
Algebraic topology

1. | Homotopy and fundamental group
Homotopy between maps and spaces

Definition 1. Let X,Y be two topological spaces 1 and
let f, g : X → Y be two continuous maps. A homotopy
between f and g is a continuous map H : X × [0, 1] → Y
such that for all x ∈ X

1. H(x, 0) = f(x)

2. H(x, 1) = g(x).

We say that f and g are homotopic if there exists a homo-
topy between them, and we denote it by f ≃ g.

Lemma 2. Let X = A ∪ B, where A and B are closed
sets. If φ : A → Y and ψ : B → Y are continuous maps
such that φ|A∩B = ψ|A∩B , then the map

x 7→

{
φ(x) if x ∈ A

ψ(x) otherwise

is also continuous.

Proposition 3. The relation ≃ is an equivalence relation
between continuous maps.

Definition 4. A continuous map f : X → Y is called a
homotopy equivalence if there exists a map g : Y → X
such that f ◦ g ≃ idY and g ◦ f ≃ idX . We say that X
and Y are homotopy equivalent or that they have the same
type of homotopy if there exists a homotopy equivalence
between them, and we denote it by X ≃ Y .

Proposition 5. The relation ≃ is an equivalence relation
between topological spaces.

Definition 6. A space having the homotopy type of a
point is called contractible.

Paths and foundamental group

Definition 7. A path inX is a continuous map σ : [0, 1] →
X.

Definition 8. Let σ, τ : [0, 1] → X be two paths such
that σ(0) = τ(0) and σ(1) = τ(1). A homotopy between
them is a continuous map H : [0, 1] × [0, 1] → X such that

1. H(s, 0) = σ(s) ∀s ∈ [0, 1]

2. H(s, 1) = τ(s) ∀s ∈ [0, 1]

3. H(0, t) = σ(0) = τ(0) ∀t ∈ [0, 1]

4. H(1, t) = σ(1) = τ(1) ∀t ∈ [0, 1]

When there exists a homotopy between σ and τ we say
that they are homotopic, and we write σ ≃ τ .

Proposition 9. The relation ≃ is an equivalence relation
between paths.

Definition 10. Let σ, τ : [0, 1] → X such that σ(1) =
τ(0). We define the product of σ, τ as

σ · τ : [0, 1] −→ X

x 7−→

{
σ(2s) 0 ≤ s ≤ 1

2
τ(2s− 1) 1

2 ≤ s ≤ 1
.

Lemma 11. Let σ, σ′, τ, τ ′ : [0, 1] → X be paths such
that

1. σ(0) = σ′(0)

2. σ(1) = σ′(1) = τ(0) = τ ′(0)

3. τ(1) = τ ′(1).
If σ ≃ σ′ and τ ≃ τ ′ then σ · τ ≃ σ′ · τ ′.

Definition 12. A loop at the basepoint x0 is a path
σ : [0, 1] → X such that σ(0) = σ(1) = x0.

Definition 13. The foundamental group of X at the base-
point x0 is the set of all homotopy classes of loops at the
basepoint x0, and it is denoted by π1(X,x0). We define
[σ] · [τ ] := [σ · τ ], which is well-defined by Theorem 11.

Proposition 14.
(
π1(X,x0), ·

)
is a group.

Proposition 15. Let x0, y0 ∈ X. If there exists a path
γ : [0, 1] → X from x0 to y0 then π1(X,x0) ∼= π1(X, y0).

Proof.

φ : π1(X,x0) −→ π1(X, y0)
[σ] 7−→ [γ · σ · γ−1]

is an isomorphism. □

Definition 16. Let f : X → Y be a continuous map, and
x0 ∈ X. We define

f∗ : π1(X,x0) −→ π1(Y, f(x0))
[α] 7−→ [f ◦ α].

Proposition 17. Let f, g : X → Y and h : Y → Z be
continuous maps. Then

1. f∗ is well-defined and it is a group homomorphism.

2. If f ≃ g and f(x0) = g(x0), then f∗ = g∗.

3. (h ◦ f)∗ = h∗ ◦ f∗.

Corollary 18. X ≃ Y =⇒ π1(X,x0) ∼= π1(Y, f(x0)).
1From now on X, Y and Z will always be topological spaces
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Foundamental group of S1

Lemma 19. Let (X,d) be a compact metric space, and
{U1, ..., Un} a finite cover of open sets of X. Then there
exists ε > 0 such that ∀x ∈ X, B(x, ε) ⊂ Ui for some i.
Such a number ε is called a Lebesgue number of the cover.
Proof. Let Ci = X \ Ui. Then the map

f : X −→ [0,+∞)

x 7−→ 1
n

∑
d(x,Ci)

is a continuous map on a compact set and therefore reaches
the minimum at X. The number ε = min f satisfies the
desired properties. □

Lemma 20. Let σ : [0, 1] → S1 be a loop such that
σ(0) = (1, 0). Then, there is a unique path σ̃ : [0, 1] → R
such that σ̃(0) = 0 and exp ◦ σ̃ = σ, where exp(x) = e2πxi.
Such a path σ̃ is called a lift of σ. Morover, if σ ≃ τ then
σ̃(1) = τ̃(1), and σ̃(1) is called the degree of σ.
Proof. Let U = S1 \ {(1, 0)} and V = S1 \ {(−1, 0)}. Let
k ∈ N be such that 1/k < ε, where ε is a Lebesgue number
of the cover {σ−1(U), σ−1(V )} ⊂ [0, 1]. For every n ∈ N
exp : (n, n+1) → U and exp : (n− 1

2 , n+ 1
2 ) → V are home-

omorphisms and, therefore, for every 1 ≤ i ≤ k there exists
a unique σ̃i : [ i−1

k , i
k ] → R such that exp ◦ σ̃i = σ|[ i−1

k , i
k ],

and σ̃i+1( i
k ) = σ̃i( i

k ) if i ≥ 1 and σ̃1(0) = 0. Finally,
for t ∈ [ i−1

k , i
k ] we define σ̃(t) = σ̃i(t). Now let us sup-

pose that H : [0, 1] × [0, 1] → S1 is a homotopy between
σ and τ . A very similar argument shows that there ex-
ists a continuous map H̃ : [0, 1] × [0, 1] → R such that
exp ◦ H̃ = H. Thus, t 7→ H̃(1, t) is an integer-valued con-
tinuous map and, therefore, it is constant, which means
that σ̃(1) = H̃(1, 0) = H̃(1, 1) = τ̃(1). □

Theorem 21. The foundamental group of S1 is isomor-
phic to Z
Proof.

φ : π1(S1, (1, 0)) −→ Z
[σ] 7−→ deg(σ)

is a well-defined isomorphism. □

Definition 22. Let A ⊆ X be a subspace of X. A re-
traction of X onto A is a continuous map r : X → A such
that r(a) = a for all a ∈ A. If such a retraction exists, A
is called a retract of X.
Corollary 23. S1 ⊆ D2 is not a retract of D2.
Theorem 24 (Brower theorem). Every continuous
map f : D2 → D2 has a fixed point.
Proof.
If f(x) ̸= x for every x ∈ D2, then
the map r : D2 → S1 defined by
r(x) being the intersection of the
line passing through x and f(x) and
S1 closest to x is a retraction of
D2 to S1, which contradicts The-
orem 23.

□

Lemma 25. Let α : [0, 1] → S1 be such that α(t + 1
2 ) =

−α(t) for all t ∈ [0, 1
2 ]. Then, the degree of α is odd.

Theorem 26 (Borsuk-Ulam theorem). If f : S2 → R2

is a continuous map, then there exists x ∈ S2 such that
f(x) = f(−x).

Proof. If f(x) ̸= f(−x) for all x ∈ S2, then g(x) =
f(x)−f(−x)

∥f(x)−f(−x)∥ is a continuous map from S2 to S1. Consider
h : [0, 1] → S2 defined by h(t) = (cos(2πt), sin(2πt), 0),
and α = g ◦ h. Then, since h is contractile, α is also con-
tractile, but g(−x) = −g(x) =⇒ α(t + 1/2) = −α(t), in
contradiction with Theorem 25. □

Corollary 27. Let A1, A2, A3 ⊆ S2 be closed sets such
that S2 = A1 ∪ A2 ∪ A3. Then there exists x ∈ S2 such
that x,−x ∈ Ai for some i.

Proof. Consider f : S2 → R2 such that f(x) =
(d1(x), d2(x)), where di(x) is the distance from x to Ai,
and apply Theorem 26. □

Proposition 28. S2 is contractible.

Seifert-Van Kampen theorem

Definition 29. The free group FS over a set S is the
set of all the finite words sn1

1 sn2
2 ... snr

r such that si ∈ S,
ni ∈ Z \ {0} and si ̸= si+1, and the empty word, which
will the identity element. The group operation in FS is
the juxtaposition, that is,

sn1
1 ... snr

r · gm1
1 ... gmt

r =

=


sn1

1 ... snr
r gm1

1 ... gmt
t if sr ̸= g1

sn1
1 ... snr+m1

r gm2
2 ... gmt

t if sr = g1, nr +m1 ̸= 0
sn1

1 ... s
nr−1
r−1 g

m2
2 ... gmt

t if sr = g1, nr +m1 = 0

Proposition 30. Let G be a group, and S ⊆ G a gener-
ating set of G. Then, there exists an epimorphism from
FS to G.

Definition 31. Let G be a group, S ⊆ G a generating
set of G, and φ : FS → G an epimorphism. An element
of ker(φ) is called a relation. If R = {ri}i∈I is a set of
relations such that ◁R ▷ = ker(φ), then we say that G has
a presentation < S |R >.

Definition 32. The free product ∗i∈IGi of a set of groups
{Gi}i∈I is the set of all finite words g1g2...gn such that
gi ∈ Ggi

\ {egi
}, where egi

is the identity element of the
group Ggi

. The group operation in ∗i∈IGi is the juxtapo-
sition, that is,

g1... gr · h1... ht =

=


g1... grh1... ht if Ggr ̸= Gh1

g1... (gr · h1)h2... ht if Ggr = Gh1 , gr · h1 ̸= egr

g1... gr−1h2... ht if Ggr
= Gh1 , gr · h1 = egr
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Proposition 33. Let {Gi}i∈I be a set of groups, G a
group, and fi : Gi → G a group homomorphism for every
i ∈ I. Then, there exists a unique group homomorphism
φ : ∗i∈IGi → G such that φ|Gi

= fi

Theorem 34 (Seifert–Van Kampen theorem). If
X is the union of two path-connected open sets U, V
containing the basepoint x0 such that U ∩ V is path-
connected, then the homomorphism Φ : π1(U, x0) ∗
π1(V, x0) → π1(X,x0) defined by Φ|π1(U,x0) ([α]U ) = [α]X
and Φ|π1(V,x0) ([α]V ) = [α]X is surjective, and ker(Φ) =
◁ {[α]U [α]−1

V : [α]U∩V ∈ π1(U ∩ V, x0)} ▷.

2. | Singular Homology
Definition 35. The standard p-simplex is the set

∆p := {(x0, ..., xp) ∈ Rp+1 : xi ≥ 0,
∑

xi = 1}

Definition 36. A singular p-simplex (or simply p-
simplex) in X is a continuous map σ : ∆p → X.

Definition 37. We denote by Cp(X) the abelian free
group generated by the set of all p-simplex in X. An
element of Cp(X) is called a singular p-chain (or simply a
p-chain).

Definition 38. The i-th side of the standard p-simplex
∆p is the (p− 1)-simplex

F p
i : ∆p−1 −→ ∆p

(x0, ..., xp−1) 7−→ (x0, ..., xi−1, 0, xi, ..., xp−1).

Definition 39. The boundary of a p-simplex σ is the
(p− 1)-chain

∂σ :=
p∑

i=0
(−1)iσ ◦ F p

i ,

and the boundary of a p-chain
∑
aσσ is the (p− 1)-chain

∂
∑

aσσ :=
∑

aσ∂σ.

Definition 40. Let c be a p-chain in X.

1. We say that a c is a p-cycle if ∂c = 0. The set of all
p-cycles in X is denoted by Zp(X).

2. We say that c is a p-boundary if there exists c′ ∈
Cp+1(X) such that ∂c′ = c. The set of all p-
boundarys in X is denoted by Bp(X).

Proposition 41. ∂ : Cp → Cp−1 is a group homomor-
phism, and, therefore, Zp(X) and Bp(X) are subgroups of
Cp(X).

Lemma 42. Let c be a p-chain. Then, ∂∂c = 0. As a
result, Bp(X) ⊆ Zp(X).

Definition 43. The p-th homology group of X is

Hp(X) := Zp(X)/
Bp(X)

Morphisms of chains

Definition 44. Let f : X → Y be a continuous map. f
induces a map f# from Cp(X) to Cp(Y ) as follows:

f# : Cp(X) −→ Cp(Y )∑
aσσ 7−→

∑
aσf ◦ σ.

Proposition 45. Let f : X → Y be a continuous map.
Then:

1. f# is a group homomorphism.

2. f# ◦ ∂ = ∂ ◦ f#.

3. f#(Zp(X)) ⊆ Zp(Y ), and f#(Bp(X)) ⊆ Bp(Y ).
Therefore, f# induces a group homeomorphism f∗ :
Hp(X) → Hp(Y ).

Definition 46. Let f : X → Y be a continuous map. f
induces a group homomorphism f∗ from Hp(X) to Hp(Y )
defined by f∗([c]) = [f#(c)], c ∈ Cp(X), which is well-
defined by Theorem 45.

Proposition 47. Let f : X → Y , g : Y → Z be two
continuous maps. Then,

1. (f ◦ g)∗ = g∗ ◦ f∗.

2. (idX)∗ = idHp(X).

Corollary 48. If f : X → Y is an homeomorphism, then
f∗ : Hp(X) → Hp(Y ) is a group isomorphism.

Proposition 49. Let X =
⊔
Xα be the decomposition of

X in path-connected components, and iα : Xα → X the
inclusion. Then

⊕
α iα :

⊕
α Hp(Xα) → Hp(X) is a group

isomorphism.

Proposition 50. If X is path-connected, then H0(X) ∼=
Z.

Proof.

ε : H0(X) −→ Z[ ∑
aσσ

]
7−→

∑
aσ

is a well-defined group isomorphism. □

Relationship between homotopy and homology

Lemma 51. Let f, g : X → Y be two continuous maps
such that f ≃ g. There exists a group homomorphism
P : Cp(X) → Cp+1(Y ) such that ∂P + P∂ = g# − f#.

Theorem 52. Let f, g : X → Y be two continuous maps.
If f ≃ g, then f∗ = g∗.

Corollary 53. If X ≃ Y , then Hp(X) ∼= Hp(Y ).
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