
Dynamical systems

1. | Dynamical systems in Euclidean
spaces

Introduction

Definition 1. Let (X, G, Π) be a dynamical system. In
the continuous case, we say that x ∈ X is an equilibrium
point if Π(x, t) = x ∀t ∈ G. In the discrete case, a point
x ∈ X satisfying this property is called a fixed point.

Definition 2. Let (X, G, Π) be a dynamical system. A
periodic orbit of period T is an orbit of the system that
satisfies Π(x, t + T ) = Π(x, t) ∀t ∈ G and for some x ∈ X.

Theorem 3. Let (X, G, Π) be a dynamical system and
γx be an orbit. Then, there are 3 possible cases for γx.
In the continuous case:

1. γx is an equilibrium point.

2. γx is a periodic orbit.

3. γx
∼= R.

In the discrete case:

1. γx is a fixed point.

2. γx is a periodic orbit.

3. γx
∼= Z.

Theorem 4. Let (X,Z≥0, Π) be a discrete semidynamical
system and γx be an orbit. Then, apart form the above
possibilities the orbit can also be of the form:

1. γx = {x1, . . . , xn−1, xn, xn, xn, xn, . . .}

2. γx = {x1, . . . , xn−1, xn, . . . , xn+T , xn, . . . , xn+T , . . .}

Definition 5. Let f, g : R2 → R be two functions and
consider the system of ODEs:{

x′ = p(x, y)
y′ = q(x, y)

(1)

We say that the system is symmetric with respect to the x-
axis if it is invariant under the transformation (x, y, t) →
(−x, y, −t). Analogously, we say that the system is sym-
metric with respect to the y-axis if it is invariant under the
transformation (x, y, t) → (x, −y, −t).

Theorem 6. Consider the system Eq. (1) and suppose
that the origin is an equilibrium point. If the system is
symmetric with respect to the x-axis or y-axis, and if the
origin is a center of the linear part of the system, then the
origin is a center of the nonlinear system Eq. (1).

Theorem 7. Consider the differential system in C defined
by:

z′ = iz + a2z2 + a3z3 + · · · =: iz + f(z)

This is a holomorphic differential equation. Then, there
exists a conjugaction that conjugates this system with
z′ = iz. This process of finding the conjugacy is called
linearization of the first system. In particular, the periods
of the periodic orbits are always the same.

Theorem 8. Consider the differential system{
x′ = λx + p(x, y)
y′ = µy + q(x, y)

where p, q ∈ R[x, y] and deg p, deg q ≥ 2. If λ
µ /∈ Q, then

there exists a conjugacy of class Cω between them.

Definition 9. Let (X, G, Π) be a dynamical system and
A ⊆ Rn be an invariant subset. We say that A is minimal
if it doesn’t contain any proper invariant subset.

Definition 10. A Kolmogorov system is a dynamical sys-
tem of the form: 

x1
′ = x1f1(x)

...
xn

′ = xnfn(x)

(2)

Homogeneous systems

Definition 11. We say that function f : Rn → R is ho-
mogeneous of degree k if ∀λ ∈ R we have:

f(λx1, . . . , λxn) = λkf(x1, . . . , xn)

Definition 12. We say that differential system x′ = f(x)
is homogeneous of degree k if the components of f are
homogeneous functions of degree k. That is, if f(λx) =
λkf(x) ∀λ ∈ R.

Proposition 13. The study of the global dynamics of a
homogeneous system with only one equilibrium point (at
the origin) is the same as the study of local dynamics at
the origin.

Poincaré map

Proposition 14. Let f ∈ C1(R2), x′ = f(x) be a planar
differential system and Σ ⊂ R2 be a transversal section.
Then, the Poincaré map Π : Σ → Σ is monotone.

Proposition 15. Let f ∈ Ck(Rn), x′ = f(x) be a differ-
ential system and Σ ⊂ Rk be a transversal section. Then,
Π ∈ Ck(Rn).

1



Discrete maps
Definition 16. A discrete map of order m is a recurrence
of the form:

f(n, xn, xn+1, . . . , xn+m) = 0 (3)

where f : Rm+1 → Rm is a function. Sometimes we will
be able to express it in its explicit form as:

xn+m = f(xn, xn+1, . . . , xn+m−1) (4)

Proposition 17. Let f : Rm → Rm be a function. Con-
sider a discrete map of Eq. (4). Then, we can transform
this map into a map of order 1 of m equations:

(y1)n+1 = (y2)n

(y2)n+1 = (y3)n

...
(ym−1)n+1 = (ym)n

(ym)n+1 = f(n, (y1)n, (y2)n, . . . , (ym−1)n)

where (yi)n = xn+i−1 for i = 1, . . . , m.

Proposition 18. Let f : Rm → Rm be an invertible
function and consider the discrete map of Eq. (4). Then,
Π(x, n) := fn(x) defines a discrete dynamical system.

Proposition 19 (Characteristic equation). Consider
the following linear discrete map:

xn+m + am−1xn+m−1 + · · · + a1xn+1 + a0xn = 0

Let:

p(y) := ym + am−1ym−1 + · · · + a1y + a0 = 0

Suppose p has r distinct real roots and 2(s − r) distinct
complex roots.

λ1, . . . , λr, λr+1, λr+1, . . . , λs, λs

Here, λi ∈ R ∀i = 1, . . . , r and λi = αi + iβi ∈ C
∀i = r + 1, . . . , s. Assume, each of these roots have multi-
plicity ki ∈ N. Then, the general solution to that discrete
map is:

xn =
r∑

i=1

(
ci,0 + ci,1n + · · · + ci,ki−1nki−1)

λi
n+

+
s∑

i=r+1

ki−1∑
j=0

njρi
n (ci,j,1 cos(θin) + ci,j,2 sin(θin))

where ci,j,k ∈ R are constants and λi = ρieiθi .

Proposition 20. Consider the discrete map

xn+1 = f(xn)

and let p be a fixed point of f .

• If ∀λ ∈ σ(Df(p)) we have |λ| < 1, then p is asymp-
totically stable.

• If ∀λ ∈ σ(Df(p)) we have |λ| > 1, then p is repelling
and negatively stable.

• If p is positively stable, then |λ| ≤ 1 ∀λ ∈ σ(Df(p)).

• If p is negatively stable, then |λ| ≥ 1 ∀λ ∈ σ(Df(p)).

Theorem 21 (Hartman-Grobman theorem). Con-
sider the discrete map

xn+1 = f(xn)

where f : R2 → R2. Let p ∈ U be a fixed point of f and
suppose σ(Df(p)) = {λ1, λ2}. Then, p will be a

• stable node if λ1, λ2 ∈ R and |λ1|, |λ2| < 1.

• unstable node if λ1, λ2 ∈ R and |λ1|, |λ2| > 1.

• saddle point if λ1, λ2 ∈ R and |λ1| < 1 and |λ2| > 1
(or vice versa).

• stable focus if λ1, λ2 ∈ C and |λ1| < 1.

• unstable focus if λ1, λ2 ∈ C and |λ1| > 1.

2. | Study of local dynamics
Stable manifold and center manifold theorems
Theorem 22 (The stable manifold theorem). Let
E ⊆ Rn be an open subset containing the origin, f ∈ C1(E)
and ϕt be the flow of the following system of n equations:

x′ = f(x) (5)

Suppose that f(0) = 0 and that Df(0) has n+ eigenval-
ues with positive real part and n− = n − n+ eigenvalues
with negative real part. Then, there exists a unique n+-
dimensional differentiable manifold S tangent to the stable
eigenspace Es of the linear system at 0 such that ∀t ≥ 0,
ϕt(S) ⊆ S and ∀x0 ∈ S:

lim
t→∞

ϕt(x0) = 0

This manifold is called stable manifold. Analogously, there
exists a unique n−-dimensional differentiable manifold U
tangent to the stable eigenspace Eu of the linear system
at 0 such that ∀t ≤ 0, ϕt(U) ⊆ U and ∀x0 ∈ U :

lim
t→−∞

ϕt(x0) = 0

This manifold is called unstable manifold.

Definition 23. Let E ⊆ Rn be an open subset contain-
ing the origin, f ∈ C1(E) and ϕt be the flow of the system
of Eq. (5). The global stable manifold and global unstable
manifold at 0 are defined respectively by:

W s(0) =
⋃
t≤0

ϕt(S) W u(0) =
⋃
t≥0

ϕt(U)

Proposition 24. Let E ⊆ Rn be an open subset contain-
ing the origin, f ∈ C1(E) and ϕt be the flow of the system
of Eq. (5). Then, the manifolds W s and W u are unique
and invariant with respect to the flow ϕt
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Theorem 25 (The center manifold theorem). Let
E ⊆ Rn be an open subset containing the origin, f ∈
Cr(E), r ≥ 1 and consider the system of Eq. (5). Suppose
that f(0) = 0 and that Df(0) has n+ eigenvalues with
positive real part, n− eigenvalues with negative real part
and n0 = n − n+ − n− eigenvalues with zero real part.
Then, there exists a n0-dimensional differentiable mani-
fold W c (called central manifolds) of class Cr−1 tangent to
the center eigenspace Ec of the linear system at 0; there
exists a n+-dimensional differentiable manifold S tangent
to the stable eigenspace Es of the linear system at 0, and
there exists a n−-dimensional differentiable manifold U
tangent to the stable eigenspace Eu of the linear system
at 0. Furthermore, W c, W s and W u are invariant under
the flow ϕt. If moreover, f ∈ Cω(E), the the manifold W c

is also of class Cω and it is unique1.

Local bifurcation theory

Definition 26. A local bifurcation on a differential sys-
tems

x′ = f(x, µ) (6)

is the study of the changes in the local stability properties
of equilibrium points, periodic orbits or other invariant
sets as the parameter µ cross through critical thresholds.

Definition 27. The normal form of a dynamical system
is a simplified form that can be useful in determining the
system’s behavior.

Definition 28. The codimension of a bifurcation is the
number of parameters which must be varied for the bifur-
cation to occur.

Definition 29 (Saddle-node bifurcation). The nor-
mal form of the codimension-one saddle-node bifurcation
is:

x′ = µ + x2

Fig. 1a shows the qualitative behavior of that system2.

Definition 30 (Transcritical bifurcation). The nor-
mal form of the codimension-one transcritical bifurcation
is:

x′ = µx + x2

Fig. 1b shows a qualitative behavior of the stability of the
equilibria.

Definition 31 (Pitchfork bifurcation). The normal
form of the codimension-one pitchfork bifurcation is:

x′ = µx + x3

Fig. 1c shows a qualitative behavior of the stability of the
equilibria.

µ

x

(a) Saddle-node

µ

x

(b) Transcritical

µ

x

(c) Pitchfork

Figure 1: Bifurcation diagrams of the principal bifurca-
tions in 1-dimensional systems

Theorem 32. Consider the system of Eq. (6). Then,
it will have a saddle-node bifurcation at the origin if
f(0, 0) = 0, fx(0, 0) = 0, fxx(0, 0) ̸= 0 and fµ(0, 0) ̸= 0.

Theorem 33. Consider the system of Eq. (6). Then,
it will have a transcritical bifurcation at the origin if
f(0, 0) = 0, fx(0, 0) = 0, fxx(0, 0) ̸= 0, fµ(0, 0) = 0 and
fxµ(0, 0) ̸= 0.

Theorem 34. Consider the system of Eq. (6). Then, it
will have a pitchfork bifurcation at the origin if f(0, 0) = 0,
fx(0, 0) = 0, fxx(0, 0) = 0, fxxx(0, 0) ̸= 0, fµ(0, 0) = 0 and
fxµ(0, 0) ̸= 0.

Non-hyperbolic equilibrium points

Theorem 35 (Lyapunov’s theorem). Let U ⊆ Rn be
an open set and f : U → Rn be a vector field of class C1 and
p ∈ U be a critical point of f . Suppose there exists a func-
tion V : U → R of class C1 and a neighbourhood Ũ ⊆ U of
p such that V (p) = 0 and V (x) > 0 ∀x ∈ Ũ \ {p}. Then:

• If V ′(q) ≤ 0 ∀q ∈ Ũ , then p is stable.

• If V ′(q) < 0 ∀q ∈ Ũ , then p is asymptotically stable.

• If V ′(q) ≤ 0 ∀q ∈ Ũ and ω(Ũ) = {p}, then p is
asymptotically stable.

• If V ′(q) > 0 ∀q ∈ Ũ , then p is unstable.

Theorem 36 (Lyapunov’s theorem). Let U ⊆ Rn be
an open set, f : U → Rn be a continuous function and
consider the iteration xn+1 = f(xn). Let p ∈ U be a fixed
point of f . Suppose there exists a continuous function
V : U → R and a neighbourhood Ũ ⊆ U of p such that
V (p) = 0 and V (x) > 0 ∀x ∈ Ũ \ {p}. Then:

• If V (xn+1) − V (xn) ≤ 0 ∀xn ∈ Ũ , then p is stable.

• If V (xn+1) − V (xn) < 0 ∀xn ∈ Ũ , then p is asymp-
totically stable.

Theorem 37 (Semi-hyperbolic singular points clas-
sification theorem). Consider the differential system{

x′ = X(x, y)
y′ = y + Y (x, y)

1Unique in the sense that there is no other manifold of class Cω tangent to Ec at 0 but it may be other manifolds of class Cr, r ∈ N∪{∞},
satisfying this property.

2In these images, the red lies means that the point (µ, x) is repelling. The blue lines means that the point (µ, x) is attracting.
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where X, Y ∈ Cω have order ≥ 2 in their Taylor’s series.
Hence, the differential of the system at the origin is:(

0 0
0 1

)
Suppose the origin is an equilibrium point, let y = f(x)
the solution to the equation y + Y (x, y) = 0 given by
the implicit function theorem and g(x) = X(x, f(x)) =
amxm + O

(
xm+1)

, where am ̸= 0 and m ≥ 2. Then:

1. If m is odd and am > 0, the origin is a repelling
node.

2. If m is odd and am < 0, the origin is a saddle.

3. If m is even, the origin is a saddle-node (See Fig. 2).

(a) am < 0 (b) am > 0

Figure 2: Local phase portraits of the saddle-node system
when m is even.

Definition 38. A singular point of a differential system is
called nilpotent if the differential at this point is nilpotent.

Theorem 39 (Nilpotent singular points classifica-
tion theorem). Consider the differential system{

x′ = y + X(x, y)
y′ = Y (x, y)

where X, Y ∈ Cω have order ≥ 2 in their Taylor’s series.
Hence, the differential of the system at the origin is:(

0 1
0 0

)
Suppose the origin is an equilibrium point, let y = f(x)
the solution to the equation y + X(x, y) = 0 given by the
implicit function theorem and g(x) = Y (x, f(x)). More-
over, define Φ(x) = div(X, Y )(x, f(x)). Then:

1. If g(x) = Φ(x) = 0, the phase portrait at the origin
is given by Fig. 3a.

2. If g(x) = 0 and Φ(x) = bxn + O
(
xn+1)

with n ≥ 1
and b ̸= 0, then the phase portrait at the origin is
given by Figs. 3b or 3c.

3. If Φ(x) = 0 and g(x) = axm +O
(
xm+1)

with m ≥ 2
and a ̸= 0, then:

i) If m is odd and
a) a > 0, the origin is a saddle (Fig. 3d).

b) a < 0, the origin is a center or a focus
(Figs. 3e to 3g).

ii) If m is even, the origin is a cusp (it consists of
two hyperbolic sectors, Fig. 3h).

4. If g(x) = axm + O
(
xm+1)

and Φ(x) = bxn +
O

(
xn+1)

with m ≥ 2, n ≥ 1 and a, b ̸= 0, then:

i) If m is even and

a) m > 2n + 1, the origin is a saddle-node
(Figs. 3i or 3j).

b) m < 2n + 1, the origin is a cusp (Fig. 3h).

ii) If m is odd and a > 0, the origin is a saddle
(Fig. 3d).

iii) If m is odd, a < 0 and

a) n is even and either m > 2n + 1, or
m = 2n + 1 and b2 + 4a(n + 1) ≥ 0„ then
the origin is a node. The node is attract-
ing if b < 0 (Fig. 3m) and repelling if b > 0
(Fig. 3l).

b) n is odd and either m > 2n + 1, or m =
2n + 1 and b2 + 4a(n + 1) ≥ 0, then the
origin consists of an elliptic sector and a
hyperbolic sector (Fig. 3k).

c) either m < 2n + 1, or m = 2n + 1 and
b2 + 4a(n + 1) < 0, then the origin is a
center or a focus (Figs. 3e to 3g).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 3: Phase portraits of nilpotent singular points

Theorem 40 (Blow-up in polar coordinates). Con-
sider a planar differential system with an equilibrium at
the origin such that its differential at (0, 0) is:(

0 0
0 0

)
Hence, a change form cartesian coordinates to polar co-
ordinates will transform the equations into the following
ones: 

ṙ =
∞∑

k=3
rk−1fk(θ)

θ̇ =
∞∑

k=3
rk−2gk(θ)

where fk(θ) and gk(θ) are trigonometric polynomials of
degree k. The above system has the same phase portrait

as: 
ṙ =

∞∑
k=3

rk−2fk(θ)

θ̇ =
∞∑

k=3
rk−3gk(θ)

We are interested in the local behavior of the origin so
we should first think this problem in the cylinder (r, θ) ∈
[0, ∞] × [0, 2π). The equilibrium points of that system at
r = 0 will be the isolated zeros of g3(θ). Let Z(g3) be
the set of such zeros. Now we want to study the behavior
on each of these points. To do so, we can apply either
Hartman’s theorem, Theorem 37 or Theorem 39. If none
of these are applicable of some θ∗ ∈ Z(g3), we should re-
peat the procedure by doing another polar transformation
centered at θ∗3. We can then represent all these local be-
havior by blowing-up the origin to S1 and once done, we
should blow-down until contract S1 into the origin (See
the example Fig. 4 for a better understanding).

0 π
4

π
2

π 5π
4

3π
2

2π
θ

r

(a) System on the cylinder

(b) Blow-up (c) Blow-down

Figure 4: Blowing-up of a non-hyperbolic critical point.
The kinds of equilibrium points in the cylinder (here
Z(g3) = {0, π

4 , π
2 , π, 5π

4 , 3π
2 }) are three saddles, two saddle-

node and one node. These are transformed in parabolic,
hyperbolic and elliptic sectors when blowing-down the ori-
gin.

Corollary 41 (Blow-up in generalized polar coor-
dinates). If, in the above theorem, in a neighbourhood
of the origin we have xα ∼ yβ where α, β > 0, then a
better change of variables instead of the ordinary change
to polars would be:

x = rβ cos θ

y = rα sin θ

3See Theorem 42 for a bettern solution to this problem.
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Theorem 42 (Blow-up in cartesian coordinates).
Consider a planar differential system with an equilibrium
at the origin such that its differential at (0, 0) is:(

0 0
0 0

)
We would like to do not a blow-up equally-weighted in
all directions (as in the polar blow-up) but two blow-
ups: one by leaving one axis undefined and the other one
covering that axis left. Thus, if at the origin xα ∼ yβ

where α, β > 0 we seek transformations of the form
(x, y) →

(
x, yβ

xα

)
, which is undefined at x = 0, and trans-

formations of the form (x, y) →
(

xα

yβ , y
)

, which is unde-
fined at y = 0. From here, we proceed as in Theorem 40.

Proposition 43 (Lyapunov’s method). Consider the
differential system:{

x′ = µx − y + X(x, y)
y′ = x + µy + Y (x, y)

(7)

where X, Y ∈ Cω have order ≥ 2 in their Taylor’s series.
In polar coordinates this system is transformed into:

r′ = µr +
∞∑

k=3
fk(θ)rk−1

θ′ = 1 +
∞∑

k=3
gk(θ)rk−1

where fk(θ) and gk(θ) are trigonometric homogeneous
polynomials of degree k. And so, in a neighbourhood of
the origin, we can express dr

dθ as:

dr

dθ
= µr +

∞∑
k=3

hk(θ)rk−1

where hk(θ) are trigonometric polynomials of degree k. If
we impose r(0) = ρ ≃ 0 and assume µ = 0, then the
solution r(θ, ρ) can be written as:

r(θ, ρ) = ρ + v2(θ)ρ2 + v3(θ)ρ3 + · · · 4

We define the n-th Lyapunov constant as:

Ln := v2n+1(2π)56

Theorem 44 (Hopf bifurcation theorem). Consider
the system of Eq. (7) with µ = 0 and suppose L1 ̸= 0.
Then, for µ ≳ 0 there exists a unique periodic orbit that
bifurcates at the origin. If L1 > 0 the periodic orbit is
an unstable limit cycle, and if L1 < 0 the periodic orbit
is an stable limit cycle (see Fig. 5). This codimension-one
bifurcation is called Hopf-bifurcation.

(a) µ ≤ 0 (b) µ ≳ 0

Figure 5: Hopf bifurcation with L1 < 0

Theorem 45. Consider the system of Eq. (7) with µ = 0
and the functions vk(θ). We have that v2n(2π) = 0.

Corollary 46. Consider the system of Eq. (7) with µ = 0.
Then, the origin is a center if and only if:

Ln = 0 ∀n ∈ N

Theorem 47 (Poincaré’s method). Consider the sys-
tem of Eq. (7) with µ = 0. Then, there exists a function
H(x, y)7 of the form

H(x, y) = x2 + y2 + H3(x, y) + H4(x, y) + · · ·

where each Hj(x, y) is an homogeneous polynomial of de-
gree j, such that:

H ′ =
∞∑

k=1
Pk(x2 + y2)k+18

Note that due to the given stability of the problem, if
k = k0 is the index of the first non-zero Lyapunov coeffi-
cient, we must have Lk = akPk, with ak > 0.

3. | Global dynamics in continuous sys-
tems

Bifurcation of periodic orbits

Theorem 48 (Bautin’s theorem). Consider the differ-
ential system: {

x′ = αx − y + p2(x, y, µ)
y′ = x + αy + q2(x, y, µ)

(8)

where p2 and q2 are homogeneous polynomials of degree 2.
Then, in a neighbourhood of the origin and for (α, µ) ≃ 0
there are at most 3 limit cycles that born from the origin.

Definition 49 (Homoclinic bifurcation). A homo-
clinic bifurcation is a bifurcation in which a limit cycle
collides with a saddle point.

4Because of the differentiable dependence on initial conditions.
5Note that this has a strong relation with the Poincaré map Π(ρ) = r(2π, ρ) given the section {(r, 0) : r ≃ 0}.
6In practice we will only compute the Ln coefficient if vk(2π) = 0 for k = 2, . . . , 2n.
7This H will be either a first integral of the system or a Lyapunov function. In the first case, we obtain a center for the system; in the

second one, a focus.
8Note that finding such a function H is computationally more efficient that finding the values of v2n+1(2π) of Lyapunov’s method.
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Theorem 50 (Bogdanov-Takens bifurcation). The
normal form of the codimension-two Bogdanov-Takens bi-
furcation is: {

x′ = y

y′ = β1 + β2x + x2 − xy
(9)

Observe that three codimension-one bifurcations occur
nearby: a saddle-node bifurcation, a Hopf bifurcation and
a homoclinic bifurcation.

Proposition 51 (Routh-Hurwitz stability crite-
rion). Consider the following polynomial:

p(x) = anxn + an−1xn−1 + · · · + a1x + 1

The Routh-Hurwitz stability criterion gives a method to
conclude whether all the real parts of the roots of p are
negative or not. Construct a table as follows:

an an−2 an−4 · · ·
an−1 an−3 an−5 · · ·
b11 b12 b13 · · ·
b21 b22 b23 · · ·
...

...
... . . .

Table 1

where the coefficient bij is obtained by computing the de-
terminant of the matrix whose first column is formed by
the the first two elements of the two rows just above bij ,
and the second column is formed by the two elements of
the (i + 1)-th column in the two rows just above bij . Fi-
nally this determinant is divided by the first by minus the
first coefficient of the row just above bij . That is:

b1j = − 1
an−1

∣∣∣∣ an an−2j

an−1 an−2j−1

∣∣∣∣
b2j = − 1

b11

∣∣∣∣an−1 an−2j−1
b11 b1(j+1)

∣∣∣∣
bij = − 1

b(i−1)1

∣∣∣∣b(i−2)1 b(i−2)(j+1)
b(i−1)1 b(i−1)(i+1)

∣∣∣∣ ∀i ≥ 3

When completed, the number of sign changes in the first
column of Table 1 will be the number of non-negative
roots.

Rotated vector fields
Definition 52. Let f(x) = (X(x), Y (x)) be a vector field
in R. We say that {f(·, µ) : µ ∈ R} is a one-parameter
family of rotated vector fields if the equilibrium points of
x′ = f(x, µ) are isolated and:

f × ∂f
∂µ

=
∣∣∣∣ X Y
Xµ Yµ

∣∣∣∣ ̸= 0

The vector field is positively rotated if f × ∂f
∂µ > 0. Other-

wise it is negatively rotated.

Remark. The word “rotated” can be explained by the fol-
lowing the expression of the rate of rotation in terms of µ
is:

∂θ

∂µ
= XYµ − Y Xµ

X2 + Y 2 =
f × ∂f

∂µ

X2 + Y 2

Theorem 53. Stable and unstable limit cycles of a family
of rotated vector fields expand or contract monotonically
as the parameter µ varies in a fixed sense and the motion
covers an annular neighbourhood of the initial position.

Theorem 54. A semiestable limit cycle Γµ of a family of
rotated vector fields splits into two simple limit cycles, one
stable and one unstable, as the parameter µ is varied in
one sense and it disappears as µ is varied in the opposite
sense.

Theorem 55 (Melnikov’s method). Let f ∈ C1(R2),
g ∈ C1(R2 ×Rm) and ε ≃ 0. Consider the following ODE:

x′ = f(x) + εg(x, µ) (10)

Suppose that for ε = 0 the system has a one-parameter
family of periodic orbits γh(t) of period Th. Then for any
simple zero (µ0, h0) of the function

M(µ, h) =
Thˆ

0

f(γh(t)) × g(γh(t)) dt

there exists a unique limit cycle Γε for ε ≃ 0 such that
lim
ε→0

Γε = γh0 . On the other hand, if M(µ0, h0) ̸= 0, for
sufficiently small ε, the system of Eq. (10) with µ = µ0
has no limit cycle in any sufficiently small neighborhood
of γh0 .

Corollary 56 (Melnikov’s method). Let H ∈ C2(R2),
P, Q ∈ C1(R2 × Rm) and ε ≃ 0. Consider the following
system of ODEs:{

x′ = −Hy − εQ(x, y, µ)
y′ = Hx + εP (x, y, µ)

Suppose the system has a center and let γh = {H(x, y) =
h} be a one-parameter family of periodic orbits of it.
Then:

M(µ, h) =
ˆ

γh

P dx + Q dy

Graphs
Definition 57. A graph in a continuous dynamical sys-
tem is the collection of a set of equilibrium points joined
together with orbits which have them as α- and ω-limits.

Definition 58. We say that a graph in the system x′ =
f(x) is non-degenerated if all the equilibrium points on
it are linear saddles, that is, saddles p ∈ Rn such that
det Df(p) ̸= 0.

Proposition 59. Consider a system with a non-
degenerated graph Γ with n equilibria and such that the
differential at each of the n saddles has eigenvalues λi > 0
and µi < 0. Then:

1. If
n∏

i=1

∣∣∣∣µi

λi

∣∣∣∣ < 1, then Γ is unstable.

2. If
n∏

i=1

∣∣∣∣µi

λi

∣∣∣∣ > 1, then Γ is stable.
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Corollary 60. Suppose that the system x′ = f(x) has a
homoclinic orbit γ which has p as α- and ω-limit. Then:

1. If div f(p) > 0, then γ is unstable.

2. If div f(p) < 0, then γ is stable.

Liénard system

Definition 61. Let f, g : R → R be functions of class C1.
A Liénard system is a system of the form:

x′′ + f(x)x′ + g(x) = 0 ⇐⇒

{
x′ = y − F (x)
y′ = −g(x)

(11)

where we have denoted F (x) :=
´ x

0 f(ξ) dξ.

Theorem 62 (Liénard’s theorem). Let F, g ∈ C1(R)
be odd functions such that:

• xg(x) > 0 for x ̸= 0.

• F ′(0) < 0.

• F has a single positive zero at x = a.

• F increases monotonically to infinity for x ≥ a as
x → ∞.

Then, the Liénard system of Eq. (11) has exactly one limit
cycle and it is stable.

Definition 63. Let µ ∈ R. A Van der Pol oscillator is a
Liénard system of the form:

x′′+µ(x2−1)x′+x = 0 ⇐⇒

{
x′ = y

y′ = −x + µ(1 − x2)
(12)

Corollary 64. For µ > 0, Van der Pol oscillator has a
unique limit cycle and it is stable.

Dynamics on R3

Proposition 65. Let f : R3 → R3 be a vector field and
γ(t) be a periodic orbit of period T of it. Consider a
transversal section Σ ⊂ R3 that cuts γ and let Π : Σ → Σ
be the Poincaré map on it. If M(t) is the solution to the
variational equation{

M′ = Df(γ(t))M
M(0) = In

then, σ(M(T )) = σ(DΠ) ∪ {1}. Hence, the stability of
the orbit can be studied from M(T ).

Lorenz System

Definition 66. The Lorenz system is defined as:
x′ = σ(y − x)
y′ = x(ρ − z) − y

z′ = xy − βz

4. | Global dynamics in discrete sys-
tems

Periodic orbits
Definition 67. Let f : Rm → Rm be a function and con-
sider the discrete map

xn+1 = f(xn) (13)

A periodic point y of period m is a solution to the equa-
tion fm(x) = x. If moreover it satisfies that fk(y) ̸= y
∀k = 1, . . . , m − 1, then m is called prime period of y. We
denote the set of periodic points of period (not necessarily
prime) n by Pern(f). Finally we define the set of periods
Per(f) ⊆ N as follows:

m ∈ Per(f) ⇐⇒ ∃y ∈ Rm such that y is a periodic
point of prime period m under f

Proposition 68. Consider the one-dimensional discrete
map xn+1 = f(xn) and let γ = {x1, . . . , xk} be a periodic
orbit of period k of f . Then, the orbit is stable if:

k∏
i=1

∣∣f ′(xi)
∣∣ < 1

Analogously, it is unstable if:
k∏

i=1

∣∣f ′(xi)
∣∣ > 1

Proof. The orbit γ is stable if
∣∣∣(fk(x1))′

∣∣∣ < 1 as x1 is a
fixed point of fk. But by the ?? ?? we have:

(fk(x1))′ =
k∏

i=1
f ′(fk−i(x1)) =

k∏
i=1

f ′(xk+1−i) =
k∏

i=1
f ′(xi)

The unstable case is analogous. □

Logistic map
Definition 69. The logistic map is the one-dimensional
iteration

xn+1 = µxn(1 − xn) =: fµ(xn) (14)
where µ ∈ R∗.

Proposition 70. The logistic map of Eq. (14) satisfies
that fµ(0) = fµ(1) = 0 and fµ(pµ) = pµ, where pµ = 1− 1

µ .
Moreover for µ > 1 we have the following properties:

• 0 < pµ < 1

• If x > 1 or x < 0, then lim
n→∞

ω(x) = −∞.

Proposition 71. The logistic map of Eq. (14) has a tran-
scritical bifurcation at µ = 1.

Proposition 72. Consider the logistic map of Eq. (14)
with µ ∈ (1, 3). Then:

• pµ is attracting and 0 i repelling.

• If 0 < x < 1, then lim
n→∞

ω(x) = pµ.
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Definition 73 (Period-doubling bifurcation). A
period-doubling bifurcation occurs when a slight change in
a system’s parameters causes a new periodic trajectory to
emerge from an existing periodic trajectory, the new one
having double the period of the original. A period-halving
bifurcation occurs when a system switches to a new be-
havior with half the period of the original system.

Definition 74. A period-doubling cascade is an infinite
sequence of period-doubling bifurcations.

Theorem 75. The logistic map of Eq. (14) has a period-
doubling cascade starting at µ = 3.

Definition 76 (Sharkovskii’s order). Consider the fol-
lowing order relation ≥s on N:

3 ≥s 5 ≥s · · · ≥s (2n + 1) ≥s · · ·
· · · ≥s 2 · 3 ≥s 2 · 5 ≥s · · · ≥s 2 · (2n + 1) ≥s · · ·
· · · ≥s 22 · 3 ≥s 22 · 5 ≥s · · · ≥s 22 · (2n + 1) ≥s · · ·

...
...

...
· · · ≥s 2k · 3 ≥s 2k · 5 ≥s · · · ≥s 2k · (2n + 1) ≥s · · ·
· · · ≥s 2k ≥s · · · ≥s 22 ≥s 2 ≥s 1

Lemma 77. (N, ≥s) is a totally ordered set.

Proposition 78 (Expansive fixed point theorem).
Let I ⊆ R be a closed bounded interval and f : I → R be
a continuous function such that I ⊆ f(I). Then, f has a
fixed point.

Proof. Suppose I = [a1, a2]. Then, ∃b1, b2 ∈ I such that
f(b1) = a1 and f(b2) = a2. Now use the ?? ??. □

Lemma 79 (Itinerary lemma). Let f : R → R be a
continuous function and suppose that there exists closed
bounded intervals I0, I1, . . . , In−1 such that:

f(I0) ⊆ I1, f(I1) ⊆ I2, . . . , f(In−2) ⊆ In−1, f(In−1) ⊆ I0

Then, ∃x ∈ I0 such that fn(x) = x and f j(x) ∈ Ij ∀j ∈ N.

Theorem 80 (Sharkovskii’s theorem).

1. Let I ⊆ R be a closed bounded interval and f :
I → I be a continuous function. If n ∈ Per(f), then
m ∈ Per(f) ∀m ≤s n.

2. Given n ∈ N, there exists a continuous function
f : I → I defined on a closed bounded interval I ⊆ R
such that n ∈ Per(f) and ∀m ≥s n, m /∈ Per(f).

Corollary 81 (Period three theorem). Let I ⊆ R be
an interval and f : I → I be a continuous function. If
3 ∈ Per(f), then Per(f) = N.

Definition 82. Consider the logistic map of Eq. (14) with
µ > 4 and define the following set:

A0 := {x ∈ [0, 1] : fµ(x) /∈ [0, 1]}

Note that A0 breaks the interval [0, 1] in itself and two
other intervals: one on the right of it, I0, and one on its
left, I1. Thus, [0, 1] = I0 ∪ A0 ∪ I1.

Proposition 83. Consider the logistic map of Eq. (14)
with µ > 4 and let (s0, s1, s2, . . .) ∈ {0, 1} be a sequence
of zeros and ones. We define the following sets

Is0s1···sn
:=

:= {x ∈ I : x ∈ Is0 , fµ(x) ∈ Is1 , . . . , fµ
n(x) ∈ Isn

}

Then, Λµ :=
⋂∞

n=0 Is0s1···sn is homeomorphic to the Can-
tor set.

Proposition 84. Consider the logistic map of Eq. (14)
with µ > 4. Then, Λµ is invariant under fµ.

Symbolic dynamics
Definition 85. Consider the set

Σ2 := {(s0, s1, s2, . . .) : sn ∈ {0, 1} ∀n ∈ N ∪ {0}}

and define the following distance on Σ2:

d2((s0, s1, s2, . . .), (t0, t1, t2, . . .)) =
∞∑

n=0

|sn − tn|
2n

In order to simplify the notation we will write from now
on s = (s0, s1, s2, . . .) and t = (t0, t1, t2, . . .).

Lemma 86. (Σ2, d2) is a metric space.

Proposition 87 (Proximity theorem). Let s, t ∈ Σ2.
Then, si = ti for i = 0, . . . , n if and only if d2(s, t) ≤ 1

2n .

Definition 88 (Shift map). The shift map is defined as:

σ : Σ2 −→ Σ2
(s0, s1, s2, . . .) 7−→ (s1, s2, s3, . . .)

Proposition 89. The shift map is continuous.

Proof. Let ε > 0 and s, t ∈ Σ2 with d2(s, t) < δ. Then:

d2(σ(s), σ(t)) = |s0 − t0| + 2d2(σ(s), σ(t)) < ε

if δ < ε−|s0−t0|
2 . □

Proposition 90. The triplet (Σ2,Z≥0, σ) is a discrete
semidynamical system.

Proposition 91.

1. |Pern(σ)| = 2n

2. There exists a dense orbit for σ in Σ2.

3. The set of periodic orbits of σ is dense in the set of
orbits of σ.

Sketch of the proof.

1. Just note that there are 2n different sequences in Σ2
of the form:

(s0, . . . , sn−1, s0, . . . , sn−1, s0, . . . , sn−1, . . .)

2. Consider the sequence of “all sequences”:

(0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,

0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, . . .)
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3. Let ε > 0, take k ∈ N such that
∑∞

n=k
1

2n < ε and
let s = (sn) ∈ Σ2. The element

ts := (s0, . . . , sk−1, s0, . . . , sk−1, s0, . . . , sk−1, . . .)

is periodic and satisfies d2(s, ts) < ε.

□

Definition 92. Consider the logistic map of Eq. (14). We
define the itinerary of x ∈ Λµ as the function Sµ : Λµ →
Σ2 defined by Sµ(x) = (sn), where:

sn =
{

0 if fµ
n ∈ I0

1 if fµ
n ∈ I1

Proposition 93. For µ > 2 +
√

5, the itinerary map is a
homeomorphism.

Theorem 94. Consider the logistic map of Eq. (14).
Then, Sµ ◦ fµ = σ ◦ Sµ.

Corollary 95. Consider the logistic map of Eq. (14) for
µ > 2 +

√
5. Then:

1. |Pern(fµ)| = 2n

2. There exists a dense orbit for fµ in Λµ.

3. The set of periodic orbits of fµ is dense in Σ2.

Introduction to chaos
Definition 96. Let f : I → I be a function. The iteration
xn+1 = f(xn) is topologically transitive if for any pair of
open subsets U, V ⊆ I, ∃k ∈ N such that fk(U) ∩ V ̸= ∅.

Definition 97. Let f : I → I be a function. The it-
eration xn+1 = f(xn) has sensitive dependence on initial
conditions on I if ∃δ > 0 such that for each x ∈ I and any
neighborhood N of x, exists y ∈ N and n ≥ 0 such that
|fn(x) − fn(y)| > δ.

Lemma 98. Let f : I → I be a function such that the
iteration xn+1 = f(xn) is topologically transitive. Then,
it has a dense orbit.

Definition 99 (Chaos). Let f : I → I be a function.
The iteration xn+1 = f(xn) is said to be chaotic on I if f
has the following properties:

1. Periodic points are dense in I.

2. f is topologically transitive.

3. f has sensitive dependence on initial conditions9.

Theorem 100. The logistic maps xn+1 = µxn(1 − xn)
are chaotic on Λ for µ > 2 +

√
5.

Theorem 101. The logistic map xn+1 = 4xn(1 − xn) is
chaotic on [0, 1].

9Although this is the classical definition of chaos, it has been shown that the first two properties imply the third one.
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