Algebraic topology

1. | Homotopy and fundamental group

Homotopy between maps and spaces

Definition 1. Let X,Y be two topological spaces ' and
let f,g : X — Y be two continuous maps. A homotopy
between f and g is a continuous map H : X x [0,1] = Y
such that for all x € X

f(z)
=g(z).

We say that f and g are homotopic if there exists a homo-
topy between them, and we denote it by f ~ g.

1. H(z,0) =

2. H(z,1)

Lemma 2. Let X = AU B, where A and B are closed
sets. If p: A = Y and ¢y : B — Y are continuous maps
such that ¢| 4~z = ¥|4np, then the map

fxeA
otherwise

is also continuous.

Proposition 3. The relation ~~ is an equivalence relation
between continuous maps.

Definition 4. A continuous map f : X — Y is called a
homotopy equivalence if there exists a map g : ¥ — X
such that fog ~ idy and go f ~ idy. We say that X
and Y are homotopy equivalent or that they have the same
type of homotopy if there exists a homotopy equivalence
between them, and we denote it by X ~ Y.

Proposition 5. The relation ~~ is an equivalence relation
between topological spaces.

Definition 6. A space having the homotopy type of a
point is called contractible.

Paths and foundamental group

Definition 7. A pathin X is a continuous map o : [0, 1] —
X.

Definition 8. Let 0,7 : [0,1] — X be two paths such
that ¢(0) = 7(0) and (1) = 7(1). A homotopy between
them is a continuous map H : [0,1] x [0,1] — X such that

1. H

( )

2. H(s,1)=7(s) Vs € [0,1]
3. H( (0)

4 H(t) =o(1) =

When there exists a homotopy between o and 7 we say
that they are homotopic, and we write o ~ 7.

1From now on X, Y and Z will always be topological spaces

Proposition 9. The relation ~ is an equivalence relation
between paths.

Definition 10. Let 0,7 : [0,1] — X such that o(1) =
7(0). We define the product of o, 7 as

7:00,1] — X
<s< i
N o(2s) ?_ <53
T(2s—1) 5<s< 1
Lemma 11. Let o,0’,7,7" : [0,1] — X be paths such
that
1. a(0) = o’(0)

3.7(1) =

Ifo~c¢' and 7

Definition 12. A loop at the basepoint xy is a path
o :10,1] = X such that o(0) = o(1) = x.

Definition 13. The foundamental group of X at the base-
point g is the set of all homotopy classes of loops at the
basepoint g, and it is denoted by 71 (X, z¢). We define
[o] - [7] := [0 - 7], which is well-defined by Theorem 11.

Proposition 14. (m1(X, z),-) is a group.

Proposition 15. Let xg,y9 € X. If there exists a path
v :[0,1] = X from zg to yo then m (X, z) = 71(X, y0).

Proof.

@ : 7T1(X,{E(]) — 7T1(X,y0)
[o] — [y o -77"]

is an isomorphism. (I

Definition 16. Let f : X — Y be a continuous map, and
xo € X. We define

[ (X, 20) — m(Y, f(20))
[a] — [foal.

Proposition 17. Let f,g: X - Y and h: Y — Z be
continuous maps. Then

1. f. is well-defined and it is a group homomorphism.
2. If f~gand f(xg) = g(xo), then f, = g..
3. (hof)e=hyo fu

Corollary 18. X ~Y = m(X,xz0) = m1 (Y, f(z0)).



Foundamental group of S!

Lemma 19. Let (X,d) be a compact metric space, and
{U1,...,Uy,} a finite cover of open sets of X. Then there
exists € > 0 such that Vo € X, B(z,e) C U; for some 1.
Such a number ¢ is called a Lebesgue number of the cover.

Proof. Let C; = X \ U;. Then the map

f: X —[0,+00)
T —> %Zd(m,(}’i)

is a continuous map on a compact set and therefore reaches
the minimum at X. The number € = min f satisfies the
desired properties. O

[0,1] — S* be a loop such that
0,1] - R

2mxt

Lemma 20. Let o :
0(0) = (1,0). Then, there is a unique path & :
such that 5(0) = 0 and expo & = o, where exp(z) =e
Such a path & is called a lift of 0. Morover, if 0 ~ 7 then
(1) = 7(1), and &(1) is called the degree of o.

Proof. Let U = S*\ {(1,0)} and V = S*\ {(~1,0)}. Let
k € N be such that 1/k < &, where ¢ is a Lebesgue number
of the cover {o~1(U),s~1(V)} C [0,1]. For every n € N
exp: (n,n+1) — U andexp : (n—%,n+3) — V are home-
omorphisms and, therefore, for every 1 < ¢ < k there exists
a unique &; : [‘71, 2] — R such that expod; = o (=2 i)
and &;41() = &i(4) if i > 1 and 51(0) = 0. Finally,
for t € [F ] we define 5(t) = &;(t). Now let us sup-
pose that H : [0,1] x [0,1] — S is a homotopy between
o and 7. A very similar argument shows that there ex-
ists a continuous map H : [0,1] x [0,1] — R such that
expo H = H. Thus, t — H(1,t) is an integer-valued con-
tinuous map and, therefore, it is constant, which means
that &(1) = A(1,0) = H(1,1) = #(1). O

Theorem 21. The foundamental group of S! is isomor-
phic to Z

Proof.
¢ :m (S (1,0) — Z
0] — deg(0)
is a well-defined isomorphism. O

Definition 22. Let A C X be a subspace of X. A re-
traction of X onto A is a continuous map 7 : X — A such
that r(a) = a for all @ € A. If such a retraction exists, A
is called a retract of X.

Corollary 23. S! C D? is not a retract of D?.

Theorem 24 (Brower theorem). Every continuous
map f : D? — D? has a fixed point.
Proof.

If f(x) # x for every € D?, then
the map r : D? — S! defined by
r(x) being the intersection of the
line passing through z and f(z) and
S closest to x is a retraction of
D? to S, which contradicts The-
orem 23.

Lemma 25. Let a: [0,1] — S! be such that a(t + %) =
—a(t) for all t € [0, 1]. Then, the degree of « is odd.

Theorem 26 (Borsuk-Ulam theorem). If f : $? — R?
is a continuous map, then there exists z € 52 such that

f(x) = f(=x).

Proof. If f(z) # f(—z) for all z € S2, then g(z) =
% is a continuous map from S? to S'. Consider
h :[0,1] — S? defined by h(t) = (cos(2nt),sin(27t),0),
and a = g o h. Then, since h is contractile, « is also con-
tractile, but g(—z) = —g(z) = a(t+1/2) = —a(t), in
contradiction with Theorem 25. u

Corollary 27. Let A, Ay, A3 C S? be closed sets such
that S2 = A; U Ay U A;3. Then there exists z € 52 such
that z, —x € A; for some 1.

Proof. Consider f S? — R? such that f(z) =
(d1(z),da(x)), where d;(z) is the distance from z to A;,
and apply Theorem 26. (Il

Proposition 28. S? is contractible.

Seifert-Van Kampen theorem

Definition 29. The free group Fs over a set S is the
set of all the finite words s7*s52... s such that s; € S,
n; € Z\ {0} and s; # s;y1, and the empty word, which
will the identity element. The group operation in Fyg is

the juxtaposition, that is,

ny n mye
81t 8.7 ~91 gyt
ni Mg my -
sitesirgrt g if s, # g1
= s?l...s?’+mlg gtmt if s, =g1,n.+m1 #0

ni 7ly 1 mz
s1te 8,009 g

if s, =g, nr+mp =0
Proposition 30. Let G be a group, and S C G a gener-

ating set of G. Then, there exists an epimorphism from
FS to G.

Definition 31. Let G be a group, S C G a generating
set of G, and ¢ : Fs — G an epimorphism. An element
of ker(yp) is called a relation. If R = {r;};es is a set of
relations such that < R> = ker(y), then we say that G has
a presentation < S| R >.

Definition 32. The free product *;c;G; of a set of groups
{Gi}ier is the set of all finite words g1g2...gn such that
gi € Gy, \ {eg, }, where ey, is the identity element of the
group Gg4,. The group operation in *;c7G; is the juxtapo-
sition, that is,

gi1..-gr - hl ht =
91---9rh1--- ht if Ggr 7£ Gh1
= gl(grhl)hght 1f Ggr :Ghlagr'hl #egr
gl...grflhg...ht if Gg7, = th ar - hl = €g,



Proposition 33. Let {G;}ic; be a set of groups, G a
group, and f; : G; — G a group homomorphism for every
i € I. Then, there exists a unique group homomorphism
¢ 1 xierG; — G such that ¢|g = f;

Theorem 34 (Seifert—Van Kampen theorem). If
X is the union of two path-connected open sets U,V
containing the basepoint xg such that U NV is path-
connected, then the homomorphism & m (U, o) *
m1(V,z0) = mi (X, zo) defined by @| ..y ([a]v) = [e]x
and @[ ) ([e]v) = [o]x is surjective, and ker(®) =

4{[04]U[04]‘71 Ce]unv € m (U NV, xg)}».

2. | Singular Homology
Definition 35. The standard p-simplez is the set

Ap = {(z0, .y xp) ERPT 12, >0, ay =1}

Definition 36. A singular p-simplex (or simply p-
simplex) in X is a continuous map o : A, — X.

Definition 37. We denote by C,(X) the abelian free
group generated by the set of all p-simplex in X. An
element of C,(X) is called a singular p-chain (or simply a
p-chain).

Definition 38. The i-th side of the standard p-simplex
A, is the (p — 1)-simplex

FP . Ap—l — Ap

3

(l’o, '-'7xp—1) — (an ey Xi—1, 0, 24, "'7l‘p—1)'

Definition 39. The boundary of a p-simplex o is the
(p — 1)-chain
P

0o := Z(—l)ia o FP,

=0

and the boundary of a p-chain Y a,0 is the (p — 1)-chain

o} Z A0 = Z a,00.
Definition 40. Let ¢ be a p-chain in X.

1. We say that a c is a p-cycle if dc = 0. The set of all
p-cycles in X is denoted by Z,(X).

2. We say that ¢ is a p-boundary if there exists ¢ €
Cpt1(X) such that 0¢ = c¢. The set of all p-
boundarys in X is denoted by B, (X).

Proposition 41. 0 : C, — Cp,_1 is a group homomor-
phism, and, therefore, Z,(X) and B,(X) are subgroups of
Cp(X).

Lemma 42. Let ¢ be a p-chain. Then, d0c = 0. As a
result, B,(X) C Z,(X).

Definition 43. The p-th homology group of X is

1) = %3, (x)

Morphisms of chains

Definition 44. Let f: X — Y be a continuous map. f
induces a map fyx from C,(X) to Cp(Y") as follows:

fy Cp(X) — Cp(Y)
Zaga — Zagfoa.

Proposition 45. Let f : X — Y be a continuous map.
Then:

1. fy is a group homomorphism.

2. fuod =00 fu.

3. f4(Zp(X)) C© Zp(Y), and fu(By(X)) S Bp(Y).
Therefore, fy induces a group homeomorphism f, :
H,(X)— H,(Y).

Definition 46. Let f : X — Y be a continuous map. f
induces a group homomorphism f, from H,(X) to H,(Y)
defined by fi([c]) = [f#(c)], ¢ € Cp(X), which is well-
defined by Theorem 45.

Proposition 47. Let f : X — Y, g:Y — Z be two
continuous maps. Then,

L (fog)s=gs«o fu
2. (idx)« = idp,(x)-

Corollary 48. If f: X — Y is an homeomorphism, then
fi t Hy(X) — Hp(Y) is a group isomorphism.

Proposition 49. Let X = | | X,, be the decomposition of
X in path-connected components, and i, : X, — X the
inclusion. Then @, in : B, Hp(Xo) = Hp(X) is a group
isomorphism.

Proposition 50. If X is path-connected, then Hy(X) =

Z.
Proof.
e:Ho(X)—Z
o] T
is a well-defined group isomorphism. O

Relationship between homotopy and homology

Lemma 51. Let f,g : X — Y be two continuous maps
such that f ~ g. There exists a group homomorphism
P:Ch(X) = Cpr1(Y) such that OP + PO = gu — f4.

Theorem 52. Let f,g: X — Y be two continuous maps.
If f ~ g, then f, = g..

Corollary 53. If X ~ Y, then H,(X) = H,(Y).
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