Probability

1. Probabilistic models

 σ -algebras

Definition 1 (Algebra). Let Ω be a set and $\mathcal{A} \subset \mathcal{P}(\Omega)$. We say that \mathcal{A} is an *algebra* over Ω if:

- 1. $\Omega \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.
- 3. If $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{A}$.

Proposition 2. Let \mathcal{A} be an algebra over a set Ω . Then:

- 1. $\varnothing \in \mathcal{A}$.
- 2. If $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.
- 3. For all $n \in \mathbb{N}$, if $A_1, \ldots, A_n \in \mathcal{A}$, then:

$$\bigcup_{i=1}^{n} A_i \in \mathcal{A} \quad \text{and} \quad \bigcap_{i=1}^{n} A_i \in \mathcal{A}$$

Definition 3 (σ -algebra). Let Ω be a set and $\mathcal{A} \subset \mathcal{P}(\Omega)$. We say that \mathcal{A} is a σ -algebra over Ω if:

- 1. $\Omega \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.
- 3. If $A_1, A_2, \ldots \in \mathcal{A}$, then:

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$$

Proposition 4. Let Ω be a set, I be an index set and $\{A_i : i \in I\}$ be a collection of σ -algebras. Then, $\bigcap_{i \in I} A_i$ is a σ -algebra.

Proposition 5. Let \mathcal{A} be an σ -algebra over a set Ω . Then:

- 1. $\varnothing \in \mathcal{A}$.
- 2. If $A_1, A_2, \ldots \in \mathcal{A}$, then:

$$\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$$

3. For all $n \in \mathbb{N}$, if $A_1, \ldots, A_n \in \mathcal{A}$, then:

$$\bigcup_{i=1}^{n} A_i \in \mathcal{A} \quad \text{and} \quad \bigcap_{i=1}^{n} A_i \in \mathcal{A}$$

Definition 6. Let Ω be a set. The *trivial* σ -algebra is the smallest σ -algebra over Ω , that is, $\{\emptyset, \Omega\}$.

Definition 7. Let Ω be a set. The discrete σ -algebra is the largest σ -algebra over Ω , that is, $\mathcal{P}(\Omega)$.

Definition 8. Let Ω be a set and $A \subseteq \Omega$ be a subset. The σ -algebra generated by A, $\sigma(A)$, is the smallest σ -algebra over Ω containing A, that is:

$$\sigma(A) = \{\varnothing, \Omega, A, A^c\}$$

Definition 9. Let Ω be a set and $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ be a subset. The σ -algebra generated by \mathcal{C} , $\sigma(\mathcal{C})$, is the smallest σ -algebra over Ω containing all the elements of \mathcal{C} . Moreover, if $\{\mathcal{A}_n : \mathcal{C} \subseteq \mathcal{A}_n, 1 \leq n \leq N\}$, $N \in \mathbb{N} \cup \{\infty\}$, are all the σ -algebras over Ω containing \mathcal{C} , then:

$$\sigma(\mathcal{C}) = \bigcap_{n=1}^{N} \mathcal{A}_n$$

Theorem 10. Let Ω be a set and $\mathcal{C}, \mathcal{B} \subseteq \mathcal{P}(\Omega)$ be subsets. Suppose:

- 1. $\mathcal B$ is a σ -algebra.
- 2. $\mathcal{C} \subseteq \mathcal{B}$.

Then, $\sigma(\mathcal{C}) \subseteq \mathcal{B}$.

Definition 11. Let (Ω, \mathcal{T}) be a topological space. The *Borel \sigma-algebra* over (Ω, \mathcal{T}) , $\mathcal{B}((\Omega, \mathcal{T}))$, is the \sigma-algebra generated by the open sets of (Ω, \mathcal{T}) :

$$\mathcal{B}((\Omega, \mathcal{T})) := \sigma(\mathcal{T})$$

In particular, the Borel σ -algebra over \mathbb{R} (together with the usual topology) is:

$$\mathcal{B}(\mathbb{R}) := \sigma(\{U \subseteq \mathbb{R} : U \text{ is open}\})$$

Proposition 12. Let (Ω, \mathcal{T}) be a topological space. Then:

$$\mathcal{B}((\Omega, \mathcal{T})) = \sigma(\{C \subseteq \Omega : C \text{ is closed}\})$$

Proposition 13. Consider the Borel σ -algebra over \mathbb{R} , $\mathcal{B}(\mathbb{R})$. Then:

- 1. $\mathcal{B}(\mathbb{R}) = \sigma(\{(a,b) \subset \mathbb{R} : a,b \in \mathbb{R}, a < b\})$
- 2. $\mathcal{B}(\mathbb{R}) = \sigma(\{[a,b] \subset \mathbb{R} : a,b \in \mathbb{R}, a < b\})$
- 3. $\mathcal{B}(\mathbb{R}) = \sigma(\{[a,b) \subset \mathbb{R} : a,b \in \mathbb{R}, a < b\})$
- 4. $\mathcal{B}(\mathbb{R}) = \sigma(\{(a,b] \subset \mathbb{R} : a,b \in \mathbb{R}, a < b\})$
- 5. $\mathcal{B}(\mathbb{R}) = \sigma(\{(a, \infty) \subset \mathbb{R} : a \in \mathbb{R}\})$
- 6. $\mathcal{B}(\mathbb{R}) = \sigma(\{(-\infty, a) \subset \mathbb{R} : a \in \mathbb{R}\})$
- 7. $\mathcal{B}(\mathbb{R}) = \sigma(\{[a, \infty) \subset \mathbb{R} : a \in \mathbb{R}\})$
- 8. $\mathcal{B}(\mathbb{R}) = \sigma(\{(-\infty, a] \subset \mathbb{R} : a \in \mathbb{R}\})$

Probability

Definition 14 (Sample space). The sample space Ω of an experiment is the set of all possible outcomes of that experiment.

Definition 15 (Kolmogorov axioms). Let Ω be a set and \mathcal{A} be a σ -algebra over Ω . A *probability* is any function

$$\mathbb{P}:\mathcal{A}\longrightarrow [0,\infty)$$

satisfying the following properties:

- $\mathbb{P}(\Omega) = 1$.
- σ -additivity: If $\{A_n : n \geq 1\} \subset \mathcal{A}$ are pairwise disjoint, then:

$$\mathbb{P}\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Definition 16. Let Ω be a set and \mathcal{A} be a σ -algebra over Ω . An *event* $A \in \mathcal{A}$ is a subset of Ω for which we want to calculate the probability.

Definition 17. A probability space is a triplet $(\Omega, \mathcal{A}, \mathbb{P})$ where Ω is any set, \mathcal{A} is a σ -algebra over Ω and \mathbb{P} is a probability over \mathcal{A} .

Proposition 18. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A, B \in \mathcal{A}$. Then, we have the following properties:

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. If $A_i \in \mathcal{A}$, i = 1, ..., n, is a finite set of pairwise disjoint events, then:

$$\mathbb{P}\left(\bigsqcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i})$$

- 3. $\mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(A \cap B)$.
- 4. If $B \subset A$, then $\mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(B)$.
- 5. If $B \subset A$, then $\mathbb{P}(B) \leq \mathbb{P}(A)$.
- 6. $\mathbb{P}(A) \leq 1$.
- 7. $\mathbb{P}(A^c) = 1 \mathbb{P}(A).$
- 8. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- 9. If $A_1, \ldots, A_n \in \mathcal{A}$, then:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{\substack{i,j=1\\i < j}}^{n} \mathbb{P}(A_{i} \cap A_{j}) + \sum_{\substack{i,j,k=1\\i < j < k}}^{n} \mathbb{P}(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n+1} \mathbb{P}(A_{1} \cap \dots \cap A_{n})$$

10. If $A_1, \ldots, A_n \in \mathcal{A}$, then:

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{\substack{i,j=1\\i < j}}^{n} \mathbb{P}(A_{i} \cup A_{j}) + \sum_{\substack{i,j,k=1\\i < j < k}}^{n} \mathbb{P}(A_{i} \cup A_{j} \cap A_{k}) - \dots + (-1)^{n+1} \mathbb{P}(A_{1} \cup \dots \cup A_{n})$$

11. Finite subadditivity: If $A_1, \ldots, A_n \in \mathcal{A}$, then:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mathbb{P}(A_i)$$

Proposition 19. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space such that Ω is finite and all its elements are equiprobable. Let $A \in \mathcal{A}$ be an event. Then:

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

Theorem 20 (Continuity from below). Let

 $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n) \subset \mathcal{A}$ be an increasing sequence of events, that is:

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots$$

Let $A := \bigcup_{n=1}^{\infty} A_n$. Then:

$$\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

Corollary 21 (Continuity from above). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n) \subset \mathcal{A}$ be a decreasing sequence of events, that is:

$$A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$$

Let $A := \bigcap_{n=1}^{\infty} A_n$. Then:

$$\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

Proposition 22 (Countable subadditivity). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n) \subset \mathcal{A}$ be a sequence of events. Then:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Corollary 23. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n) \subset \mathcal{A}$ be a sequence of events with probability 0. Then:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$

Corollary 24. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n) \subset \mathcal{A}$ be a sequence of events with probability 1.

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = 1$$

Conditional probability

Definition 25. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A \in \mathcal{A}$ be an event such that $\mathbb{P}(A) > 0$. The *conditional probability* that $B \in \mathcal{A}$ occurs given that A occurs is defined as:

$$\mathbb{P}(B \mid A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

Proposition 26. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A \in \mathcal{A}$ be an event such that $\mathbb{P}(A) > 0$. Then, the function

$$\mathbb{P}(\cdot \mid A) : \mathcal{A} \longrightarrow [0, \infty]$$
$$B \longmapsto \mathbb{P}(B \mid A)$$

is a probability.

Proposition 27 (Compound probability formula). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A \in \mathcal{A}$ be an event such that $\mathbb{P}(A) > 0$. Then, $\forall B \in \mathcal{A}$:

$$\mathbb{P}(A \cap B) = \mathbb{P}(B \mid A)\mathbb{P}(A)$$

Proposition 28 (Generalized compound probability formula). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A_1, \ldots, A_n \in \mathcal{A}, n \geq 2$, be events such that $\mathbb{P}(A_1 \cap \cdots \cap A_{n-1}) > 0$. Then:

$$\mathbb{P}(A_1 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_2 \cap A_1) \dots \dots \mathbb{P}(A_n \mid A_1 \cap \dots \cap A_{n-1})$$

Definition 29. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A = \{A_n : 1 \leq n \leq N\} \subset \mathcal{A}, N \in \mathbb{N} \cup \{\infty\}$, be a collection of events. We say that A is a *partition* of Ω if:

$$\Omega = \bigsqcup_{n=1}^{N} A_n$$

Proposition 30 (Law of total probability). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\{A_n : 1 \leq n \leq N\} \subset \mathcal{A}, N \in \mathbb{N} \cup \{\infty\}$, be a partition of Ω such that $\mathbb{P}(A_n) > 0$ for all $1 \leq n \leq N$. Then, $\forall A \in \mathcal{A}$:

$$\mathbb{P}(A) = \sum_{n=1}^{N} \mathbb{P}(A_n) \mathbb{P}(A \mid A_n)$$

Proof.

$$\mathbb{P}(A) = \mathbb{P}(A \cap \Omega) = \mathbb{P}\left(\bigsqcup_{n=1}^{N} (A \cap A_n)\right) =$$

$$= \sum_{n=1}^{N} \mathbb{P}(A \cap A_n) = \sum_{n=1}^{N} \mathbb{P}(A_n) \mathbb{P}(A \mid A_n)$$

Proposition 31 (Bayes' formula). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\{A_n : 1 \leq n \leq N\} \subset \mathcal{A}, N \in \mathbb{N} \cup \{\infty\}$, be a partition of Ω such that $\mathbb{P}(A_n) > 0$ for all $1 \leq n \leq N$. Let $A \in \mathcal{A}$ with $\mathbb{P}(A) > 0$. Then, $\forall k \leq N$:

$$\mathbb{P}(A_k \mid A) = \frac{\mathbb{P}(A_k)\mathbb{P}(A \mid A_k)}{\sum_{n=1}^{N} \mathbb{P}(A_n)\mathbb{P}(A \mid A_n)}$$

Independence of events

Definition 32. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that $A, B \in \mathcal{A}$ are *independent events* if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Proposition 33. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Then:

- 1. \varnothing and Ω are independent of any event.
- 2. If $A \in \mathcal{A}$ satisfies either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$, then A is independent of any other event $B \in \mathcal{A}$.
- 3. If an event $A \in \mathcal{A}$ is independent of itself, then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Proposition 34. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A, B \in \mathcal{A}$ be two events. The following statements are equivalent:

- A and B are independent.
- A^c and B are independent.
- A and B^c are independent.
- A^c and B^c are independent.

Definition 35. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $n \in \mathbb{N}$. We say that $A_1, \ldots, A_n \in \mathcal{A}$ are *independent* events if for any $i_1, \ldots, i_k \in \{1, \ldots, n\}$, we have:

$$\mathbb{P}\left(\bigcap_{r=1}^{k} A_{i_r}\right) = \prod_{r=1}^{k} \mathbb{P}(A_{i_r})$$

Definition 36. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and I be an arbitrary index set. We say that $\{A_i : i \in I\} \subset \mathcal{A}$ are *independent events* if for any finite subset $\{A_{i_1}, \ldots, A_{i_k} : i_r \in I \text{ for } r = 1, \ldots, k\}$ of different events, we have:

$$\mathbb{P}\left(\bigcap_{r=1}^{k} A_{i_r}\right) = \prod_{r=1}^{k} \mathbb{P}(A_{i_r})$$

2. Lebesgue integration

Definition 37. Let $A \subset \mathbb{R}^n$ be a subset. Then, A is a *null set* (or a *set of zero-content*) if $\forall \varepsilon > 0$ there exists a collection $\{R_k \subset \mathbb{R}^n : R_k \text{ is a rectangle } \forall k \in \mathbb{N}\}$ of rectangles such that:

$$A \subset \bigcup_{k=1}^{\infty} R_k$$
 and $\sum_{k=1}^{\infty} \operatorname{vol}(R_k) < \varepsilon$

Definition 38. Let E be a set and \mathcal{E} be a σ -algebra over E. We say that the function:

$$\mu: \mathcal{E} \longrightarrow [0, \infty]$$
 $A \longmapsto \mu(A)$

is a measure if:

1. There exists $A \in \mathcal{E}$ such that $\mu(A) < \infty$.

2. If $\{A_n \in \mathcal{E} : n \in \mathbb{N}\}$ is a collection of pairwise disjoint sets, then:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$

The triplet (E, \mathcal{E}, μ) is called a *measure space*.

Definition 39. The σ -algebra of all Lebesgue measurable sets in \mathbb{R}^n , $\mathcal{L}_n \subset \mathcal{P}(\mathbb{R}^n)$, is defined as:

$$\mathcal{L}_n := \{ A \subseteq \mathbb{R}^n : A = B \cup N \}$$

where $B \in \mathcal{B}(\mathbb{R}^n)$ and N is a null set.

Theorem 40. We can extend the concept of volume on rectangles in \mathbb{R}^n to all the elements in \mathcal{L}_n . This extension is called *Lebesgue measure* (or simply *volume*) in \mathbb{R}^n .

Definition 41. Let (E, \mathcal{E}, μ) be a measure space and $f: E \to \mathbb{R}$ be a function. We say that f is measurable if $\forall B \in \mathcal{B}(\mathbb{R})$ we have $f^{-1}(B) \in \mathcal{E}$. The Lebesgue integral of f over E with respect to μ is denoted by:

$$\int_{E} f \mathrm{d}\mu$$

Proposition 42. Let (E, \mathcal{E}, μ) be a measure space and $f: E \to \mathbb{R}$ be a measurable function such that $f(x) \geq 0$ $\forall x \in E$. Then, we can always define the integral

$$\int_{E} f \mathrm{d}\mu$$

taking into account that may be $+\infty$.

Definition 43. Let (E, \mathcal{E}, μ) be a measurable space and $f: E \to \mathbb{R}$ be a measurable function. We say that f is Lebesgue integrable with respect to μ if:

$$\int_{E} |f| \mathrm{d}\mu < \infty$$

Moreover if $G \in \mathcal{E}$, we define:

$$\int\limits_C f\mathrm{d}\mu := \int\limits_E f\mathbf{1}_G\mathrm{d}\mu$$

Proposition 44. Consider the measurable space $(\mathbb{R}^n, \mathcal{L}_n, m_n)$, where m_n is the volume in \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}$ be a Riemann integrable function satisfying:

$$\int_{\mathbb{R}^n} |f(x_1,\ldots,x_n)| \, \mathrm{d} x_1 \cdots \, \mathrm{d} x_n < \infty$$

Then, f is Lebesgue integrable and:

$$\int_{\mathbb{R}^n} |f(x_1,\ldots,x_n)| \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_n = \int_{\mathbb{R}^n} f \, \mathrm{d}m_n$$

Theorem 45 (Tonelli's theorem). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a non-negative Lebesgue measurable function. Then:

$$\int_{\mathbb{R}^2} f(x, y) dx dy = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x, y) dx \right) dy$$
$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x, y) dy \right) dx$$

Theorem 46 (Fubini's theorem). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a Lebesgue measurable function such that at least one of the following integrals is finite.

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |f(x,y)| \, \mathrm{d}x \right) \, \mathrm{d}y$$

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |f(x,y)| \, \mathrm{d}y \right) \, \mathrm{d}x$$

Then, f is Lebesgue integrable and:

$$\int_{\mathbb{R}^2} f(x, y) \, dx \, dy = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x, y) \, dx \right) dy$$
$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x, y) \, dy \right) dx$$

3. Random variables and random vectors

Random variables

Definition 47. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. A real random variable (or simply random variable) X is a function $X : \Omega \to \mathbb{R}$ satisfying for all $B \in \mathcal{B}(\mathbb{R})$:

$$X^{-1}(B) = \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{A}$$

Proposition 48. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, \mathcal{C} be a collection of subsets of \mathbb{R} such that $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C})$ and let $X : \Omega \to \mathbb{R}$ be a function. Then, X is a random variable if and only if $X^{-1}(B) \in \mathcal{A}$, $\forall B \in \mathcal{C}$.

Definition 49. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $a, b \in \mathbb{R}$ and $B \in \mathcal{B}(\mathbb{R})$. We define the following set:

$${X \in B} := {\omega \in \Omega : X(\omega) \in B} = X^{-1}(B)$$

In particular:

$$\{X \le a\} := \{\omega \in \Omega : X(\omega) \le a\} = X^{-1}((-\infty, a])$$

$$\{X > b\} := \{\omega \in \Omega : X(\omega) > b\} = X^{-1}((b, \infty))$$

$$\{a < X \le b\} := \{\omega \in \Omega : a < X(\omega) \le b\} = X^{-1}([b, a])$$

$$\{X = a\} := \{\omega \in \Omega : X(\omega) = a\} = X^{-1}(\{a\})$$

Proposition 50. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X, Y be random variables and $a \in \mathbb{R}$. Then:

1. X + Y is also a random variable.

- 2. aX is also a random variable.
- 3. XY is also a random variable.
- 4. $\frac{1}{X}$ is also a random variable if $X(\omega) \neq 0 \ \forall \omega \in \Omega$.

Proposition 51. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of random variables. Then, the following quantities are also random variables provided that they are finite for all $\omega \in \Omega$:

- 1. $\sup X_n$
- 2. $\inf X_n$
- 3. $\limsup_{n\to\infty} X_n$
- 4. $\liminf_{n\to\infty} X_n$

Corollary 52. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of random variables such that $\forall \omega \in \Omega$ the following limit exists and it is finite:

$$X(\omega) := \lim_{n \to \infty} X_n(\omega)$$

Then, X is a random variable.

Distribution of a random variable

Definition 53. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. The *distribution* of a random variable X is the function:

$$\mathbb{P}_X: \mathcal{B}(\mathbb{R}) \longrightarrow [0,1]$$

$$B \longmapsto \mathbb{P}(\{X \in B\})^{\mathbf{1}}$$

Proposition 54. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Then, for any random variable X, the function \mathbb{P}_X is a probability over $\mathcal{B}(\mathbb{R})$. Hence, $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P}_X)$ is a probability space.

Definition 55. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that two random variables X, Y are *equal in distribution* (denoted by $X \stackrel{\text{d}}{=} Y$) if they satisfy:

$$\mathbb{P}_X(B) = \mathbb{P}_Y(B) \qquad \forall B \in \mathcal{B}(\mathbb{R})$$

That is, $X \stackrel{\mathrm{d}}{=} Y$ if they have the same distribution functions.

Definition 56. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that two random variables X, Y are equal almost surely (denoted by $X \stackrel{\text{a.s.}}{=} Y$) if $\mathbb{P}(X = Y) = 1$, or equivalently, if $\mathbb{P}(X \neq Y) = 0$.

Proposition 57. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be two random variables such that $X \stackrel{\text{a.s.}}{=} Y$. Then, $X \stackrel{\text{d}}{=} Y$.

Definition 58 (Cumulative distribution function).

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable. We define the *cumulative distribution function* (cdf) as:

$$F_X: \mathbb{R} \longrightarrow [0,1]$$

 $x \longmapsto \mathbb{P}(X \le x) = \mathbb{P}_X((-\infty, x])$

Theorem 59. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a random variable and F_X be its cdf. Then:

- 1. If x < y, then $F_X(x) \le F_X(y)$.
- 2. F_X is $c \grave{a} dl \grave{a} g^2$.
- 3. $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to \infty} F_X(x) = 1$.

Reciprocally, if there is a function F satisfying these properties³, then there exists a random variable X on $(\Omega, \mathcal{A}, \mathbb{P})$ such that F is its cdf.

Proposition 60. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a random variable and F_X be its cdf. Then:

- F_X has at most a countable number of discontinuities.
- 2. $\forall x, y \in \mathbb{R}$ such that s < t, we have:

$$\mathbb{P}(x < X \le y) = F(y) - F(x)$$

$$\mathbb{P}(x < X < t) = \lim_{t \to y^{-}} F_X(y) - F(x)$$

$$\mathbb{P}(x \le X \le y) = F(y) - \lim_{t \to x^{-}} F_X(x)$$

$$\mathbb{P}(x \le X < y) = \lim_{t \to y^{-}} F_X(y) - \lim_{t \to x^{-}} F(x)$$

- 3. $\forall x \in \mathbb{R}, \ \mathbb{P}(X < x) = \lim_{t \to x^{-}} F_X(t).$
- 4. For all $x \in \mathbb{R}$:

$$\mathbb{P}(X = x) = F_X(x) - \lim_{t \to x^-} F_X(t)$$

Hence, F_X is discontinuous at $x \iff \mathbb{P}(X = x) > 0$.

Theorem 61. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Then, the cdf completely determine a distribution of a random variable X. That is, if X and Y are random variables such that $F_X(t) = F_Y(t) \ \forall t \in \mathbb{R}$, then $X \stackrel{\text{d}}{=} Y$.

Discrete random variables

Definition 62. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that a random variable X is *discrete* if there exists a finite or countable set $S \subset \mathbb{R}$ such that $\mathbb{P}(X \in S) = 1^4$. In that case, S is called the *support* of X^5 .

Definition 63 (Probability mass function). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a discrete random variable with support points $S_X = \{x_i : i \in I\}$, where $I \subseteq \mathbb{N}$. The probability mass function (pmf) of the random variable X is:

$$p_X: S_X \longrightarrow [0,1]$$

 $x_i \longmapsto \mathbb{P}(X = x_i)$

¹From now on, in order to simplify the notation, we will write $\mathbb{P}(X \in B) := \mathbb{P}(\{X \in B\})$.

²From French "continue à droite, limite à gauche" (right continuous with left limits).

³Such kind of functions are called *distribution functions*.

⁴By agreement, we will suppose that S only contains points x such that $\mathbb{P}(X=x) > 0$.

⁵In general we will denote S by S_X .

Proposition 64. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a discrete random variable with support points $S_X = \{x_i : i \in I\}$ and p_X be its pmf. Then:

1. $p_X(x_i) > 0 \ \forall i \in I$.

2.
$$\sum_{i \in I} p_X(x_i) = 1$$
.

3. $\forall B \in \mathcal{B}(\mathbb{R})$, we have:

$$\mathbb{P}(X \in B) = \sum_{i \in I: x_i \in B} p_X(x_i)$$

Corollary 65. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a discrete random variable with support points $S_X = \{x_i : i \in I\}$, F_X be its cdf and p_X be its pmf. Then $\forall x \in \mathbb{R}$ we have:

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{i \in I: x_i \le x} p_X(x_i)$$

Definition 66 (Degenerated distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. The *degenerated distribution* consists in taking a constant random variable X so that

$$\mathbb{P}(X=a)=1$$

for some $a \in \mathbb{R}$. Here we have $S_X = \{a\}$.

Definition 67 (Bernoulli distribution). Let

 $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. The *Bernoulli distribution* is the one whose random variable X can only take two values $(1 \text{ and } 0)^6$ with probabilities p and q := 1 - p:

$$\mathbb{P}(X=0) = p \qquad \mathbb{P}(X=1) = q$$

Here we have $S_X = \{0, 1\}$. If X follows a Bernoulli distribution of parameter p, we will write $X \sim \text{Ber}(p)$.

Definition 68 (Discrete uniform distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. The *discrete uniform distribution* is the one whose random variable X takes values on $S_X = \{x_1, \ldots, x_n\}$ each of these with probability 1/n:

$$\mathbb{P}(X = x_i) = \frac{1}{n} \qquad \forall i = 1, \dots, n$$

If X follows a discrete uniform distribution, we will write $X \sim U(\{x_1, \dots, x_n\})$. The probability space $(S, \mathcal{P}(S), \mathbb{P}_X)$ is an *equiprobable space*.

Definition 69 (Binomial distribution). Let

 $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A \in \mathcal{A}$. Suppose $\mathbb{P}(A) = p$. The *binomial distribution* is the one whose random variable X is the number of successes of A in a sequence of n repetitions. Thus, $S_X = \{0, 1, \ldots, n\}$ and:

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \qquad \forall k = 0, 1, \dots, n$$

If X follows a binomial distribution of parameters n and p, we will write $X \sim \mathrm{B}(n,p)^7$.

$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \forall k \in \mathbb{N} \cup \{0\}$$

If X follows a Poisson distribution of parameter λ , we will write $X \sim \text{Pois}(\lambda)$.

Theorem 71. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Let $(p_n) \subset (0,1)$ be a sequence such that:

$$\lim_{n \to \infty} n p_n = \lambda > 0$$

For each $n \geq 1$, consider $X_n \sim \mathrm{B}(n,p_n)$. Then, $\forall k \in \mathbb{N} \cup \{0\}$ we have:

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = \lim_{n \to \infty} \binom{n}{k} p_n^{\ k} (1 - p_n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

Corollary 72. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and suppose $n \in \mathbb{N}$ and $p \in (0,1)$ are such that $n \gg 1$ and $p \ll 1$. Then, $B(n,p) \simeq \operatorname{Pois}(np)^8$.

Definition 73 (Geometric distribution). Let

 $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A \in \mathcal{A}$. Suppose $\mathbb{P}(A) = p$. The *geometric distribution* is the one whose random variable X is the number of trials needed to get one success. Thus, $S_X = \mathbb{N}$ and:

$$\mathbb{P}(X=k) = (1-p)^{k-1}p \qquad \forall k \in \mathbb{N}$$

If X follows a geometric distribution of parameter p, we will write $X \sim \text{Geo}(p)$.

Definition 74 (Discrete memorylessness property). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a discrete random variable whose support is \mathbb{N} and such that $\mathbb{P}(X > m) > 0 \ \forall m \in \mathbb{N}$. The distribution of X is memoryless if $\forall m, n \in \mathbb{N}$, we have:

$$\mathbb{P}(X > m + n \mid X > m) = \mathbb{P}(X > n)$$

Proposition 75. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a discrete random variable and $p \in (0,1)$. Then, $X \sim \text{Geo}(p)$ if and only if the distribution of X is memoryless.

Definition 76 (Hypergeometric distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Suppose we have a population of size N of whom K have a special feature (success). Let X be the random variable that counts the number of successes that we have obtained in n draws (without replacement). Thus, the support of X is:

$$S_X = {\max\{n + K - N, 0\}, \dots, \min\{n, K\}}$$

And the pmf is given by:

$$\mathbb{P}(X=k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

This type of distribution is called hypergeometric distribution and it is denoted by $X \sim \mathrm{HG}(N,p,n)$, where $p = \frac{K}{N}$ is the proportion of successes in the population.

Definition 70 (Poisson distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\lambda \in \mathbb{R}_{>0}$. The *Poisson distribution* of parameter λ is the one whose random variable X has support $S_X = \mathbb{N} \cup \{0\}$ and:

⁶Also called *success/true* or *failure/false*, respectively.

⁷Note that, a Bernoulli distribution of parameter p may be considered as a Binomial distribution of parameters n = 1 and p. Hence, Ber(p) = B(1, p).

⁸In practice, the approximation is good enough for $n \ge 10$ and $p \le 0.05$.

Theorem 77. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \sim \mathrm{HG}(N, p, n)$ such that when $N \to \infty$, p remains constant. Then:

$$\lim_{N \to \infty} \mathbb{P}(X = k) = \lim_{N \to \infty} \frac{\binom{K}{k} \binom{N - K}{n - k}}{\binom{N}{n}} = \binom{n}{k} p^k (1 - p)^{n - k}$$

which is the pmf of a binomial distribution B(n, p).

Definition 78 (Negative binomial distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A \in \mathcal{A}$. Suppose $\mathbb{P}(A) = p$. The negative binomial distribution is the one whose random variable X is the number of trials needed to get $r \ge 1$ successes. Thus, $S_X = \{r, r+1, \ldots\}$ and:

$$\mathbb{P}(X=k) = \binom{k-1}{r-1} p^r (1-p)^{k-r} \qquad \forall k \ge r$$

If X follows a negative binomial distribution of parameters r and p, we will write $X \sim NB(r, p)$.

Absolutely continuous random variables

Definition 79. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that a random variable X is absolutely continuous if there exists a function $f: \mathbb{R} \to \mathbb{R}$ satisfying:

- 1. $f(x) > 0, \forall x \in \mathbb{R}$.
- 2. f is integrable over \mathbb{R} and:

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$$

3. For all $a, b \in \mathbb{R} \cup \{\pm \infty\}$ with $a \leq b$, we have:

$$\mathbb{P}(a \le X \le b) = \int_{a}^{b} f(x) \, \mathrm{d}x$$

The function f, denoted by f_X , is called *probability den*sity function (pdf) of X. In general, a function satisfying the first two properties is called a density function.

Proposition 80. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be an absolutely continuous random variable and F_X be its cdf. Then:

- 1. $\mathbb{P}(X = a) = 0$, $\forall a \in \mathbb{R}$.
- 2. $\mathbb{P}(X \in B) = \int_{B} f_X(x) dx$, $\forall B \in \mathcal{B}(\mathbb{R})$.
- 3. $F_X(b) = \mathbb{P}(X \le b) = \int_{-b}^{b} f_X(x) \, \mathrm{d}x, \quad \forall b \in \mathbb{R}.$
- 4. F_X is continuous on \mathbb{R} .
- 5. If $a, b \in \mathbb{R}$ are such that a < b, then:

$$\begin{split} \mathbb{P}(a < X < b) &= \mathbb{P}(a \leq X < b) = \\ &= \mathbb{P}(a < X \leq b) = \mathbb{P}(a \leq X \leq b) \quad \text{and } \sigma, \text{ its } standard \ deviation. \end{split}$$

Definition 81 (Continuous uniform distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that an absolutely continuous random variable X follows a continuousuniform distribution on (a, b) (also [a, b]), and we denoted it by $X \sim U(a, b)$, if X has the pdf

$$f_X(x) = \frac{1}{b-a} \mathbf{1}_{(a,b)}(x)$$

where $\mathbf{1}_{(a,b)}$ is the indicator function. Therefore, its cdf is:

$$F_X(x) = \frac{x-a}{b-a} \mathbf{1}_{(a,b)}(x) + \mathbf{1}_{[b,\infty)}(x)$$

Definition 82 (Exponential distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that an absolutely continuous random variable X follows an exponential distribution of parameter $\lambda > 0$, and we denoted it by $X \sim \text{Exp}(\lambda)$, if X has the pdf:

$$f_X(x) = \lambda e^{-\lambda x} \mathbf{1}_{(0,\infty)}$$

Furthermore, its cdf is:

$$F_X(x) = (1 - e^{-\lambda x}) \mathbf{1}_{(0,\infty)}(x)$$

Definition 83 (Continuous memorylessness prop**erty).** Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be an absolutely continuous random variable such that $\mathbb{P}(X > X)$ $(s) > 0 \ \forall s \in \mathbb{R}_{>0}$. The distribution of X is memoryless if $\forall s, t \in \mathbb{R}_{>0}$, we have:

$$\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$$

Proposition 84. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be an absolutely continuous random variable and $\lambda \in \mathbb{R}_{>0}$. Then, $X \sim \text{Exp}(\lambda)$ if and only if the distribution of X is memoryless.

Definition 85 (Standard normal distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that an absolutely continuous random variable Z follows a $standard\ normal$ distribution, and we denoted it by $Z \sim N(0,1)$, if Z has the pdf:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

Definition 86 (Normal distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_{>0}$. We say that an absolutely continuous random variable X follows a normaldistribution, and we denoted it by $X \sim N(\mu, \sigma^2)$, if X has the pdf:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

 μ is called the mean or expectation of X; σ^2 , its variance,

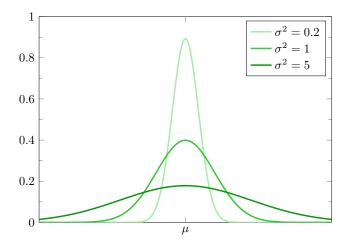


Figure 1: Probability density function of a normal distribution

Proposition 87. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \sim N(\mu, \sigma^2)$ and $Z \sim N(0, 1)$ be absolutely continuous random variables. Then:

$$\mu + \sigma Z \stackrel{\mathrm{d}}{=} X$$

Therefore, $\forall x \in \mathbb{R}$ we have:

$$\mathbb{P}(X \le x) = \mathbb{P}\left(Z \le \frac{x - \mu}{\sigma}\right)$$

In this case, Z is called the *standardized form* of X.

Definition 88 (Gamma distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that an absolutely continuous random variable X follows a $gamma\ distribution$ of parameters $\alpha, \beta \in \mathbb{R}_{>0}$, and we denoted it by $X \sim \text{Gamma}(\alpha, \beta)$, if X has the pdf:

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \mathbf{1}_{(0,\infty)}(x)$$

The parameter α is called *shape*; β , *rate*, and $1/\beta$, *scale*.

Definition 89. Let $a, b \in \mathbb{R}_{>0}$. The *beta function* is defined as⁹:

$$B(a,b) := \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$

Proposition 90. For all $a, b \in \mathbb{R}_{>0}$, we have:

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Definition 91 (Beta distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that an absolutely continuous random variable X follows a *beta distribution* of parameters $a, b \in \mathbb{R}_{>0}$, and we denoted it by $X \sim \text{Beta}(a, b)$, if X has the pdf:

$$f_X(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} \mathbf{1}_{(0,1)}(x)$$

⁹Beta function should not be confused with binomial distribution, although we have used the same notation.

Definition 92 (Cauchy distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_{>0}$. We say that an absolutely continuous random variable X follows a *Cauchy distribution* of parameters $x_0 \in \mathbb{R}$ and $\gamma \in \mathbb{R}_{>0}$, and we denoted it by $X \sim C(x_0, \gamma)$, if X has the pdf:

$$f_X(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma}\right)^2\right]}$$

Definition 93. A mixed random variable is a random variable whose cdf is neither piecewise-constant (a discrete random variable) nor absolutely continuous.

Theorem 94. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable with cdf F_X . Suppose that:

- 1. F_X is continuous.
- 2. F_X is differentiable at any point except for, maybe, a finite number of points.
- 3. F_X is continuously differentiable at any point except for, maybe, a finite number of points.

Then:

$$F_X(x) = \int_{-\infty}^{x} F'(t) dt \qquad \forall x \in \mathbb{R}$$

That is, F_X' is the pdf of X.

Transformations of random variables

Proposition 95. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be an absolutely continuous random variable with pdf f_X and U, V be open sets such that $\mathbb{P}(X \in U) = 1$. Let $h: U \to V$ be a diffeomorphism of class \mathcal{C}^1 . Then, Y:=h(X) is also an absolutely continuous random variable and:

$$f_Y(y) = f_X(h^{-1}(y))|(h^{-1})'(y)|\mathbf{1}_V(y)$$

Proposition 96. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be an absolutely continuous random variable with pdf f_X , U_1, \ldots, U_k be pairwise disjoint open intervals such that $\mathbb{P}(X \in U_1 \sqcup \cdots \sqcup U_k) = 1$. Let $h: U_1 \sqcup \cdots \sqcup U_k \to \mathbb{R}$ and denote $h_i = h|_{U_i}$. Then, if $h_i: U_i \to V_i$ are diffeomorphisms of class \mathcal{C}^1 for $i = 1, \ldots, k$, then Y := h(X) is also an absolutely continuous random variable and:

$$f_Y(y) = \sum_{i=1}^k f_X(h_i^{-1}(y))|(h_i^{-1})'(y)|\mathbf{1}_{V_i}(y)$$

Random vectors

Definition 97. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. A random vector \mathbf{X} is a function $\mathbf{X} = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$ satisfying for all $B \in \mathcal{B}(\mathbb{R}^n)$:

$$\{\mathbf{X} \in B\} = \{\omega \in \Omega : \mathbf{X}(\omega) \in B\} \in \mathcal{A}$$

Proposition 98. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. $\mathbf{X} = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$ is a random vector if and only if $X_i : \Omega \to \mathbb{R}$ is a random variable for $i = 1, \dots, n$.

Definition 99. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector. For all $B_1 \times \dots \times B_n \in \mathcal{B}(\mathbb{R}^n)$, we have that:

$$\{\mathbf{X} \in B_1 \times \dots \times B_n\} = \{X_1 \in B_1\} \cap \dots \cap \{X_n \in B_n\}$$

We will denote:

$${X_1 \in B_1, \dots, X_n \in B_n} := {X_1 \in B_1} \cap \dots \cap {X_n \in B_n}$$

Definition 100. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector. Then, the *distribution* of \mathbf{X} is the function:

$$\mathbb{P}_{\mathbf{X}}: \mathcal{B}(\mathbb{R}^n) \longrightarrow [0,1]$$

$$B \longmapsto \mathbb{P}(\mathbf{X} \in B)$$

Definition 101. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector. We say that \mathbf{X} is discrete if there exists a finite or countable subset $S \subset \mathbb{R}^n$ such that $\mathbb{P}(\mathbf{X} \in S) = 1^{10}$. In that case, S is called the support of \mathbf{X}^{11} .

Proposition 102. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector. Then, \mathbf{X} is discrete if and only if X_i is a discrete random variable for $i = 1, \dots, n$.

Definition 103 (Joint probability mass function). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a discrete random vector. Then, the *joint probability* mass function (joint pmf) of \mathbf{X} is:

$$p_{\mathbf{X}}: S_{X_1} \times \dots \times S_{X_n} \longrightarrow [0,1]$$
$$(x_1, \dots, x_n) \longmapsto \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$$

Proposition 104. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and **X** be a discrete random vector. Then, the joint pmf of **X** determines the distribution of **X**.

Definition 105 (Marginal probability mass functions). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \ldots, X_n)$ be a discrete random vector with support $S_{\mathbf{X}} = S_{X_1} \times \cdots \times S_{X_n}$. Then, the marginal probability mass functions (marginal pmf) of \mathbf{X} are:

$$p_{X_{i}}(x_{i}) = \mathbb{P}(X_{i} = x_{i})$$

$$= \sum_{\substack{y_{j} \in S_{X_{j}} \\ i \neq i}} p_{\mathbf{X}}(y_{1}, \dots, y_{i-1}, x_{i}, y_{i+1}, \dots, y_{n})$$

for i = 1, ..., n.

Definition 106 (Multinomial distrbution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A_1, \ldots, A_r \in \mathcal{A}$. Suppose $\mathbb{P}(A_i) = p_i$ for $i = 1, \ldots, r$ such that $p_1 + \cdots + p_r = 1$. The *multinomial distribution* is the one whose *i*-th random variable X_i is the number of successes of A_i in a sequence of n repetitions, for $i = 1, \ldots, r$, that is, $X_i \sim \mathrm{B}(n, p_i)$. Thus, for all $n_1, \ldots, n_r \in \{0, 1, \ldots, n\}$ such that $n_1 + \cdots + n_r = n$ we have:

$$\mathbb{P}(X_1 = n_1, \dots, X_r = n_r) = \frac{n!}{n_1! \cdots n_r!} p_1^{n_1} \cdots p_r^{n_r}$$

If $\mathbf{X} = (X_1, \dots, X_r)$ follows a multinomial distribution of parameters n and p_1, \dots, p_r , we will write $\mathbf{X} \sim \text{Mult}(n; p_1, \dots, p_r)$.

Definition 107. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector. We say that \mathbf{X} is absolutely continuous if exists a function $f : \mathbb{R}^n \to \mathbb{R}$ such that:

1. $f(x) \ge 0, \forall x \in \mathbb{R}^n$.

2.

$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(x_1, \dots, x_n) dx_1 \cdots dx_n = 1$$

3. For all $B \in \mathcal{B}(\mathbb{R}^n)$ we have:

$$\mathbb{P}(\mathbf{X} \in B) = \int_{B} f(x) \, \mathrm{d}x$$

The function f, denoted by $f_{\mathbf{X}}$, is called *joint probability density function (joint pdf)* of \mathbf{X} .

Proposition 108 (Marginal probability density functions). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be an absolutely continuous random vector with density $f_{\mathbf{X}}$. Then, X_i is an absolutely random variable with pdf:

$$f_{X_i}(x_i) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(x_1, \dots, x_n) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_{i-1} \cdot \cdots \cdot \mathrm{d}x_n$$

for i = 1, ..., n. These functions f_{X_i} are called marginal probability density functions (marginal pdf) of \mathbf{X} .

Definition 109 (Multivariate standard normal distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be an absolutely continuous random vector. We say that \mathbf{X} follows a multivariate normal distribution, denoted by $\mathbf{X} \sim N(0, 1)$, if \mathbf{X} has a joint pdf:

$$f_{\mathbf{X}}(x_1,\dots,x_n) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{x_1^2 + \dots + x_n^2}{2}}$$

Moreover, $X_i \sim N(0,1)$ for i = 1, ..., n.

Definition 110 (Multivariate uniform distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be an absolutely continuous random vector. We say that \mathbf{X} has a multivariate uniform distribution over $B \in \mathcal{B}(\mathbb{R}^n)$, with $\operatorname{vol}(B) < \infty$, if it has joint pdf:

$$f_{\mathbf{X}}(x) = \frac{1}{\operatorname{vol}(B)} \mathbf{1}_B(x)$$

If $\mathbf{X} = (X_1, \dots, X_r)$ follows a multivariate uniform, we will write $\mathbf{X} \sim U(B)$.

¹⁰By agreement, we will suppose that S only contains points x such that $\mathbb{P}(\mathbf{X} = x) > 0$.

¹¹In general we will denote S by $S_{\mathbf{X}}$. Moreover, note that $S_{\mathbf{X}} = S_{X_1} \times \cdots \times S_{X_n}$, where S_{X_i} is the support of the random variable X_i .

Definition 111. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector. The *multivariate* cumulative distribution function (multivariate cdf) of \mathbf{X} is defined as:

$$F_{\mathbf{X}}(x_1,\ldots,x_n) := \mathbb{P}(X_1 \le x_1,\ldots,X_n \le x_n)$$

for $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Theorem 112. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and **X** be a random vector. Then, $F_{\mathbf{X}}$ determines the distribution of **X**.

Proposition 113. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector. Then, the multivariate cdf $F_{\mathbf{X}}$ of \mathbf{X} has the following properties:

- 1. It is monotonically increasing in each of its variables 12 .
- 2. It is right-continuous in each of its variables.
- 3. For all $i = 1, \ldots, n$ we have:

$$\lim_{x_i \to -\infty} F_{\mathbf{X}}(x_1, \dots, x_n) = 0$$
$$\lim_{x_1, \dots, x_n \to +\infty} F_{\mathbf{X}}(x_1, \dots, x_n) = 1$$

4. For all $i = 1, \ldots, n$ we have:

$$\lim_{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n \to +\infty} F_{\mathbf{X}}(x_1, \dots, x_n) = F_{X_i}(x_i)$$

5. If \mathbf{X} is absolutely continuous, then:

$$F_{\mathbf{X}}(x_1, \dots, x_n) =$$

$$= \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f_{\mathbf{X}}(s_1, \dots, s_n) \, \mathrm{d}s_1 \dots \, \mathrm{d}s_n$$

6. If **X** is absolutely continuous, then:

$$\mathbb{P}(a_1 < X_1 < b_1, \dots, a_n < X_n < b_n) =$$

$$= \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f_{\mathbf{X}}(s_1, \dots, s_n) \, \mathrm{d}s_1 \dots \, \mathrm{d}s_n$$

Proposition 114. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be an absolutely continuous random vector. If \mathbf{X} has a continuous joint pdf, then:

$$f_{\mathbf{X}}(x_1,\ldots,x_n) = \frac{\partial^n F_{\mathbf{X}}}{\partial x_1 \cdots \partial x_n} (x_1,\ldots,x_n)$$

$$F_{\mathbf{X}}(x', y') - F_{\mathbf{X}}(x, y') - F_{\mathbf{X}}(x', y) + F_{\mathbf{X}}(x, y) \ge 0$$

This positive quantity is called *increment* of $F_{\mathbf{X}}$ in the rectangle $(x, x'] \times (y, y']$. In general a function $f : \mathbb{R}^2 \to \mathbb{R}$ satisfying

$$f(x', y') - f(x, y') - f(x', y) + f(x, y) \ge 0$$
 $\forall x < x' \text{ and } \forall y < y'$

Transformations of random vectors

Definition 115. We say that a function $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ is *Borel measurable* if $\forall B \in \mathcal{B}(\mathbb{R}^m)$ we have:

$$\mathbf{h}^{-1}(B) \in \mathcal{B}(\mathbb{R}^n)$$

Proposition 116. Let $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function. Then, \mathbf{h} is Borel measurable.

Proposition 117. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector and $\mathbf{h} : \mathbb{R}^n \to \mathbb{R}^m$ be a Borel measurable function. Then, $\mathbf{Y} := \mathbf{h}(\mathbf{X})$ is also a random vector.

Proposition 118. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $U, V \subseteq \mathbb{R}^n$ be open sets and $\mathbf{X} = (X_1, \dots, X_n)$ be an absolutely continuous random vector with joint pdf $f_{\mathbf{X}}$ such that $\mathbb{P}(\mathbf{X} \in U) = 1$. Let $\mathbf{h} : U \to V$ be a diffeomorphism of class \mathcal{C}^1 . Then, $\mathbf{Y} := \mathbf{h}(\mathbf{X})$ is absolutely continuous and

$$f_{\mathbf{Y}}(y) = f_{\mathbf{X}}(\mathbf{h}^{-1}(y))|J\mathbf{h}^{-1}(y)|\mathbf{1}_{V}(y)$$

where $J\mathbf{h}^{-1}(y) = \det \mathbf{D}\mathbf{h}^{-1}(y)$ is the Jacobian of \mathbf{h}^{-1} evaluated at y.

Definition 119 (Multivariate normal distribution). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mathbf{X} \sim N(0, 1)$ be an absolutely continuous random vector and $\mathbf{h} : \mathbb{R}^n \to \mathbb{R}^n$ be a function defined as

$$\mathbf{h}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b} \qquad \mathbf{x} \in \mathbb{R}^{n13}$$

where $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^n$. Then, $\mathbf{Y} = \mathbf{h}(\mathbf{X})$ is an absolutely continuous random vector and it has joint pdf:

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{\det \mathbf{A}} e^{-\frac{\|\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})\|^2}{2}}$$

In this case, we write $\mathbf{Y} \sim N(\mathbf{b}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$. The vector \mathbf{b} is called *mean vector* and the matrix $\mathbf{A}\mathbf{A}^{\mathrm{T}}$, *covariance matrix*.

Independent random variables

Definition 120. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be random variables. We say that they are *independent* if $\forall B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$, we have:

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n \mathbb{P}(X_i \in B_i)$$

That is, the events $\{X_1 \in B_1\}, \dots, \{X_n \in B_n\}$ are independent. Moreover if they have the same distribution, we will say that X_1, \dots, X_n are independent and identically distributed (abbreviated as i.i.d.).

Proposition 121. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X_1, \ldots, X_n be independent random variables and $g_1, \ldots, g_n : \mathbb{R} \to \mathbb{R}$ be Borel measurable functions. Then, $Y_1 = g_1(X_1), \ldots, Y_n = g_n(X_n)$ are also independent random variables.

The 2-dimensional case, we have that for all x < x' and y < y':

is said to be increasing.

¹³Here, we have thought (x_1, \ldots, x_n) as the vector \mathbf{x} in \mathbb{R}^n .

Proposition 122. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be random variables. Then, X_1, \ldots, X_n are independent if and only if

$$F_{(X_1,...,X_n)}(x_1,...,x_n) = F_{X_1}(x_1)\cdots F_{X_n}(x_n)$$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Proposition 123. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be a discrete random vector with support $S_{\mathbf{X}}$. Then, X_1, \dots, X_n are independent if and only if

$$p_{\mathbf{X}}(x_1,\ldots,x_n) = p_{X_1}(x_1)\cdots p_{X_n}(x_n)$$

for all $(x_1, \ldots, x_n) \in S_{\mathbf{X}}$.

Proposition 124. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $\mathbf{X} = (X_1, \dots, X_n)$ be an absolutely continuous random vector. Then, X_1, \dots, X_n are independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$, except for, maybe, a null set.

Proposition 125. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be absolutely continuous and independent random variables. Then, $\mathbf{X} := (X_1, \ldots, X_n)$ is an absolutely continuous random vector and

$$f_{\mathbf{X}}(x_1,\ldots,x_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$, except for, maybe, a null set.

Conditional distributions

Definition 126. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X,Y) be a discrete random vector with support $S_X \times S_Y$ and $y \in S_Y$. The *conditional probability mass function* of X given Y = y is defined as:

$$p_{X|Y}(x \mid y) := \mathbb{P}(X = x \mid Y = y) = \frac{p_{(X,Y)}(x,y)}{p_{Y}(y)}$$

for all $x \in S_X$.

Proposition 127. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X, Y) be a discrete random vector with support $S_X \times S_Y$. Then, the pmf of Y together with the pmf of X conditioned to Y = y determine the pmf of X in the following way:

$$\mathbb{P}(X = x) = \sum_{y \in S_Y} p_{X|Y}(x \mid y) p_Y(y) \quad \forall x \in S_X$$

Definition 128. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X,Y) be an absolutely continuous random vector and $y \in S_Y$. The *conditional probability density function* of X given Y = y is defined as:

$$f_{X|Y}(x \mid y) := \begin{cases} \frac{f_{(X,Y)}(x,y)}{f_Y(y)} & \text{if } f_Y(y) > 0\\ a & \text{if } f_Y(y) = 0 \end{cases}$$

where $x \in \mathbb{R}$ and $a \in \mathbb{R}$ is an arbitrary value ¹⁴.

Proposition 129. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X, Y) be an absolutely continuous random vector, $y \in S_Y$ and $a, b \in \mathbb{R} \cup \{\pm \infty\}$ such that a < b. Then:

$$\mathbb{P}(X \in (a,b) \mid Y = y) = \int_{a}^{b} f_{X|Y}(x \mid y) \, \mathrm{d}x$$

Proposition 130. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X, Y) be an absolutely continuous random vector. Then, the pdf of Y together with the pdf of X conditioned to Y = y determine the pdf of X in the following way:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X|Y}(x \mid y) f_Y(y) \, dy \quad \forall x \in \mathbb{R}$$

4. Expectation

Expectation of simple random variables

Definition 131. A simple random variable is a random variable that takes a finite or countable number of values 15 .

Definition 132. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a simple random variable whose outcomes are $\{x_i : i \in I\}^{16}$, where I is a finite or countable index set. We say that X has finite expectation or that it is integrable if:

$$\sum_{i \in I} |x_i| \mathbb{P}(X = x_i) < \infty$$

If so, we define the *expectation* of X as:

$$\mathbb{E}_{\mathrm{s}}(X) := \sum_{i \in I} x_i \mathbb{P}(X = x_i)$$

If the series of above is not absolutely convergent, we will say that X is not integrable.

Lemma 133. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and suppose that a random variable X can be expressed as

$$X = \sum_{n=1}^{N} a_n \mathbf{1}_{A_n}$$

where $N \in \mathbb{N} \cup \{\infty\}$, $\{A_n : n = 1, ..., N\} \subseteq \mathcal{A}$ is a partition of Ω and $\{a_n : n = 1, ..., N\}$ are not necessarily distinct values. Then, X has finite expectation if and only if

$$\sum_{n=1}^{N} |a_n| \mathbb{P}(A_n) < \infty$$

and in that case, $\mathbb{E}_{s}(X) = \sum_{n=1}^{N} a_{n} \mathbb{P}(A_{n})$.

Proposition 134. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be simple and integrable random variables. Then, X + Y is also a simple and integrable random variable and:

$$\mathbb{E}_{s}(X+Y) = \mathbb{E}_{s}(X) + \mathbb{E}_{s}(Y)$$

 $^{^{14}}$ Usually chosen equal to 0.

 $^{^{15}}$ Note that a simple random variable is a particular case of a discrete random variable.

Those that a simple random variable is a particular case of a discrete random variable.

16 Note that we can write X as $X = \sum_{i \in I} x_i \mathbf{1}_{\{X = x_i\}}$, where the events $\{X = x_i\}$, $i \in I$, form a partition of Ω .

Proposition 135. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a simple and integrable random variable and $c \in \mathbb{R}$. Then, cX is also a simple and integrable random variable and:

$$\mathbb{E}_{\mathbf{s}}(cX) = c\mathbb{E}_{\mathbf{s}}(X)$$

Proposition 136. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a simple random variable such that $|X| \leq C$ for some $C \in \mathbb{R}$. Then, X is integrable and:

$$|\mathbb{E}_{\mathrm{s}}(X)| \leq C$$

Proposition 137. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable. For all $n \in \mathbb{N}$ and all $\omega \in \Omega \exists ! k \in \mathbb{Z}$ such that $X(\omega) \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)$. We define $X_n(\omega) := \frac{k}{2^n}$. Then,

$$X_n = \sum_{k \in \mathbb{Z}} \frac{k}{2^n} \mathbf{1}_{\left\{\frac{k}{2^n} \le X < \frac{k+1}{2^n}\right\}}$$

is a simple random variable such that $X_n(\omega) \leq X(\omega)$ $\forall n \in \mathbb{N} \text{ and } \omega \in \Omega^{17}$.

Extension of the expectation

Proposition 138. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable. Then, there exists a sequence (X_n) of simple random variables that converges uniformly to X, that is:

$$\lim_{n \to \infty} \sup\{|X_n(\omega) - X(\omega)| : \omega \in \Omega\} = 0$$

Furthermore, $\forall \omega \in \Omega$ and $\forall n \in \mathbb{N}$ we have that $X_n(\omega) \leq X_{n+1}(\omega)$.

Theorem 139. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable such that there exists a sequence (X_n) of simple and integrable random variables that converges uniformly to X. Then, the following statements are satisfied:

- 1. The limit $\lim_{n\to\infty} \mathbb{E}_{s}(X_n)$ exists.
- 2. The limit $\lim_{n\to\infty} \mathbb{E}_{\mathbf{s}}(X_n)$ does not depend on the sequence (X_n) .
- 3. If X is simple, then $\mathbb{E}_{s}(X) = \lim_{n \to \infty} \mathbb{E}_{s}(X_{n})$.

Definition 140 (Expectation). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable. We say that X has *finite expectation* or that it is *integrable* if there exists a sequence (X_n) of simple and integrable random variables that converges uniformly to X. In that case, we define the *expectation* of X as:

$$\mathbb{E}(X) := \lim_{n \to \infty} \mathbb{E}_{\mathbf{s}}(X_n)^{18}$$

Proposition 141. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be random variables and $c \in \mathbb{R}$. Then:

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

2. If X is integrable, then cX is also integrable and:

$$\mathbb{E}(cX) = c\mathbb{E}(X)$$

- 3. If $|X| \leq C$ for some $C \in \mathbb{R}$, then X is integrable.
- 4. If X is integrable and $X \geq 0$, then $\mathbb{E}(X) \geq 0$.
- 5. If X and Y are integrable and $Y \geq X$, then $\mathbb{E}(Y) \geq \mathbb{E}(X)$.
- 6. If $m \leq X \leq M$ for some $m, M \in \mathbb{R}$, then X is integrable and

$$m \leq \mathbb{E}(X) \leq M$$

- 7. Comparison test: If X is integrable and $|Y| \leq X$, then Y is integrable.
- 8. X is integrable $\iff |X|$ is integrable.
- 9. If $\mathbb{P}(A) = 0$ for some $A \in \mathcal{A}$, then for any random variable X, we have that $X\mathbf{1}_A$ is integrable and $\mathbb{E}(X\mathbf{1}_A) = 0$.
- 10. If $X \stackrel{\text{a.s.}}{=} Y$ and one of them is integrable, then so will be the other one and, furthermore, $\mathbb{E}(X) = \mathbb{E}(Y)$.

Corollary 142. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a random variable and $A \in \mathcal{A}$. Then, $\mathbb{E}(\mathbf{1}_{\{X \in A\}}) = \mathbb{P}(X \in A)$.

Proposition 143. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable with support $\mathbb{N} \cup \{0\}$. Then:

$$\mathbb{E}(X) = \sum_{k=0}^{\infty} \mathbb{P}(X > k)$$

Proof

$$\sum_{k=0}^{\infty} \mathbb{P}(X > k) = \sum_{k=0}^{\infty} \sum_{n=k+1}^{\infty} \mathbb{P}(X = n) =$$

$$= \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \mathbb{P}(X = n) = \sum_{n=1}^{\infty} n \mathbb{P}(X = n) = \mathbb{E}(X)$$

Theorem 144 (Monotone convergence theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be an increasing sequence of non-negative random variables such that $\lim_{n\to\infty} X_n \stackrel{\text{a.s.}}{=} X^{19}$, for some random variable X. Then:

$$\lim_{n\to\infty} \mathbb{E}(X_n) = \mathbb{E}(X)$$

Sketch of the proof. Check the proof of ?? ??.

^{1.} If X and Y are integrable, then X + Y is also integrable and:

¹⁷The partition $\mathbb{R} = \bigsqcup_{k=0}^{\infty} \left[\frac{k}{2^n}, \frac{k+1}{2^n} \right]$ is called *dyadic partition of order n*.

¹⁸Theorem 139 proves that this definition is well-defined.

¹⁹See Theorem 196.

Theorem 145 (Dominated convergence theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be sequence of random variables such that $\lim_{n \to \infty} X_n \stackrel{\text{a.s.}}{=} X$, for some

of random variables such that $\lim_{n\to\infty} X_n = X$, for some random variable X. Suppose that there exists an integrable random variable Y such that

$$|X| \le Y \quad \forall n \ge 1$$

Then:

$$\lim_{n \to \infty} \mathbb{E}(X_n) = \mathbb{E}(X)$$

Sketch of the proof. Check the proof of ?? ??.

Theorem 146 (Fatou's lemma). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of non-negative random variables. Then:

$$\mathbb{E}(\liminf_{n\to\infty} X_n) \le \liminf_{n\to\infty} \mathbb{E}(X_n)$$

Sketch of the proof. Check the proof of ?? ??.

Expectation of absolutely continuous random variables

Theorem 147. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be an absolutely continuous random variable with density f_X . Then, X is integrable if and only if

$$\int_{-\infty}^{+\infty} |x| f_X(x) \, \mathrm{d}x < \infty$$

In that case, we have:

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f_X(x) \, \mathrm{d}x < \infty$$

Expectation of transformations of random vectors

Proposition 148. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mathbf{X} = (X_1, \dots, X_n)$ be a discrete random vector with support $S_{\mathbf{X}}$ and $h : \mathbb{R}^n \to \mathbb{R}$ be a function. Then, $Y := h(\mathbf{X})$ is an integrable random variable if and only if

$$\sum_{(x_1, \dots, x_n) \in S_{\mathbf{X}}} |h(x_1, \dots, x_n)| \mathbb{P}(X_1 = x_1, \dots, X_n = x_n) < \infty$$

In that case, we have:

$$\mathbb{E}(Y) = \sum_{(x_1, \dots, x_n) \in S_{\mathbf{X}}} h(x_1, \dots, x_n) \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$$

Proposition 149. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mathbf{X} = (X_1, \dots, X_n)$ be an absolutely continuous random vector with density $f_{\mathbf{X}}$ and $h : \mathbb{R}^n \to \mathbb{R}$ be a Borel measurable function. Then, $Y := h(\mathbf{X})$ is an integrable random variable if and only if

$$\int_{\mathbb{R}^n} |h(x_1,\ldots,x_n)| f_{\mathbf{X}}(x_1,\ldots,x_n) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_n < \infty$$

In that case, we have:

$$\mathbb{E}(Y) = \int_{\mathbb{R}^n} h(x_1, \dots, x_n) f_{\mathbf{X}}(x_1, \dots, x_n) dx_1 \cdots dx_n$$

Expectation of non-negative and mixed random variables

Proposition 150. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $X \geq 0$ be a non-negative random variable and $(X_n) \geq 0$ be a sequence of simple random variables that converges uniformly to X. Then:

• If X_n is integrable $\forall n \in \mathbb{N}$, then:

$$\mathbb{E}(X) = \lim_{n \to \infty} \mathbb{E}(X_n)$$

• If $\exists m \in \mathbb{N}$ such that X_m isn't integrable, then:

$$\mathbb{E}(X) = \infty$$

Definition 151. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a mixed random variable. Suppose that the discrete part of X has support S_X and "pmf" $p_X(x)^{20}$. Moreover, suppose that the absolutely continuous part of X has "pdf" $f_X(x)^{21}$ We say that X has finite expectation if:

$$\sum_{x \in S} |x| p_X(x) + \int_{-\infty}^{+\infty} |x| f_X(x) \, \mathrm{d}x < \infty$$

If so, we define the *expectation* of X as:

$$\mathbb{E}(X) := \sum_{x \in S_X} x p_X(x) + \int_{-\infty}^{+\infty} x f_X(x) \, \mathrm{d}x$$

Moments

Definition 152 (Moment). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a random variable and $k \in \mathbb{N}$. We say that X has finite moment of order k (or finite k-th moment) if X^k has finite expectation. We denote by μ_k the k-th moment of X:

$$\mu_k = \mathbb{E}(X^k)$$

Proposition 153. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X, Y be random variables such that they have finite k-th moment. Then:

- 1. X and Y have finite r-th moment $\forall r \in \{1, \dots, k\}$.
- 2. X + Y has finite k-th moment.

Proposition 154. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X, Y be random variables such that they have finite 2k-th moment. Then, XY has finite k-th moment.

We write pmf in quotation marks because $p_X(x)$ is not exactly a probability mass function since $\sum_{x \in S_X} p_X(x) < 1$.

²¹Again, we write pdf in quotation marks because $f_X(x)$ is not exactly a probability density function since $\int_{-\infty}^{+\infty} f_X(x) dx < 1$.

Theorem 155 (Cauchy-Schwarz inequality). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be two random variables such that $\mathbb{E}(X^2) < \infty$. Then:

$$\mathbb{E}(|XY|) \le \left(\mathbb{E}(X^2)\mathbb{E}(Y^2)\right)^{1/2}$$

Definition 156 (Variance). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable such that $\mathbb{E}(X^2) < \infty$. We define the *variance* of X as:

$$\operatorname{Var}(X) := \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^2\right) \ge 0$$

Proposition 157. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable such that $\mathbb{E}(X^2) < \infty$. Then:

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Definition 158 (Standard deviation). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable such that $\mathbb{E}(X^2) < \infty$. We define the *standard deviation* (or *standard error*) of X as:

$$\sigma(X) := \sqrt{\operatorname{Var}(X)^{22}}$$

Proposition 159. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable such that $\mathbb{E}(X^2) < \infty$. If $\operatorname{Var}(X) = 0$, then $X \stackrel{\text{a.s.}}{=} \mathbb{E}(X)$.

Proposition 160. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be independent random variables with finite expectation. Then, XY has finite expectation and:

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

Definition 161 (Covariance). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be two random variables with finite 2nd moments. We define the *covariance* between X and Y as:

$$Cov(X, Y) := \mathbb{E}\left([X - \mathbb{E}(X)][Y - \mathbb{E}(Y)]\right)$$

Proposition 162. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be two random variables with finite 2nd moments. Then:

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Proposition 163. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be independent random variables with finite expectation. Then, Cov(X, Y) is well-defined and Cov(X, Y) = 0.

Definition 164. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We say that two random variables X, Y are *uncorrelated* if Cov(X,Y) = 0.

Proposition 165. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a random variable such that $\mathbb{E}(X^2) < \infty$ and $a, b \in \mathbb{R}$. Then:

$$Var(aX + b) = a^2 Var(X)$$

Proposition 166. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be random variables with finite 2nd moments. Then:

$$\operatorname{Var}(X_1 + \dots + X_n) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2 \sum_{1 \le i < j \le n} \operatorname{Cov}(X_i, X_j)$$

Corollary 167. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be random variables with finite 2nd moments such that they are pairwise uncorrelated. Then:

$$Var(X_1 + \dots + X_n) = \sum_{i=1}^n Var(X_i)$$

Definition 168 (Pearson correlation coefficient). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be non-constant random variables with finite 2nd moments. We define the *Pearson correlation coefficient* (or simply *correlation coefficient*)²³ as:

$$\rho(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

Proposition 169. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X, Y be non-constant random variables with finite 2nd moments and $\rho := \rho(X, Y)$. Then:

- 1. $|\rho| \leq 1$
- 2. If $\rho=1$, then $\exists a,b\in\mathbb{R}$ with a>0 such that Y=aX+b.
- 3. If $\rho = -1$, then $\exists a, b \in \mathbb{R}$ with a < 0 such that Y = aY + b

Theorem 170 (Markov's inequality). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $X \geq 0$ be a non-negative random variable with finite expectation and $\lambda \in \mathbb{R}_{>0}$. Then:

$$\mathbb{P}(X > \lambda) \le \mathbb{P}(X \ge \lambda) \le \frac{\mathbb{E}(X)}{\lambda}$$

Corollary 171. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \geq 0$ be a non-negative random variable such that $\mathbb{E}(X) = 0$. Then, $X \stackrel{\text{a.s.}}{=} 0$.

Corollary 172. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \in \mathbb{R}_{>0}$ and X be a random variable such that $\mathbb{E}(|X|^p) < \infty$. Then, for all $a \in \mathbb{R}_{>0}$:

$$\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}(|X|^p)}{a^p}$$

Corollary 173 (Chebyshev's inequality). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X be a random variable such that $\mathbb{E}(X^2) < \infty$ and $\delta \in \mathbb{R}_{>0}$. Then:

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge \delta) \le \frac{\operatorname{Var}(X)}{\delta^2}$$

Furthermore, if $\sigma := \sigma(X)$ and we take $\delta = k\sigma$, $k \in \mathbb{R}_{>0}$, then:

$$\mathbb{P}(|X - \mathbb{E}(X)| < k\sigma) \ge 1 - \frac{1}{k^2}$$

²²Therefore, Var(X) is sometimes expressed as $\sigma^2(X)$.

 $^{^{23}}$ The correlation coefficient measures the linear correlation between two random variables.

Definition 174 (Moment-generating function). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable. The *moment-generating function* of X is the function ψ_X defined as:

$$\psi_X: \mathbb{R} \longrightarrow \mathbb{R}_{>0} \cup \{+\infty\}$$
$$t \longmapsto \mathbb{E}(e^{tX})$$

Theorem 175. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X, Y be random variables such that $\psi_X(t), \psi_Y(t) < +\infty$ in a neighbourhood of 0 and such that ψ_X , ψ_Y are equal in another neighbourhood of 0. Then, $X \stackrel{\text{d}}{=} Y$.

Theorem 176. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable such that $\psi_X(t) < +\infty$ in a neighbourhood of 0. Then, X has moment of order $k \ \forall k \in \mathbb{N}$ and:

$$\mathbb{E}(X^k) = \psi_X^{(k)}(0)$$

Theorem 177. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, X, Y be independent random variables. Then, for all t such that $\psi_X(t), \psi_Y(t) < +\infty$, the function $\psi_{X+Y}(t)$ is finite and:

$$\psi_{X+Y}(t) = \psi_X(t)\psi_Y(t)$$

Proof.

$$\psi_{X+Y}(t) = \mathbb{E}(e^{t(X+Y)}) = \mathbb{E}(e^{tX})\mathbb{E}(e^{tY}) = \psi_X(t)\psi_Y(t)$$

where the second equality is because of the independence of X and Y.

Proposition 178. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \in (0, 1), \lambda \in \mathbb{R}_{>0}$ and X_1, \ldots, X_n be i.i.d. random variables.

- If $X_1 \sim \text{Ber}(p)$, then $X_1 + \cdots + X_n \sim \text{B}(n, p)$
- If $X_1 \sim \text{Geo}(p)$, then $X_1 + \cdots + X_n \sim \text{NB}(n, p)$
- If $X_1 \sim \text{Exp}(\lambda)$, then $X_1 + \cdots + X_n \sim \text{Gamma}(n, \lambda)$

Proposition 179. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X_i \sim \text{Pois}(\lambda_i)$ be random variables for some $\lambda_i > 0$, $i = 1, \ldots, n$. Suppose that X_1, \ldots, X_n are independent. Then:

$$X_1 + \cdots + X_n \sim \text{Pois}(\lambda_1 + \cdots + \lambda_n)$$

Proposition 180. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mu_i \in \mathbb{R}$ and $\sigma_i \in \mathbb{R}$ for i = 1, ..., n. Let $X_i \sim N(\mu_i, {\sigma_i}^2)$ be independent random variables for i = 1, ..., n. Then:

$$X_1 + \cdots + X_n \sim N(\mu_1 + \cdots + \mu_n, \sigma_1^2 + \cdots + \sigma_n^2)$$

Conditional expectation

Definition 181. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X, Y) be a discrete random vector with support $S_X \times S_Y$ and $y \in S_Y$. The *conditional expectation* of X given Y = y is defined as:

$$\mathbb{E}(X\mid Y=y):=\sum_{x\in S_X}x\mathbb{P}(X=x\mid Y=y)$$

provided that the series is absolutely convergent. More generally, if \mathbf{X} is a discrete random vector with support $S_{\mathbf{X}}$ and $h: S_{\mathbf{X}} \to \mathbb{R}$ is a function, then the conditional expectation of $h(\mathbf{X})$ given Y = y is defined as:

$$\mathbb{E}(h(\mathbf{X}) \mid Y = y) := \sum_{\mathbf{x} \in S_{\mathbf{X}}} h(\mathbf{x}) \mathbb{P}(\mathbf{X} = \mathbf{x} \mid Y = y)$$

provided that the series is absolutely convergent.

Proposition 182 (Law of total expectation). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, \mathbf{X} be a discrete random vector with support $S_{\mathbf{X}}$, Y be a random variable with support S_Y and $h: S_{\mathbf{X}} \to \mathbb{R}$ be a function. If $h(\mathbf{X})$ has finite expectation, then:

$$\mathbb{E}(h(\mathbf{X})) = \sum_{y \in S_Y} \mathbb{E}(h(\mathbf{X}) \mid Y = y) \mathbb{P}(Y = y)$$

Proof. We have that:

$$\begin{split} \mathbb{E}(h(\mathbf{X})) &= \sum_{\mathbf{x} \in S_{\mathbf{X}}} h(\mathbf{x}) \mathbb{P}(\mathbf{X} = \mathbf{x}) \\ &= \sum_{\mathbf{x} \in S_{\mathbf{X}}} \sum_{y \in S_{Y}} h(\mathbf{x}) \mathbb{P}(\mathbf{X} = \mathbf{x} \mid Y = y) \mathbb{P}(Y = y) \\ &= \sum_{y \in S_{Y}} \sum_{\mathbf{x} \in S_{\mathbf{X}}} h(\mathbf{x}) \mathbb{P}(\mathbf{X} = \mathbf{x} \mid Y = y) \mathbb{P}(Y = y) \\ &= \sum_{y \in S_{Y}} \mathbb{E}(h(\mathbf{X}) \mid Y = y) \mathbb{P}(Y = y) \end{split}$$

where in the second equality we have used the 30 Law of total probability and in the third step we can rearrange the terms due to the finite expectation of $h(\mathbf{X})$.

Definition 183. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X, Y) be an absolutely continuous random vector with support $S_X \times S_Y$ and $y \in S_Y$. The *conditional expectation* of X given Y = y is defined as:

$$\mathbb{E}(X \mid Y = y) := \int_{S_X} x f_{X|Y}(x \mid y) \, \mathrm{d}x$$

provided that the integral is absolutely convergent. More generally, if \mathbf{X} is an absolutely continuous random vector with support $S_{\mathbf{X}}$ and $h: S_{\mathbf{X}} \to \mathbb{R}$ is a function, then the conditional expectation of $h(\mathbf{X})$ given Y = y is defined as:

$$\mathbb{E}(h(\mathbf{X}) \mid Y = y) := \int_{S_{\mathbf{X}}} h(\mathbf{x}) f_{\mathbf{X}|Y}(\mathbf{x} \mid y) d\mathbf{x}$$

provided that the integral is absolutely convergent.

Proposition 184 (Law of total expectation). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, \mathbf{X} be an absolutely continuous random vector with support $S_{\mathbf{X}}$, Y be a random variable with support S_Y and $h: S_{\mathbf{X}} \to \mathbb{R}$ be a function. If $h(\mathbf{X})$ has finite expectation, then:

$$\mathbb{E}(h(\mathbf{X})) = \int_{-\infty}^{+\infty} \mathbb{E}(h(\mathbf{X}) \mid Y = y) f_Y(y) \, dy$$

Sketch of the proof. Adapt the proof of 182 Law of total expectation. $\hfill\Box$

X	$\mathbb{E}(X)$	Var(X)
$c \in \mathbb{R}$	c	0
$U(\{x_1,\ldots,x_n\})$	$ \frac{1}{n} \sum_{i=1}^{n} x_i $	$\frac{1}{n}\sum_{i=1}^{n}(x_i^2-x_i)$
B(n,p)	np	np(1-p)
$Pois(\lambda)$	λ	λ
Geo(p)	1/p	$\frac{1-p}{p^2}$
$\mathrm{HG}(N,p,n)$	np	$np(1-p)\frac{N-n}{N-1}$
NB(r,p)	$\frac{r}{p}$	$n\frac{1-p}{p^2}$
U(a,b)	(a+b)/2	$(b-a)^2/12$
$\operatorname{Exp}(\lambda)$	$1/\lambda$	$1/\lambda^2$
$N(\mu, \sigma^2)$	μ	σ^2
$Gamma(\alpha, \beta)$	α/β	α/β^2
Beta (a,b)	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
$C(x_0, \gamma)$	$+\infty$	$+\infty$

Table 1: Expectations and variances of common distributions.

5. Convergence of random variables

Convergence in probability

Definition 185. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. We say that (X_n) converges in probability to X, and we denote it by $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$, if $\forall \varepsilon > 0$ we have:

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0$$

Or equivalently:

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| < \varepsilon) = 1$$

Proposition 186. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Then, the limit in probability is unique almost surely. That is, if (X_n) is a sequence of random variables and X, Y are a random variables such that $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ and $X_n \stackrel{\mathbb{P}}{\longrightarrow} Y$, then $\mathbb{P}(X \neq Y) = 0$.

Proposition 187. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables, X be a random variable such that $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ and $f : \mathbb{R} \to \mathbb{R}$ be continuous function. Then, $f(X_n) \stackrel{\mathbb{P}}{\longrightarrow} f(X)$.

Proposition 188. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $(X_{1n}), \ldots, (X_{mn})$ be m sequences of random variables, X_1, \ldots, X_m be a random variable such that $X_{in} \xrightarrow{\mathbb{P}} X_i$ $\forall i = 1, \ldots, m$ and $f : \mathbb{R}^m \to \mathbb{R}$ be continuous function. Then:

$$f(X_{1n},\ldots,X_{mn}) \stackrel{\mathbb{P}}{\longrightarrow} f(X_1,\ldots,X_m)$$

Corollary 189. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $(X_{1n}), \ldots, (X_{mn})$ be m sequences of random variables,

 X_1, \ldots, X_m be a random variable such that $X_{in} \stackrel{\mathbb{P}}{\longrightarrow} X_i$ $\forall i = 1, \ldots, m$ and $f : \mathbb{R}^m \to \mathbb{R}$ be continuous function. Then:

•
$$X_{1n} + \cdots + X_{mn} \xrightarrow{\mathbb{P}} X_1 + \cdots + X_m$$
.

•
$$X_{1n}\cdots X_{mn} \xrightarrow{\mathbb{P}} X_1\cdots X_m$$
.

Lemma 190. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Then, the set \mathcal{L}^0 of all random variables of $(\Omega, \mathcal{A}, \mathbb{P})$ is a vector space. Moreover, the relation \sim defined in \mathcal{L}^0 as

$$X \sim Y \iff X \stackrel{\text{a.s.}}{=} Y \quad \forall X, Y \in \mathcal{L}^0$$

is an equivalence relation. The quotient set \mathcal{L}^0/\sim is denoted by L^{024} .

Proposition 191. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We define the function $d_{\mathbb{P}}$ in L^0 as:

$$d_{\mathbb{P}}: L^{0} \times L^{0} \longrightarrow \mathbb{R}$$

$$(X,Y) \longmapsto \mathbb{E}\left(\frac{|X-Y|}{1+|X-Y|}\right)$$

Then, $(L^0, d_{\mathbb{P}})$ is a metric space.

Proposition 192. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Then:

$$X_n \stackrel{\mathbb{P}}{\longrightarrow} X \iff \lim_{n \to \infty} d_{\mathbb{P}}(X_n, X) = 0$$

Because of that, the convergence in probability is said to be metrizable.

Definition 193. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. We say that (X_n) satisfies the *Cauchy condition in probability* (or is *Cauchy in probability*) if $\forall \varepsilon > 0$ we have:

$$\lim_{n,m\to\infty} \mathbb{P}(|X_n - X_m| \ge \varepsilon) = 0$$

Proposition 194. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Then:

$$X_n \stackrel{\mathbb{P}}{\longrightarrow} X \iff (X_n)$$
 is Cauchy in probability

Thus, $(L^0, d_{\mathbb{P}})$ is a complete metric space.

Proposition 195. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable such that $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$. Then, all subsequence (X_{n_k}) of (X_n) converges in probability to X.

Almost surely convergence

Definition 196. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. We say that (X_n) converges almost surely to X, and we denote it by $X_n \xrightarrow{\text{a.s.}} X$, if

$$\mathbb{P}\left(\lim_{n\to\infty} X_n = X\right) = 1$$

That is,

$$\lim_{n \to \infty} X_n(\omega) = X(\omega)$$

 $^{^{24}\}text{If }X\in\mathcal{L}^0,$ we will use the same notation for its equivalence class.

for all $\omega \in \Omega$ except for maybe a set of probability zero. Another equivalent expression is the following one: $X_n \xrightarrow{\text{a.s.}} X$ if and only if

$$\mathbb{P}\left(\bigcap_{\varepsilon\in\mathbb{Q}_{>0}}\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}\{\omega\in\Omega:|X_k(\omega)-X(\omega)|<\varepsilon\}\right)=1$$

Proposition 197. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Then, $X_n \xrightarrow{\text{a.s.}} X$ if and only if $\forall \varepsilon > 0$ we have:

$$\lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{\infty} \{|X_k - X| \ge \varepsilon\}\right) = 0$$

Proposition 198. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Then:

$$X_n \xrightarrow{\text{a.s.}} X \implies X_n \xrightarrow{\mathbb{P}} X$$

Proposition 199. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables, X be a random variable such that $X_n \xrightarrow{\text{a.s.}} X$ and $f : \mathbb{R} \to \mathbb{R}$ be continuous function. Then, $f(X_n) \xrightarrow{\text{a.s.}} f(X)$.

Proposition 200. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Suppose that $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$. Then, there exists a subsequence (X_{n_k}) of (X_n) such that $X_{n_k} \stackrel{\text{a.s.}}{\longrightarrow} X$.

Proposition 201. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Suppose that $\forall \varepsilon > 0$ we have:

$$\sum_{n=1}^{\infty} \mathbb{P}(|X_n - X| \ge \varepsilon) < \infty$$

Then, $X_n \xrightarrow{\text{a.s.}} X$.

Definition 202. Let Ω be a set and $(A_n) \subset \Omega$ be a sequence of subsets. We define the *limit superior* of (A_n) as:

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

That is:

 $\omega \in \limsup_{n \to \infty} A_n \iff \forall n \ge 1 \ \exists k \ge n \text{ such that } \omega \in A_k$

We can express that as:

$$\limsup_{n\to\infty} A_n = \{\omega \in \Omega : \omega \in A_n \text{ infinitely often}\}\$$

Definition 203. Let Ω be a set and $(A_n) \subset \Omega$ be a sequence of subsets. We define the *limit inferior* of (A_n) as:

$$\liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

That is:

 $\omega \in \liminf_{n \to \infty} A_n \iff \exists n \geq 1 \text{ such that } \forall k \geq n, \ \omega \in A_k$

We can express that as:

$$\liminf_{n \to \infty} A_n = \{ \omega \in \Omega : \omega \in A_n \text{ eventually} \}$$

Proposition 204. Let Ω be a set and $(A_n) \subset \Omega$ be a sequence of subsets. Then:

1.
$$\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$$

$$2. \left(\limsup_{n \to \infty} A_n\right)^c = \liminf_{n \to \infty} A_n^c$$

Definition 205. Let Ω be a set and $(A_n) \subset \Omega$ be a sequence of subsets. We say that (A_n) has *limit* if:

$$\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$$

In that case, $A:=\limsup_{n\to\infty}A_n$ is called the limit of the sequence.

Lemma 206 (First Borel-Cantelli lemma). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n) \subset \mathcal{A}$ be a sequence of events such that:

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$$

Then,
$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 0.$$

Proof. Let $B_n := \bigcup_{k \geq n} A_k$ and note that $B_{n+1} \subseteq B_n$. Thus, using the definition of \limsup and 21 Continuity from above we have that

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=\lim_{n\to\infty}\mathbb{P}(B_n)\leq\lim_{n\to\infty}\sum_{k>n}\mathbb{P}(A_n)=0$$

because it is the tail of a convergent sequence.

Lemma 207 (Second Borel-Cantelli lemma). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n) \subset \mathcal{A}$ be a sequence of independent events such that:

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$$

Then,
$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=1.$$

Proof. We will prove that $\mathbb{P}\left(\left[\limsup_{n\to\infty}A_n\right]^c\right)=0$. From 20 Continuity from below, if $B_n:=\bigcap_{k\geq n}A_k{}^c$ we have:

$$\mathbb{P}\left(\left[\limsup_{n\to\infty}A_n\right]^c\right) = \lim_{n\to\infty}\mathbb{P}(B_n)$$

Now, $\forall N \geq n$ we have $\mathbb{P}(B_n) \leq \mathbb{P}\left(\bigcap_{k=n}^N A_n^c\right)$. Using the independence and the inequality $1 + x \leq e^x$, we get:

$$\mathbb{P}(B_n) \le \prod_{k=n}^{N} (1 - \mathbb{P}(A_n)) \le e^{-\sum_{k=n}^{N}} \xrightarrow{N \to \infty} 0$$

Convergence in mean

Definition 208. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \geq 1$, (X_n) be a sequence of random variables such that $\mathbb{E}(|X_n|^p) < \infty$ and X be a random variable such that $\mathbb{E}(|X|^p) < \infty$. We say that (X_n) converges in the p-th mean to X, and we denote it by $X_n \xrightarrow{L^p} X$, if

$$\lim_{n \to \infty} \mathbb{E}(|X_n - X|^p) = 0$$

Proposition 209. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \geq 1$, (X_n) be a sequence of random variables such that $\mathbb{E}(|X_n|^p)<\infty$ and X be a random variable such that $\mathbb{E}(|X|^p)<\infty$. Then:

$$X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{\mathbb{P}} X$$

Theorem 210 (Dominated convergence theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \geq 1$, X be a random variable and (X_n) be a sequence of random variables such that $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ or $X_n \stackrel{\text{a.s.}}{\longrightarrow} X$. Suppose that there exists a random variable Y such that $|X_n| \leq Y \ \forall n \geq 1$ and $\mathbb{E}(|Y|^p) < \infty$. Then, $X_n \xrightarrow{L^p} X$.

Lemma 211. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and p > 1. Define the set \mathcal{L}^p of all random variables of $(\Omega, \mathcal{A}, \mathbb{P})$ such that $\mathbb{E}(|X|^p) < \infty$. Then, \mathcal{L}^p is a vector space. Moreover, the relation \sim defined in \mathcal{L}^p as

$$X \sim Y \iff X \stackrel{\text{a.s.}}{=} Y \quad \forall X, Y \in \mathcal{L}^p$$

is an equivalence relation. The quotient set \mathcal{L}^p/\sim is denoted by L^{p25} .

Proposition 212. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $p \geq 1$. We define the function:

$$\|\cdot\|_p:L^p\longrightarrow \mathbb{R}$$
$$X\longmapsto \mathbb{E}(|X|^p)$$

Then, $(L^p, \|\cdot\|_p)$ is a normed vector space. Moreover, the norm $\|\cdot\|_p$ induces a distance d_p defined as:

$$d_p(X,Y) := \|X - Y\|_p \quad \forall X, Y \in L^p$$

Proposition 213. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, p > 1, $(X_n) \subset L^p$ be a sequence of random variables and $X \in L^p$. Then:

$$X_n \xrightarrow{L^p} X \iff \lim_{n \to \infty} d_p(X_n, X) = 0$$

Therefore, the convergence in p-th mean is metrizable.

Definition 214. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \geq 1, (X_n) \subset L^p$ be a sequence of random variables and $X \in L^p$. We say that (X_n) satisfies the Cauchy condition in p-th mean (or is Cauchy in p-th mean) if:

$$\lim_{\underline{n,m\to\infty}} \mathbb{E}(|X_n - X_m|^p) = 0$$

Proposition 215. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \geq 1, (X_n) \subset L^p$ be a sequence of random variables and $X \in L^p$. Then:

$$X_n \xrightarrow{L^p} X \iff (X_n)$$
 is Cauchy in p-th mean

Thus, L^p is a Banach space and L^2 is a Hilbert space.

Proposition 216. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \geq 1, X, Y \in L^p$ and $(X_n), (Y_n) \subset L^p$ be sequences of random variables such that $X_n \xrightarrow{L^p} X$ and $Y_n \xrightarrow{L^p} Y$.

$$X_n + Y_n \xrightarrow{L^p} X + Y$$

Proposition 217. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $X,Y\in L^2$ and $(X_n),(Y_n)\subset L^2$ be sequences of random variables such that $X_n \xrightarrow{L^2} X$ and $Y_n \xrightarrow{L^2} Y$. Then:

$$X_n Y_n \xrightarrow{L^1} XY$$

Proposition 218. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $p \geq 1, X \in L^p$ and $(X_n) \subset L^p$ be a sequence of random variables such that $X_n \xrightarrow{L^p} X$. Then:

- 1. $\lim_{n \to \infty} ||X_n||_p = ||X||_p$
- 2. If $1 \le r < p$, then:

$$X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{L^r} X$$

3. If p = 1, then:

$$\lim_{n \to \infty} \mathbb{E}(X_n) = \mathbb{E}(X)$$

Convergence in distribution

Definition 219. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. We say that (X_n) converges in distribution to X, and we denote it by $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$, if $\forall B \in \mathcal{B}(\mathbb{R})$ such that $\mathbb{P}(X \in \partial B) = 0$ we have:

$$\lim_{n\to\infty} \mathbb{P}(X_n \in B) = \mathbb{P}(X \in B)$$

Definition 220. Let $A \subseteq \mathbb{R}$ be a set and $f: A \to \mathbb{R}$ be a function. We denote by C(f) the set of points where f is continuous.

Proposition 221. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables with cdfs F_{X_n} $\forall n \in \mathbb{N} \text{ and } X \text{ be a random variable be a random variable}$ with cdf F_X . Then:

$$X_n \stackrel{\mathrm{d}}{\longrightarrow} X \iff \lim_{n \to \infty} F_{X_n}(t) = F_X(t) \quad \forall t \in C(F_X)^{26}$$

Proposition 222. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X, Y be random variables such that $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$ and $X_n \stackrel{\mathrm{d}}{\longrightarrow} Y$. Then,

$$\lim_{n \to \infty} \mathbb{P}(X_n \le t) = \mathbb{P}(X \le t)$$

²⁵If $X \in \mathcal{L}^p$, we will use the same notation for its equivalence class.

That is, $X_n \stackrel{\mathrm{d}}{\longrightarrow} X \iff \forall t \in \mathbb{R} \text{ such that } \mathbb{P}(X=t) = 0 \text{ we have } \lim_{n \to \infty} \mathbb{P}(X_n \leq t) = \mathbb{P}(X \leq t).$

Theorem 223 (Skorokhod's representation theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable be such that $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$. Then, there exists a probability space $(\Omega', \mathcal{A}', \mathbb{P}')$, and random variables (X'_n) and X defined on Ω' such that:

- 1. $X_n \stackrel{\mathrm{d}}{=} X'_n \ \forall n \geq 1$
- 2. $X \stackrel{\mathrm{d}}{=} X'$
- 3. $X'_n \stackrel{\text{a.s.}}{\longrightarrow} X'$

Theorem 224. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Then, $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$ if and only if for any continuous and bounded function $f : \mathbb{R} \to \mathbb{R}$ we have:

$$\lim_{n \to \infty} \mathbb{E}(f(X_n)) = \mathbb{E}(f(X))$$

Lemma 225. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable be such that both (X_n) and X take values in \mathbb{N} . Then, $X_n \stackrel{d}{\longrightarrow} X$ if and only if $\forall k \in \mathbb{N}$, we have:

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$$

Proposition 226. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables, X be a random variable and $a \in \mathbb{R}$. Then:

- 1. $X_n \stackrel{\mathbb{P}}{\longrightarrow} X \implies X_n \stackrel{\mathrm{d}}{\longrightarrow} X$
- 2. $X_n \stackrel{\mathrm{d}}{\longrightarrow} a \implies X_n \stackrel{\mathbb{P}}{\longrightarrow} a$

Proposition 227. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables, X be a random variable such that $X_n \stackrel{d}{\longrightarrow} X$ and $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Then, $f(X_n) \stackrel{d}{\longrightarrow} f(X)$.

Corollary 228. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Then:

- 1. $X_n + a \xrightarrow{d} X + a$
- $2. \ aX_n \stackrel{\mathrm{d}}{\longrightarrow} aX$

Theorem 229 (Slutsky's theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) , (Y_n) be sequences of random variables and X be a random variable and $a \in \mathbb{R}$ such that $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$ and $Y_n \stackrel{\mathrm{d}}{\longrightarrow} a$. Then:

- 1. $X_n + Y_n \stackrel{\mathrm{d}}{\longrightarrow} X + a$
- $2. \ X_n Y_n \stackrel{\mathrm{d}}{\longrightarrow} aX$
- 3. $\frac{X_n}{Y_n} \stackrel{d}{\longrightarrow} \frac{X}{a}$ provided that $a \neq 0$.

6. | Laws of large numbers

Definition 230. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of random variables. We define the sequence of partial sums (S_n) as:

$$S_n := \sum_{i=1}^n X_i$$

Weak laws

Theorem 231 (Weak law of large numbers). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of i.i.d. random variables with finite 2nd moment. Then:

$$\frac{S_n}{n} \xrightarrow{\mathbb{P}} \mathbb{E}(X_1)$$
 and $\frac{S_n}{n} \xrightarrow{L^2} \mathbb{E}(X_1)$

Theorem 232 (Weak law of large numbers). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of pairwise uncorrelated random variables with finite 2nd moment. Suppose that:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) = \mu < \infty \text{ and } \lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) = 0$$

Then:

$$\frac{S_n}{n} \xrightarrow{\mathbb{P}} \mu$$
 and $\frac{S_n}{n} \xrightarrow{L^2} \mu$

Strong laws

Theorem 233 (Kolmogorov's strong law of large numbers). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of i.i.d. random variables.

1. If $\mathbb{E}(X_1) < \infty$, then:

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mathbb{E}(X_1)$$

2. If $\mathbb{E}(X_1) = \infty$, then:

$$\limsup_{n \to \infty} \frac{|S_n|}{n} \stackrel{\text{a.s.}}{=} +\infty$$

Theorem 234 (Strong law of large numbers). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of i.i.d. random variables such that $\mathbb{E}(X_1^4) < \infty$. Then:

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mathbb{E}(X_1)$$

Corollary 235. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $A \in \mathcal{A}$. Let (X_n) be a sequence of i.i.d. random variables such that $X_n \sim \operatorname{Ber}(\mathbb{P}(A)) \ \forall n \in \mathbb{N}$. Then:

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mathbb{P}(A)$$

Definition 236. Let $x \in [0,1)$ and $b \in \mathbb{N}_{\geq 2}$. Suppose the expression of x in base b is $x_b = 0.a_1a_2a_3\cdots$. Let $N_{x,b}(k,n)$ denote the number of times the digit $k \in \{0,1,\ldots,b-1\}$ appears in the decimal expansion of x_b in the first n digits. We say that x is simply normal if there exists $b \in \mathbb{N}_{\geq 2}$ such that

$$\lim_{n \to \infty} \frac{N_{x,b}(k,n)}{n} = \frac{1}{b} \quad \forall k \in \{0, 1, \dots, b-1\}$$

We say that x is normal if

$$\lim_{n \to \infty} \frac{N_{x,b}(k,n)}{n} = \frac{1}{b} \quad \forall k \in \{0,1,\dots,b-1\}, \forall b \in \mathbb{N}_{\geq 2}$$

Theorem 237 (Borel's theorem). All the numbers in [0,1), except for a null set, are normal.

7. Central limit theorem

Characteristic function

Definition 238. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. A complex random variable is a function $Z : \Omega \to \mathbb{C}$ such that Re(Z) and Im(Z) are real random variables. Therefore, Z may be written as Z = X + iY, where X and Y are real random variables.

Proposition 239. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and Z = X + iY be a complex random variable. Then²⁷:

- 1. $\mathbb{E}(Z) = \mathbb{E}(X) + i\mathbb{E}(Y)$
- 2. $\overline{\mathbb{E}(Z)} = \mathbb{E}(\overline{Z})$
- 3. $|\mathbb{E}(Z)| < \mathbb{E}(|Z|)$

Definition 240 (Characteristic function). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a real random variable. The *characteristic function* of X is the function φ_X defined as:

$$\varphi_X: \mathbb{R} \longrightarrow \mathbb{C}$$
$$t \longmapsto \mathbb{E}(e^{itX})$$

Proposition 241. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a discrete random variable with support S_X . Then:

$$\varphi_X(t) = \sum_{x \in S_X} e^{itx} \mathbb{P}(X = x)$$

Proposition 242. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be an absolutely continuous random variable with density f_X . Then:

$$\varphi_X(t) = \int_{-\infty}^{+\infty} e^{itx} f_X(x) dx$$

Proposition 243. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be a random variable. Then:

- 1. $\varphi_X(0) = 1$
- 2. $|\varphi_X(t)| \le 1 \ \forall t \in \mathbb{R}$
- 3. $\overline{\varphi_X(t)} = \varphi_X(-t) \ \forall t \in \mathbb{R}$
- 4. If Y = aX + b for some $a, b \in \mathbb{R}$, then:

$$\varphi_Y(t) = e^{itb} \varphi_X(at) \quad \forall t \in \mathbb{R}$$

5. φ_X is uniformly continuous.

Theorem 244. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be independent random variables. Let $Y := \sum_{i=1}^n X_i$. Then:

$$\varphi_Y(t) = \prod_{i=1}^n \varphi_{X_i}(t) \quad \forall t \in \mathbb{R}$$

Theorem 245. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X, Y be random variables. Then:

$$X \stackrel{\mathrm{d}}{=} Y \iff \varphi_X(t) = \varphi_Y(t)$$

Theorem 246. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, (X_n) be a sequence of random variables and X be a random variable. Then:

$$X_n \overset{\mathrm{d}}{\longrightarrow} X \iff \lim_{n \to \infty} \varphi_{X_n}(t) = \varphi_X(t) \quad \forall t \in \mathbb{R}$$

Proposition 247. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X be random variables with finite n-th moment for some $n \in \mathbb{N}$. Then, there exists the derivative of order n of φ_X and it satisfies:

$$\varphi_X^{(n)}(t) = i^n \mathbb{E} \left(X^n e^{itX} \right) \quad \forall t \in \mathbb{R}$$

In particular, $\varphi_X^{(n)}(0) = i^n \mathbb{E}(X^n)$.

Central limit theorem

Theorem 248 (Lévy-Lindeberg central limit theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of i.i.d. random variables with finite 2nd moments. Let $\mu := \mathbb{E}(X_1)$ and $\sigma^2 := \text{Var}(X_1)$. Then:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{\mathrm{d}}{\longrightarrow} Z$$

where $Z \sim N(0, 1)$.

Theorem 249 (Lyapunov central limit theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of independent random variables each with finite expectation $\mu_i := \mathbb{E}(X_i)$ and variance $\sigma_i^2 := \operatorname{Var}(X_i)$ $\forall i = 1, \ldots, n$. Then:

$$\frac{\sum_{i=1}^{n} (X_i - \mu_i)}{\sqrt{\sum_{i=1}^{n} \sigma_i^2}} \stackrel{\mathrm{d}}{\longrightarrow} Z$$

where $Z \sim N(0, 1)$.

Corollary 250. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (X_n) be a sequence of i.i.d. random variables with finite 2nd moments. Let $\mu := \mathbb{E}(X_1)$ and $\sigma^2 := \operatorname{Var}(X_1)$. Then, $\forall s, t \in \mathbb{R}$ such that s < t we have

$$\lim_{n \to \infty} \mathbb{P}\left(s < \frac{S_n - n\mu}{\sigma\sqrt{n}} \le t\right) = F_Z(t) - F_Z(s)$$

where $Z \sim N(0, 1)$.

Definition 251. Let $(\Omega, \mathcal{A}, \mathbb{P})$ and X_1, \ldots, X_n be random variables. We define the *sample mean* of X_1, \ldots, X_n as:

$$\overline{X}_n := \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

If the value of n is fixed, we denoted \overline{X}_n by \overline{X} .

Proposition 252. Let $(\Omega, \mathcal{A}, \mathbb{P})$ and X_1, \ldots, X_n be i.i.d. random variables. Then:

$$\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1)$$
 and $\operatorname{Var}(\overline{X}_n) = \frac{1}{n}\operatorname{Var}(X_1)$

 $^{^{27}}$ Here we have only exposed two properties of the expectation of a complex random variable but in general all the properties of the expectation that we've already seen in Section 4 can be extended conveniently to complex random variables.

Corollary 253. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be i.i.d. random variables. Let $\mu := \mathbb{E}(X_1)$ and $\sigma^2 := \text{Var}(X_1)$. Then:

$$\overline{X}_n \overset{\mathrm{d}}{\simeq} N\left(\mu, \frac{\sigma^2}{n}\right) \quad \text{ for } n \text{ large enough}$$

Corollary 254 (De Moivre-Laplace theorem). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X_1, \ldots, X_n be i.i.d. random variables such that $X_n \sim \text{Ber}(p) \ \forall n \in \mathbb{N}$. Then:

$$B(n,p) \stackrel{d}{\simeq} N(np, np(1-p))$$
 for n large enough²⁸

Definition 255 (Continuity correction). The *continuity correction* is an adjustment that is made when a discrete distribution is approximated by a continuous distribution. For example if $X \sim \mathrm{B}(n,p)$ is a random variable and np(1-p) is large enough, then $\mathbb{P}(X \leq k)$ is well approximated by $\mathbb{P}(Z \leq k + \frac{1}{2})$, where $Z \sim N(0,1)$ which is even better than the approximation given by $\mathbb{P}(Z \leq k)$.

X	Moment-generating function	Characteristic function
$c \in \mathbb{R}$	e^{tc}	e^{itc}
$U(\{x_1,\ldots,x_n\})$	$\frac{1}{n} \sum_{i=1}^{n} e^{tx_i}$	$\frac{1}{n} \sum_{i=1}^{n} e^{itx_i}$
B(n,p)	$\left(pe^t + 1 - p\right)^n$	$\left(p\mathrm{e}^{\mathrm{i}t} + 1 - p\right)^n$
$Pois(\lambda)$	$\mathrm{e}^{\lambda(\mathrm{e}^t-1)}$	$e^{\lambda(e^{it}-1)}$
Geo(p)	$\frac{p\mathrm{e}^t}{1-(1-p)\mathrm{e}^t}$	$\frac{p\mathrm{e}^{\mathrm{i}t}}{1 - (1 - p)\mathrm{e}^{\mathrm{i}t}}$
NB(r,p)	$\left(\frac{1-p}{1-pe^t}\right)^r \text{ for } t < -\ln p$	$\left(\frac{1-p}{1-p\mathrm{e}^{\mathrm{i}t}}\right)^r$
U(a,b)	$\frac{pe^{t}}{1 - (1 - p)e^{t}}$ $\left(\frac{1 - p}{1 - pe^{t}}\right)^{r} \text{ for } t < -\ln p$ $\begin{cases} \frac{e^{tb} - e^{ta}}{t(b - a)} & \text{if } t \neq 0\\ 1 & \text{if } t = 0 \end{cases}$	$\begin{cases} \frac{e^{itb} - e^{ita}}{it(b-a)} & \text{if } t \neq 0\\ 1 & \text{if } t = 0 \end{cases}$
$\operatorname{Exp}(\lambda)$	$\frac{\lambda}{\lambda - t}$ for $t < \lambda$	$\frac{\lambda}{\lambda - it}$
$N(\mu, \sigma^2)$	$\mathrm{e}^{\mu t + rac{\sigma^2 t^2}{2}}$	$e^{i\mu t - \frac{\sigma^2 t^2}{2}}$
Gamma (α, β)	$\left(\frac{\beta}{\beta - t}\right)^{\alpha} \text{ for } t < \beta$	$\left(\frac{eta}{eta-\mathrm{i}t} ight)^lpha$
$C(x_0, \gamma)$	Does not exist	$e^{\mathrm{i}tx_0-\gamma t }$

 ${\bf Table~2:~Moment-generating~functions~and~characteristic~functions~of~common~distributions.}$

 $^{^{28} \}text{In practice, the approximation is good enough for } np(1-p) \geq 18.$