
Statistics

1. | Point estimation
Statistical models

Definition 1. Let (Ω, A,P) be a probability space1, Θ be
a set, n ∈ N and x1, . . . , xn be a collection of data that
we may assume that they are the outcomes of a random
vector Xn = (X1, . . . , Xn) defined on (Ω, A,P). Suppose,
moreover, that the outcomes of Xn are in a set X ⊆ Rn,
the law Xn is one in the set P = {PXn

θ : θ ∈ Θ} and F
is a σ-algebra over X 2. We define a statistical model as
the triplet (X , F , P)3. The set X is called sample space,
and the set Θ, parameter space. The random vector Xn

is called random sample. If, moreover, X1, . . . , Xn are
i.i.d. random variables, Xn is called a simple random sam-
ple. The value (x1, . . . , xn) ∈ X is called a realization of
(X1, . . . , Xn).
Definition 2. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model. We say P = {PXn

θ : θ ∈ Θ} is identifiable if the
function

Θ −→ P
θ 7−→ PXn

θ

is injective4.
Definition 3. A statistical model (X , F , {PXn

θ : θ ∈ Θ})
is said to be parametric if Θ ⊆ Rd for some d ∈ N5.

Statistics and estimators

Definition 4 (Statistic). Let (X , F , {PXn

θ : θ ∈ Θ})
be a statistical model. We define a statistic T as a
Borel measurable function. That is, T can be written
as T = h(X1, . . . , Xn), where h : X → Rm is a Borel mea-
surable function. Hence, T is a random vector. The value
m is the dimension of the statistic.
Definition 5. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model. We define the sample mean as the statistic:

T (X1, . . . , Xn) = 1
n

n∑
i=1

Xi =: Xn

Given a realization (x1, . . . , xn) ∈ X , we will denote
xn := Xn(x1, . . . , xn)6.
Definition 6. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model. We define the sample variance as the statistic:

T (X1, . . . , Xn) = 1
n

n∑
i=1

(Xi − Xn)2 =: Sn
2

We define the corrected sample variance as the statistic:

T (X1, . . . , Xn) = 1
n − 1

n∑
i=1

(Xi − Xn)2 =: S̃n
2

Given a realization (x1, . . . , xn) ∈ X , we will denote
sn

2 := Sn
2(x1, . . . , xn) and s̃n

2 := S̃n
2(x1, . . . , xn)7.

Proposition 7. Let X1, . . . , Xn be random variables.
Then:

Sn
2 = 1

n

n∑
i=1

Xi
2 − Xn

2

Definition 8. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a para-
metric statistical model, θ ∈ Θ and g : Θ → Θ be a func-
tion. An estimator of g(θ) is a statistic θ̂ whose outcomes
are in Θ and does not depend on any unknown parame-
ter. It is used to give an estimation of the (supposedly
unknown) parameter g(θ).

Properties of estimators

Definition 9 (Bias). Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be
a parametric statistical model, g : Θ → Θ be a function
and θ̂ be an integrable estimator of g(θ) ∈ Θ. We define
the bias of θ̂ with respect to θ as:

bias(θ̂) := E(θ̂) − g(θ)

We say that θ̂ is an unbiased estimator of g(θ) if bias(θ̂) =
0 ∀θ ∈ Θ. Otherwise we say that it is a biased estimator
of g(θ).

Proposition 10. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a
parametric statistical model, g : Θ → Θ be a function and
θ̂ be an integrable estimator of g(θ) ∈ Θ. Suppose that
bias(θ̂) = cg(θ) for some c ∈ R. Then, θ̂

c+1 is an unbiased
estimator for g(θ)

Proposition 11. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be
a parametric statistical model such that X1, . . . , Xn are
square-integrable8 i.i.d. random variables with mean µ and
variance σ2. Then:

E(Xn) = µ and Var(Xn) = σ2

n

Hence, the estimator Xn of µ is unbiased.
1From now on we will assume that the random variables are defined always in the same probability space (Ω, A,P), so we will omit to

say that.
2That is, P denotes a family of probability distributions of Xn in (X , F), indexed by θ ∈ Θ. Note that we denote that distribution of

Xn by PXn to distinguish it from the probability distribution PXn in (Ω, A,P).
3Often we will take F = B(X ).
4From now on, we will suppose that all the sets P are always identifiable.
5There are cases where Θ is not a subset of Rd. For example, we could have Θ = {f : R → R≥0 :

´+∞
−∞ f(x) dx = 1}.

6Some times, and if the context is clear, we will denote xn simply as x.
7Some times, and if the context is clear, we will denote sn

2 and s̃n
2 simply as s2 and s̃2, respectively.

8That is, with finite 2nd moments.
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Proposition 12. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be
a parametric statistical model such that X1, . . . , Xn are
square-integrable i.i.d. random variables with mean µ and
variance σ2. Then:

E(Sn
2) = n − 1

n
σ2 and E(S̃n

2) = σ2

Hence, the estimator S̃n
2 of σ2 is unbiased whereas the

estimator Sn
2 of σ2 is biased.

Definition 13. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a para-
metric statistical model, g : Θ → Θ be a function and θ̂ be
a square-integrable integrable estimator of g(θ) ∈ Θ. The
mean squared error (MSE) of θ̂ is the function:

MSE(θ̂) := E
((

θ̂ − g(θ)
)2
)

Proposition 14. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a
parametric statistical model, g : Θ → Θ be a function and
θ̂ be a square-integrable integrable estimator of g(θ) ∈ Θ.
Then:

MSE(θ̂) = Var(θ̂) + (bias(θ̂))2

Definition 15. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a para-
metric statistical model, g : Θ → Θ be a function and θ̂, θ̃
be estimators of g(θ) ∈ Θ. We say that θ̂ is more efficient
than θ̃ if

Var(θ̂) < Var(θ̃) ∀θ ∈ Θ

Definition 16. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a
parametric statistical model and θ̂ be a square integrable
estimator of θ ∈ Θ. We say that θ̂ is a minimum-variance
unbiased estimator (MVUE) if it is an unbiased estimator
that has lower variance than any other unbiased estimator
∀θ ∈ Θ.

Proposition 17. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a
parametric statistical model. Then, the MVUE is unique
almost surely.

Sufficient statistics

Definition 18. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model and T be a statistic. We say that T is sufficient for
θ ∈ Θ if the joint conditional distribution of (X1, . . . , Xn)
given T(X1, . . . , Xn) = t does not depend on θ.

Theorem 19 (Fisher-Neyman factorization theo-
rem). Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical model
and T be a statistic. Then, T is sufficient if and only if
∀xn ∈ X we have:

1. For the discrete case:

pXn
(xn; θ) = g(T (xn); θ)h(xn)

2. For the continuous case:

fXn
(xn; θ) = g(T (xn); θ)h(xn)

for certain functions g and h. Here we have denoted by
pXn

(xn; θ) the joint pmf of Xn (in the discrete case) and
by fXn

(xn; θ) the joint pdf of Xn (in the continuous case).

Asymptotic properties

Definition 20. For each n ∈ N, let (X , F , {PXn

θ : θ ∈ Θ ⊆
R}) be a parametric statistical model with X1, . . . , Xn be-
ing i.i.d., g : Θ → Θ be a function and θ̂n be an estimator
of g(θ) ∈ Θ. We say that the sequence (θ̂n) is a weakly
consistent estimator of g(θ) if θ̂n

P−→ g(θ).

Definition 21. For each n ∈ N, let (X , F , {PXn

θ : θ ∈ Θ ⊆
R}) be a parametric statistical model with X1, . . . , Xn be-
ing i.i.d., g : Θ → Θ be a function and θ̂n be an estimator
of g(θ) ∈ Θ. We say that the sequence (θ̂n) is a strongly
consistent estimator of g(θ) if θ̂n

a.s.−→ g(θ).

Definition 22. For each n ∈ N, let (X , F , {PXn

θ : θ ∈ Θ ⊆
R}) be a parametric statistical model with X1, . . . , Xn be-
ing i.i.d., g : Θ → Θ be a function and θ̂n be an estimator
of g(θ) ∈ Θ. We say that the sequence (θ̂n) is a consistent
estimator in L2 of g(θ) if

lim
n→∞

E
((

θ̂n − g(θ)
)2
)

= lim
n→∞

MSE(θ̂n) = 0

Proposition 23. For each n ∈ N, let (X , F , {PXn

θ :
θ ∈ Θ ⊆ R}) be a parametric statistical model with
X1, . . . , Xn being i.i.d., g : Θ → Θ be a function and
θ̂n be a consistent estimator in L2 of g(θ) ∈ Θ. Then, θ̂n

is a weakly consistent estimator of g(θ).

Definition 24. For each n ∈ N, let (X , F , {PXn

θ : θ ∈ Θ ⊆
R}) be a parametric statistical model with X1, . . . , Xn be-
ing i.i.d., g : Θ → Θ be a function and θ̂n be an estimator
of g(θ) ∈ Θ. We say that the sequence (θ̂n) is an asymp-
totically unbiased estimator of g(θ) if

E(θ̂n) −→ g(θ)

Definition 25. For each n ∈ N, let (X , F , {PXn

θ : θ ∈ Θ ⊆
R}) be a parametric statistical model with X1, . . . , Xn be-
ing i.i.d. whose variance is σ2, g : Θ → Θ be a function
and θ̂n be an estimator of g(θ) ∈ Θ. We say that the se-
quence (θ̂n) is an asymptotically normal estimator of g(θ)
with asymptotically variance σ2

n if

√
n(θ̂n − g(θ)) d−→ N(0, σ2) ∀θ ∈ Θ

In that case, we denote it by θ̂n
a∼ N

(
g(θ), σ2

n

)
.

Methods of estimation

Definition 26 (Method of moments). Let
(X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a parametric sta-
tistical model such that X1, . . . , Xn are i.i.d. random
variables, and µk be k-th moment of each of them.
Suppose θ = (θ1, . . . , θd). Then, given a realization
xn = (x1, . . . , xn) ∈ X of Xn, an estimator θ̃(xn) =
(θ̃1(xn), . . . , θ̃d(xn)) of θ is given by the solution of the
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following system:

1
n

n∑
i=1

xi = µ1(θ1, . . . , θd)

1
n

n∑
i=1

xi
2 = µ2(θ1, . . . , θd)

...
1
n

n∑
i=1

xi
d = µd(θ1, . . . , θd)

Proposition 27. The estimators obtained by the method
of moments are strongly consistent and consistent in L2.

Definition 28 (Likelihood). Let (X , F , {PXn

θ : θ ∈ Θ ⊆
R}) be a parametric statistical model, xn ∈ X be a real-
ization of Xn.

1. For the discrete case, let pXn
(xn; θ) be the pmf of

PXn

θ . In this case, we define the likelihood function
as the function:

L(·; xn) : Θ −→ R
θ 7−→ pXn(xn; θ)

2. For the continuous case, let fXn
(xn; θ) be the pdf of

PXn

θ . In this case, we define the likelihood function
as the function:

L(·; xn) : Θ −→ R
θ 7−→ fXn

(xn; θ)

Definition 29 (Maximum likelihood method). Let
(X , F , {PXn

θ : θ ∈ Θ}) be a statistical model and xn ∈ X
be a realization of Xn. A maximum likelihood estimator
(MLE) of θ ∈ Θ is the estimator θ̂ such that:

L(θ̂; xn) = max{L(θ; xn) : θ ∈ Θ}9

Definition 30. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a
parametric statistical model, xn ∈ X be a realization of
Xn. We define the log-likelihood function as:

ℓ(θ; xn) := ln L(θ; xn)

We define the score function as:

S(θ; xn) := ∂ℓ

∂θ
(θ, xn)

Proposition 31. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a
parametric statistical model, xn ∈ X be a realization of
Xn Then, a MLE θ̂ of θ is the one that satisfies:

∂L

∂θ
(θ̂; xn) = 0

Or equivalently, ∂ℓ
∂θ (θ̂; xn) = 0.

Proposition 32 (Invariance of the MLE). Let
(X , F , {PXn

θ : θ ∈ Θ}) be a statistical model and g : Θ →
Θ be a measurable function. Suppose θ̂ is a MLE of θ.
Then, g(θ̂) is a MLE of g(θ).

Regular statistical models

Definition 33. A statistical model (X , F , {PXn

θ : θ ∈ Θ})
is said to be regular if it satisfies the following conditions:

1. Θ is open.

2. The support of PXn

θ does not depend on θ.

3. The function L(θ; xn) is two times differentiable with
respect to θ ∀xn ∈ X (except in a set of probability
zero) and moreover:

i) For the discrete case:

∂2

∂θ2

∑
xn∈X

L(θ; xn) =
∑

xn∈X

∂2L

∂θ2 (θ; xn)

ii) For the continuous case:

∂2

∂θ2

ˆ

X

L(θ; xn) dxn =
ˆ

X

∂2L

∂θ2 (θ; xn) dxn

4. For all θ ∈ Θ, we have:

0 <

ˆ

X

(
∂2ℓ

∂θ2 (θ; xn)
)2

fXn
(xn; θ) dxn < ∞

Definition 34. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a reg-
ular parametric statistical model, xn ∈ X be a realization
of Xn. We define the observed information of the model
as:

J(θ; xn) = − ∂2ℓ

∂θ2 (θ; xn)

We define the Fisher information of the model as:

I(θ) = E(J(θ; Xn)) = −E
(

∂2ℓ

∂θ2 (θ; Xn)
)

10

Proposition 35. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a
regular parametric statistical model, xn ∈ X be a realiza-
tion of Xn. Then, E(S(θ; Xn)) = 0 and

I(θ) = Var(S(θ; Xn)) = E

[(
∂ℓ

∂θ
(θ; Xn)

)2
]

for all θ ∈ Θ.

Proposition 36. Let (X , F , {PX1
θ : θ ∈ Θ}) be a regular

parametric statistical model of one observation x1 ∈ X .
Then, the model corresponding to n i.i.d. observations
x1, . . . , xn is regular and

I(θ) = nI1(θ)

where I1(θ) denotes the Fisher information in the model
with one observation.

Definition 37. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model and T be a statistic. We say that T is regular if

9Note that sometimes this estimator is not unique or may not even exist.
10Since generally J(θ; Xn) will be a matrix, the expectation of J(θ; Xn) is taken component by component.
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1. for the discrete case:
∂

∂θ

∑
xn∈X

T (xn)L(θ; xn) =
∑

xn∈X
T (xn)∂L

∂θ
(θ; xn)

2. for the continuous case:
∂

∂θ

ˆ

X

T (xn)L(θ; xn) dxn =
ˆ

X

T (xn)∂L

∂θ
(θ; xn) dxn

for all θ ∈ Θ.
Theorem 38 (Cramér-Rao bound). Let (X , F , {PXn

θ :
θ ∈ Θ ⊆ R}) be a regular parametric statistical model,
xn ∈ X be a realization of Xn, g : Θ → Θ be a differen-
tiable function and θ̂ be a regular estimator of g(θ) ∈ Θ.
Then:

Var(θ̂) ≥ g′(θ)2

I(θ)

[
1 +

(
bias′(θ̂)

)2
]

Moreover if the estimator θ̂ is unbiased we have:

Var(θ̂) ≥ g′(θ)2

I(θ)

Definition 39. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a
regular statistical model, xn ∈ X be a realization of Xn,
g : Θ → Θ be a differentiable function and θ̂ be a regular
and unbiased estimator of g(θ) ∈ Θ. We say that θ̂ is an
efficient estimator of g(θ) if

Var(θ̂) = g′(θ)2

I(θ)

We say that θ̂ is an asymptotic efficient estimator of g(θ)
if the asymptotic variance of θ̂ is g′(θ)2

I(θ) .

Proposition 40. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a
regular statistical model, g : Θ → Θ be a function and θ̂
be a regular, unbiased and efficient estimator of g(θ) ∈ Θ.
Then, θ̂ is a MVUE in the class of regular estimators.
Theorem 41. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a reg-
ular statistical model, xn ∈ X be a realization of Xn and
θ̂ be a MLE of θ ∈ Θ. Suppose that ∂2ℓ

∂θ2 is a continuous
function of θ and that∣∣∣∣ ∂2ℓ

∂θ2 (θ̃; xn)
∣∣∣∣ < h(xn; θ)

for all θ̃ in a neighbourhood of θ with´
X h(xn; θ)L(θ; xn) dxn < ∞. Then:

θ̂
d−→ N

(
θ,

1
I(θ)

)
Thus, θ̂ is an asymptotically efficient estimator of θ.
Hence, an asymptotic confidence interval for θ of confi-
dence 1 − α is:

θ ∈

θ̂ −
z1− α

2√
I(θ̂)

, θ̂ +
z1− α

2√
I(θ̂)


where z1− α

2
denote the 1 − α

2 quantile of the standard
normal distribution (see Theorem 45).

Theorem 42 (Delta method). Let (X , F , {PXn

θ : θ ∈
Θ ⊆ R}) be a statistical model, g : Θ → Θ be a two-times
differentiable function such that g′(θ) ̸= 0 and θ̂ be an
estimator of θ ∈ Θ. Then:

g(θ̂) d−→ N
(

g(θ), g′(θ)2Var(θ̂)
)

Order statistics

Definition 43. Let X1, . . . , Xn be random variables. We
define the k-th order statistic, denoted by X(k) of the sam-
ple X1, . . . , Xn as the k-th smallest value of it. In partic-
ular:

X(1) := min{X1, . . . , Xn} X(n) := max{X1, . . . , Xn}

The sample X(1), . . . , X(n) is usually called order statistics.

2. | Distributions relating N(µ, σ2)

Standard normal distribution

Definition 44. We denote by Φ(t) the cdf of a standard
normal distribution N(0, 1).

Definition 45 (Quantile). We define quantile function
QX(p) of a distribution of a random variable X as the
inverse function of the cdf. That is, QX(p) satisfies:

P(X ≤ QX(p)) = p

In particular, we denote the quantile of a standard normal
distribution as zp := QX(p) = Φ−1(p).

Multivariate normal distribution

Definition 46. Let b ∈ Rn, Σ ∈ Mn(R) be a symmetric
positive-definite matrix and X be a random vector. We
say that X has multivariate normal distribution, and we
denote it by X ∼ N(b, Σ) if has density function:

fX(x) = (2π)− n
2 (det Σ)− 1

2 e− (x−b)TΣ−1(x−b)
2

The vector b is called mean vector and the matrix Σ, co-
variance matrix.

Proposition 47. Let Σ ∈ Mn(R) be a symmetric
positive-definite matrix. Then, ∃A ∈ GLn(R) such that
Σ = AAT11.

Proposition 48. Let b ∈ Rn, Σ = AAT ∈ Mn(R) be a
symmetric positive-definite matrix with A ∈ GLn(R) and
X, Z be random vectors.

• If Z ∼ N(0, In), then AZ + b ∼ N(b, Σ).

• If X ∼ N(b, In), then A−1(X − b) ∼ N(0, Σ).
11When Σ is the covariance matrix, the matrix A such that Σ = AAT plays the role of the multivariate standard deviation.

4



Proposition 49. Let b ∈ Rn, Σ ∈ Mn(R) be a sym-
metric positive-definite matrix and X = (X1, . . . , Xn) ∼
N(b, Σ). Then, E(X) = b and Var(X) = Σ and more-
over:

b = (E(X1), . . . ,E(X2))T

Σ =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xn)
...

... . . . ...
Cov(Xn, X1) Cov(Xn, X2) · · · Var(Xn)


Proposition 50. Let b, c ∈ Rn, Σ ∈ Mn(R) be a
symmetric positive-definite matrix, B ∈ GLn(R), X ∼
N(b, Σ) and Y := BX + c. Then:

Y ∼ N(Bb + c, BΣBT)

χ2-distribution
Proposition 51. Let n ∈ N and X1, . . . , Xn be indepen-
dent random variables such that Xi ∼ Gamma(αi, β) for
i = 1, . . . , n. Then:

n∑
i=1

Xi ∼ Gamma
(

n∑
i=1

αi, β

)
Corollary 52. Let n ∈ N and Z1, . . . , Zn be i.i.d. random
variable with standard normal distribution. Then:

Z1
2 + · · · + Zn

2 ∼ Gamma
(

n

2 ,
1
2

)
Definition 53. We define the chi-squared distribution
with n degrees of freedom, denoted as χn

2, as the distri-
bution

χn
2 := Gamma

(
n

2 ,
1
2

)
which is the distribution of Z1

2 + · · · + Zn
2, where

Z1, . . . , Zn ∼ N(0, 1) are i.i.d. random variables. Its pdf
is:

fχn
2(x) = 1

2 n
2 Γ
(

n
2
)x

n
2 −1e− x

2 1(0,∞)(x)

We will denote by χn;p
2 := Qχn

2(p) the quantile of the
χn

2.
Proposition 54. Let X ∼ χa

2 and Y ∼ χb
2 be i.i.d.

random variables. Then:

X + Y ∼ χa+b
2

Proposition 55. Let X ∼ Gamma(α, β) and c ∈ R>0.
Then, cX ∼ Gamma(α, β/c). In particular, if X ∼
Gamma(n, 1), then 2X ∼ χ2n

2.

Student’s t-distribution

Definition 56. Let n ∈ N and Z ∼ N(0, 1) and Y ∼ χn
2

be independent random variables. We define the Student’s
t-distribution with n degrees of freedom as the distribution
of:

Z√
Y/n

We will denote by tn;p := Qtn(p) the quantile of the tn.

Proposition 57. Let n ∈ N. Then, the pdf of tn is:

ftn(x) =
Γ
(

n+1
2
)

√
πnΓ

(
n
2
)(1 + x2

n

)− n+1
2

12

Fisher’s theorem

Theorem 58 (Fisher’s theorem). Let (X , F , {X1, . . . ,
Xn ∼ N(µ, σ2) i.i.d. : (µ, σ2) ∈ R×R≥0}) be a parametric
statistical model. Then:

1. Xn ∼ N
(

µ, σ2

n

)
2. S̃n

2 ∼ σ2

n−1 χn−1
2

3. Xn and S̃n
2 are independent.

Corollary 59. Let n ∈ N and X1, . . . , Xn ∼ N(µ, σ2) be
i.i.d. random variables. Then:

Xn − µ
S̃n√

n

∼ tn−1

Corollary 60. Let n ∈ N and X ∼ tn be a random vari-
able. Then:

X
d−→ N (0, 1)

Hence, N(0, 1) = t∞.

Corollary 61. Let (X , F , {PXn

θ : θ ∈ Θ}) be a paramet-
ric statistical model and suppose X1, . . . , Xn ∼ N(µ, σ2)
are i.i.d. random variables. Then, the estimators Xn of µ
and S̃n

2 of σ2 are unbiased and consistent.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4
t1
t2
t4
t8
N(0, 1)

Figure 1: Probability density function of 4 Student’s t-
distribution together with a standard normal N(0, 1) =
t∞.

12It makes sense if we replace the value n ∈ N for a value ν ∈ R>0. However the original definition of tn from the χn
2 fails.
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3. | Confidence intervals
Confidence regions

Definition 62. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a
parametric statistical model and g : Θ → Rm be a func-
tion with m ≤ d. A confidence region for g(θ) with confi-
dence level γ ∈ [0, 1] is a random region C(Xn) such that:

P(g(θ) ∈ C(Xn)) ≥ γ ∀θ ∈ Θ

If d = 1, we talk about confidence intervals. The value
α := 1 − γ is called significance level.

Definition 63. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a
parametric statistical model and g : Θ → Rm be a func-
tion with m ≤ d. A pivot for g(θ) is a measurable function

π : X × g(Θ) −→ Rm

(xn, g(θ)) 7−→ π(xn, g(θ))

such that the distribution of π(xn, g(θ)) does not depend
on θ.

Proposition 64. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a
parametric statistical model, γ ∈ [0, 1], g : Θ → Rm be a
function with m ≤ d, π(xn, g(θ)) be a pivot for g(θ) and
B ∈ B(Rm) such that:

P(π(Xn, g(θ)) ∈ B) ≥ γ ∀θ ∈ Θ

Then:

C(X) = {g(θ) : π(Xn, g(θ)) ∈ B} ⊆ g(Θ)

is a confidence region with confidence level γ.

Confidence intervals for the relative frequency
Proposition 65. Let (X , F , {X1, . . . , Xn ∼ Ber(p) i.i.d. :
p ∈ (0, 1)}) be a parametric statistical model, xn ∈ X be
a realization of (X1, . . . , Xn) and α ∈ [0, 1]. Let p̂ = xn.
Then, an asymptotic confidence interval for p of confidence
level 1 − α is:

p ∈

(
p̂ − z1− α

2

√
p̂(1 − p̂)

n
, p̂ + z1− α

2

√
p̂(1 − p̂)

n

)

Confidence intervals for N(µ, σ2)
Proposition 66 (Interval for µ with σ known). Let
σ ∈ R≥0 be a known parameter, (X , F , {X1, . . . , Xn ∼
N(µ, σ2) i.i.d. : µ ∈ R}) be a parametric statistical model,
xn ∈ X be a realization of (X1, . . . , Xn) and α ∈ [0, 1].
Then, a confidence interval for µ of confidence level 1 − α
is:

µ ∈
(

xn − z1− α
2

σ√
n

, xn + z1− α
2

σ√
n

)
Proposition 67 (Intervals for µ and σ2). Let
(X , F , {X1, . . . , Xn ∼ N(µ, σ2) i.i.d. : (µ, σ2) ∈ R×R≥0})
be a parametric statistical model, xn ∈ X be a realization
of (X1, . . . , Xn) and α ∈ [0, 1]. Then, a confidence interval
for µ of confidence level 1 − α is:

µ ∈
(

xn − tn−1;1− α
2

s̃n√
n

, xn + tn−1;1− α
2

s̃n√
n

)

A confidence interval for σ2 of confidence level 1 − α is:

σ2 ∈
(

(n − 1)s̃n
2

χn;1− α
2

,
(n − 1)s̃n

2

χn; α
2

)

Confidence intervals for two-samples problems

Proposition 68 (Independent samples with known
variances). Let σx, σy ∈ R≥0 be known parameters,
(X , F , {X1, . . . , Xnx

∼ N(µx, σx
2) i.i.d., Y1, . . . , Yny

∼
N(µy, σy

2) i.i.d. : (µx, µy, ) ∈ R2}) be a parametric sta-
tistical model such that each Xi is independent of Yj

∀(i, j) ∈ {1, . . . , nx} × {1, . . . , ny}, xnx ∈ X be a re-
alization of (X1, . . . , Xnx

), yny
∈ X be a realization of

(Y1, . . . , Yny
) and α ∈ [0, 1]. Then, an asymptotic confi-

dence interval for µx − µy of confidence level 1 − α is:

µx − µy ∈
(

xnx − yny
− z1− α

2
s, xnx − yny

+ z1− α
2

s
)

where s =
√

σx
2

nx
+ σy

2

ny
.

Proposition 69 (Independent samples with un-
known equal variances). Let (X , F , {X1, . . . , Xnx

∼
N(µx, σ2) i.i.d., Y1, . . . , Yny

∼ N(µy, σ2) i.i.d. :
(µx, µy, ) ∈ R2 × R≥0

2}) be a parametric statisti-
cal model such that each Xi is independent of Yj

∀(i, j) ∈ {1, . . . , nx} × {1, . . . , ny}, (x1, . . . , xn) ∈ X be
a realization of (X1, . . . , Xn), (y1, . . . , yn) ∈ X be a re-
alization of (Y1, . . . , Yn) and α ∈ [0, 1]. Let s̃nx

2 :=
1

nx−1
∑n

i=1 (xi − x)2 and s̃ny
2 := 1

ny−1
∑n

i=1 (yi − y)2.
Then, an asymptotic confidence interval for µx − µy of
confidence level 1 − α is:

µx − µy ∈

(
xnx − yny

− tν;1− α
2

sp

√
1

nx
+ 1

ny
,

xnx
− yny

+ tν;1− α
2

sp

√
1

nx
+ 1

ny

)

where sp
2 = (nx−1)s̃nx

2+(ny−1)s̃ny
2

nx+ny−2 and ν = nx + ny − 2.

Proposition 70 (Independent samples with
unknown variances). Let (X , F , {X1, . . . , Xnx

∼
N(µx, σx

2) i.i.d., Y1, . . . , Yny
∼ N(µy, σy

2) i.i.d. :
(µx, µy, ) ∈ R2 × R≥0

2}) be a parametric statistical
model such that each Xi is independent of Yj ∀(i, j) ∈
{1, . . . , nx} × {1, . . . , ny}, xnx

∈ X be a realization of
(X1, . . . , Xnx), yny

∈ X be a realization of (Y1, . . . , Yny )
and α ∈ [0, 1]. Let s̃nx

2 := 1
nx−1

∑n
i=1 (xi − x)2 and

s̃ny
2 := 1

ny−1
∑n

i=1 (yi − y)2. Then, an asymptotic confi-
dence interval for µx − µy of confidence level 1 − α is:

µx − µy ∈

(
xnx − yny

− tν;1− α
2

√
s̃nx

2

nx
+

s̃ny
2

ny
,

xnx − yny
+ tν;1− α

2

√
s̃nx

2

nx
+

s̃ny
2

ny

)
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where

ν =

(
s̃nx

2

nx
+

s̃ny
2

ny

)2

(
s̃nx

2

nx

)2

nx − 1 +

(
s̃ny

2

ny

)2

ny − 1

Proposition 71 (Related samples with un-
known variances). Let (X , F , {X1, . . . , Xn ∼
N(µx, σx

2) i.i.d., Y1, . . . , Yn ∼ N(µy, σy
2) i.i.d. :

(µx, σx
2, µy, σy

2) ∈ R2 × R≥0
2}) be a parametric sta-

tistical model such that each Wi := Xi − Yi ∼ N(µx −
µy, σx

2 − σy
2) are i.i.d., (x1, . . . , xn) ∈ X be a realiza-

tion of (X1, . . . , Xn), (y1, . . . , yn) ∈ X be a realization of
(Y1, . . . , Yn) and α ∈ [0, 1]. Then, we can proceed as if
we only had the sample (W1, . . . , Wn). In particular, a
confidence interval for µx − µy of confidence level 1 − α is:

µx − µy ∈
(

xn − yn − tn−1;1− α
2

ŝn√
n

,

xn − yn + tn−1;1− α
2

ŝn√
n

)
where ŝ2

n = 1
n−1

∑n
i=1 (xi − yi − (x − y))2.

4. | Hypothesis testing
Hypothesis test

Definition 72. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model and Θ0, Θ1 ⊂ Θ be disjoint subsets. Our goal is to
know whether θ ∈ Θ0 or θ ∈ Θ1 (even if it isn’t neither of
them) and we will use a sample xn ∈ X to conclude our
objective. We define the following two propositions which
we will call hypothesis:

H0 : θ ∈ Θ0 H1 : θ ∈ Θ1

H0 is called null hypothesis and H1 is called alternative
hypothesis. We say that the hypothesis Hi is simple if
Θi = {θ0} for some θ0 ∈ Θ. Otherwise we say that the
hypothesis Hi is compound.

Definition 73 (Hypothesis test). Let (X , F , {PXn

θ :
θ ∈ Θ}) be a statistical model. A hypothesis test is a
function

δ : X −→ {H0, H1}
xn 7−→ δ(xn)

The set A0 := δ−1(H0) ⊆ X , which is the set of sam-
ples that will lead us to accept13 H0, is called acceptation
region. The set A1 := δ−1(H1) ⊆ X , which is the set
of samples that will lead us to accept H1 (and therefore
reject H0), is called critical region14.

Definition 74. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model and δ : X = A1 ⊔ A2 → {H0, H1} be a hypothesis

test. An error of type I is the rejection of H0 when it is
true. An error of type II is the acceptation of H0 when it
is false. We define the probabilities α and β as:

α := P(Error of type I) = P(Reject H0 | H0 is true)
β := P(Error of type II) = P(Accept H0 | H0 is false)

More precisely, if xn ∈ X is a realization of Xn, then:

α := sup{P(xn ∈ A1 | θ) : θ ∈ Θ0}

The value 1 − β is called power of the test and the value
α, size of the test. Moreover, we say that the test has sig-
nificance level α ∈ [0, 1] if its size is less than or equal to
α. In many cases the size of the test and the significance
level are equal, hence the use of the same letter1516.

Definition 75. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model, δ : X = A1 ⊔ A2 → {H0, H1} be a hypothesis test
and xn ∈ X be a realization of Xn. We define the power
function as:

Π(θ) = P(Reject H0) = P(xn ∈ A1)

Proposition 76. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statis-
tical model, xn ∈ X be a realization of Xn and δ : X =
A1 ⊔ A2 → {H0, H1} be a hypothesis test. Then:

Π(θ) =
{

α if θ ∈ Θ0

1 − β if θ ∈ Θ1

Test statistic and p-value

Definition 77. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be a
statistical model, xn ∈ X be a realization of Xn and
δ : X = A1 ⊔ A2 → {H0, H1} be a hypothesis test. A
statistic T used to decide whether or not reject the null
hypothesis is called a test statistic.

Definition 78. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be
a statistical model, xn ∈ X be a realization of Xn,
δ : X = A1 ⊔ A2 → {H0, H1} be a hypothesis test such
that Θ0 = {θ0}, and T be a test statistic. Suppose that
we have observed the value t := T (xn). We define the
p-value as the probability of obtaining test results at least
as extreme as the results actually observed, under the as-
sumption that the null hypothesis is correct.

Definition 79. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be
a statistical model, xn ∈ X be a realization of Xn,
δ : X = A1 ⊔ A2 → {H0, H1} be a hypothesis test such
that Θ0 = {θ0}. We say that the test is a

• one-sided right tail test if Θ1 = (θ0, ∞).

• one-sided left tail test if Θ1 = (−∞, θ0).

• two-sided test if Θ1 = R \ {θ0}.
13Some authors prefer to say that they don’t reject H0 instead of saying that they accept H0.
14In order to denote these concepts more compactly, we will write δ : X = A1 ⊔ A2 → {H0, H1} to denote the hypothesis test whose

acceptation and critical regions are A0 and A1, respectively.
15In particular, for simple hypothesis they are the same thing.
16In practice, we fix a significance level α ∈ [0, 1] small enough (≈ 0.05 but may vary depending on the problem) with which we accept

making mistakes and from here we try to minimize the β (or maximize the power 1 − β). Moreover, having fixed α, we obtain a confidence
level 1 − α. And if we impose P(xn ∈ A0 | H0) = 1 − α, we are able to determine A0.
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Proposition 80. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ R}) be
a statistical model, xn ∈ X be a realization of Xn,
δ : X = A1 ⊔ A2 → {H0, H1} be a hypothesis test such
that Θ0 = {θ0}, and T be a test statistic. Suppose that
we have observed the value t := T (xn) and let p be the
p-value of the test. Then:

1. One-sided right tail test:

p = P(T ≥ t | H0)

2. One-sided left tail test:

p = P(T ≤ t | H0)

3. Two-sided test:

p = 2 min{P(T ≥ t | H0),P(T ≤ t | H0)}17

And given a significance level α ∈ (0, 1) we will reject H0
if p < α and accept H0 if p ≥ α.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3
Obsevervation
Test statistic
p-value

Figure 2: Probability density function of a test statistic
(assuming the null hypothesis) together with an observed
value and the p-value of the one-sided right tail test.

Neymann-Pearson test

Definition 81. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model. We say that a test δ : X = A1 ⊔ A2 → {H0, H1}
of significance level α is a uniformly most powerful (UMP)
test if it has the greatest power among all the tests with
significance level α.

Lemma 82. Let (X , F , {PXn

θ : θ ∈ Θ}) be a statistical
model. We say that a test δ : X = A1 ⊔ A2 → {H0, H1}
of significance level α. If A1 does not depend on the pa-
rameter θ ∈ Θ1, then δ is a UMP test.

Definition 83 (Neymann-Pearson test). Let
(X , F , {PXn

θ : θ ∈ Θ}) be a statistical model, xn ∈ X
be a realization of Xn and δ : X = A1 ⊔ A2 → {H0, H1}
be a hypothesis test such that Θ0 = {θ0} and Θ1 = {θ1}.

We say that δ is a Neyman-Pearson test of significance
level α ∈ [0, 1] if ∃C > 0 such that:{

xn ∈ X : L(θ0; xn)
L(θ1; xn) > C

}
= A0{

xn ∈ X : L(θ0; xn)
L(θ1; xn) ≤ C

}
= A1

and P(xn ∈ A1 | H0) = α.

Lemma 84 (Neyman-Pearson lemma). Any Neyman-
Pearson test is a UMP test.

Theorem 85. Any UMP test is a Neyman-Pearson test.

Likelihood-ratio test
Definition 86 (Likelihood-ratio test). Let
(X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a statistical model, xn ∈
X be a realization of Xn, δ : X = A1 ⊔ A2 → {H0, H1}
be a hypothesis test of compound hypothesis H0 : θ ∈ Θ0
and H1 : θ ∈ Θ1. Then, the likelihood ratio test (LRT) is
given by the critical region:{

xn ∈ X : sup{L(θ; xn) : θ ∈ Θ0}
sup{L(θ; xn) : θ ∈ Θ}

≤ C

}
= A1

for some constant C > 018.

Proposition 87. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd})
be a statistical model, xn ∈ X be a realization of Xn,
δ : X = A1 ⊔ A2 → {H0, H1} be a hypothesis test of sim-
ple hypothesis H0 and H1. Then, the LRT is a Neyman-
Pearson test.

Theorem 88 (Asymptotic behaviour of the LRT).
Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be a parametric reg-
ular statistical model and consider the test δ : X =
A1 ⊔A2 → {H0, H1} of compound hypothesis H0 : θ ∈ Θ0
and H1 : θ ∈ Θ1. Let

Λ(xn) := −2 ln sup{L(θ; xn) : θ ∈ Θ0}
sup{L(θ; xn) : θ ∈ Θ}

which is called LRT test statistic. Then if the model is
regular, we have:

Λ(xn) d−→ χr
2

where r = dim Θ − dim Θ0.

Definition 89 (Goodness of fit). Suppose we have a
random variable X whose outcomes are x1, . . . , xn and
that we classify these outcomes in k classes. Thus, we
obtain a table of the form:

Class a1 · · · aj · · · ak Total
Frequency n1 · · · nj · · · nk n

We want a test for:{
H0 : X ∼ fθ

H1 : P (X ∈ ai) = ni

n ∀i

If πi denotes the probability of being in the cell i under
H0, we can approximate πi by π̂i = P(X ∈ ai | θ = θ̂),

17If the statistic T is symmetric with respect to the origin, then p = P(|T | ≥ |t| | H0).
18Note that L(θ̂, xn) = sup{L(θ; xn) : θ ∈ Θ}, where θ̂ is the MLE. Similarly L(θ̂0, xn) = sup{L(θ; xn) : θ ∈ Θ}, where θ̂0 is the MLE

restricted to Θ0.
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where θ̂ is the MLE of θ, for i = 1, . . . , k − 1 and let
π̂k := 1 −

∑k−1
i=1 π̂i. Hence since the distribution of the

data in the table follows a multinomial distribution, we
have19:

Λ = 2
k∑

i=1
ni log

(
ni

nπ̂i

)
d−→ χk−2

2

Definition 90 (Test of homogenity). Consider r i.i.d.
random variables X1, . . . , Xr whose outcomes can be clas-
sified in the classes a1, . . . , as each with probability P(Xi =
aj) = pij ∀i, j. Suppose we have nij observations of
the variable Xi taking the value aj and denote ni· :=∑s

j=1 nij , n·j :=
∑r

i=1 nij and n :=
∑r

i=1
∑s

j=1 nij . That
is, we have the following table:

a1 · · · aj · · · as Total
X1 n11 · · · n1j · · · n1s n1·
...

... . . . ... . . . ...
...

Xi ni1 · · · nij · · · nis ni·
...

... . . . ... . . . ...
...

Xr nr1 · · · nrj · · · nrs nr·
Total n·1 · · · n·j · · · n·s n

Table 1

We want a test for:{
H0 : pj := p1j = · · · = prj ∀j

H1 : otherwise

Again, the distribution of the data in the table follows a
multinomial distribution, so under H0 we get the following
MLEs (with the constraint that

∑s
j=1 pj = 1):

p̂j = n·j

n
∀j

And in general, using the constraint
∑r

i=1
∑s

j=1 pij = 1,
we have:

p̂ij = nij

n
∀i, j

Finally we have:

Λ = 2
r∑

i=1

s∑
j=1

nij log
(

nijn

ni·n·j

)
d−→ χ(r−1)(s−1)

2

Definition 91 (Test of independence). Consider r
i.i.d. random variables X1, . . . , Xr whose outcomes can be
classified in the classes a1, . . . , as each with probability
P(Xi = aj) = pij ∀i, j. Suppose we have nij observa-
tions of the variable Xi taking the value aj and denote
ni· :=

∑s
j=1 nij , n·j :=

∑r
i=1 nij and n :=

∑r
i=1
∑s

j=1 nij .
That is, we have again the Table 1. We want a test for:{

H0 : pij = θiϕj ∀i, j

H1 : otherwise

Again, the distribution of the data in the table follows
a multinomial distribution, so under H0 we get the fol-
lowing MLEs for θi and ϕj (with the constraints that

∑r
i=1 θi =

∑s
j=1 ϕj = 1):

θ̂i = ni·

n
ϕ̂j = n·j

n
∀i, j

And in general, using the constraint
∑r

i=1
∑s

j=1 pij = 1,
we have:

p̂ij = nij

n
∀i, j

Finally we have:

Λ = 2
r∑

i=1

s∑
j=1

nij log
(

nijn

ni·n·j

)
d−→ χ(r−1)(s−1)

2

t-test

Definition 92 (t-test). Let (X , F , {X1, . . . , Xn ∼
N(µ, σ2) i.i.d. : µ ∈ R}) be a statistical model, xn ∈ X
be a realization of (X1, . . . , Xn). The t-test is the test
δ : X = A1 ⊔ A2 → {H0, H1}, where H0 : µ = µ0 for some
µ0 ∈ R and H1 can be either of {µ > µ0, µ < µ0, µ ̸= µ0}.
In this case the test statistic that is taken is:

Xn − µ
s̃n√

n

∼ tn−1

Wald and score tests

Definition 93 (Wald test). Let (X , F , {PXn

θ : θ ∈ Θ ⊆
Rd}) be a parametric regular statistical model and con-
sider the test δ : X = A1 ⊔ A2 → {H0, H1} of simple
hypothesis H0 : θ = θ0 and H1 : θ ̸= θ0. The Wald test is
the test whose statistic is:

(θ̂ − θ0)
T

I(θ̂)(θ̂ − θ0) a∼ χd
2

where θ̂ is the MLE of θ and d = dim Θ. If H0 : θ ∈ Θ0,
we shall replace θ0 by the MLE under H0, θ̂0, in the test
statistic. For the 1-dimensional case, we have:

I(θ̂)(θ̂ − θ0)2 a∼ χ1
2

Corollary 94. Let (X , F , {PXn

θ : θ ∈ Θ ⊆ Rd}) be
a parametric regular statistical model and consider the
test δ : X = A1 ⊔ A2 → {H0, H1} of simple hypothesis
H0 : Rθ = r and H1 : Rθ ̸= r, where R ∈ Mk×d(R),
θ ∈ Rd and r ∈ Rk. The test statistic of Wald test is:

(Rθ̂ − r)
T[

RI(θ̂)
−1

RT
]−1

(Rθ̂ − r) a∼ χk
2

where θ̂ is the MLE of θ. The matrix R is called contrast
matrix.

Definition 95 (Score test). Let (X , F , {PXn

θ : θ ∈ Θ ⊆
Rd}) be a parametric regular statistical model and con-
sider the test δ : X = A1 ⊔ A2 → {H0, H1} of simple
hypothesis H0 : θ = θ0 and H1 : θ ̸= θ0. The score test is
the test whose statistic is:

S(θ0)TI−1(θ0)S(θ0) a∼ χd
2

19In order to have the expected asymptotic behaviour we need to check that the expectations of each π̂i are greater than or equal to 5
(heuristic criterion), i.e. niπ̂i ≥ 5 ∀i. If this is not the case, we should reduce the number of classes by groupping some of them together.
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where d = dim Θ. If H0 : θ ∈ Θ0, we shall replace θ0
by the MLE under H0, θ̂0, in the test statistic. For the
1-dimensional case, we have:

S(θ0)2

I(θ0)
a∼ χ1

2

5. | Bootstrapping
Parametric and non-parametric bootstrap
Definition 96 (Non-parametric bootstrap). Con-
sider a sample x1, . . . , xn from i.i.d. random variables
X1, . . . , Xn ∼ F of an unknown distribution F . Our goal
is to get an estimator of a parameter θ = T (X1, . . . , Xn).
To do so, we define the empirical distribution Fn as fol-
lows: if X ∼ Fn then:

P(X = xi) = 1
n

∀i ∈ {1, . . . , n}

First we compute θ̂ := T (x1, . . . , xn) from the data given.
Now we generate B samples of data {xb

1, . . . , xb
n}, b =

1, . . . , B, taken from the distribution Fn (with replace-
ment) and for each sample we compute the respective es-
timator θ̂b = T (xb

1, . . . , xb
n). This gives us the bootstrap

distribution of θ̂ and so the bias and variance of θ̂ is:

biasB(θ̂) = θB − θ̂ VarB(θ̂) = 1
B − 1

B∑
b=1

(θ̂b − θB)2

where θB := 1
B

∑B
b=1 θ̂b. And hence, the bootstrap esti-

mate of the standard error is:

s̃B(θ̂) =

√∑B
b=1 (θ̂b − θB)2

B − 1

If we want an unbiased estimator θ̂ of θ we can replace θ̂
by 2θ̂ − θB .

Definition 97 (Parametric bootstrap). Consider
a sample x1, . . . , xn from i.i.d. random variables
X1, . . . , Xn ∼ Fθ and we are interested in estimating
θ = T (X1, . . . , Xn). First we compute θ̂ := T (x1, . . . , xn)
from the data given. Now we generate B samples of data
{xb

1, . . . , xb
n}, b = 1, . . . , B, taken from the distribution Fθ̂

(with replacement) and for each sample we compute the
respective estimator θ̂b = T (xb

1, . . . , xb
n). This gives us the

parametric bootstrap distribution of θ̂20.

Bootstrap confidence intervals
Definition 98 (Normal confidence interval). Con-
sider a sample x1, . . . , xn from i.i.d. random variables
X1, . . . , Xn ∼ F of an unknown distribution F . The nor-
mal confidence interval for θ = T (X1, . . . , Xn) of level α
is:

θ ∈ (θ̂ − z1−α/2s̃B(θ̂), θ̂ + z1−α/2s̃B(θ̂))

To use a bias-corrected bootstrap estimator, replace θ̂ by
2θ̂ − θB .

Definition 99 (Basic bootstrap confidence inter-
val). Consider a sample x1, . . . , xn from i.i.d. random
variables X1, . . . , Xn ∼ F of an unknown distribution
F . The basic bootstrap confidence interval for θ =
T (X1, . . . , Xn) of level α is:

θ ∈ (2θ̂ − θ̂1−α/2, 2θ̂ − θ̂α/2)

where θ̂α is the sample quantiles of the bootstrap relicates.

Definition 100 (Bootstrap-t confidence interval).
Consider a sample x1, . . . , xn from i.i.d. random variables
X1, . . . , Xn ∼ F of an unknown distribution F . The
bootstrap-t confidence interval for θ = T (X1, . . . , Xn) of
level α is:

θ ∈ (θ̂ − t1−α/2s̃B(θ̂), θ̂ + t1−α/2s̃B(θ̂))

To use a bias-corrected bootstrap estimator, replace θ̂ by
2θ̂ − θB .

Definition 101 (Percentile confidence interval).
Consider a sample x1, . . . , xn from i.i.d. random variables
X1, . . . , Xn ∼ F of an unknown distribution F . Once we
have computed B estimates of θ̂ we order them:

θ̂(1) ≤ · · · ≤ θ̂(B)

The percentile confidence interval for θ = T (X1, . . . , Xn)
of level α is:

θ ∈ (θ̂α/2, θ̂1−α/2)

6. | Bayesian inference
Prior and posterior distributions
Definition 102. Let X be a random vector with pdf
f(x | θ). As always we would like to estimate the un-
known parameter θ ∈ Θ. Bayesian approach to statistical
inference treats the parameter θ as a random variable with
an appropriate prior distribution (or simply prior) f(θ).

Definition 103. Let X be a random vector with pdf
f(x | θ), f(θ) be the prior of θ and x be a realization
of X. We define the posterior distribution (or simply pos-
terior) of θ as the pdf f(θ | x) given by Bayes’ theorem:

f(θ | x) = f(x | θ)f(θ)
f(x) = f(x | θ)f(θ)´

f(x | θ)f(θ) dθ
21

If the prior and the posterior are of the same distribution
type, prior and observation model are called conjugate.

Definition 104 (Bayesian point estimates). Let X
be a random vector with pdf f(x | θ), f(θ) be the prior of
θ ∈ Θ and x be a realization of X.

• The posterior mean E(θ | x) is:

E(θ | x) =
ˆ

Θ

θf(θ | x) dθ

20Note that in order for bootstrapping to work we need some regular conditions of the function T (Hadamard differentiability). Statistics
like minimum or maximum doesn’t satisfy these restrictions.

21For practical purposes it is sometimes sufficient to study only f(x | θ)f(θ), since f(θ | x) ∝ f(x | θ)f(θ).
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• The posterior mode Mod(θ | x) is:

Mod(θ | x) = arg max{f(θ | x) : θ ∈ Θ}

• The posterior median Med(θ | x) is any number a
such that:

aˆ

−∞

f(θ | x) dθ and
+∞ˆ

a

f(θ | x) dθ

Choice of the prior

Definition 105. Let θ ∈ Θ be the parameter of interest
of our model. A prior distribution with pdf f(θ) is called
flat if

f(θ) ∝ const. θ ∈ Θ

Definition 106. Let θ ∈ Θ be the parameter of interest
of our model. A prior distribution with pdf f(θ) ≥ 0 is
called improper if

ˆ

Θ

f(θ) dθ = ∞ or
∑
θ∈Θ

f(θ) = ∞

for continuous or discrete parameters θ, respectively.

Definition 107 (Jeffrey’s prior). Let X be a random
vector with pdf f(x | θ) where θ ∈ Θ is the parameter of
interest. Jeffrey’s prior is defined as:

f(θ) ∝
√

I(θ)

If θ is a vector valued parameter, Jeffrey’s prior is defined
as:

f(θ) ∝
√

det I(θ)

Proposition 108. Let X be a random vector with pdf
f(x | θ) where θ ∈ Θ is the parameter of interest and
η = h(θ) where h is an injective function. If the prior
fθ(θ) of θ is flat, then:

fη(η) ∝
∣∣∣∣dh−1(η)

dη

∣∣∣∣
where fη(η) is the prior of η. And so, fη(η) is flat if and
only if h is a linear transformation.

Proposition 109. Let X be a random vector with pdf
f(x | θ) where θ ∈ Θ is the parameter of interest and
η = h(θ) where h is an injective function. Suppose fθ(θ) is
the prior of θ and fη(η) is the prior of η. If fθ(θ) ∝

√
I(θ),

then fη(η) ∝
√

I(η)

Properties of Bayesian point and interval esti-
mates

Definition 110. Let θ ∈ Θ be the parameter of interest
of our model. A loss function ℓ(θ̂, θ) ∈ R quantifies the
loss encountered when estimating the true parameter θ by
θ̂. Commonly used loss functions are the following ones:

• Quadratic loss function: ℓ(θ̂, θ) = (θ̂ − θ)2

• Linear loss function: ℓ(θ̂, θ) =
∣∣∣θ̂ − θ

∣∣∣
• Zero-one loss function:

ℓε(θ̂, θ) =
{

0 if θ̂ = θ

1 if θ̂ ̸= θ

Definition 111. Let X be a random vector with pdf
f(x | θ), f(θ) be the prior of θ ∈ Θ and x be a real-
ization of X. A Bayes estimate of θ with respect to a loss
function ℓ(θ̂, θ) minimizes the expected loss with respect
to the posterior distribution f(θ | x), i.e. it minimizes:

E(ℓ(θ̂, θ) | x) =
ˆ

Θ

ℓ(θ̂, θ)f(θ | x) dθ

Proposition 112.
1. The posterior mean is the Bayes estimate with re-

spect to quadratic loss.

2. The posterior median is the Bayes estimate with re-
spect to linear loss.

3. The posterior mode is the Bayes estimate with re-
spect to zero-one loss.

Theorem 113. Let X be a random vector (of length n)
with pdf f(x | θ) where θ ∈ Θ is the parameter of interest
which has a prior f(θ). Suppose the MLE of θ is θ̂n. We
define:

m0 := arg max{f(θ) : θ ∈ Θ}, J0 = −∂2(log f(θ))
∂θ2

∣∣∣∣
θ=m0

Then:
θ | X a∼ N(mn, Jn

−1)
where:

Jn = J0 + J(θ̂n) and mn = J0m0 + J(θ̂n)θ̂n

Jn

If n is large enough, we will have:

θ | X a∼ N
(

θ̂n, I(θ̂n)−1)
Definition 114. Let X be a random vector with pdf
f(x | θ) where θ ∈ Θ is the parameter of interest. A
subset C ⊆ Θ is called a credible region for θ of confidence
γ if: ˆ

C

f(θ | x) dθ = γ

If C is a real interval, C is also called credible interval. If
the parameter is discrete, we will define a credible region
of confidence γ as: ∑

θ∈C∩Θ
f(θ | x) ≥ γ

Definition 115. Let X be a random vector with pdf
f(x | θ) where θ ∈ Θ is the parameter of interest. A
γ credible region C is called a highest posterior density
(HPC) region if f(θ | x) ≥ f(θ̃ | x) ∀θ ∈ C and all θ̃ /∈ C.
Proposition 116. Let X be a random vector with pdf
f(x | θ) where θ ∈ Θ is the parameter of interest whose
posterior is f(θ | x). Then, among all γ credible region
C, the HPC minimizes the expected loss for the function
ℓ(C, θ) = |C| − 1C(θ), where |C| is the size of the region.
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7. | Analyzing data

Comparizing distributions

Definition 117 (Q-Q plots). Consider a sample
x1, . . . , xn of data and the ordered sample x(1), . . . , x(n).
We would like to know whether the data come from a dis-
tribution F or not. To do conclude something, we define:

y(k) = yk := F −1
(

k

n + 1

)
k = 1, . . . , n

Then, we plot the pairs (y(k), x(k)) (or equivalently the
pairs (F (y(k)), F (x(k)))). The more similar is the plot to
a line, the more possible is for the data to come from the
distribution F . This plot is called Quantile-Quantile plot
(or Q-Q plots), y(k) are called the theoretical quantiles and
x(k) the sample quantiles, that is, the quantile function of
the discrete distribution induced by the sample (assigning
probability 1/n to each data of the sample)22.

Proposition 118 (Normal Q-Q plots). Consider
a sample x1, . . . , xn of data and the ordered sample
x(1), . . . , x(n). We would like to know whether the data
come from a normal distribution N(µ, σ2) or not. We de-

fine

z(k) = z k
n+1

= Φ−1
(

k

n + 1

)
k = 1, . . . , n

If the data are reasonably normal, the Q-Q plot of the
pairs (z(k), x(k)) is approximately a line of slope σ and
y-intercept µ.
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Figure 3: Two normal Q-Q plots of samples of size 100.
On the right-hand side the sample comes from an exponen-
tial distribution and so we can see that the data doesn’t
fit quite well in a line. On the left-hand side the data
come from a normal distribution and so the data is ap-
proximately fitted in a line whose slope is 2.369 ≈

√
4 and

whose y-intersect is 2.956 ≈ 3.

22Sometimes the theoretical quantiles taken are F −1
(

k−0.5
n

)
instead of F −1

(
k

n+1

)
.
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