
Topology

1. | Topological spaces
Metric spaces

Definition 1. Let X be a set. A distance (or metric) in
X is a function d : X ×X → R such that ∀x, y, z ∈ X the
following properties are satisfied:

1. d(x, y) = 0 ⇐⇒ x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality).

Definition 2. A metric space is a pair (X, d), where X is
a set and d is a distance in X.

Proposition 3. Let x, y ∈ Rn such that x = (x1, . . . , xn)
and y = (y1, . . . , yn). The following functions are metrics
in Rn.

1. Euclidean metric:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

2. Taxicab metric:

d(x, y) =
n∑

i=1
|xi − yi|

3. Maximum metric:

d(x, y) = max{|xi − yi| : i ∈ {1, . . . , n}}

Proposition 4. Let X be a set. Then, (X, d) is a metric
space, where:

d(x, y) =
{

1 if x ̸= y

0 if x = y

This metric d is called discrete metric.

Definition 5. Let (X, d) be a metric space a ∈ X and
r ∈ R. We define the ball Bd(a, r) of center a and radius
r with the metric (X, d) as:

Bd(a, r) = {x ∈ X : d(x, a) < r}

Definition 6. Let (X, dX) and (Y, dY ) be two metric
spaces and f : (X, dX) → (Y, dY ) be a function. We say
that f is continuous if ∀a ∈ X and ∀ε > 0, ∃δ > 0 such
that dY (f(x), f(a)) < ε whenever dX(x, a) < δ or, equiv-
alently:

f(BdX
(a, δ)) ⊆ BdY

(f(a), ε)

which is equivalent to BdX
(a, δ) ⊆ f−1 (BdY

(f(a), ε)).

Definition 7. Let (X, d) be a metric space. We say that
a subset A ⊆ X is open if ∀a ∈ A, ∃ε > 0 such that
Bd(a, ε) ⊆ A.

Proposition 8. Let (X, d) be a metric space. Then:

• ∅ and X are open sets.

• If I is an arbitrary index set and {Ui : Ui ⊆ X ∀i ∈
I} is a collection of open sets, then

⋃
i∈I Ui is an

open set.

• If {Ui : Ui ⊆ X ∀i ∈ {1, . . . , n}} is a finite collection
of open sets, then

⋂n
i=1 Ui is an open set.

Proposition 9. Let (X, d) be a metric space and x ∈ X.
Then, the ball Bd(x, r) is open ∀r ∈ R.

Proposition 10. Let (X, d) be a metric space and A ⊆ X
be a subset of X. Then, A is open if and only if A =⋃

i∈I Bd(ai, εi), where I is an index set, ai ∈ A and εi > 0
for all i ∈ I.

Theorem 11. Let (X, dX) and (Y, dY ) be two metric
spaces and f : (X, dX) → (Y, dY ) be a function. The
following statements are equivalent:

1. f is continuous.

2. If A ⊆ Y is open, then f−1(A) ⊆ X is also open.

Proposition 12. Let (X, d) be a metric space with |X| ≥
2 and x, y ∈ X. Then, ∃δ > 0 such that x ∈ Bd(x, δ),
y ∈ Bd(y, δ) and Bd(x, δ) ∩Bd(y, δ) = ∅.

Topological spaces
Definition 13 (Topological space). Let X be a set. A
topology τ on a set X is a collection of subsets of X (that
is, τ ⊆ P(X)) satisfying the following properties:

1. ∅, X ∈ τ .

2. The intersection of any finite subcollection of τ is in
τ .

3. The union of any subcollection of τ is in τ .

The ordered pair (X, τ) is called a topological space1. The
elements of X are called points and the elements of τ , open
sets.

Definition 14. Let (X, τ) and (X, τ ′) be topological
spaces. We say that τ is finer than τ ′ if τ ′ ⊆ τ .

Proposition 15. Let X be a set, p ∈ X be a point of X
and d be a metric defined on X. Then, we can construct
some topologies on X as follows:

• Topology induced from the metric:

τ := {U ⊆ X : U is open with the metric d}
1Sometimes, in order to simplify the notation, we will write X instead of (X, τ) to denote the topological space (X, τ) as well as the set

X.
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• Trivial topology: τt := {∅, X}

• Discrete topology: τd := P(X)

• Cofinite topology:

τf := {U ⊆ X : U = ∅ ∨X \ U is finite}

• Cocountable topology:

τ := {U ⊆ X : U = ∅∨X \U is finite or countable}

• Particular point topology:

τ := {U ⊆ X : U = ∅ ∨ p ∈ U}

• Excluded point topology:

τ := {U ⊆ X : U = X ∨ p /∈ U}

• Sierpiński topology: If X = {0, 1},

τ := {∅, {1}, {0, 1}}

Definition 16. Let (X, τ) be a topological space and
C ⊆ X. We say that C is closed if X \ C ∈ τ , that
is, if X \ C is open.

Definition 17. Let (X, τ) be a topological space and
A ⊆ X. We say that A is clopen if it is both open and
closed.

Proposition 18. Let (X, τ) be a topological space. Then:

1. ∅ and X are closed.

2. The union of any finite subcollection of closed sets
in (X, τ) is closed in (X, τ).

3. The intersection of any subcollection of closed sets
in (X, τ) is closed in (X, τ).

Basis for a topology
Definition 19. Let (X, τ) be a topological space and
B ⊆ τ be a subset of open sets. We say that B is a basis
of τ if ∀U ∈ τ and ∀x ∈ U , ∃B ∈ B such that x ∈ B ⊆ U .

Proposition 20. Let (X, τ) be a topological space and B
be a basis of τ . Then, for all U ∈ τ we have:

U =
⋃

x∈U

Bx

where x ∈ Bx ⊆ U and Bx ∈ B ∀x ∈ U .

Lemma 21. Let (X, τ) be a topological space, B ⊆ τ be
a basis of τ and {Bi ∈ B : i = 1, . . . , n} be a collection of
elements of B. Then, ∀x ∈

⋂n
i=1 Bi, ∃B′ ∈ B such that

x ∈ B′ ⊆
⋂n

i=1 Bi.

Proposition 22. Let X be a set and B ⊆ P(X) be a
collection of subsets of X such that:

a) X =
⋃

B∈B
B

b) ∀U, V ∈ B and ∀x ∈ U ∩ V , ∃B ∈ B such that
x ∈ B ⊆ U ∩ V .

Then, there exists a unique topology τ of X such that:
1. B is a basis of τ .

2. τ is the least finer topology that contains B.
Definition 23. Let X be a set and B ⊆ P(X) be a col-
lection of subsets of X. The topology generated by B is:

τ =
{
U ⊆ X : U =

⋃
i∈I

Bi, Bi ∈ B ∀i ∈ I

}
Or equivalently:

τ = {U ⊆ X : ∀x ∈ U ∃B ∈ B such that x ∈ B ⊆ U}

Definition 24. Let

B = {[a, b) ⊂ R : a, b ∈ R, a < b}

We define the lower limit topology as the topology gener-
ated by B.
Proposition 25. The lower limit topology is finer that
the usual topology of R.
Definition 26. Let

Un =
{

{n} if n is odd
{n− 1, n, n+ 1} if n is even

and B = {Un ⊂ Z : n ∈ Z}. We define the digital topology
as the topology generated by B.
Definition 27. Let (X, τ) be a topological space and
S ⊆ τ be a subset. We say that S is a subbasis of τ if
∀U ∈ τ , U can be written as a union of finite intersections
of elements of S.
Proposition 28. Let X be a set and S ⊆ P(X) such that
X =

⋃
S∈S S. Then, there exists a unique topology τ of

X such that:
1. S is a subbasis of the topology τ .

2. τ is the least finer topology that contains S.

Interior, closure and boundary of a set
Definition 29 (Interior). Let (X, τ) be a topological
space and A ⊆ X be a subset. The interior of A, Int(X,τ) A
or simply IntA, is the largest open subset of X contained
in A.
Definition 30 (Closure). Let (X, τ) be a topological
space and A ⊆ X be a subset. The closure of A, Cl(X,τ) A
or simply ClA, is the smallest closed subset of X contain-
ing A.
Proposition 31. Let (X, τ) be a topological space and
A ⊆ X be a subset. Then:

IntA =
⋃

U⊆A
U is open

U ClA =
⋂

C⊇A
C is closed

C

Hence, we have the inclusions:

IntA ⊆ A ⊆ ClA

And, furthermore:
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• IntA = A ⇐⇒ A is open

• ClA = A ⇐⇒ A is closed

Definition 32. Let (X, τ) be a topological space and
A ⊆ X be a subset. A is called dense in (X, τ) if ∀U ∈ τ
with U ̸= ∅ we have U ∩A ̸= ∅.

Proposition 33. Let (X, τ) be a topological space and
A ⊆ X be a subset. Then, A is dense in (X, τ) if and only
if ClA = X.

Proposition 34. Let (X, τ) be a topological space and
A ⊆ X be a subset. Then:

• If U ⊆ A is open, then U ⊆ IntA.

• If C ⊇ A is closed, then ClA ⊆ C.

Definition 35 (Boundary). Let (X, τ) be a topologi-
cal space and A ⊆ X be a subset. The boundary of A,
∂(X,τ) A or simply ∂ A, is:

∂ A := Cl(A) ∩ Cl(X \A)

Proposition 36. Let (X, τ) be a topological space and
A ⊆ X be a subset. Then:

X = IntA ⊔ ∂ A ⊔ Int(X \A)

Definition 37. Let (X, τ) be a topological space and
x ∈ X. We say that N ⊆ X is a neighbourhood of x if
∃U ∈ τ such that x ∈ U ⊆ N . We denote by Nx the set
of all neighbourhoods in (X, τ) of x.

Definition 38. Let (X, τ) be a topological space and
A ⊆ X be a subset. We say that x ∈ X is an interior
point of A if A is a neighbourhood of x.

Definition 39. Let (X, τ) be a topological space and
A ⊆ X be a subset. We say that x ∈ X is an adher-
ent point of A if ∀N ∈ Nx we have that N ∩A ̸= ∅.

Proposition 40. Let (X, τ) be a topological space and
A ⊆ X be a subset. Then:

1. IntA is the set containing all the interior points of
A.

2. ClA is the set containing all the adherent points of
A.

Proposition 41. Let (X, τ) be a topological space and
A,B ⊆ X be subsets.
Properties regarding the interior:

1.1. Int(Int(A)) = IntA

1.2. A ⊆ B =⇒ IntA ⊆ IntB

1.3. Int(X \A) = X \ ClA

1.4. Int(B \A) = IntB \ ClA

1.5. Int(A ∩B) = IntA ∩ IntB

1.6. Int(A ∪B) ⊇ IntA ∪ IntB

Properties regarding the closure:

2.1. Cl(Cl(A)) = ClA

2.2. A ⊆ B =⇒ ClA ⊆ ClB

2.3. Cl(X \A) = X \ IntA

2.4. Cl(A ∩B) ⊆ ClA ∩ ClB

2.5. Cl(A ∪B) = ClA ∪ ClB

Properties regarding the boundary:

3.1. ∂ A ∩ IntA = ∅

3.2. ∂ A = ClA \ IntA

3.3. ∂ A ∪ IntA = ClA

3.4. ∂(A ∪B) ⊆ ∂ A ∪ ∂ B

3.5. ∂(∂ A) ⊆ ∂ A

3.6. ∂ A ⊆ A ⇐⇒ A is closed

3.7. ∂ A ∩A = ∅ ⇐⇒ A is open

3.8. ∂ A = ∅ ⇐⇒ A is clopen

Proposition 42 (Kuratowski’s problem). Let (X, τ)
be a topological space and A ⊆ X be a subset. Then:

Cl(Int(Cl(IntA))) = Cl(IntA)
Int(Cl(Int(ClA))) = Int(ClA)

Definition 43. Let (X, τ) be a topological space and
A,B ⊆ X be subsets. We say that A and B are sepa-
rated if

ClA ∩B = A ∩ ClB = ∅

Definition 44. Let (X, τ) be a topological space and
A,B ⊆ X be subsets. We say that A and B are sepa-
rated by closed neighbourhoods if there are closed neigh-
bourhoods CA and CB of A and B respectively, such that
CA ∩ CB = ∅.

Proposition 45. Let (X, τ) be a topological space and
A,B ⊆ X be subsets. Then, A and B are separated by
closed neighbourhoods if and only if ClA ∩ ClB = ∅.

2. | Functions between topological
spaces

Definition 46 (Continuous function). Let (X, τX)
and (Y, τY ) be topological spaces and f : (X, τX) →
(Y, τY ) be a function. We say that f is continuous if for
all U ∈ τY , we have f−1(U) ∈ τX .

Proposition 47. Let (X, τX) and (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a function. We say
that f is continuous if and only if for all closed sets C ⊆ Y ,
we have f−1(C) ⊆ X is closed.

Theorem 48. Let (X, τX) and (Y, τY ) be topological
spaces, f : (X, τX) → (Y, τY ) be a function and BY be
a basis of τY . Then:

f is continuous ⇐⇒ f−1(B) ∈ τX ∀B ∈ BY
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Theorem 49. Let (X, τX) and (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a function. Then,
the following statements are equivalent:

1. f is continuous.

2. f−1(Int(B)) ⊆ Int(f−1(B)) for all subsets B ⊆ Y .

3. f(Cl(A)) ⊆ Cl(f(A)) for all subsets A ⊆ X.

Theorem 50. Let (X, τX) and (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a function. Then,
f is continuous if and only if ∀x ∈ X and ∀U ∈ τY such
that f(x) ∈ U , there exists a neighbourhood N of x with
f(N) ⊆ U .

Proposition 51. Let (X, τX), (Y, τY ) and (Z, τZ) be
topological spaces and f : (X, τX) → (Y, τY ), g :
(Y, τY ) → (Z, τZ) be continuous functions. Then, g ◦ f :
(X, τX) → (Z, τZ) is continuous.

Definition 52. Let (X, τX) and (Y, τY ) be topological
spaces. A homeomorphism between (X, τX) and (Y, τY ) is
a bijective function that is continuous and whose inverse
is also continuous. We say that (X, τX) and (Y, τY ) are
homeomorphic, and we denote it by (X, τX) ∼= (Y, τY ), if
there exists a homeomorphism between them.

Definition 53 (Open function). Let (X, τX) and
(Y, τY ) be topological spaces and f : (X, τX) → (Y, τY )
be a function. We say that f is open if ∀U ∈ τX , we have
f(U) ∈ τY .

Definition 54 (Closed function). Let (X, τX) and
(Y, τY ) be topological spaces and f : (X, τX) → (Y, τY )
be a function. We say that f is closed if for all closed
subsets C ⊆ X, we have that f(C) is closed.

Theorem 55. Let (X, τX) and (Y, τY ) be topological
spaces, f : (X, τX) → (Y, τY ) be a function and BX be
a basis of τX . Then:

f is open ⇐⇒ f(B) ∈ τY ∀B ∈ BX

Theorem 56. Let (X, τX) and (Y, τY ) be topological
spaces, f : (X, τX) → (Y, τY ) be a bijective function.
Then:

f is open ⇐⇒ f is closed

Proposition 57. Let (X, τX) and (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a function. Then, the
following statements are equivalent:

1. f is open.

2. f(Int(A)) ⊆ Int(f(A)) for all subsets A ⊆ X.

Proposition 58. Let (X, τX) and (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a continuous bijective
function. Then, the following statements are equivalent:

1. f is a homeomorphism.

2. f is open.

3. f is closed.

Proposition 59. Being homeomorphic as topological
spaces is an equivalence relation.

3. | Subspaces
Subspace topology

Definition 60. Let (X, τ) be a topological space and
A ⊆ X be a subset. We define the following set:

τA = {U ⊆ A : ∃V ∈ τ such that V ∩A = U}

Then, (A, τA) is a topological space (called topological sub-
space of (X, τ)) and τA is called the subspace topology on
A. We will write (A, τA) ⊆ (X, τ) to denote that (A, τA)
is a topological subspace.

Proposition 61. Let (X, τ) be a topological space and
(A, τA) ⊆ (X, τ) be a topological subspace. Then, C ⊆ A
is closed on (A, τA) if and only if C = K∩A, where K ⊆ X
is a closed subset on (X, τ).

Proposition 62. Let (X, τ) be a topological space and
(A, τA) ⊆ (X, τ) be a topological subspace. Then:

1. If A is open and U ⊆ A, then:

U ∈ τA ⇐⇒ U ∈ τ

2. If A is closed and C ⊆ A, then:

C is closed on (A, τA) ⇐⇒ C is closed on (X, τ)

Proposition 63. Let (X, τ) be a topological space and
(A, τA) ⊆ (X, τ) be a topological subspace. Then, the in-
clusion ι : (A, τA) ↪→ (X, τ) is continuous and τA is the
least finer topology where ι is continuous.

Corollary 64. Let (X, τX) and (Y, τY ) be topological
spaces, f : (X, τX) → (Y, τY ) be a continuous function
and (A, τA) ⊆ (X, τX) be a topological subspace. Then,
f |A is also continuous.

Proposition 65. Let (X, τ) be a topological space, B be a
basis of τ and (A, τA) ⊆ (X, τ) be a topological subspace.
Then,

BA = {B ∩A : B ∈ B}

is basis of τA.

Proposition 66. Let (X, τX) and (Y, τY ) be topological
spaces and (B, τB) ⊆ (Y, τY ) be a topological subspace.
Let f : (X, τX) → (B, τB) be a function. Then, f is con-
tinuous if and only if ι ◦ f : (X, τX) → (B, τB) ↪→ (Y, τY )
is continuous.

Corollary 67. Let (X, τX) and (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a continuous function.
Then, g : (X, τX) → (f(X), τf(X)) is also continuous.

Proposition 68. Let (X, τX) and (Y, τY ) be topological
spaces such that X = A∪B, for some sets A, B. Consider
a function f : (X, τX) → (Y, τY ) satisfying that that f |A
and f |B are continuous. Then:

1. If A, B are open, then f is continuous.

2. If A, B are closed, then f is continuous.
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Cantor set

Definition 69. Let C0 = [0, 1]. Define I1 :=
( 1

3 ,
2
3
)

and
C1 := C0 \ I1. Then, define I2 := I1 ∪

( 1
9 ,

2
9
)

∪
( 7

9 ,
8
9
)

and
C2 := C0 \ I2. In general, define:

In+1 = In ∪

[3n−1⋃
k=0

(
3k + 1
3n+1 ,

3k + 2
3n+1

)]
Cn+1 = C0 \ In+1

We define the Cantor set C as:

C :=
∞⋂

n=0
Cn

Proposition 70. The Cantor set C can be expressed as:

C = {x ∈ [0, 1] : x3
2 does not contain the digit 1}

Proposition 71. The Cantor set C satisfies the following
properties:

1. C ̸= ∅.

2. C is closed in R.

3. C does not contain any interval of R.

4. Int C = ∅.

5. C does not have the discrete topology.

6. C is not countable.

4. | Product topology
Finite product

Definition 72. Let (X, τX), (Y, τY ) be topological spaces.
We define the product topology on X × Y , denoted by
τX×Y , as the topology generated by:

B = {U × V : U ∈ τX , V ∈ τY }

Proposition 73. Let (X, τX), (Y, τY ) be topological
spaces. Then, the projections

πX : (X × Y, τX×Y ) −→ (X, τX)
πY : (X × Y, τX×Y ) −→ (Y, τY )

are continuous and open.

Proposition 74. Let (X, τX), (Y, τY ) be topological
spaces. Then, A ⊆ X × Y is open on (X × Y, τX×Y )
if and only if ∀a ∈ A there exist U ∈ τX and V ∈ τY such
that a ∈ U × V ⊆ A.

Proposition 75. Let (X, τX), (Y, τY ) be topological
spaces. If BX is a basis for τX and BY is a basis for τY ,
then

B = {U × V : U ∈ BX , V ∈ BY }

is a basis for τX×Y .

Proposition 76. Let (X, τX), (Y, τY ), (Z, τZ) be topolog-
ical spaces and f : (Z, τZ) → (X×Y, τX×Y ) be a function.
Then, f is continuous if and only if πX ◦ f and πY ◦ f are
continuous.

Proposition 77. Let (Xi, τXi), (Yi, τYi) be topological
spaces and fi : (Xi, τXi) → (Yi, τYi) be functions for
i = 1, 2. Then,

f1 × f2 : (X1 ×X2, τX1×X2) −→ (Y1 × Y2, τY1×Y2)
(x1, x2) 7−→ (f1(x1), f2(x2))

is continuous if and only if f1 and f2 are both continuous.

Proposition 78. Let (X, τX), (Y, τY ) be topological
spaces and A ⊆ X, B ⊆ Y be closed subsets. Then,
A×B is closed.

Proposition 79. Let (X, τX), (Y, τY ) be topological
spaces and (A, τA) ⊆ (X, τX), (B, τB) ⊆ (Y, τY ) be topo-
logical subspaces. Then:

1. Int(A×B) = IntA× IntB

2. Cl(A×B) = ClA× ClB

3. ∂(A×B) = (∂ A× ClB) ∪ (ClA× ∂ B)

Arbitrary product
Definition 80. Let I be an index set, {(Xi, τXi

) : i ∈ I}
be a collection of topological spaces and X :=

∏
i∈I Xi.

We define the box topology on X as the topology gener-
ated by

B =
{∏

i∈I

Ui : Ui ∈ τXi ∀i ∈ I

}
Definition 81. Let I be an index set, {(Xi, τXi

) : i ∈ I}
be a collection of topological spaces and X :=

∏
i∈I Xi.

We define the infinite product topology on X, denoted by
τX , as the topology generated by

B =
{ ∏

i∈I

Ui : Ui ∈ τXi
∀i ∈ I ∧ Ui = Xi except for

a finite number of indices
}

Proposition 82. Let I be an index set, {(Xi, τXi) : i ∈ I}
be a collection of topological spaces and X :=

∏
i∈I Xi.

Then, the projection

πXi
: (X, τX) −→ (Xi, τXi

)

is continuous and open for all i ∈ I.

Proposition 83. Let I be an index set, {(Xi, τXi
) : i ∈ I}

be a collection of topological spaces and X :=
∏

i∈I Xi. If
BXi

is a basis of τXi
∀i ∈ I, then

B =
{∏

i∈I

Ui : Ui ∈ BXi
∀i ∈ I

}

is a basis of τX .
2Here, x3 mean the expression of x in base 3.
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Proposition 84. Let I be an index set, {(Yi, τYi) : i ∈ I}
and (X, τX) be topological spaces, Y :=

∏
i∈I Yi and

f : (X, τX) → (Y, τY ) be a function. Then, f is continuous
if and only if πYi

◦ f is continuous for all i ∈ I.

Proposition 85. Let I be an index set, {(Xi, τXi) : i ∈ I}
and {(Yi, τYi

) : i ∈ I} be two collections of topological
spaces, X :=

∏
i∈I Xi, Y :=

∏
i∈I Yi and fi : (Xi, τXi

) →
(Yi, τYi

) be a function for all i ∈ I. Then,∏
i∈I

fi : (X, τX) −→ (Y, τY )

(xi)i∈I 7−→ (fi(xi))i∈I

is continuous if and only if fi is continuous ∀i ∈ I.

Proposition 86. Let (Xi, τXi) be topological spaces and
(Ai, τAi) ⊆ (Xi, τXi) be topological subspaces for i =
1, . . . , n. Consider the following topological spaces:

1. The topological space created from the product of
subspaces Ai.

2. The topological space created from the subspace∏n
i=1 Ai of the product

∏n
i=1 Xi.

Then, these topological spaces are the same.

Proposition 87. Let I be and index set, (Xi, τXi
) be

topological spaces ∀i ∈ I and Ai ⊆ Xi be subsets ∀i ∈ I.
Let X :=

∏
i∈I Xi. Then,

∏
i∈I Ai is dense in (X, τX) if

and only if Ai is dense in (Xi, τXi) ∀i ∈ I.

Theorem 88. The function

φ :
∞∏

i=1
{0, 2} −→ C

(ai) 7−→
∞∑

i=1

ai

3i

is a homeomorphism.

Definition 89. We define the n− 1-th sphere Sn−1 ⊂ Rn

as:
Sn−1 := {x ∈ Rn : ∥x∥ = 1}

We define the n-th ball Bn ⊂ Rn as:

Bn := {x ∈ Rn : ∥x∥2 < 1}

Definition 90 (Torus). We define the torus T 2 ⊂ R3 of
major radius R and minor radius r (see Fig. 1) as:

T 2 :=
{

(x, y, z) ∈ R3 :
(√

x2 + y2 −R
)2

+ z2 = r2
}

Figure 1: Torus T 2

Proposition 91. With the ordinary topology of Rn we
have:

• Sn \ (0, (n). . ., 0, 1) ∼= Rn

• S1 × S1 ∼= T 2

5. | Quotient topology
Quotient topology

Definition 92. Let (X, τX) be a topological space, Y be
a set and f : X → Y be a function. We define the quotient
topology on Y defined by f as:

τf := {U ⊆ Y : f−1(U) ∈ τX}

Proposition 93. Let (X, τX), (Y, τf ) be topological
spaces, where f : X → Y is a function. Then, f (thought
as a function between topological spaces) is continuous
and τf is the finest topology for which f is continuous.

Proposition 94. Let (X, τX), (Y, τf ) be topological
spaces, where f : X → Y is a function. Then, C ⊆ Y
is closed on (Y, τf ) if and only if f−1(C) ⊆ X is closed on
(X, τX).

Proposition 95. Let (X, τX), (Y, τf ) and (Z, τZ) be topo-
logical spaces, where f : X → Y is a function, and
h : (Y, τf ) → (Z, τZ) be a function. Then, h is contin-
uous if and only if h ◦ f is continuous.

Definition 96. Let (X, τX) be a topological space and
f : X → Y be a function. We say that f is a quotient map
if it is surjective and Y is equipped with the topology τf .

Definition 97. Let (X, τX) be a topological space and ∼
be an equivalence relation on X. Consider the canonical
function f : X →→ X/∼. We define the quotient space as
(X/∼, τf ).

Definition 98. Let (X, τX) be a topological space and
A ⊆ X be a subset. Consider the partition of X:

X = A ⊔
⊔

x∈X\A

{x}

and define the equivalence relation ∼A as follows:

x ∼A y ⇐⇒ x, y ∈ A ∨ x = y ∈ X \A

We define the quotient space of collapsing a set to a point
as X/A := X/ ∼A together with the quotient topology.
We will write [A] := [a] ∀a ∈ A, which is well-defined.

Proposition 99. Let (X, τX) be a topological space,
A ⊆ X be a subset and π : X →→ X/A be the projec-
tion. Then, for all U ⊆ X/A we have:

π−1(U) =



⋃
[x]∈U

{x} if [A] /∈ U

A ∪
⋃

[x]∈U
[x]̸=[A]

{x} if [A] ∈ U
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Group actions on topological spaces

Definition 100. Let (X, τ) be a topological space and
(G, ·) be a group. An action of (G, ·) on (X, τ) is a func-
tion:

f : (G, ·) × (X, τ) −→ (X, τ)
(g, x) 7−→ fg(x)

where fg : (X, τ) → (X, τ) is a homeomorphism for all
g ∈ G such that:

1. fe = id.

2. fg·h = fg ◦ fh, ∀g, h ∈ G.

The pair ((X, τ), f) is called a (G, ·)-space.

Proposition 101. Let ((X, τ), f) be a G-space. Consider
the equivalence relation: x ∼ y ⇐⇒ ∃g ∈ G such that
y = fg(x)3. Then, the set of orbits under f , X/G := X/∼,
is a topological space together with the quotient topology.
Furthermore, the projection π : X →→ X/G is open.

Homeomorphisms of quotient spaces

Proposition 102. With the ordinary topology of Rn we
have:

[0, 1]/
{0, 1}

∼= S1

Proposition 103. Consider X = [0, 1]2. Define an equiv-
alence relation ∼ in X in the following ways:

1. (0, t) ∼ (1, t) ∀t ∈ [0, 1]. Then, X ∼= S1 × [0, 1],
which is a cylinder.

2. (0, t) ∼ (1, t) and (s, 0) ∼ (s, 1) ∀s, t ∈ [0, 1]. Then,
X ∼= T 2.

3. (0, t) ∼ (1, 1 − t) ∀t ∈ [0, 1]. In that case, X ∼= M,
where M is the Möbius band (see Fig. 3).

4. (0, t) ∼ (1, t) and (s, 0) ∼ (1 − s, 1) ∀s, t ∈ [0, 1]. In
that case, X ∼= K, where K is the Klein bottle (see
Fig. 4).

1. 2. 3. 4.

Figure 2: Representation of the quotient spaces [0, 1]2/ ∼,
where ∼ is the equivalence relation defined on Theo-
rem 103

Figure 3: Möbius band

Figure 4: Klein bottle

Proposition 104. Let Pn(R) be the projective space of
Rn+1. Consider the relation ∼ on Rn+1 such that v ∼ −v
∀v ∈ Rn+1. Then:

Pn(R) ∼= Sn/
∼

Proposition 105. Consider the ball B2 and the equiv-
alence relation ∼ in ∂ B2 = S1 such that for all (x, y) ∈
∂ B2, (x, y) ∼ (x,−y). Then:

B2/
∼

∼= S2

P2(R) S2

Figure 5: Representation of the quotient space S2/ ∼
(left), where ∼ is the equivalence relation defined on The-
orem 104 and the quotient space B2/ ∼ (right), where ∼
is the equivalence relation defined on Theorem 105

6. | Separation axioms
Definition 106 (T0 space). Let (X, τ) be a topological
space. We say that (X, τ) is T0

4 (or Kolmogorov) if for
any two distinct points of X, there exists an open set that
contains one of them but not the other.
Definition 107 (T1 space). Let (X, τ) be a topological
space. We say that (X, τ) is T1 (or Fréchet) if for any two
distinct points x, y ∈ X, there exists an open set U ∈ τ
such that x ∈ U and y /∈ U .

3Note that this relation creates a partition of X in terms of the orbits under f .
4The letter T comes from the German word “Trennungsaxiom” which means “separation axioms”.

7



Theorem 108. Let (X, τ) be a topological space. The
statements following are equivalent:

1. (X, τ) is T1.

2. For all x ∈ X, {x} =
⋂

N∈Nx
N .

3. For all x ∈ X, {x} is closed.

Definition 109 (T2 space). Let (X, τ) be a topological
space. We say that (X, τ) is T2 (or Hausdorff) if for any
two distinct points x, y ∈ X, there exist U, V ∈ τ such
that x ∈ U , y ∈ V and U ∩ V = ∅.

Theorem 110. Let (X, τ) be a topological space. The
statements following are equivalent:

1. (X, τ) is T2.

2. For all x ∈ X, {x} =
⋂

N∈Nx
Cl(N).

3. The diagonal ∆(X) := {(x, x) ∈ X × X} ⊂ X × X
is closed.

Proposition 111. Let (X, τX), (Y, τY ) be Hausdorff
topological spaces. Then, (X × Y, τX×Y ) is Hausdorff.

Definition 112 (T2 1
2

space). Let (X, τ) be a topological
space. We say that (X, τ) is T2 1

2
if for any two distinct

points x, y ∈ X, there exist open sets U, V ∈ τ separated
by closed neighbourhoods (ClU ∩ ClV = ∅) such that
x ∈ U and y ∈ V .

Definition 113. Let (X, τ) be a topological space. We
say that (X, τ) is regular if for all x ∈ X and for all a
closed sets C ⊆ X such that x /∈ C, there exist U, V ∈ τ
such that x ∈ U , C ⊆ V and U ∩ V = ∅.

Definition 114 (T3 space). Let (X, τ) be a topological
space. We say that (X, τ) is T3 if it is T1 and regular.

Theorem 115. Let (X, τ) be a topological space. The
statements following are equivalent:

1. (X, τ) is T3.

2. For all x ∈ X and for all U ∈ τ such that x ∈ U ,
∃V ∈ τ such that x ∈ V ⊆ Cl(V ) ⊆ U .

Theorem 116. A subspace of a topological space T3 is
T3.

Theorem 117. The product of topological spaces T3 is
T3.

Definition 118. Let (X, τ) be a topological space. We
say that (X, τ) is normal if for all closed sets C,K ⊆ X
such that C ∩ K = ∅, there exist U, V ∈ τ such that
C ⊆ U , K ⊆ V and U ∩ V = ∅.

Definition 119 (T4 space). Let (X, τ) be a topological
space. We say that (X, τ) is T4 if it is T1 and normal.

Theorem 120. Let (X, τ) be a topological space. The
statements following are equivalent:

1. (X, τ) is T4.

2. For all closed set C ⊆ X and for all U ∈ τ such that
C ⊆ U , ∃V ∈ τ such that C ⊆ V ⊆ Cl(V ) ⊆ U .

Theorem 121. A closed subspace of a topological space
T4 is T4.

Theorem 122. If we also denote by Ti the set of all topo-
logical spaces which are Ti, for i ∈ {0, 1, 2, 2 1

2 , 3, 4}, we
have that:

T4 ⊂ T3 ⊂ T2 1
2

⊂ T2 ⊂ T1 ⊂ T0

Lemma 123 (Urysohn’s lemma). Let (X, τ) be a topo-
logical space T4 and A,B ⊆ X be closed sets. Then, there
exists a continuous function f : (X, τ) → [0, 1] such that
A ⊆ f−1(0) and B ⊆ f−1(1).

Theorem 124 (Tietze extension theorem). Let
(X, τ) be a topological space T4, C ⊆ X be a closed set
and f : C → [0, 1] be a continuous function. Then, there
exists a continuous function F : (X, τ) → [0, 1] such that
F (x) = f(x) ∀x ∈ C.

Definition 125. A topological space (X, τ) is said to be
metrizable if there is a metric d such that the topology
induced by d is τ .

Theorem 126 (Urysohn’s metrization theorem).
Let (X, τ) be a topological space T3 such that it admits a
countable basis of open sets. Then, (X, τ) is metrizable.

7. | Compactness
Definition 127. We say that a property P of a topolog-
ical space is a topological property if it is preserved under
homeomorphisms. That is, if (X, τX), (Y, τY ) are homeo-
morphic topological spaces such that (X, τX) has the prop-
erty P , then (Y, τY ) has the property P too.

Proposition 128. The properties Ti are topological prop-
erties for i ∈ {0, 1, 2, 2 1

2 , 3, 4}.

Covers

Definition 129 (Cover). Let (X, τ) be a topological
space. A cover of X is a collection {Ui : i ∈ I} with
Ui ⊆ X ∀i ∈ I such that X =

⋃
i∈I Ui.

Definition 130. Let (X, τ) be a topological space and
U = {Ui : i ∈ I} be a cover of X.

• We say that U is finite if I is finite.

• We say that U is countable if I is countable.

• We say that U is an open cover if Ui ∈ τ ∀i ∈ I.

Definition 131. Let (X, τ) be a topological space, A ⊆ X
be a subset and U = {Ui : i ∈ I} with Ui ⊆ X ∀i ∈ I. We
say that U is a cover of A if A ⊆

⋃
i∈I Ui.

Definition 132. Let (X, τ) be a topological space and
U = {Ui : i ∈ I} be a cover of X. A subcover of U is a
collection {Uj : j ∈ J} with J ⊆ I.
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Compactness
Definition 133 (Compact space). Let (X, τ) be a
topological space. We say that (X, τ) is compact if each
of its open covers has a finite subcover.

Proposition 134. Let (X, τ) be a topological space.
Then, (X, τ) is compact if and only if for any collection
C = {Ci : i ∈ I} of closed sets such that

⋂
i∈I Ci = ∅,

there exists a finite subcollection {Ci1 , . . . , Cin
} of C such

that
⋂n

j=1 Cij
= ∅

Proposition 135. The compactness is a topological prop-
erty.

Proposition 136. Let (X, τX), (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a surjective contin-
uous function. If (X, τX) is compact, then (Y, τY ) is also
compact.

Corollary 137. The quotient space of a compact space
is compact.

Definition 138. Let (X, τ) be a topological space and
A ⊆ X be a subset. We say that A is a compact subset of
X if (A, τA) is a compact space.

Lemma 139. Let (X, τ) be a topological space and
A ⊆ X be a subset. Then, A is compact if and only if
each open cover of A in (X, τ) admits a finite subcover.

Proposition 140. Let (X, τ) be a topological space and
{Ki ⊆ X : i = 1, . . . , n} be a collection of compact sets.
Then,

⋃n
i=1 Ki is also compact.

Theorem 141. Let (X, τX), (Y, τY ) be topological
spaces, f : (X, τX) → (Y, τY ) be a continuous function
and A ⊆ X be a subset. If A is compact, then f(A) is also
compact.

Theorem 142. Let (X, τ) be a compact topological space
and C ⊆ X be a closed subset. Then, C is compact.

Theorem 143. Let (X, τ) be a Hausdorff topological
space and K ⊆ X be a compact subset. Then, K is closed.

Corollary 144. Let (X, τ) be a Hausdorff topological
space and {Ki : i = 1, . . . , n} be a collection of compact
sets Ki ⊆ X, i = 1, . . . , n. Then,

⋂
i∈I Ki is compact.

Corollary 145. Let (X, τX) be a compact topological
space, (Y, τY ) be Hausdorff topological space and f :
(X, τX) → (Y, τY ) be a continuous function. Then, f is
closed. Furthermore, if f is bijective, then f is a homeo-
morphism.

Corollary 146. Let (X, τ) be a compact Hausdorff topo-
logical space and τ1 ⊆ τ ⊆ τ2. Then:

• If (X, τ1) is Hausdorff, then id : (X, τ) → (X, τ1) is
a homeomorphism and τ1 = τ .

• If (X, τ2) is compact, then id : (X, τ2) → (X, τ) is a
homeomorphism and τ2 = τ .

Proposition 147. Let (X, τ) be a compact Hausdorff
topological space and C ⊆ X be a closed subset. Then,
X/C, together with the quotient topology, is compact
Hausdorff.

Proposition 148. Let (X, τ) be a Hausdorff topological
space and C,K ⊆ X be compact subsets. Then, there
exist U, V ∈ τ such that C ⊆ U , K ⊆ V and U ∩ V = ∅.

Corollary 149. Let (X, τ) be a compact Hausdorff topo-
logical space. Then, (X, τ) is T4.

Compactness of the product
Lemma 150. Let (X, τX), (Y, τY ) be topological spaces
such that (Y, τY ) is compact and U ∈ τX×Y be an open
set such that {x} ×Y ⊆ U ⊆ X×Y . Then, ∃V ∈ τX such
that x ∈ V and {x} × Y ⊆ V × Y ⊆ U .

Corollary 151. Let (X, τX), (Y, τY ) be topological spaces
such that (Y, τY ) is compact. Then, the projection πX :
(X × Y, τX×Y ) → (X, τX) is closed.

Theorem 152 (Tychonoff’s theorem). Let I be an in-
dex set, {(Xi, τXi

) : i ∈ I} be a collection of topological
spaces and X :=

∏
i∈I Xi. Then, (X, τX) is compact if

and only if (Xi, τXi) is compact ∀i ∈ I.

Axiom 153 (Axiom of choice). The Cartesian product
of a collection of non-empty sets is non-empty.

Theorem 154 (Kelley’s theorem). Tychonoff’s theo-
rem implies the axiom of choice.

Alexandroff extension
Definition 155. Let (X, τX), (Y, τY ) be topological
spaces and f : (X, τX) → (Y, τY ) be a continuous func-
tion. We say that f is a topological embedding if f yields a
homeomorphism between (X, τX) and f(X) together with
the subspace topology inherited from (Y, τY ).

Definition 156. Let (X, τ) be topological space and
X∗ := X ∪ {∞}. We define the following set:

τ∗ := {U ⊆ X∗ : U ∈ τ ∨ (∞ ∈ U ∧X∗ \ U is compact)}

Theorem 157 (One-point compactification). Let
(X, τ) be Hausdorff topological space. Then, (X∗, τ∗) is a
compact topological space, called one-point compactifica-
tion of (X, τ).

Proposition 158. Let (X, τ) be Hausdorff topological
space. Then, the inclusion ι : (X, τ) → (X∗, τ∗) is a topo-
logical embedding.

Definition 159. Let (X, τ) be topological space and P be
a property. We say that (X, τ) satisfies locally P if ∀x ∈ X
and ∀U ∈ τ such that x ∈ U , there exists a neighbourhood
N ∈ Nx, with x ∈ N ⊆ U , that satisfies P .

Definition 160. Let (X, τ) be topological space. We say
that (X, τ) is locally compact if ∀x ∈ X and ∀U ∈ τ such
that x ∈ U , there exists a compact neighbourhoodN ∈ Nx

such that x ∈ N ⊆ U .

Proposition 161. The local compactness is a topological
property.

Definition 162. Let (X, τ) be topological space. (X, τ)
is locally compact Hausdorff if and only if (X∗, τ∗) is com-
pact Hausdorff.
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Proposition 163. We the usual topology, Q ⊂ R is not
locally compact.

Theorem 164. Let (X, τ) be a locally compact Hausdorff
topological space. Then, (X, τ) is T3.

Compactness of Rn

Theorem 165 (Heine-Borel theorem). Let a, b ∈ R
with a < b. Then, [a, b] ⊂ R is compact.

Theorem 166 (Heine-Borel theorem). Consider Rn

with the usual topology and A ⊆ Rn. Then, A is compact
if and only if A is closed and bounded.

Lemma 167. Let K ⊂ R be a compact subset. Then,
∃m,M ∈ K such that m ≤ k ≤ M ∀k ∈ K.

Theorem 168 (Weierstraß’ theorem). Let (X, τ) be a
compact topological space and f : X → R be a continuous
function. Then, f attains a maximum and a minimum.

Proposition 169. Sn, T 2, M, K and Pn(R) are compact.

8. | Connectedness
Connectedness

Definition 170 (Connected space). Let (X, τ) be a
topological space. We say that (X, τ) is connected if
do not exist non-empty open sets U, V ∈ τ such that
X = U ⊔ V . Otherwise, that is, if there are non-empty
open sets U, V ∈ τ such that X = U ⊔ V , we say that
(X, τ) is disconnected.

Proposition 171. Let (X, τ) be a topological space. The
following statements are equivalent:

1. (X, τ) is connected.

2. There are no non-empty closed sets C,D ⊂ X such
that X = C ⊔D.

3. There isn’t a non-empty clopen set U ⊂ X.

Definition 172. Let (X, τ) be a topological space and
A ⊆ X be a subset. We say that A is a connected subset
of X if (A, τA) is a connected space.

Proposition 173. Let (X, τ) be a topological space and
A ⊆ X be a subset. A is connected if and only if there are
no open sets U, V ∈ τ such that A ⊆ U ∪ V , A ∩ U ̸= ∅,
A ∩ V ̸= ∅ and A ∩ U ∩ V = ∅.

Proposition 174. The connectedness is a topological
property.

Theorem 175. Let (X, τX), (Y, τY ) be a topological
spaces such that (X, τX) is connected and f : (X, τX) →
(Y, τY ) be a continuous function. Then, f(X) ⊂ Y is con-
nected.

Corollary 176. The quotient space of a connected space
is connected.

Lemma 177. Let (X, τ) be a topological space and
C,D ⊆ X be subsets such that C ⊆ D and C is con-
nected. Suppose that D is disconnected and so that there
exist non-empty open sets U, V ∈ τ such that D ⊆ U ∪V ,
D ∩U ̸= ∅, D ∩ V ̸= ∅ and D ∩U ∩ V = ∅. Then, either
C ⊆ U or C ⊆ V .

Proposition 178. Let (X, τ) be a topological space and
{Ci : i ∈ I} be a collection of connected subsets of X such
that

⋂
i∈I Ci ̸= ∅. Then,

⋃
i∈I Ci is connected.

Theorem 179. Let (Xi, τXi
) be connected topological

spaces for i = 1, . . . , n. Then,
∏n

i=1(Xi, τXi) is connected.

Theorem 180. Let (X, τ) be a topological space and
C ⊆ X be a connected subset. If A ⊆ X is such that
C ⊆ A ⊆ ClC, then A is connected.

Proposition 181. Let (X, τ) be a connected topological
space and A ⊂ X be a non-empty subset. Then, ∂ A ̸= ∅.

Proposition 182. Let (X, τ) be a topological space and
C ⊂ X be a connected non-empty subset. If A ⊆ X is such
that C ∩A ̸= ∅ and C ∩ (X \A) ̸= ∅, then C ∩ ∂ A ̸= ∅.

Definition 183. Let (X, τ) be a topological space with
|X| > 1. We say that (X, τ) is totally disconnected if all
subsets with cardinal greater than 1 are disconnected.

Proposition 184. Let (X, τ) be a topological space with
|X| > 1. Then, (X, τ) is totally disconnected if and only
if ∀x, y ∈ X, x ̸= y, ∃U, V ∈ τ such that x ∈ U , y ∈ V
and X = U ⊔ V .

Proposition 185. Let (X, τd) be a topological space with
|X| > 1. Then, (X, τd) is totally disconnected.

Proposition 186. Q ⊆ R with the usual topology is to-
tally disconnected.

Connectedness of Rn

Theorem 187. Consider R together with the usual topol-
ogy and let a, b ∈ R. Then, [a, b] is connected.

Theorem 188. Consider R together with the usual topol-
ogy. Then, R is connected.

Theorem 189. Consider R together with the usual topol-
ogy and let A ⊆ R be a subset. Then:

A is connected ⇐⇒ A is an interval

Theorem 190 (Intermediate value theorem). Let
(X, τ) be a connected topological space, f : (X, τ) → R
be a continuous function. Let p, q ∈ im f and r ∈ R be
such that p ≤ r ≤ q. Then, r ∈ im f .

Corollary 191 (Bolzano’s theorem). Let f : [a, b] → R
be a continuous function such that f(a)f(b) ≤ 0. Then,
∃r ∈ [a, b] such that f(r) = 0.

Theorem 192 (Brouwer’s fixed-point theorem). Let
B

n ⊂ R be a closed n-th ball and f : Bn → B
n be a con-

tinuous function. Then, f has a fixed point.

Theorem 193 (Borsuk-Ulam theorem). Let f : Sn →
Rn be a continuous function. Then, ∃x ∈ Sn such that
f(x) = f(−x).

10



Connected components
Definition 194. Let (X, τ) be a topological space. We
define the relation ∼ in (X, τ) as ∀x, y ∈ X, x ∼ y if and
only if there exists a connected subset C ⊆ X such that
x, y ∈ C.

Proposition 195. Let (X, τ) be a topological space. The
relation ∼ is an equivalence relation.

Definition 196. Let (X, τ) be a topological space with
the relation ∼. We define the connected components of
(X, τ) as the equivalence classes under ∼.

Proposition 197. Let (X, τ) be a topological space with
the relation ∼. Then:

1. Each connected component C ⊆ X is connected.
Moreover, if p ∈ C, C is the maximal connected
subset that contains p.

2. The connected components are pairwise disjoint.

3. If A ⊆ X is a connected subspace, then A ⊆ C for
some connected component C of (X, τ).

4. The connected components are closed.

5. If there is a finite number of connected components,
then they are open.

Theorem 198. Let (X, τX), (Y, τY ) be topological
spaces, f : (X, τX) → (Y, τY ) be a continuous function
and C ⊆ X be a connected component. Then, f(C) ⊆ D,
where D is a connected component of (Y, τY ). Further-
more, if f is a homeomorphism, f(C) is a connected com-
ponent of (Y, τY ).

Corollary 199. Let (X, τX), (Y, τY ) be homeomorphic
topological spaces. Then, they have the same number of
connected components.

Definition 200. Let (X, τ) be a topological space. We
say that (X, τ) is locally connected if ∀x ∈ X and ∀U ∈ τ
such that x ∈ U , there exists a connected neighbourhood
N ∈ Nx such that x ∈ N ⊆ U .

Proposition 201. Let (X, τ) be a locally connected topo-
logical space. Then, the connected components are open.

Path connectedness
Definition 202. Let (X, τ) be a topological space. A
path in (X, τ) is a continuous function γ : [0, 1] → (X, τ).
γ(0) is called initial point of the path and γ(1), terminal
point.

Definition 203. Let (X, τ) be a topological space and
x, y ∈ X. A path from x to y is a path whose initial point
is x and whose terminal point is y. If x = y, we say that
the path is a loop.

Proposition 204. Let (X, τ) be a topological space and
γ be a path in (X, τ) and x, y ∈ X. Then:

1. im(γ) is a connected subspace of (X, τ). Therefore,
the initial and terminal points of γ are in the same
connected component.

2. If A ⊆ X is a subset satisfying γ(0) ∈ A and
γ(1) /∈ A, then ∃r ∈ [0, 1] such that γ(r) ∈ ∂ A.

3. If γ(t) is a path from x to y, then γ(1 − t) is a path
from y to x

Proposition 205. Let (X, τ) be a topological space
x, y, z ∈ X, γ1 be a path from x to y and γ2 be a path
from y to z. Then,

(γ1 + γ2)(t) :=
{
γ1(2t) if 0 ≤ t ≤ 1/2
γ2(2t− 1) if 1/2 < t ≤ 1

is a path from x to z.

Definition 206. Let (X, τ) be a topological space. We
say that (X, τ) is path-connected if for all x, y ∈ X, there
exists a path in (X, τ) from x to y.

Proposition 207. The path-connectedness is a topolog-
ical property.

Proposition 208. Let (X, τX), (Y, τY ) be topological
space such that (X, τX) is path-connected, and f :
(X, τX) → (Y, τY ) be a continuous function. Then f(X) ⊆
Y is path-connected.

Corollary 209. The quotient space of a path-connected
space is path-connected.

Definition 210. Let (X, τ) be a topological space and
A ⊆ X. We say that A is path-connected if A, together
with the subspace topology, is path-connected.

Proposition 211. Let (X, τ) be a topological space and
{Ci : i ∈ I} be a collection of path-connected subsets of X
such that

⋂
i∈I Ci ̸= ∅. Then,

⋃
i∈I Ci is path-connected.

Theorem 212. Let (Xi, τXi
) be path-connected topolog-

ical spaces for i = 1, . . . , n. Then,
∏n

i=1(Xi, τXi
) is path-

connected.

Theorem 213. Let (X, τ) be a path-connected topologi-
cal space. Then, (X, τ) is connected.

Definition 214. Let (X, τ) be a topological space. We
define the relation ∼p in (X, τ) as ∀x, y ∈ X, x ∼p y if
and only if there exists a path from x to y.

Proposition 215. Let (X, τ) be a topological space. The
relation ∼p is an equivalence relation.

Definition 216. Let (X, τ) be a topological space with
the relation ∼p. We define the path-connected components
of (X, τ) as the equivalence classes under ∼p.

Proposition 217. Let (X, τ) be a topological space with
the relation ∼p. Then:

1. Each path-connected component C ⊆ X is path-
connected. Moreover, if p ∈ C, C is the maximal
path-connected subset that contains p.

2. The path-connected components are pairwise dis-
joint.
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Definition 218. Let (X, τ) be a topological space. We
say that (X, τ) is locally path-connected if ∀x ∈ X and
∀U ∈ τ such that x ∈ U , there exists a path-connected
neighbourhood N ∈ Nx such that x ∈ N ⊆ U .

Theorem 219. Let (X, τ) be a locally path-connected
topological space. Then, the connected components and
the path-connected components of (X, τ) are the same.

Proposition 220. Rn, Sn, T 2, M, K and Pn(R) are con-
nected and path-connected.

Definition 221. Let (X, τ) be a topological space. We
say that (X, τ) is simply connected if every path between
two points can be continuously transformed into any other
such path while preserving the two endpoints in question5.

9. | Topological manifolds
Topological manifolds

Definition 222 (Topological manifold). A topological
manifold of dimension m, abbreviated as m-manifold, is a
topological space (M, τ) such that:

1. (M, τ) is Hausdorff.

2. τ admits a countable basis.

3. ∀x ∈ M ∃N ∈ Nx such that N ∼= Rn.

Proposition 223. Let (M, τ) be a m-manifold. Then:

1. (M, τ) is locally connected.

2. (M, τ) is locally path-connected.

3. (M, τ) is locally compact.

Corollary 224. Let (M, τ) be a m-manifold, I be a fi-
nite or countable set and {Mi : i ∈ I} be the connected
components of (M, τ). Then, Mi ⊆ M are clopen and
M ∼=

⊔
i∈I Mi. Moreover for all i ∈ I, Mi is a manifold

itself of dimension m. Finally, if I is finite and (M, τ) is
compact, Mi are compact connected manifolds ∀i ∈ I.

Proposition 225. Being a topological manifold is a topo-
logical property.

Definition 226. Let (M, τ) be a m-manifold. A coordi-
nate chart is a pair (U,φ), where U ∈ τ and φ : U → Rn

is a homeomorphism. A collection {(Ui, φi) : i ∈ I} of
coordinate charts is called an atlas if M =

⋃
i∈I Ui.

Definition 227. Let (M, τ) be a m-manifold and
{(Ui, φi) : i ∈ I} be an atlas. For all i, j ∈ I such that
Ui ∩ Uj ̸= ∅, we define the following homeomorphism:

ϕij : φj(Ui ∩ Uj) −→ Ui ∩ Uj −→ φi(Ui ∩ Uj)
x 7−→ φj

−1(x) 7−→ φi

(
φj

−1(x)
)

That is, ϕij = φi ◦φj
−1|Ui∩Uj

. These functions are called
transition functions.

• If ϕij is a piecewise linear function ∀i, j ∈ I, we say
that M is a piecewise linear manifold.

• If ϕij is a differentiable function ∀i, j ∈ I, we say
that M is a differentiable manifold.

Proposition 228. Rn, Sn and Pn(R) are n-manifolds.

Proposition 229. T 2, M and K are compact 2-
manifolds.

Proposition 230. Let (M, τM ) be a m-manifold and
(N, τN ) be a n-manifold. Then, (M×N, τM×N ) is a m+n-
manifold.

Definition 231 (Connected sum). Let (M1, τM1) and
(M2, τM2) be two m-manifolds, p1 ∈ M1, p2 ∈ M2 and
(U1, φ1), (U2, φ2) be coordinate charts such that pi ∈ Ui

and φi(pi) = 0 for i = 1, 2. Let ε > 0 be such that
B(0, 2ε) ⊆ φ(U1) ∩ φ(U2) and R := B(0, 2ε) \ Cl(B(0, ε)).
Now consider the following homeomorphism:

ψ : R −→ R

(x1, . . . , xn) 7−→ 2ε2

x12 + · · · + xn
2 (x1, . . . , xn)

Then, note that for i = 1, 2, Mi
′ := Mi \ Cl(ψ−1(B(0, ε)))

is am-manifold. We define the connected sum of (M1, τM1)
and (M2, τM2) as:

M1 # M2 := M1
′ ⊔M2

′/
∼

where x ∼ (ψ−1 ◦ ϕ21 ◦ ψ)(x) ∀x ∈ ψ−1(B(0, ε))6.

Orientability

Definition 232. Let V be a vector space and B1 and B2
be two bases of V . The bases B1 and B2 have the same
orientation if det ([id]B1,B2) > 0. Otherwise, we say that
they have opposite orientations. Note that the property
of having the same orientation defines an equivalence re-
lation on the set of all bases for V .

Definition 233. An orientation on a vector space is an
assignment of +1 to one equivalence class and −1 to the
other. A vector space with an orientation selected is called
an oriented vector space, while one not having an orienta-
tion selected, is called an unoriented vector space.

Definition 234. Let V , W be oriented vector spaces and
f : V → W be a linear isomorphism. We say that f is
orientation-preserving if det ([f ]B1,B2) > 0 for some bases
B1 of V and B2 of W according to the orientation cho-
sen. Analogously, if det ([f ]B1,B2) < 0 we say that f is not
orientation-preserving.

Definition 235. Let f : Rn → Rn be a differentiable
homeomorphism. We say that f is orientation-preserving
if det (Df(x)) > 0 ∀x ∈ Rn. Otherwise, we say that f is
not orientation-preserving.

5Roughly speaking this definition says that a sumply connected topological space doesn’t have holes.
6Roughly speaking, a connected sum of two m-manifolds is a manifold formed by deleting a ball inside each manifold and gluing together

the resulting boundary spheres.
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Definition 236. We say that a manifold (M, τ) is ori-
entable if it admits an atlas such that all the transition
functions are orientation-preserving.

Proposition 237. Let (M, τM ) and (N, τN ) be orientable
manifolds. Then, (M ×N, τM×N ) is orientable.

Proposition 238. Rn, Sn and T 2 are orientable, but
Pn(R), M and K are not.

1-manifolds

Theorem 239 (Classification of connected 1-mani-
folds). Let (M, τ) be a connected 1-manifold. Then, M is
homeomorphic to exactly one of the following manifolds:

• R

• S1

10. | Compact surfaces
Connected sum of surfaces

Definition 240. Let (M, τ) be a m-manifold. We say
that (M, τ) is a surface if m = 2.

Proposition 241 (Connected sum of surfaces). Let
(S1, τS1) and (S2, τS2) be two surfaces, p1 ∈ M1, p2 ∈ M2
and (U1, φ1), (U2, φ2) be coordinate charts such that pi ∈
Ui and φi(pi) = 0 for i = 1, 2. Let Di := φi

−1(B(0, 1))
for i = 1, 2. Then, note that for i = 1, 2, Si

′ := Si \ Di

is a surface and ∂ Si
′ = φi

−1(∂ B(0, 1)) ∼= S1. Then, the
connected sum of (S1, τS1) and (S2, τS2) is:

S1 # S2 = S1
′ ⊔ S2

′/
∂ S1

′ ∼ ∂ S2
′

Proposition 242. Let (S1, τS1), (S2, τS2), (S3, τS3) be
compact connected surfaces. Then:

1. S1 # S2 ∼= S2 # S1

2. (S1 # S2) # S3 ∼= S1 # (S2 # S3)

3. S1 # S2 ∼= S1

4. S1 # S2 is orientable ⇐⇒ S1 and S2 are both
orientable.

Proposition 243. Let (M, τ) be a compact connected
surface. Then:

1. M # T 2 is a handle attached to M .

2. M # Pn(R) is attaching a Möbius band to M .

Definition 244. Let g ∈ N ∪ {0}. We define the genus g
orientable surface as:

Sg := S2 # T 2 #
(g)
· · · # T 2

Definition 245. Let h ∈ N. We define the genus h non-
orientable surface as:

Nh := P2(R) #
(h)
· · · # P2(R)

S1

S2

S3

S4

Figure 6: Genus g orientable surfaces

Triangularization
Definition 246. The standard n-simplex is the set

∆n := {(x0, . . . , xn) ∈ R≥0
n+1 : x0 + · · · + xn = 1}

Definition 247. Let (S, τ) be a compact connected
surface. A triangularization of S is a finite collection
{T1, . . . , Tn} such that S =

⋃n
i=1 Ti, Ti

∼= ∆2 for i =
1, . . . , n and if Ti ∩ Tj ̸= ∅ for i ̸= j, then Ti ∩ Tj is an
edge of Di and Dj or a vertex of Di and Dj .
Definition 248. A simple curve is a non-self-intersecting
continuous loop in the plane.
Theorem 249 (Jordan curve theorem). All simple
curves divides the plane in 2 connected components. One
of these components is bounded and the other is un-
bounded.
Theorem 250 (Radó theorem). Each compact surfaces
has a triangularization.
Theorem 251. Every compact surface can be con-
structed from a polygon with an even number of sides,
called a fundamental polygon of the surface, by pairwise
identification of its edges7. Reciprocally, every polygon
whose edges are pairwise identified produces a surface.
Proposition 252. We have the following representa-
tions8 of the most common surfaces 9:

• S2: aa−1 =: 1

• T 2: aba−1b−1

• P2(R): aa

• K: aba−1b

7Any fundamental polygon can be written symbolically as follows. Begin at any vertex, and proceed around the perimeter of the polygon
in either direction until returning to the starting vertex. During this traversal, record the label on each edge in order, with an exponent of
−1 if the edge points opposite to the direction of traversal.

8Note that these representations are not unique.
9See Figs. 2 and 5 for a better understanding.
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Figure 7: A triangularization of the torus T 2, the Klein
bottle K and the projective plane P2(R)

Definition 253. We say that a representation of a surface
is normalized if it is of one of the following forms:

a1b1a1
−1b1

−1 · · · anbnan
−1bn

−1

a1b1a1
−1b1

−1 · · · arbrar
−1br

−1c1c1 · · · cscs

Proposition 254. Let (S1, τS1) and (S2, τS2) be two sur-
faces whose respect representations are:

a1 · · · an b1 · · · bm

Then, S1 # S2 is represented by

a1 · · · anb1 · · · bm

Proposition 255. On the representations of polygons,
we have:

• aba−1b−1 ≡ cdc−1d−1

• aba−1b−1 ≡ a1a2ba2
−1a1

−1b−1

• aba−1b−1 ≡ ba−1b−1a ≡ a−1b−1ab ≡ b−1aba−1

• abab−1 ≡ abc, ab−1e−1

• abab−1 ≡ abcc−1ab−1

• abab−1 ≡ a−1b−1a−1b

Corollary 256. Let g ∈ N ∪ {0} and h ∈ N. Then, the
representations of Sg and Nh are:

• Sg: a1b1a1
−1b1

−1 · · · agbgag
−1bg

−1 (a polygon with
4g sides)

• Nh: a1a1 · · · ahah (a polygon with 2n sides)
Proposition 257.

• K ∼= P2(R) # P2(R)

• T 2 # P2(R) ∼= K # P2(R) ∼= P2(R) # P2(R) #
P2(R)

Corollary 258. Let g ∈ N ∪ {0} and h ∈ N. Then:

Sg # Nh
∼= Nh+2g

Proposition 259. Let (S, τ) be a compact connected sur-
face. Then, S is non-orientable if and only if it contains a
Möbius strip, which can be identified by a representation
of S of the form

aWaW ′

where W and W ′ may contain more than one edge.

Euler characteristic

Definition 260. Let (S, τ) be a compact connected sur-
face and T = {Ti : i = 1, . . . , n} be a triangularization
of S. We define the Euler characteristic of S with the
triangularization T as:

χT (S) := V − E + F

where V , E, and F are respectively the numbers of ver-
tices, edges and faces in the polygonal decomposition ob-
tained from T taking into account the identifications be-
tween vertices and edges10.

Proposition 261. Let (S, τ) be a compact connected sur-
face and T , T ′ be triangularizations of S. Then:

χT (S) = χT ′(S)

Therefore, from now on we will denote the Euler charac-
teristic of S as χ(S).

Proposition 262. We have the following Euler charac-
teristics of the most common surfaces:

• χ(S2) = 2

• χ(T 2) = 0

• χ(P2(R)) = 1

• χ(K) = 0

Proposition 263. Let (S1, τS1) and (S2, τS2) be two sur-
faces. Then:

χ(S1 # S2) = χ(S1) + χ(S2) − 2

Corollary 264. Let g ∈ N ∪ {0} and h ∈ N. Then:

• χ(Sg) = 2 − 2g

• χ(Nh) = 2 − h

Theorem 265. The Euler characteristic is a topological
property.

Theorem 266 (Classification of compact connected
surfaces). Every compact connected surface is homeo-
morphic to exactly one of the following surfaces:

• Sg for some g ∈ N ∪ {0}.

• Nh for some h ∈ N.

Corollary 267. Two compact connected surfaces are
homeomorphic if and only if they have the same orientabil-
ity and the same Euler characteristic.

10That is, two identified vertices (or edges) count as one.
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