By symmetry, it suffices to do one implication.
Moreover we will only do the case d = 1 in order to keep
the notation simple. Let f ∈ S(R) and α, β ∈ N ∪ {0}.
Then, using Theorems 14 and 15:∣∣∣ξα∂β f̂(ξ)

∣∣∣ =
∣∣∣ξαF((−2πix)β

f)(ξ)
∣∣∣

= 1
|2πi|α

∣∣∣F [∂α((−2πix)β
f)](ξ)

∣∣∣
≤
∥∥∥∂α((−2πix)β

f)
∥∥∥

1

< ∞

where in the last inequality we have used that ∥ĝ∥∞ ≤
∥g∥1. □

Tempered distributions
Definition 112. A tempered distribution is a linear and
continuous operator T : S(Rd) → C. The space of all
tempered distributions is denoted by S∗(Rd).

Lemma 113. Let T : S(Rd) → C be linear. Then,
T ∈ S∗(Rd) if and only if there exists C > 0 and
m ∈ N ∪ {0} such that ∀φ ∈ S(Rd) we have:

|T (φ)| ≤ C
∑

|α|+|β|≤m

∥φ∥α,β

Lemma 114. Lp(Rd) ⊂ S∗(Rd) ⊂ D∗(Rd).

Lemma 115. Let T ∈ S∗(Rd). Then, ∂αT ∈ S∗(Rd) for
all α ∈ (N ∪ {0})d.

Definition 116. Let T ∈ S∗(Rd) and ψ ∈ S(Rd). We
define the convolution T ∗ ψ as:

⟨T ∗ ψ,φ⟩ := ⟨T, ψ̃ ∗ φ⟩

for any φ ∈ S(Rd). Here ψ̃(x) := ψ(−x).
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Lemma 117. Let a, b ≥ 0 and m ∈ N ∪ {0}. Then:

(a+ b)m ≤ 2m−1(am + bm)

and the equality holds if and only if a = b or m = 0, 1.

Proof. For m = 0, 1, the equality is true. Now suppose
m ≥ 2 and b = λa with λ ∈ [0,∞). We need to show that:

(1 + λ)m ≤ 2m−1(1 + λm)

Consider f(λ) := 2m−1(1 + λm) − (1 + λ)m. Then:

f ′(λ) = m
[
(2λ)m−1 − (1 + λ)m−1

]
Note that ∀m ≥ 2, f ′(λ) < 0 for λ ∈ [0, 1), f ′(1) = 0
and f ′(λ) > 0 for λ ∈ (1,∞). Moreover f(1) = 0. So
f(λ) ≥ 0 for all λ ∈ [0,∞) and the equality holds if and
only if λ = 1. □

Lemma 118. Let T ∈ S∗(Rd) and ψ ∈ S(Rd). Then,
T ∗ ψ ∈ S∗(Rd).

Proof. Clearly T ∗ ψ is linear. Let φn
S−→ 0. Then, it

suffices to see that ψ̃ ∗φn
S−→ 0. For the sake of simplicity

we only do the case d = 1. For all α, β ∈ N ∪ {0} we have:∣∣xα∂β(ψ̃ ∗ φn)(x)
∣∣ =

∣∣xα(∂βψ̃ ∗ φn)(x)
∣∣

≤
ˆ

Rd

∣∣xα∂βψ(y)φn(x − y)
∣∣dy

≤ 2m̂

Rd

|x − y|α
∣∣∂βψ(y)

∣∣|φn(x − y)|dy

+ 2m

ˆ

Rd

|y|α
∣∣∂βψ(y)

∣∣|φn(x − y)| dy

≤ 2m sup
x∈Rd

|x|α|φn(y)|
ˆ

Rd

∣∣∂βψ(y)
∣∣ dy

+ 2m sup
x∈Rd

|φn(y)|
ˆ

Rd

|y|α
∣∣∂βψ(y)

∣∣dy

where in the second inequality we have used Theorem 117
with m = |α| + 1. Note that this latter terms tend to zero
as n → ∞ because of the properties of the Schwartz space.

□

Lemma 119. Let T ∈ S∗(Rd), ψ ∈ S(Rd) and α ∈
(N ∪ {0})d. Then:

∂α(T ∗ ψ) = ∂αT ∗ ψ = T ∗ ∂αψ

Proof.

⟨∂α(T ∗ψ), φ⟩ = (−1)|α|⟨T ∗ψ, ∂αφ⟩ = (−1)|α|⟨T, ψ̃ ∗∂αφ⟩

= (−1)|α|⟨T, ∂α(ψ̃ ∗ φ)⟩ = ⟨∂αT, ψ̃ ∗ φ⟩ = ⟨∂αT ∗ ψ,φ⟩

The other equality is analogous. □

Fourier transform of distributions

Definition 120. Let T ∈ S∗(Rd). We define the Fourier
transform T̂ (or FT ) of T as

⟨T̂ , φ⟩ := ⟨T, φ̂⟩

for all φ ∈ S(Rd). We define the inverse Fourier transform
F−1T of T as

⟨F−1T, φ⟩ := ⟨T,F−1φ⟩

Lemma 121. Let T ∈ S∗(Rd). Then, FT,F−1T ∈
S∗(Rd).

Proposition 122. Let T ∈ S∗(Rd), ψ ∈ S(Rd) and
α ∈ (N ∪ {0})d. Then:

1. ∂αT̂ = F((−2πix)α
T )

2. ∂̂αT = (2πiξ)α
T̂

3. T̂ ∗ ψ = T̂ ψ̂

Proof. We prove the third one. The other are similar. We
have:

⟨T̂ ∗ ψ,φ⟩ = ⟨T ∗ ψ, φ̂⟩ = ⟨T, ψ̃ ∗ φ̂⟩ = ⟨T̂ ,F−1(ψ̃φ̂)⟩ =

= ⟨T̂ ,F−1(ψ̃)φ⟩ = ⟨T̂ , ψ̂φ⟩ = ⟨T̂ ψ̂, φ⟩

□

Lemma 123. We have that:

1. δ̂a = e−2πia·x

2. 1̂(0,∞) = 1
2πi p.v.

( 1
x

)
+ 1

2δ0

3. ̂p.v.
( 1

x

)
= −πi sgn(ξ)

4. δ ∗ f = f ∀f ∈ D(Rd)

Proof. We prove the second one, the others are easier.
Note that (1(0,∞))′ = δ. Taking Fourier transform and
using Theorem 122, we get 2πix1̂(0,∞) = 1. Hence, since
xp.v.

( 1
x

)
= 1, we have:

x

(
2πi1̂(0,∞) − p.v.

(
1
x

))
= 0

By Theorem 105, we get that 1̂(0,∞) = 1
2πi p.v.

( 1
x

)
+Cδ0,

for some C ∈ R. To find the constant change x → −x in
the equation or alternatively apply the distribution to the
function e−πx2 . □

Definition 124. Let T ∈ D∗(Rn) and S ∈ D∗(Rm).
We define the direct product TS as the distribution in
D∗(Rn+m) given by:

⟨TS, φ⟩ = ⟨T, ⟨S, φ(x, ·)⟩⟩

for all φ ∈ D(Rn+m). Usually we will dentote

⟨TS, φ(x,y)⟩ = ⟨T (x), ⟨S(y), φ(x,y)⟩⟩

in order to distinguish the variables

Lemma 125. Let T ∈ D∗(Rn) and S ∈ D∗(Rm). Then:
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1. ϕ(x) := ⟨S(y), φ(x,y)⟩ ∈ D(Rn) and ∀α ∈
(N ∪ {0})n we have

∂α
xϕ(x) = ⟨S(y), ∂α

xφ(x,y)⟩

2. TS is indeed a distribution.

3. TS = ST

Proposition 126. Let T ∈ D∗(Rn) and S ∈ D∗(Rm).
Then, T̂ S = T̂ Ŝ.

Proof. Given φ(x,y) ∈ D(Rn+m) we have:

F(φ(x,y)) =
ˆ

Rn+m

φ(x,y)e−2πi(x,y)·(ξ,η) dx dy

=
ˆ

Rn

e−2πix·ξ

ˆ
Rm

φ(x,y)e−2πiy·η dy

 dx

=: Fx(Fy(φ)) = FyFxφ

by ?? ??. Therefore:

⟨F(TS), φ⟩ = ⟨T, ⟨S,FyFxφ⟩⟩ = ⟨T, ⟨Ŝ,Fxφ⟩⟩ =

= ⟨ŜT,Fxφ⟩ = ⟨Ŝ, ⟨T,Fxφ⟩⟩ = ⟨Ŝ, ⟨T̂ , φ⟩⟩ = ⟨ŜT̂ , φ⟩

□

Homogeneous distributions
Definition 127 (Homogeneous distribution). A dis-
tribution T ∈ S∗(Rn) is said to be homogeneous of degree
r ∈ R if:

⟨T, φ(λx)⟩ = λ−n−r⟨T, φ(x)⟩
for all λ > 0 and all φ ∈ S(Rn).

Proposition 128. Let T ∈ S∗(Rn) be a homogeneous
distribution of degree r ∈ R. Then, ∂αT is homogeneous
of degree r − |α| for all α ∈ (N ∪ {0})n.

Proof. Let φ ∈ S(Rn) and λ > 0. Then:

⟨∂αT, φ(λx)⟩ = (−1)|α|⟨T, (∂αφ)(λx)λ|α|⟩ =

= (−1)|α|
λ−n−r+|α|⟨T, ∂αφ⟩ = λ−n−(r−|α|)⟨∂αT, φ⟩

□

Proposition 129. Let T ∈ S∗(Rn) and r ∈ R. Then, T
is homogeneous of degree r if and only if T̂ is homogeneous
of degree −n− r.

Proof. We only check one implication, the other is analo-
gous. Using Theorem 55 we have:

⟨T̂ , φ(λx)⟩ =
〈
T, φ̂(ξ/λ) 1

λn

〉
=

= λn+r−n ⟨T, φ̂⟩ = λ−n−(−r−n)⟨T̂ , φ⟩

□

Corollary 130. Let k ∈ R, n ∈ N with k < n. Then,
1

∥x∥k ∈ S∗(Rn) and it is homogeneous of degree −k. More-

over, F
(

1
∥x∥k

)
= Ck,n

1
∥ξ∥n−k with Ck,n = (2π)

n
2

2
α
2

Γ( n−k
2 )

Γ( k
2 ) .

Differential operators over distributions

Definition 131. A differential operator over distributions
is an operator of the form:

L(x, ∂) :=
∑

|α|≤m

aα(x)∂α

If the coefficients aα are constant, we will omit the x and
write L(∂) instead of L(x, ∂).

Definition 132. Let L(x, ∂) be a differential operator
on an open set U ⊆ Rd and f ∈ D∗(U). We say that
u ∈ D∗(Rn) is a generalized solution of L(x, ∂)u = f in U
if

⟨L(x, ∂)u, φ⟩ = ⟨f, φ⟩

for all φ ∈ D(U).

Definition 133. Let L(∂) be a differential operator. We
say that E ∈ D∗(Rn) is a fundamental solution of L(∂) if
L(∂)E = δ.

Theorem 134. Let E be a fundamental solution of
L(∂)u = f , f ∈ S(Rn). Then, E ∗ f is a generalized
solution of L(∂)u = f .

Proof.

L(∂)(E ∗ f) =
∑

|α|≤m

aα∂
α(E ∗ f) =

∑
|α|≤m

aα(∂αE) ∗ f =

= δ ∗ f = f

where in the last equality we have used Theorem 123. □

Remark. In general we don’t have unicity of fundamen-
tal solutions. Indeed if E0 solves L(∂)u = 0 and E is a
fundamental solution, then E + E0 is also a fundamental
solution.

Theorem 135. Let L(∂) be a differential operator and
E ∈ S∗(Rn). Then, E is a fundamental solution of L(∂)
if and only if L(2πiξ)Ê = 1.

Proof. Suppose E is a fundamental solution. Then,
L(∂)E = δ. Taking Fourier transforms we have:∑

|α|≤m

aαF(∂αE) =
∑

|α|≤m

aα(2πiξ)α
Ê = L(2πiξ)Ê = 1

The other implication is similar using F−1 instead. □

Definition 136. Let L(∂) be a differential operator. We
say that E is a fundamental solution of the Cauchy prob-
lem {

L(∂)u(t,x) = 0
u(0,x) = f(x)

(3)

if L(∂)E(t,x) = 0 and E(0,x) = δ(x).

Theorem 137. Let L(∂) be a differential operator and
E be a fundamental solution of the Cauchy problem of
Eq. (3). Then, E ∗ f is a solution of it.
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Applications to some PDEs
Proposition 138. Consider the operator:

L(∂) = ∂t − a2
n∑

j=1
∂2

xj

Then,

E(t) =
1[0,∞)(t)

(4πa2t)n/2 e− ∥x∥2

4a2t

is a fundamental solution the heat equation L(∂)u = 0.

Proof. Taking Fx on the equation L(∂)E = δ we can
transform it to:

∂tÊ + 4π2a2 ∥ξ∥2
Ê = δt

because δ = δxδt. It can be seen that a solution of this
ODE is:

Ê(t, ξ) = 1[0,∞)(t)e−4π2a2∥ξ∥2t

Taking the Fourier transform (in this case F−1 = F) we
have:

E(t, x) =
1[0,∞)(t)

(4πa2t)n/2 e
− ∥x∥2

4a2t

where we have used Item 9-4 and Theorem 17. □

Proposition 139. Consider the Laplace operator:

L(∂) =
n∑

j=1
∂2

xj

Then,

E(t) =


Γ( n

2 −1)
π

n
2 −2

1
∥x∥n−2 if n ≥ 3

log∥x∥
2π if n = 2

is a fundamental solution the Laplace equation L(∂)u = 0.

Proof. Taking Fx on the equation L(∂)E = δ we see that
Ê satisfies:

Ê(ξ) = −1
4π2 ∥ξ∥2

Let’s study the integrability of this latter function in a
neighbourhood of 0. Let Rj := {x ∈ Rn : 2−j ≤ ∥x∥ ≤
2−j+1}. Then:

ˆ

B(0,1)

1
∥x∥2 =

∞∑
j=1

ˆ

Rj

1
∥x∥2 ≲

∞∑
j=1

(2−j)n

2−2j
=

=
∞∑

j=1
2j(n−2) < ∞ ⇐⇒ n ≥ 3

Let’s study first the case n ≥ 3. We need to compute
F−1(Ê) = F(Ê). Recall that F(e−k∥x∥2) =

(
π
k

)n
2 e− π2∥ξ∥2

k

(try to generalize Theorem 17). Therefore:(π
k

)n
2
ˆ

Rn

e− π2∥ξ∥2
k φ(ξ) dξ = ⟨F(e−k∥x∥2

), φ⟩ =

=
ˆ

Rn

e−k∥x∥2
φ̂(x) dx

Integrating both sides with respect to k and using ?? ??
we have that, on the one hand:

ˆ

Rn

φ̂(ξ)
∞̂

0

e−k∥ξ∥2
dk dξ =

ˆ

Rn

φ̂(ξ) 1
∥ξ∥2 dξ =

〈
1

∥ξ∥2 , φ̂

〉

On the other hand:
ˆ

Rn

φ(x)
∞̂

0

(π
k

)n
2 e− π2∥x∥2

k dk dx =
Γ
(

n
2 − 1

)
π

n
2 −2

ˆ

Rn

φ(x)
∥x∥n−2

where we have used the change of variable r = π2ξ2

k .
Let’s do now the case n = 2. Consider En =
1
2 log

(
∥x∥2 + 1/n2

)
S−→ log ∥x∥ (by the ?? ??). Hence,

we have that ∆En = 2n2

(n2∥x∥2+1)2
S−→ ∆ log ∥x∥. Thus,

∀φ ∈ S(R2):

⟨∆ log ∥x∥ , φ⟩ = lim
n→∞

⟨∆En, φ⟩

= lim
n→∞

ˆ

R2

2n2

(n2 ∥x∥2 + 1)2
φ(x) dx

= lim
n→∞

ˆ

R2

2
(∥x∥2 + 1)2

φ(x/n) dx

= φ(0)
ˆ

R2

2
(∥x∥2 + 1)2

dx

= 2πφ(0)

where in the forth equality we have used the ?? ?? and at
the end we have calculated the integral using polar coor-
dinates. □

Corollary 140. Consider the Cauchy-Riemann opera-
tors:

∂z = 1
2 (∂x − i∂y) ∂z = 1

2 (∂x + i∂y)

The fundamental solutions to ∂zu = f and ∂zu = f are
respectively:

E = 1
π

1
z

E = 1
π

1
z

Sketch of the proof. Recall that ∂z∂z = ∂z∂z = 1
4 ∆.

E = log(zz)
4π is a fundamental solution of the Laplace equa-

tion and ∂zE = 1
4πz , ∂zE = 1

4πz . □

Proposition 141. Consider the Cauchy problem:{
ut = a2∆u in (0,∞) × Rn

u(0,x) = f(x) in Rn

Then, a fundamental solution is given by:

E(t,x) = 1
(4πa2t)

n
2

e− ∥x∥2

4a2t

And the general solution is:

u(t,x) = (E ∗ f)(t,x) =
ˆ

Rn

f(y)
(4πa2t)

n
2

e− ∥x−y∥2

4a2t dy
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Proof. Taking Fx on the equation we obtain:

Êt = −4π2 ∥ξ∥2
Ê

Solving it we obtain, Ê = Ce−4π2∥ξ∥2t. Using the initial
condition we see that C = 1. Now proceeding as in the
proof of the Theorem 138 we obtain the result. □

Theorem 142 (Malgrange-Ehrenpreis theorem).
Every non-zero linear partial differential operator with
constant coefficients has a fundamental solution.

4. | Singular intergals
Hilbert transform
Definition 143. Let f ∈ Lp(R), 1 ≤ p < ∞. The trun-
cated Hilbert transform is defined as:

Hεf(x) = 1
π

ˆ

|x−y|>ε

f(y)
x− y

dy

Definition 144. Let f ∈ S(R). We define the Hilbert
transform of f as:

Hf(x) = 1
π

(
p.v.

(
1
x

)
∗ f
)

(x) = lim
ε→0

Hεf(x)

Remark. We can extend the definition of H to func-
tions that satisfy locally a Hölder condition: ∀x ∈ R,
∃Cx, αx, δx > 0 such that

|f(x) − f(y)| ≤ Cx|x− y|αx for all|x− y| < δx

In that case we write:

Hεf(x) = 1
π

ˆ

ε<|x−y|<δx

f(y) − f(x)
x− y

dy+ 1
π

ˆ

|x−y|>δx

f(y)
x− y

dy

Lemma 145. Let a, b ∈ R, a < b. Then:

H(1[a,b])(x) = 1
π

log
∣∣∣∣x− a

x− b

∣∣∣∣
Proposition 146. Let f ∈ Lp(R), 1 ≤ p < ∞. Then:

F(Hf)(ξ) = −i sgn(ξ)Ff(ξ) =: m(ξ)Ff(ξ)

Proof.

F(Hf)(ξ) = 1
π

F
(

p.v.
(

1
x

)
∗ f
)

(ξ) =

= 1
π

i
̂

p.v.
(

1
x

)
f̂(ξ) = m(ξ)f̂(ξ)

□

Lemma 147. Let f ∈ L2(R). Then, Hf ∈ L2(R) and
∥Hf∥2 = ∥f∥2.

Proof. Using 43 Plancherel theorem:

∥Hf∥2 =
∥∥∥Ĥf

∥∥∥
2

=
∥∥∥mf̂∥∥∥

2
=
∥∥∥f̂∥∥∥

2
= ∥f∥2

□

Lemma 148. We have that H2 = −id on Lp(R), 1 ≤ p <
∞.

Proof. H2f = H(F−1(mf̂)) = F−1(m2f̂) = −f □

Lemma 149. Let f ∈ S(R). Then, (Hf)2 = f2 +
2H(fHf).

Proof. We’ll prove the equality using the Fourier trans-
form and the uniqueness of it will imply the result.
In general we have that f̂g = f̂ ∗ ĝ because:

F−1(f̂ ∗ ĝ) = F3(f̂ ∗ ĝ) = F2(F2fF2g) = fg

Thus:

f̂2 = f̂ ∗ f̂ 2F(H(fHf)) = 2mf̂ ∗ (mf̂)

The first term is
´
R f̂(η)f̂(ξ − η) dη whereas the second

one is 2
´
Rm(ξ)f̂(η)m(ξ − η)f̂(ξ − η) dη = 2

´
Rm(ξ)f̂(ξ −

η)f̂(η)m(η) dη. Averaging those terms we have:

f̂2 + 2F(H(fHf)) =
ˆ

R

f̂(η)f̂(ξ − η)[1 +m(ξ)·

· (m(ξ − η) +m(η))] dη

=
ˆ

R

f̂(η)f̂(ξ − η)m(ξ − η)m(η) dη

= Ĥf ∗ Ĥf = (̂Hf)2

where the second equality follows for all ξ, η ∈ R2 \{(0, 0)}
□

Theorem 150 (Riesz theorem). Let f ∈ Lp(R), 1 <
p < ∞. Then, ∃Cp > 0 such that:

∥Hf∥p ≤ Cp ∥f∥p

Proof. We will prove only the cases p = 2k, k ∈ N and
we’ll do it by induction. The case k = 1 is clear. Using
Theorem 149 we have:

∥Hf∥2p
2 =

∥∥∥(Hf)2
∥∥∥

p
≤
∥∥f2∥∥

p
+ 2 ∥H(fHf)∥p ≤

≤ ∥f∥2p
2 + 2Cp ∥fHf∥p ≤ ∥f∥2p

2 + 2Cp ∥f∥2p ∥Hf∥2p

where the last inequality follows from the ??. This reduces
to find for which y we have y2 − 2Cpαy − α2 ≤ 0, where
α = ∥f∥2p

2. An easy check shows that:

∥Hf∥2p ≤
(
Cp +

√
C2

p + 1
)

∥f∥2p

□

Lemma 151. Let Py be the Poisson kernel and f ∈
Lp(R). Then, if z = x+ iy:

(Py ∗ f)(z) = Re

 i
π

ˆ

R

f(t)
z − t

dt

 =: ReFf (z)

Moreover, Ff ∈ H({Im f > 0}).
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Sketch of the proof. The first part follows from:

(Py ∗ f)(z) = y

π

ˆ

R

f(t)
(x− t)2 + y2

dt

To show the last part, note that Ff is R-differentiable and
∂Ff = 0. □

Definition 152. We define the conjugate Poisson kernel
Qy as:

Qy(x) = x

π(x2 + y2)

Lemma 153. Let f ∈ Lp(R), 1 ≤ p < ∞. Then, if
z = x+ iy:

ImFf (z) =
ˆ

R

f(t)(x− t)
(x− t)2 + y2

dt

Theorem 154. Let f ∈ Lp(R), 1 ≤ p < ∞. Then:

f ∗Qε − Hεf
Lp

−→
ε→0

0

In particular:

Fφ(x+ iy) y→0−→ φ(x) + iHφ(x)

Riesz transform

Definition 155. We define Wj := p.v.
(

xj

∥x∥n+1

)
, j =

1, . . . , n.

Lemma 156. For each n ∈ N and j = 1, . . . , n, Wj ∈
S∗(Rn).

Definition 157. We define the Riesz transform Rjf as:

Rjf(x) := cn(Wj ∗ f)(x) =

= lim
ε→0

cn

ˆ

∥x−y∥>ε

xj − yj

∥x − y∥n+1 f(y) dy

with cn = Γ( n+1
2 )

π
n+1

2
.

Lemma 158. ∂j

(
1

∥x∥n−1

)
= (1 − n)Wj

Proof. Let φ ∈ S(Rn) and write it as φ = φe + φo, where
φe is even and φo is odd. Then:〈

∂j

(
1

∥x∥n−1

)
, φ

〉
= −
ˆ

Rn

∂jφo

∥x∥n−1 dx

= − lim
ε→0

ˆ

Rn\B(0,ε)

∂jφo

∥x∥n−1 dx

= (1 − n) lim
ε→0

ˆ

Rn\B(0,ε)

xjφo

∥x∥n+1 dx

= (1 − n) lim
ε→0

ˆ

Rn\B(0,ε)

xjφ

∥x∥n+1 dx

□

Theorem 159. For each j = 1, . . . , n we have:

Ŵj = − i
cn

ξj

∥ξ∥

Proof. Using Theorems 130 and 158 we have:

Ŵj = 1
1 − n

F(∂j ∥x∥1−n) = 2πiξj

1 − n
∥̂x∥1−n =

= 2πiξj

1 − n

π
n−1

2

Γ
(

n−1
2
) 1

∥ξ∥
= iπ n+1

2

Γ
(

n+1
2
) ξj

∥ξ∥

□

Corollary 160. For each j = 1, . . . , n we have:

F(Rjf)(ξ) = −i ξj

∥ξ∥
f̂(ξ)

Proposition 161.

1.
n∑

j=1
R2

j = −id

2. For all 1 ≤ j, k ≤ n, ∂j∂k = RjRk∆

Sketch of the proof. Apply F on each of the equations and
use the Fourier transform properties. □
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