Statistics

1. | Point estimation

Statistical models

Let (£2,.A,P) be a probability space’, © be
a set, n € N and z1,...,z, be a collection of data that
we may assume that they are the outcomes of a random
vector X,, = (X1,...,X,) defined on (2, A,P). Suppose,
moreover, that the outcomes of X,, are in a set X C R",
the law X, is one in the set P = {PX" : € O} and F
is a o-algebra over X°. We define a statistical model as
the triplet (X, F,P)’. The set X is called sample space,
and the set ©, parameter space. The random vector X,,
is called random sample. 1If, moreover, Xi,...,X,, are
i.i.d. random variables, X,, is called a simple random sam-
ple. The value (x1,...,2,) € X is called a realization of
(X1,...,Xn).

Let (X, F,{PX" : 6 € ©}) be a statistical

model. We say P = {Py" : 0 € ©} is identifiable if the
function

©— P
0 — Pg("
is injective".
A statistical model (X, F,{PX" : 0 € ©})
is said to be parametric if © C R4 for some d € N°.

Statistics and estimators

(Statistic). Let (X,F,{Py" : 0 € ©})
be a statistical model. We define a statistic T as a
Borel measurable function. That is, T can be written
as T =h(Xy,...,X,), where h : X — R™ is a Borel mea-
surable function. Hence, T is a random vector. The value
m is the dimension of the statistic.

Let (X, F,{PX" : 0 € ©}) be a statistical
model. We define the sample mean as the statistic:

i=1

,Zn) € X, we will denote

T(Xla"'aXn) -

S|

Given a realization (x1,...
Ty = Xp(z1,...,20)".

Let (X, F,{PX" : 6 € ©}) be a statistical
model. We define the sample variance as the statistic:

T(X,,...

i=1

We define the corrected sample variance as the statistic:

1 — 2 -
T(Xp,eoos Xn) = — Z(Xi— n) =5,
i=1
Given a realization (x1,...,2,) € X, we will denote
sp2 = Sng(xl,...,mn) and 8,2 := S, %(x1,...,2,)".

Let Xi,...,X, be random variables.

Then:
2 1¢ 2 ¥ 2
Spt==> X -X,
n
i=1

Let (X, F, {chn :0 € © CR}) be a para-
metric statistical model, § € © and g : © — O be a func-
tion. An estimator of g(f) is a statistic § whose outcomes
are in © and does not depend on any unknown parame-
ter. It is used to give an estimation of the (supposedly
unknown) parameter g(9).

Properties of estimators

(Bias). Let (X, F,{PX":0 € © CR}) be
a parametric statistical model, g : © — © be a function
and 0 be an integrable estimator of g(0) € ©. We define
the bias of § with respect to 6 as:

bias(f) := E(8) — g(6)

We say that 6 is an unbiased estimator of g(8) if bias(f) =
0 V8 € ©. Otherwise we say that it is a biased estimator
of g(0).

Let (X, F,{Py" :0 € © C R}) be a
parametric statistical model, g : © — © be a function and
0 be an integrable estimator of g(f) € ©. Suppose that

N

bias(6) = cg(0) for some ¢ € R. Then
estimator for g(0)

6 . .
» =47 s an unbiased

Let (X,F,{PX" : 6 € © C R}) be
a parametric statistical model such that Xi,..., X, are
square-integrable” i.i.d. random variables with mean p and
variance o2. Then:

0.2

E(X,)=up and Var(X,)= -

Hence, the estimator X,, of x is unbiased.

1From now on we will assume that the random variables are defined always in the same probability space (2, .4, P), so we will omit to

say that.

2That is, P denotes a family of probability distributions of X,, in (X, F), indexed by # € ©. Note that we denote that distribution of
X, by PX» to distinguish it from the probability distribution Px_ in (£, .4,P).

30ften we will take F = B(X).

4From now on, we will suppose that all the sets P are always identifiable.

5There are cases where © is not a subset of R%. For example, we could have © = {f : R — Ry : fj;: f(z)dz = 1}.
6Some times, and if the context is clear, we will denote T, simply as Z.

7Some times, and if the context is clear, we will denote s,? and 5,2 simply as s? and 52, respectively.

8That is, with finite 2nd moments.



Let (X,F,{BPyX" : 6 € © C R}) be
a parametric statistical model such that Xi,...,X,, are
square-integrable i.i.d. random variables with mean p and
variance o2. Then:

-1 -
o? and E(S5,%) = o2
n
Hence, the estimator S,2 of o2 is unbiased whereas the
estimator S,,% of o2 is biased.

Let (X, F, {IP’?)(” : 0 € © C R}) be a para-
metric statistical model, g : © — © be a function and 6 be
a square-integrable integrable estimator of g(f) € ©. The
mean squared error (MSE) of 0 is the function:

MSE() := E ((9 - g(9)>2>

Let (X, F,{PX" : 0 € © C R}) be a
parametric statistical model, g : © — © be a function and
0 be a square-integrable integrable estimator of g(f) € ©.
Then: . . o

MSE(#) = Var(6) + (bias(6))
Let (X, F, {]P’()f" :0 € © CR}) be a para-
metric statistical model, g : © — © be a function and é, 0
be estimators of g(f) € ©. We say that 0 is more efficient
than 0 if

A ~

Var(0) < Var(f) V0 e ©

Let (X, F,{PX" : 0 € © C R}) be a
parametric statistical model and 0 be a square integrable
estimator of § € ©. We say that 0 is a minimum-variance
unbiased estimator (MVUE) if it is an unbiased estimator

that has lower variance than any other unbiased estimator
Vo € O.

Let (X, F,{Py" :0 € © CR}) be a
parametric statistical model. Then, the MVUE is unique
almost surely.

Sufficient statistics

Let (X, F, {Py" : 6 € O}) be a statistical
model and T be a statistic. We say that T is sufficient for
0 € © if the joint conditional distribution of (X7, ..., X,)
given T(Xq,...,X,) =t does not depend on 6.

(Fisher-Neyman factorization theo-
rem). Let (X,F,{PX" : § € ©}) be a statistical model
and T be a statistic. Then, T is sufficient if and only if
Vx,, € X we have:

1. For the discrete case:

px, (xn;0) = g(T(xn); 0)h(xn)
2. For the continuous case:

fx,, (xn;0) = g(T(x5); 0)h(xn)

for certain functions g and h. Here we have denoted by
px, (Xp; 0) the joint pmf of X,, (in the discrete case) and
by fx,, (xn;0) the joint pdf of X,, (in the continuous case).

Asymptotic properties

For eachn € N, let (X, F, {Pz(" :0e€0C
R}) be a parametric statistical model with X7, ..., X, be-
ing i.i.d., g : © — O be a function and 6,, be an estimator
of g(f) € ©. We say that the sequence (6,) is a weakly

consistent estimator of g(0) if 6, N 9(0).

For each n € N, let (X, F,{Py" :0 € © C
R}) be a parametric statistical model with X7, ..., X, be-
ing i.i.d., g : © — O be a function and 6,, be an estimator
of g(0) € ©. We say that the sequence (0,,) is a strongly
consistent estimator of g(0) if 6, =2 ¢(0).

Foreachn € N, let (X, F, {IP;C" :0e€0C
R}) be a parametric statistical model with X7, ..., X, be-
ingiid., g: © — © be a function and 6,, be an estimator

of g(0) € ©. We say that the sequence (6,,) is a consistent
estimator in L* of g(0) if

Jm 2 (0, 90))

For each n € N, let (X,F, {]P;;(n :
6 € © C R}) be a parametric statistical model with
Xi,...,X,, being iid., g : © — O be a function and
0., be a consistent estimator in L2 of g(#) € ©. Then, 6,
is a weakly consistent estimator of g(f).

= lim MSE(§,) =0

n— oo

For each n € N, let (X,]-",{IP’?" 100 C
R}) be a parametric statistical model with X7, ..., X, be-
ing i.i.d., g : © — O be a function and 6,, be an estimator
of g(#) € ©. We say that the sequence (én) is an asymp-
totically unbiased estimator of g(0) if

E(0,) — 9(6)

For eachn € N, let (X, F, {IP)E)(” 100 C
R}) be a parametric statistical model with Xy, ..., X, be-
ing i.i.d. whose variance is 02, g : © — © be a function
and 0,, be an estimator of g(#) € ©. We say that the se-

~

quence (0,,) is an asymptotically normal estimator of g(9)
with asymptotically variance ”Tj if

A~

Vb, — g(0)) -5 N(0,62) VOO

2

In that case, we denote it by 8, ~ N (g(&) "—)

''n

Methods of estimation

(Method of moments). Let
(X, F,{PX" : 8 € © C R?) be a parametric sta-
tistical model such that Xi,...,X, are ii.d. random
variables, and pui be k-th moment of each of them.

Suppose @ = (01,...,04). Then, given a realization
X, = (21,...,7,) € X of X,,, an estimator 0(x,) =
(01(%n), ... ,04(x,)) of O is given by the solution of the



following system:

*sz p1(01,...,04)
*inQ :/~L2(917"'79d)
n 4

i=1
lil"d = pa(01, ..., 0a)
ni:l i PR

The estimators obtained by the method
of moments are strongly consistent and consistent in L2.

(Likelihood). Let (X, F,{PX":0c© C
R}) be a parametric statistical model, x,, € X be a real-
ization of X,,.

1. For the discrete case, let px, (xn;0) be the pmf of

]P’?". In this case, we define the likelihood function
as the function:
L(x,):0 — R

0 — px,, (Xn;6)

2. For the continuous case, let fx, (x,;6) be the pdf of

]P’z(". In this case, we define the likelthood function
as the function:
L(5%x,):0 — R

0 — fx, (xn;0)

(Maximum likelihood method). Let
(X, F,{PX" : 0 € ©}) be a statistical model and x, € X
be a realization of X,,. A mazimum likelihood estimator
(MLE) of 6 € © is the estimator § such that:

L(0;x,) = max{L(0;x,) : 0 € O}

Let (X,F,{P3" : 8 € © C R%}) be a
parametric statistical model, x,, € X be a realization of
X,,. We define the log-likelihood function as:

£(0;x,) :=InL(0;x,,)
We define the score function as:
ol

S(6;x,) := 20 —(0,%,)

Let (X, F,{Py" : 0 € © CR}) be a
parametric statistical model, x,, € & be a realization of

X,, Then, a MLE 0 of 6 is the one that satisfies:
OL , 4
—(6;x,)=0
89( ﬂx )

Or equivalently, %(é; x,) = 0.
(Invariance of the MLE). Let
(X, F, {IF’;(” : 0 € ©}) be a statistical model and g : © —

© be a measurable function. Suppose 6 is a MLE of 6.
Then, ¢(0) is a MLE of ¢(0).

Regular statistical models

A statistical model (X, F, {Py" : 6 € ©})
is said to be regular if it satisfies the following conditions:

1. © is open.
2. The support of ]P’()f" does not depend on 6.

3. The function L(6; x,,) is two times differentiable with
respect to 0 Vx,, € X (except in a set of probability
zero) and moreover:

i) For the discrete case:

O’L
Xn€X Xn€X
ii) For the continuous case:
0? 0?L
x X

4. For all 6 € ©, we have:

2y
0</<§92(9 xn)) fx, (x5;0) dx,, <
X

Let (X, F, {Py" : @ € © C R?}) be a reg-
ular parametric statistical model, x,, € X be a realization
of X,,. We define the observed information of the model

as:
9%l

- 06°
We define the Fisher information of the model as:

J(O;Xn) = (0 Xn)

0?¢

1(0) = E(J(6:X,)) = —E ( T

(0:X.))

Let (X, F,{Py" : 8 € © CR}) be a
regular parametric statistical model, x,, € X be a realiza-
tion of X,,. Then, E(S(8;X,,)) =0 and

(o) |

Let (X, F,{Py" : 8 € ©}) be a regular
parametric statistical model of one observation z; € X.
Then, the model corresponding to n i.i.d. observations
Ty is regular and

1(6) = Var(S(8; X,,)) = E

for all 8 € ©.

1(6) = nI,(0)

where I;(60) denotes the Fisher information in the model
with one observation.

Let (X, F, {Py" : 0 € ©}) be a statistical
model and T be a statistic. We say that T is regular if

9Note that sometimes this estimator is not unique or may not even exist.

10Since generally

J(0; X,) will be a matrix, the expectation of J(6;X,) is taken component by component.



1. for the discrete case:

% Z T(xn)L(0;%,) =

Xn€X

oL
Z T'(xn) %(95 Xn)

Xn€X

2. for the continuous case:

0 oL
%/T(xn)L(é’,xn)dxn = /T(xn)%(&xn)dxn
X X
for all 6 € O©.

(Cramér-Rao bound). Let (X, F, {PX" :
6 € ©® C R}) be a regular parametric statistical model,
X, € X be a realization of X,,, g : © — © be a differen-
tiable function and 6 be a regular estimator of g(f) € ©.

Then: )
G a2
>
Var(0) = S |1+ (blas (9))
Moreover if the estimator 6 is unbiased we have:
A g(0)°
>
Var(6) > 700)

Let (X, F,{PX" : 0 € © C R}) be a
regular statistical model, x,, € X be a realization of X,
g : © — O be a differentiable function and 0 be a regular
and unbiased estimator of g(0) € ©. We say that 6 is an
efficient estimator of g(0) if

Var(0) =

We say that 0 is an asymptotic efficient estimator of g(6)
g'(0)?
1(0) -

if the asymptotic variance of 8 is

Let (X, F,{Py" :0 € © CR}) be a
regular statistical model, g : © — © be a function and
be a regular, unbiased and efficient estimator of g(6) € ©.
Then, 6 is a MVUE in the class of regular estimators.

Let (X, F,{PX" : 0 € © C R}) be a reg-
ular statistical model, x,, € X be a realization of X,, and
A~ 2
0 be a MLE of § € ©. Suppose that % is a continuous
function of 6 and that
0%l -

W(Q;Xn) < h(xn;0)

for all # in a mneighbourhood of 6
S P(xn;0)L(0; x,,) dx,, < 00. Then:

éiuv(a,l(leQ

Thus, 6 is an asymptotically efficient estimator of 6.
Hence, an asymptotic confidence interval for 6 of confi-
dence 1 — « is:

with

ge |-

> ||lR
> |[wle

>
s

Zi_a . oz

1 y 1
V1) \1(0)
where z1_o denote the 1 — & quantile of the standard
normal distribution (see ).

(Delta method). Let (X, F,{Py" : 0 €
© C R}) be a statistical model, g : © — © be a two-times
differentiable function such that ¢’(6) # 0 and 6 be an
estimator of § € ©. Then:

9(0) <5 N (9(0),¢/(0)*Var(D))

Order statistics

Let Xq,..., X, be random variables. We
define the k-th order statistic, denoted by X ;) of the sam-
ple X1,..., X, as the k-th smallest value of it. In partic-
ular:

X(l) = min{Xl,...,Xn} X(,,L) = max{Xl,...,Xn}

The sample X (1), ..., X(») is usually called order statistics.

2. | Distributions relating N (u,0?)

Standard normal distribution

We denote by ®(t) the cdf of a standard
normal distribution N(0,1).

(Quantile). We define quantile function
Qx(p) of a distribution of a random variable X as the
inverse function of the cdf. That is, Qx (p) satisfies:

P(X <Qx(p)=p

In particular, we denote the quantile of a standard normal
distribution as z, := Qx (p) = ®~1(p).

Multivariate normal distribution

Let b € R, ¥ € M,,(R) be a symmetric
positive-definite matrix and X be a random vector. We
say that X has multivariate normal distribution, and we
denote it by X ~ N(b, ¥) if has density function:

_ x=b)T="1(x-b)
2

fx(x) = (27) 2 (det 2)_%e

The vector b is called mean vector and the matrix 3, co-
variance matrix.

Let ¥ € M,(R) be a symmetric
positive-definite matrix. Then, 3A € GL,(R) such that
¥ =AAT

Let be R", ¥ = AAT € M, (R) be a
symmetric positive-definite matrix with A € GL, (R) and
X, Z be random vectors.

« If Z~ N(0,1,), then AZ +b ~ N(b, X).

e If X ~ N(b,I,), then A~(X —b) ~ N(0,X).

11 When X is the covariance matrix, the matrix A such that 3 = AAT plays the role of the multivariate standard deviation.



Let b € R", ¥ € M, (R) be a sym- Let n € N. Then, the pdf of ¢, is:

metric positive-definite matrix and X = (Xq,...,X,) ~

N(b,X). Then, E(X) = b and Var(X) = ¥ and more- T (nl) L2\ "
over: fi, (x) = 2 <1 4 )

vmnl' (%)
T
b = (E(Xy),...,E(X3))
Var(Xl) COV(Xl, XQ) v COV(Xl, Xn)
| Cov(X2, Xh)  Var(Xp) -+ Cov(Xp,Xn) | Fisher’s theorem
s s s o
Cov(X,,X1) Cov(X,,Xs) --- Var(X,,) (Fisher’s theorem). Let (X, F,{Xy,...,

X, ~ N(u,0?) iid.: (u,0%) € RxRxg}) be a parametric
Let b,c € R*, ¥ € M,(R) be a statistical model. Then:
symmetric positive-definite matrix, B € GL,(R), X ~
— . - 0_2
N(b,X) and Y := BX + c. Then: 1. X,~N (u, 7)

Y ~ N(Bb +¢,BEB")

2. 5,2 ~ Ty
x2-distribution TR

Let n € N and X3,...,X, be indepen-
dent random variables such that X; ~ Gamma(w,, 5) for
i=1,...,n. Then:

3. X, and 5,2 are independent.

Let n € Nand Xi,..., X, ~ N(u,0?) be

ZXi ~ Gamma (Z Oémﬁ) i.i.d. random variables. Then:
i=1 i=1 _
Xn — K
Let n € Nand Z4,..., Z, bei.i.d. random —3 ~ln

variable with standard normal distribution. Then: Vn

2 2 n 1

Zy" 4+ Zn” ~ Gamma (2’ 2) Let n € N and X ~ ¢, be a random vari-
able. Then:
We define the chi-squared distribution J
with n degrees of freedom, denoted as 2, as the distri- X — N(0,1)
bution
Xn? := Gamma (Z, ;) Hence, N(0,1) = te.
which is the distribution of Z;? + --- + Z,%, where Let (X, F, {]P’gi" : 0 € O}) be a paramet-
Zy,...,Zy ~ N(0,1) are iid. random variables. Its pdf ric statistical model and suppose Xi,..., X, ~ N(u,0?)
is: 1 are i.i.d. random variables. Then, the estimators X, of u
Fxn2 (@) = maﬁ—le—%l(o 00)(2) and S,,2 of o2 are unbiased and consistent.
2 (2 ’
2
We will denote by xn;p? := Qy,2(p) the quantile of the
2 ' 0.4

Xn .

Let X ~ x,2 and Y ~ 32 be iid.

random variables. Then: 03

X4Y ~ Xagp®

Let X ~ Gamma(a, 8) and ¢ € Rsp.
Then, ¢X ~ Gamma(w,S/c). In particular, if X ~ 0.2
Gamma(n, 1), then 2X ~ x2,2%.

Student’s t-distribution 0.1

Let n € Nand Z ~ N(0,1) and Y ~ x,,>
be independent random variables. We define the Student’s

t-distribution with n degrees of freedom as the distribution 0
of: P
T/ Figure 1: Probability density function of 4 Student’s ¢-
n

distribution together with a standard normal N(0,1) =

too.

We will denote by ty,., := Q, (p) the quantile of the ¢,.

121t makes sense if we replace the value n € N for a value v € R~q. However the original definition of ¢, from the x,? fails.




3. | Confidence intervals
Confidence regions

Let (X, F,{Pg" : 8 € © C R?}) be a
parametric statistical model and g : © — R™ be a func-
tion with m < d. A confidence region for g(0) with confi-
dence level v € [0, 1] is a random region C(X,,) such that:

P(g(0) € C(X,)) >y Y0€©

If d = 1, we talk about confidence intervals. The value
«a =1 — is called significance level.

Let (X, F,{Px" : 0 € © C R?}) be a
parametric statistical model and g : © — R™ be a func-
tion with m < d. A pivot for g(0) is a measurable function

T X xg(®) — R™
(Xna g(e)) — TI'(X", g(e))
such that the distribution of 7 (x,,g(0)) does not depend
on 6.
Let (X, F,{PX" :0 € © CR%}) bea
parametric statistical model, v € [0,1], g: © — R™ be a

function with m < d, 7(x,,g(0)) be a pivot for g(@) and
B € B(R™) such that:

P(m(X,,g(0)) € B) >y V8€©O
Then:
C(X) ={g(0) : m(X,,g(0)) € B} C g(®)

is a confidence region with confidence level ~.

Confidence intervals for the relative frequency

Let (X, F,{X1,..., X, ~ Ber(p) i.i.d. :
p € (0,1)}) be a parametric statistical model, x,, € X’ be
a realization of (X1,...,X,) and a € [0,1]. Let p = Ty,
Then, an asymptotic confidence interval for p of confidence
level 1 — v is:

. p(1—p) . p(L—p
be <p /<n>,pmg,/<n>>

Confidence intervals for N(u,0?)

(Interval for p with ¢ known). Let
o € R>g be a known parameter, (X, F,{X1,...,X, ~
N(u,0?) iid.: p € R}) be a parametric statistical model,
X, € X be a realization of (X1,...,X,) and a € [0,1].
Then, a confidence interval for p of confidence level 1 — «

is: 3 . .
JIBS (xn - Zl—%ﬁaxn + R1-g \/ﬁ)
(Intervals for p and o0?). Let
(X, F{X1,..., X ~ N(p,0%) iid. : (u,0?) € RxRxp})
be a parametric statistical model, x,, € X be a realization
of (X1,...,X,) and & € [0,1]. Then, a confidence interval
for p of confidence level 1 — « is:

Sn

_ Sn _
He (In —tn_151-2 7%, Tn +ln-11-2 \/ﬁ)

A confidence interval for o2 of confidence level 1 — « is:

o2 e <(n - 1)§n2, (n— 1)§n2)

Xn;l—%

Confidence intervals for two-samples problems

(Independent samples with known
variances). Let 0,,04 € R>¢ be known parameters,
(X, F AX1, ..., Xn, ~ N(pg,0,°%) iid, Y1,...)Y,, ~
N(py,04%) idd. : (fa, py,) € R?}) be a parametric sta-
tistical model such that each X; is independent of Y;
V(i,7) € {1,...,ny} x {1,...,ny}, x,, € X be a re-
alization of (Xi,...,X,,), y,, € X be a realization of
(Y1,...,Y,,) and a € [0,1]. Then, an asymptotic confi-
dence interval for p, — 1, of confidence level 1 — « is:

M — [y € (En‘r _gny - Zl*%‘safnx _yny +217%8)

where s =

(Independent samples with un-
known equal variances). Let (X, F,{X1,...,X,, ~
N(pg,0?) iid., Yq,.. Yo, ~ N(py,0?) iid.

(1tzs tty,) € R%Z x Rs¢?}) be a parametric statisti-
cal model such that each X; is independent of Yj

V(i,7) € {1,...,na} x {1,...,ny}, (21,...,2,) € X be
a realization of (Xi,...,X,), (¥1,---,yn) € X be a re-
alization of (Y1,...,Y,) and a € [0,1]. Let 5,2 =

_\2 - _\2
nwl_l Z?:l (r; —7)" and Sny2 ﬁ Z?:l (vi — 7).

Then, an asymptotic confidence interval for pu, — p, of
confidence level 1 — « is:

1 1
-4+ =,
Ny

Mo = Hy € | Tny, — Y, —tu1-25p
Ty

_ _ 1 1
Tny = Un, T luit-gSpy [ o=+ ny

ny—1)3,, 2+ (ny,—1)3,, 2
2 ( Jng +(ny —1)3n,, and v =ng +ny — 2.

where 5,° =

Ng+ny—2
(Independent samples with
unknown variances). Let (X, F,{X1,...,X,, ~
N (g, 0,2) iid., Yq,... Yo, ~  N(uy, o,%) iid.

(1tzs tty,) € R?2 x R5}) be a parametric statistical
model such that each X; is independent of Y; V(i,j) €

{1,...,nz} x {1,...,ny}, x5, € X be a realization of

(X1,...,Xn,), Yn, € X be a realization of (Y1,...,Yn,)

and a € [0,1]. Let §,,2 = nml—l S (i —7)% and
2. _1

) Yo (v — 7)%. Then, an asymptotic confi-
dence interval for p, — p1, of confidence level 1 — « is:

Sp,” =




where )
8,2 N §ny2>
B Ny Ty
() ()
_|_
ng — 1 ny — 1
(Related samples with un-
known variances). Let (X, F,{X1,...,X, ~
N(pz,0,%) iid, Y1,..., Y, ~  N(py,0,2) iid.

(ftz, 022, 1y, 0y%) € R? x Rs(?}) be a parametric sta-
tistical model such that each W; := X; —Y; ~ N(u, —
Py, 0% — 0,%) are iid., (21,...,2,) € X be a realiza-
tion of (X1,...,X,), (y1,...,Yn) € X Dbe a realization of
(Y1,...,Y,) and a € [0,1]. Then, we can proceed as if
we only had the sample (W1,...,W,). In particular, a
confidence interval for 11, — 1, of confidence level 1 — a is:

€ < Up — ¢ S
Mo — Ny Tn — yn - nfl;l—% T’
n

_ 5n
Tn = Yp tln-11-2 -

)

where 82 = 25" (2 — vy — (T — 7).

4. | Hypothesis testing
Hypothesis test

Let (X, F, {IP’Z,(” : 0 € O©}) be a statistical
model and ©g, ©1 C © be disjoint subsets. Our goal is to
know whether 6 € O or § € ©; (even if it isn’t neither of
them) and we will use a sample x,, € X to conclude our
objective. We define the following two propositions which
we will call hypothesis:

Ho: 0 € O Hi:0€ 0,

Ho is called null hypothesis and H; is called alternative
hypothesis. We say that the hypothesis H; is simple if
O; = {6y} for some §y € ©. Otherwise we say that the
hypothesis H; is compound.

(Hypothesis test). Let (X,F, {]P’é(" :
6 € ©}) be a statistical model. A hypothesis test is a
function

o: X — {Ho,Hl}
X, —  0(xn)

The set Ag := 6 1(Ho) C X, which is the set of sam-
ples that will lead us to accept ~ Hy, is called acceptation
region. The set Ay := 6~ '(H1) C X, which is the set
of samples that will lead us to accept H; (and therefore
reject Ho), is called critical region

Let (X, F, {Py" : 6 € ©}) be a statistical
model and § : X = A; U Ay — {Ho,H1} be a hypothesis

test. An error of type I is the rejection of Hy when it is
true. An error of type Il is the acceptation of Hy when it
is false. We define the probabilities a and /3 as:

a := P(Error of type I) = P(Reject Hg | Ho is true)
B := P(Error of type IT) = P(Accept Ho | Ho is false)

More precisely, if x,, € X is a realization of X,,, then:
a = sup{P(x, € A1 |0) : 0 € Oy}

The value 1 — 3 is called power of the test and the value
«, size of the test. Moreover, we say that the test has sig-
nificance level o € [0, 1] if its size is less than or equal to
a. In many cases the size of the test and the significance
level are equal, hence the use of the same letter

Let (X, F, {Py" : 0 € ©}) be a statistical
model, § : X = Ay U Ay — {Ho, H1} be a hypothesis test
and x,, € X be a realization of X,,. We define the power
function as:

I1(0) = P(Reject Ho) = P(x,, € A1)
Let (X, F,{PX" : 0 € ©}) be a statis-

tical model, x,, € X be a realization of X,, and § : X =
A; U Ay — {Ho, H1} be a hypothesis test. Then:

TI(0) = {(11—5

Test statistic and p-value

if 8 € O
if 0 e ©;

Let (X,F,{PX" : 0 € © C R}) be a
statistical model, x,, € X be a realization of X,, and
§d: X = A UAy — {Ho,H1} be a hypothesis test. A
statistic 7" used to decide whether or not reject the null
hypothesis is called a test statistic.

Let (X,F,{PX* : 0 € © C R}) be
a statistical model, x,, € X be a realization of X,,
d:X =A;UAs — {Ho,H1} be a hypothesis test such
that ©g = {6y}, and T be a test statistic. Suppose that
we have observed the value ¢t := T'(x,). We define the
p-value as the probability of obtaining test results at least
as extreme as the results actually observed, under the as-
sumption that the null hypothesis is correct.

Let (X,F,{P¥" : 6 € © C R}) be
a statistical model, x,, € X be a realization of X,,
§:X = A UAy = {Ho,H1} be a hypothesis test such
that ©¢ = {fy}. We say that the test is a

o one-sided right tail test if ©1 = (g, 00).
o one-sided left tail test if ©1 = (—o0,8p).
o two-sided test if ©1 =R\ {0}

13Some authors prefer to say that they don’t reject Ho instead of saying that they accept Ho.
141n order to denote these concepts more compactly, we will write § : X = A; U Ay — {Ho,H1} to denote the hypothesis test whose

acceptation and critical regions are Ag and Aj, respectively.
151n particular, for simple hypothesis they are the same thing.

161n practice, we fix a significance level a € [0,1] small enough (& 0.05 but may vary depending on the problem) with which we accept
making mistakes and from here we try to minimize the 3 (or maximize the power 1 — 3). Moreover, having fixed «, we obtain a confidence
level 1 — a. And if we impose P(x, € Ag | Ho) = 1 — «, we are able to determine Ag.



Let (X,F,{BPyX" : 6 € © C R}) be
a statistical model, x,, € X be a realization of X,,
d:X =AU Ay — {Ho,H1} be a hypothesis test such
that ©g = {6y}, and T be a test statistic. Suppose that
we have observed the value t := T'(x,,) and let p be the
p-value of the test. Then:

1. One-sided right tail test:
=P(T >t | Ho)
2. One-sided left tail test:
=P(T <t|Ho)
3. Two-sided test:
p=2min{P(T >t | Ho),P(T <t |Ho)}

And given a significance level « € (0,1) we will reject Ho
if p < a and accept Hy if p > a.

0.3 T T T
--o-- Obsevervation
—— Test statistic
p-value
0.2 |
0.1} |
I
0 \ \ \ -y
—6 —4 -2 0 2 4 6

Figure 2: Probability density function of a test statistic
(assuming the null hypothesis) together with an observed
value and the p-value of the one-sided right tail test.

Neymann-Pearson test

Let (X, F, {Py" : 6 € ©}) be a statistical
model. We say that a test § : X = Ay U Ay — {Ho, H1}
of significance level « is a uniformly most powerful (UMP)
test if it has the greatest power among all the tests with
significance level a.

Let (X,F, {]P’z(" : 0 € O}) be a statistical
model. We say that a test § : X = A1 U Ay — {Ho, H1}
of significance level a. If A; does not depend on the pa-
rameter 6 € ©1, then § is a UMP test.

(Neymann-Pearson test). Let
(X, F,{P¥" : § € ©}) be a statistical model, x,, € X
be a realization of X,, and ¢ : X = A; U Ay — {Ho, H1}
be a hypothesis test such that ©g = {6y} and ©, = {6, }.

We say that § is a Neyman-Pearson test of significance
level « € [0, 1] if 3C > 0 such that:

(907Xn)

{xneX L(917Xn)>0 = Ay
L(oo,Xn)

{Xn cX: L(ehxn) C} A1

and P(x, € Ay | Ho) = a.

(Neyman-Pearson lemma). Any Neyman-
Pearson test is a UMP test.

Any UMP test is a Neyman-Pearson test.

Likelihood-ratio test

(Likelihood-ratio  test). Let
(X, F, {IP’;(" : 0 € © C R?}) be a statistical model, x,, €
X be a realization of X,,, 6 : X = A1 U Ay — {Ho,H1}
be a hypothesis test of compound hypothesis Hy : 0 € O
and H; : @ € ©;. Then, the likelihood ratio test (LRT) is
given by the critical region:

sup{L(0;x,,): 0 € Oy}
n€X: < =A
{x < sup{L(6;x,):0 € O} — ¢ !
for some constant C' > 0

Let (X,F,{Py" : 8 € © C R%})
be a statistical model, x,, € X be a realization of X,
§: X =A;UAy — {Ho, H1} be a hypothesis test of sim-
ple hypothesis Hy and H;. Then, the LRT is a Neyman-
Pearson test.

(Asymptotic behaviour of the LRT)
Let (X,F,{Py" : @ € © C R%}) be a parametric reg-
ular statistical model and consider the test § : X =
A1UAs — {Ho, H1} of compound hypothesis H : 0 € Og
and Hq: 0 € O4. Let
sup{L(6;x,,): 0 € O¢}
sup{L(0;x,,) : 6 € O}
which is called LRT test statistic. Then if the model is
regular, we have:

A(xy) :=—2In

Alx) —5 2
where r = dim © — dim O,.

(Goodness of fit). Suppose we have a

random variable X whose outcomes are z1,...,z, and
that we classify these outcomes in k classes. Thus, we
obtain a table of the form:
Class H ar - a; ag ‘ Total
Frequency H ny Ny Nk ‘ n

We want a test for:

Hoi
7‘[1:

If 7; denotes the probability of being in the cell ¢ under
Ho, we can approximate m; by #; = P(X € a; | 0 = 0),

X ~ fo
P(XGCLIL):% Vi

L7If the statistic T is symmetric with respect to the origin, then p = P(|T| > |¢| | Ho)-
18Note that L(6,x,) = sup{L(0;x,) : 8 € O}, where  is the MLE. Similarly L(fo,%y) = sup{L(8;%,) : 0 € ©}, where 8 is the MLE

restricted to Og.



where 0 is the MLE of 0, fori = 1,...,k — 1 and let
=1 — Zi:ll 7;. Hence since the distribution of the
data in the table follows a multinomial distribution, we

have .
A=2 an log (@) L5 Xpo?
i=1 N

(Test of homogenity). Consider r i.i.d.
random variables X1, ..., X, whose outcomes can be clas-
sified in the classes a1, . .., as each with probability P(X; =
a;) = pi; Yi,j. Suppose we have n;; observations of
the variable X; taking the value a; and denote n;. :=
> i1 Mgy ey =D gy and noi= 30 305 nij. That
is, we have the following table:

H ay a; as \ Total
X1 ni nij nis | N1
X N1 Nij Nis .
X, Nr1 Mg Nrs Ty
Total || n. n.; N.s n
Table 1
We want a test for:
Dj =Py = =Dpj VJ

Ho :
Hi: otherwise
Again, the distribution of the data in the table follows a
multinomial distribution, so under Hy we get the following
MLEs (with the constraint that Y°7_, p; = 1):

~ n.; .
pj=—" Y
n
And in general, using the constraint >>;_, 77, pij = 1,
we have: s
piy=—>  Vi,j
n

Finally we have:

r s niin q
A=2 30> mytog (L) oy
U

i=1 j=1

(Test of independence). Consider r
i.i.d. random variables X1, ..., X, whose outcomes can be
classified in the classes aq,...,as each with probability
P(X; = aj) = pij Vi,j. Suppose we have n;; observa-
tions of the variable X; taking the value a; and denote
n;. = Z;:l Nij, Mg 1= Z::l Nij andn = Z;=1 Zj‘:l Nij.
That is, we have again the . We want a test for:

7‘[02
H1:

Again, the distribution of the data in the table follows
a multinomial distribution, so under Hgy we get the fol-
lowing MLEs for #; and ¢; (with the constraints that

Dij = 0;0; Vi, j
otherwise

22:1 0; = Z;:l ¢ =1):

A ;. ~ n.;
b=t 6 =2
n n

Vi, j

And in general, using the constraint >37_, 27 pij = 1,
we have: -
bij=—>  Vi,j

Finally we have:

e

i=1 j=1 ’

d 2
> — X(r—1)(s—1)

t-test

(t-test). Let (X, F,{X1,...,X, ~
N(u,0?) iid. : u € R}) be a statistical model, x,, € X
be a realization of (Xi,...,X,). The t-test is the test
§: X =AUAy — {Ho,H1}, where Ho : pp = po for some
to € R and H; can be either of {u > po, p < po, p 7 o }-
In this case the test statistic that is taken is:

z ~ tn—l

Wald and score tests

(Wald test). Let (X, F,{Py":0€©C
R?}) be a parametric regular statistical model and con-
sider the test § : X = A; U Ay — {Ho,H1} of simple
hypothesis Hg : @ = 0y and Hq : 8 # 0. The Wald test is
the test whose statistic is:

A A

(0 0) 1(0)(0 — 00) X x?

where 6 is the MLE of @ and d = dim©. If Hy : 0 € Oq,
we shall replace 8y by the MLE under H, 6, in the test
statistic. For the 1-dimensional case, we have:

A 2

1(0)(6 — 60)” & x1

Let (X, F,{PX" : 6 € © C R%}) be
a parametric regular statistical model and consider the
test 6 : X = A; U Ay — {Ho, H1} of simple hypothesis
Ho : RO =r and H; : RO # r, where R € My q(R),
0 € R? and r € R*. The test statistic of Wald test is:
-1

RO-r)' [RIB) 'RT| (RO-1) 2y

where  is the MLE of 8. The matrix R. is called contrast
matriz.

(Score test). Let (X, F,{Py":0c0C
R?}) be a parametric regular statistical model and con-
sider the test 6 : X = A; U Ay — {Ho,H1} of simple
hypothesis Hg : @ = 0y and H; : @ # 6. The score test is
the test whose statistic is:

S(60) 17" (80)S(80) ~ x4

191n order to have the expected asymptotic behaviour we need to check that the expectations of each #; are greater than or equal to 5
(heuristic criterion), i.e. n;7; > 5 Vi. If this is not the case, we should reduce the number of classes by groupping some of them together.



where d = dim©. If Ho : 0 € O, we shall replace ¢
by the MLE under Hg, 09, in the test statistic. For the
1-dimensional case, we have:

S(6o)*
I(6o)

5. | Bootstrapping

Parametric and non-parametric bootstrap

(Non-parametric bootstrap). Con-
sider a sample z1,...,z, from ii.d. random variables
X1,..., X, ~ F of an unknown distribution F. Our goal
is to get an estimator of a parameter § = T(X1,...,X,,).
To do so, we define the empirical distribution F,, as fol-
lows: if X ~ Fj, then:

P(X =) :% Vie{l,...,n}

First we compute 6 := T(xq,...,
Now we generate B samples of data {z%,... 22}, b =
., B, taken from the distribution F, (with replace-
ment) and for each sample we compute the respective es-
timator 6, = T(z?,...,22). This gives us the bootstrap

n

distribution of 6 and so the bias and variance of 0 is:

Zyp) from the data given.

1 B

B-1
b=1

biasp(f) =5 — 0 Varp(d) = 6y — 05)
where 0p = % Zle 0. And hence, the bootstrap esti-
mate of the standard error is:

() = \/Zb 1 93)

If we want an unbiased estimator 0 of 6 we can replace 0
by 26 — 0.

(Parametric bootstrap). Consider
a sample =z1,...,z, from iid. random variables
X1,...,X, ~ Fp and we are interested in estimating
0 =T(X1,...,X,). First we compute 0 := T'(z1,...,2,)
from the data given. Now we generate B samples of data
{x8,...,2%}, b=1,..., B, taken from the distribution Fy
(with replacement) and for each sample we compute the
respective estimator 6, = T'(z%,...,22). This gives us the
parametric bootstrap distribution of 0

Bootstrap confidence intervals

(Normal confidence interval). Con-
sider a sample zi,...,z, from ii.d. random variables
Xq,..., X, ~ F of an unknown distribution F. The nor-
mal confidence interval for 6 = T(X4,...,X,,) of level «
is:

e (é - Zlfa/ZgB(é)a é + Zlfa/QgB (é))

To use a bias-corrected bootstrap estimator, replace 0 by
20 — 0.

(Basic bootstrap confidence inter-
val). Consider a sample x1,...,2, from ii.d. random
variables Xi,...,X,, ~ F of an unknown distribution
F. The basic bootstrap confidence interval for 6 =
T(Xq,...,X,) of level a is:

RS (Qé - élfa/% 2@ — éa/g)

where 0, is the sample quantiles of the bootstrap relicates.

(Bootstrap-t confidence interval)
Consider a sample x1, ..., %, from i.i.d. random variables
Xi,...,X, ~ F of an unknown distribution F. The
bootstrap-t confidence interval for 6 = T(Xq,...,X,,) of
level « is:

0e(d- tl—a/QgB(é)v 0+ tl—a/QgB(é))

To use a bias-corrected bootstrap estimator, replace 0 by
20 — 0.

(Percentile confidence interval)
Consider a sample z1, ..., x, from i.i.d. random variables
Xi,...,X, ~ F of an unknown distribution F. Once we
have computed B estimates of 6 we order them:

0y < -+ <O

The percentile confidence interval for § =
of level « is:

T(X1,...,Xn)

NS (éa/27é17a/2)

6. | Bayesian inference

Prior and posterior distributions

Let X be a random vector with pdf
f(x ] 0). As always we would like to estimate the un-
known parameter § € ©. Bayesian approach to statistical
inference treats the parameter  as a random variable with
an appropriate prior distribution (or simply prior) f(8).

Let X be a random vector with pdf
f(x | 0), f(6) be the prior of § and x be a realization
of X. We define the posterior distribution (or simply pos-
terior) of 0 as the pdf f(0 | x) given by Bayes’ theorem:

fx10)f0) _  f(x10)f(0)
f(x) [ f(x]6)f(0)d6

If the prior and the posterior are of the same distribution
type, prior and observation model are called conjugate.

f0]x) =

(Bayesian point estimates). Let X
be a random vector with pdf f(x | 6), f(6) be the prior of
0 € © and x be a realization of X.

e The posterior mean E(6 | x) is

E(9|x):/6f(9|x)d9
©

20Note that in order for bootstrapping to work we need some regular conditions of the function T (Hadamard differentiability). Statistics

like minimum or maximum doesn’t satisfy these restrictions.

21For practical purposes it is sometimes sufficient to study only f(x | 8)f(6), since f(8 | x) < f(x | 8) f(6).



e The posterior mode Mod (8 | x) is:

Mod (¢ | x) = argmax{f(0 | x) : 6 € O}

o The posterior median Med(6 | x) is any number a
such that:

a —+oo
/f(0|x)d9 and /f(9|x)d0

Choice of the prior

Let 6 € © be the parameter of interest
of our model. A prior distribution with pdf f(9) is called
flat if

f(0) x const. feo

Let 6 € © be the parameter of interest
of our model. A prior distribution with pdf f(8) > 0 is
called improper if

> f(0) =

[dC]

/f(e)dezoo or
2

for continuous or discrete parameters 6, respectively.

(Jeffrey’s prior). Let X be a random
vector with pdf f(x | #) where 6 € © is the parameter of
interest. Jeffrey’s prior is defined as:

f(0)

If 0 is a vector valued parameter, Jeffrey’s prior is defined

. f(8) x /det1(0)

Let X be a random vector with pdf
f(x | 8) where 6 € © is the parameter of interest and
n = h(f) where h is an injective function. If the prior
fo(0) of 6 is flat, then:

where f,(n) is the prior of n. And so, f,(n) is flat if and
only if h is a linear transformation.

1(6)

dh~"(n)

fo(m) o ' an

Let X be a random vector with pdf
f(x | 8) where 6 € © is the parameter of interest and
n = h(0) where h is an injective function. Suppose fy(0) is
the prior of 6 and f,,(n) is the prior of n. If fy(6) o< \/1(0),

then f,,(n) o< \/1(n)

Properties of Bayesian point and interval esti-
mates

Let 6 € © be the parameter of interest
of our model. A loss function £(A,0) € R quantifies the
loss encountered when estimating the true parameter 6 by
0. Commonly used loss functions are the following ones:

e Quadratic loss function: £(0,0) = (6 — 9)2

11

e Linear loss function: £(0,0) = ‘é — 0’

{

Let X be a random vector with pdf
f(x | 6), f(0) be the prior of § € © and x be a real-
ization of X. A Bayes estimate of § with respect to a loss
function K(é, #) minimizes the expected loss with respect
to the posterior distribution f(é | x), i.e. it minimizes:

E(0(d,6) | x) = / 0(0,0)£(0 | x) o
S}

e Zero-one loss function:
0 ifgd=0
1 if6+#6

. The posterior mean is the Bayes estimate with re-
spect to quadratic loss.

The posterior median is the Bayes estimate with re-
spect to linear loss.

The posterior mode is the Bayes estimate with re-
spect to zero-one loss.

Let X be a random vector (of length n)
with pdf f(x | #) where § € © is the parameter of interest
which has a prior f(6). Suppose the MLE of 0 is 0,.. We
define:

2(1 0
mo :=argmax{f(0) : 0 € O}, Jy= *M
o0 0=my
Then:
0 | X 2 N(mn7 Jn_l)
where:

Jomo + J(én)én
In

)

Let X be a random vector with pdf
f(x | @) where § € © is the parameter of interest. A
subset C' C O is called a credible region for 8 of confidence
v if:

Jo=Jo+J(@,) and m,

If n is large enough, we will have:
A1

01X 2N (B, 1(60)

[ 16 1x000 =+
C

If C is a real interval, C is also called credible interval. If
the parameter is discrete, we will define a credible region
of confidence v as:

> %) >x
9eCNO
Let X be a random vector with pdf
f(x | 0) where § € © is the parameter of interest. A
~ credible region C is called a highest posterior density
(HPC) region if f(6|x) > f(0 | x) V8 € C and all § ¢ C.

Let X be a random vector with pdf
f(x | 0) where § € © is the parameter of interest whose
posterior is f(0 | x). Then, among all v credible region
C, the HPC minimizes the expected loss for the function
¢(C,0) =|C| —1¢(0), where |C| is the size of the region.



7. | Analyzing data

Comparizing distributions

(Q-Q plots). Consider a sample
x1,...,%, of data and the ordered sample x(y),..., %)
We would like to know whether the data come from a dis-
tribution F' or not. To do conclude something, we define:

> k=1,....n

Then, we plot the pairs (y(x),z)) (or equivalently the
pairs (F(yx)), F(z(xy))). The more similar is the plot to
a line, the more possible is for the data to come from the
distribution F. This plot is called Quantile-Quantile plot
(or Q-Q plots), yy are called the theoretical quantiles and
x () the sample quantiles, that is, the quantile function of
the discrete distribution induced by the sample (assigning
probability 1/n to each data of the sample)

k
n+1

Yoy = yi = F7! (

(Normal Q-Q plots). Consider
a sample xz1,...,z, of data and the ordered sample
T(1),--+,T(n). We would like to know whether the data
come from a normal distribution N(u,0?) or not. We de-

k—0.5
n

2230metimes the theoretical quantiles taken are F—1 (

) instead of F—! (

fine

k
n+1

k

2k = 2ok

:(I)‘l( ) k=1,...,n

If the data are reasonably normal, the Q-Q plot of the
pairs (z(x), (1)) is approximately a line of slope o and
y-intercept .

Sample of size 100 from a Exp(4) Sample of size 100 from a N(3,4)

10
. 08 ”
=2 =2
=2 06 g
< < - Py
) g ° ~
o 04 e © -
g 8 e
< 0'2 f“. 5:(3 0 I
w02 — s}
ol g
-2 -1 0 1 2 -2 -1 0 1 2

Normal theoretical quantiles Normal theoretical quantiles

Figure 3: Two normal Q-Q plots of samples of size 100.
On the right-hand side the sample comes from an exponen-
tial distribution and so we can see that the data doesn’t
fit quite well in a line. On the left-hand side the data
come from a normal distribution and so the data is ap-
proximately fitted in a line whose slope is 2.369 ~ /4 and
whose y-intersect is 2.956 ~ 3.

_k_
n+1

)-
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