Probability

1. Probabilistic models Let Q be a set and A C  be a subset. The
o-algebra generated by A, o(A), is the smallest o-algebra
o-algebras over { containing A, that is:

(Algebra). Let Q be a set and A C P(Q).

We say that A is an algebra over ( if: o(4) ={2,0,4, A%}

1. Qe A Let © be a set and C C P(£2) be a sub-
set. The o-algebra generated by C, o(C), is the smallest
2. If A€ A, then A° € A. o-algebra over ) containing all the elements of C. More-

over, if {4, :CC A,,1<n< N} NeNU{oc}, are all

8. fA,BeA thmAUB €A the o-algebras over {2 containing C, then:

Let A be an algebra over a set 2. Then: N
1. geA a(C) =) An
n=1

2. If A,Be A, then ANB € A.
Let Q be a set and C, B C P(£2) be subsets.

3. For all n € Na if Ala ey An € A, then: Suppose:
U A; € A and ﬂ A€ A 1. Bis a o-algebra.
- = 2. CCB.

(o-algebra). Let Q be aset and A C P(Q). Then, o(C) C B.
We say that A is a o-algebra over  if:

Let (£2,7) be a topological space. The

L eA Borel o-algebra over (Q,T), B((Q,T)), is the o-algebra
2. If A € A, then A€ € A. generated by the open sets of (Q,7T):
3. If Ay, As, ... € A, then: B((Q2,T)) =0(T)

[j A cA In particular, the Borel o-algebra over R (together with
| " the usual topology) is:
n=

Let Q be a set, I be an index set and B(R) :=o({U SR : U is open})

{A; i € I} be a collection of o-algebras. Then, [,c; A;

is a o-algebra. Let (Q,7) be a topological space.

Then:

Let A be an o-algebra over a set ).
Then: B(Q, 7)) =0c({C CQ:C is closed})

1. e A Consider the Borel o-algebra over R,

B(R). Then:
2. IfA17A27...€A, then: ( ) o

1. BR)=0({(a,b) CR:a,beR,a<b})

QlAneA 2. B(R) = o({[a,b] CR:a,be R,a < b})

3. Foralln e N, if A;,..., A, € A, then: 3. B(R) = o({[a,0) CR:a,b € R,a <b})
n n 4. BR) =0({(a,b] CR:a,b e R,a <b})
UAi €A and mAIG.A

i=1 i=1 5. B(R) =c({(a,00) CR:a €R})

Let Q be a set. The trivial o-algebra is the 6. B(R) =o0({(—00,a) CR:a € R})

smallest o-algebra over Q, that is, {@, Q}.
7. BR) =0c({[a,0) CR:a€R})
Let Q be a set. The discrete o-algebra is
the largest o-algebra over , that is, P(Q). 8. B(R) =o({(—00,al CR:a € R})



Probability

(Sample space). The sample space 2 of
an experiment is the set of all possible outcomes of that
experiment.

(Kolmogorov axioms). Let € be a set
and A be a g-algebra over ). A probability is any function

P: A—[0,00)
satisfying the following properties:
o P(Q) =1.

o o-additivity: If {A,
joint, then:

:n > 1} C A are pairwise dis-

o ([10) - S

Let Q be a set and A be a g-algebra over
Q. An event A € A is a subset of 2 for which we want to
calculate the probability.

A probability space is a triplet (2, .4,P)
where  is any set, A is a og-algebra over Q and P is a
probability over A.

Let (€2, A, P) be a probability space and
A, B € A. Then, we have the following properties:

1. P() =0.

22IfA, e A i =1,...,
disjoint events, then:

(1) S
i=1 i=1

n, is a finite set of pairwise

3. P(A\ B) = P(A)

4. If BC A, then P(A\ B) =

—P(AN B).

P(A) — P(B).
5. If B C A, then P(B) < P(A).

6. P(A) < 1.

7. P(A%) = 1 — P(A).

8. P(AUB)

= P(A) + P(B) — P(AN B).

9. If A;,..., A, € A, then:

o (00) - S0

n

— Y PANA)+ > PANANA) -+
i,j=1 i,5,k=1
1<j i<j<k
+( )Wr‘rl (Al n- An)

10. If Aq,..., A, € A, then:

(i) -

fz (A; U Aj) zn:
1,5=1

j= ij,k=1
1<J <j<k

+(=1)"'P(A U

P(AZUAjﬂAk)f‘i’

UAy)

11. Finite subadditivity: If Aq,...,

() <
=1 =1

A, € A, then:

Let (Q,A,P) be a probability space
such that € is finite and all its elements are equiproba-
ble. Let A € A be an event. Then:

Al

P(4) = 1o

(Continuity from below). Let
(Q, A,P) be a probability space and (A,) C A be an in-
creasing sequence of events, that is:

AjCAC---CA,C -
Let A:=J,~; A,. Then:
P(4) = lim B(4,)

(Continuity from above). Let (22, A, P)
be a probability space and (4,,) C A be a decreasing se-
quence of events, that is:

A1 2A DDA, 2
Let A:=(),—; A,. Then:
Pl4) = o5, Pldn)

(Countable subadditivity). Let
(Q, A,P) be a probability space and (A,) C A be a se-
quence of events. Then:

(0
n=1

B

Let (2,.A,P) be a probability space and
(A,) C A be a sequence of events with probability 0.

Then:
P (U An> =0
n=1
Let (2, A,P) be a probability space and
(A,) C A be a sequence of events with probability 1.
Then:

p@An)_l



Conditional probability Independence of events

Let (2, A,P) be a probability space and Let (Q,.A,P) be a probability space. We
A € A be an event such that P(A) > 0. The conditional say that A, B € A are independent events if
probability that B € A occurs given that A occurs is de-
fined as: P(AN B) =P(A)P(B)
P(B | A) = P(AN B)
’ P(A) Let (Q,A,P) be a probability space.

Then:
Let (€2, A, P) be a probability space and

A € Abe an event such that P(A) > 0. Then, the function 1. @ and 2 are independent of any event.

P(-|A): A— [0,00] 2. If A € A satisfies either P(A) = 0 or P(A) = 1, then
B+—P(B|A) A is independent of any other event B € A.
is a probability. 3. If an event A € A is independent of itself, then either

P(A) =0o0r P(A) =1.
(Compound probability formula)
Let (92,A,P) be a probability space and A € A be an Let (2, A, P) be a probability space and
event such that P(A) > 0. Then, VB € A: A, B € A be two events. The following statements are
equivalent:
P(ANB)=P(B | A)P(A)
e A and B are independent.
(Generalized compound probabil-
ity formula). Let (2, A,P) be a probability space and e A°and B are independent.

Ai,...,A, € A, n > 2, be events such that P(A;N---N
A::,—1) > 0. Then?_ e s (4 e A and B¢ are independent.

e A€ and B¢ are independent.
P(A1N---NA,) =P(A)P(As | A)P(As | Ao N Ay)---

o P(An | AN N Any) Let (Q,.A,P) be a probability space and
n € N. We say that Ay,..., A, € A are independent
Let (€2, A,P) be a probability space and events if for any iy,...,ix € {1,...,n}, we have:
A={A,:1<n<N}CA, N eNU{co}, be a collection

of events. We say that A is a partition of € if: P <ﬁ Au) _ ﬁ P(4;)
N r=1 r=1
Q=] A4, "
et Let (Q,.A,P) be a probability space and

I be an arbitrary index set. We say that {A; : i €
(Law of total probability). Let I} c A are independent events if for any finite subset
(€2, A,P) be a probability space and {A,, : 1 <n < N} C {A;,...,A; i, € Iforr=1,... k} of different events,
A, N € NU{oo}, be a partition of  such that P(A4,) >0 we have:
k k
P (ﬂ A) = [IP.,)
r=1 r=1

ik

forall 1 <n < N. Then, VA € A:

N
P(A) = P(A,)P(A]| A,)
n=1 2. | Lebesgue integration

Let A C R™ be a subset. Then, A is a null
set (or a set of zero-content) if Ve > 0 there exists a collec-

N
P(A) =P(ANQ) =P |_| (ANA,) | = tion {Ry C R™ : Ry is a rectangle Yk € N} of rectangles
o’ such that:
N N o) o5}
=3 PANA,) =Y P(A,)P(A] Ay) Ac|JBe and > vol(Ry) <e
n=1 n=1 k=1 k=1

Let E be a set and £ be a o-algebra over

(Bayes’ formula). Let (€,.A,P) be E. We say that the function:

a probability space an.d. {4, ' 1 < n < N} C A, p: € — 0,00
N € NU{o0o}, be a partition of 2 such that P(A,) > 0 for A pu(A)
all1 <n < N. Let A € A with P(A) > 0. Then, Vk < N:

is a measure if:

P(AR)P(A | Ag)
SN P(AL)P(A | Ay) 1. There exists A € £ such that p(A) < oco.

n=1

P(Ax | A) =




2. If {A, € £ :n € N} is a collection of pairwise dis-
joint sets, then:

2 (G An) = iu(An)

The triplet (E, &, 1) is called a measure space.

The o-algebra of all Lebesgue measurable
sets in R"™, L, C P(R™), is defined as:

L, ={ACR": A=BUN}
where B € B(R™) and N is a null set.

We can extend the concept of volume on
rectangles in R™ to all the elements in £,,. This extension
is called Lebesgue measure (or simply volume) in R™.

Let (E,&, ) be a measure space and
f: E — R be a function. We say that f is measurable if
VB € B(R) we have f~1(B) € £. The Lebesgue integral of
f over E with respect to u is denoted by:

E/fdu

Let (E,&, 1) be a measure space and
f + F — R be a measurable function such that f(z) >0
Vz € E. Then, we can always define the integral

E/ fdu

taking into account that may be +oo.
Let (E, &, u) be a measurable space and

f : EF — R be a measurable function. We say that f is
Lebesgue integrable with respect to p if:

E/Ifldu < oo

Moreover if G € £, we define:

(Zfdu :=E/f1cdu

Consider the measurable space
(R™, L,,,m,), where m, is the volume in R™. Let
f : R® — R be a Riemann integrable function satisfy-
ing:

/|f(:c17...,mn)|dm1-~dxn < 00
RTL

Then, f is Lebesgue integrable and:

[1rldn e = [ pam,
R~ R

(Tonelli’s theorem). Let f: R? — R be
a non-negative Lebesgue measurable function. Then:

—+oo +oo

/f(%y)dwdy:/ /f(w,y)dx dy
- NI
:/ /f(w,y)dy dz

(Fubini’s theorem). Let f: R? — R be
a Lebesgue measurable function such that at least one of
the following integrals is finite.

+o0 [ +00
[ [ raias | ay
) e

[ [ ey | as

Then, f is Lebesgue integrable and:

+oo +oo

[t@maeay= [ | [ faydc)a

R2 — 00
“+o0 +oo
:/ /f(x,y)dy da

3. | Random variables and random vec-
tors
Random variables

Let (92,.A,P) be a probability space. A
real random variable (or simply random variable) X is a
function X : Q — R satisfying for all B € B(R):

X' B)={weQ:X(w)eB}cA

Let (92, A,P) be a probability space, C
be a collection of subsets of R such that B(R) = ¢(C)
and let X : Q — R be a function. Then, X is a random
variable if and only if X ~*(B) € A, VB € C.

Let (€2, A, P) be a probability space, a,b €
R and B € B(R). We define the following set:

{XeB}={weQ:X(w)e B}=X"YB)

In particular:

(X <a}={weQ: X(w) <a} =X"1((~o0,a])
(X>b}i={weQ: X(w)>b} =X ((b,00))
{a<X <bpi={weQ:a< X(w)<b}=X"1[ba)

(
(X=a}):={weQ: X(w)=a}=X""({a})

Let (2, A, P) be a probability space, X,
Y be random variables and a € R. Then:

1. X +Y is also a random variable.



2. aX is also a random variable.
3. XY is also a random variable.

4. L

< is also a random variable if X (w) # 0 Vw € Q.

Let (€2, A, P) be a probability space and
(X,) be a sequence of random variables. Then, the fol-
lowing quantities are also random variables provided that
they are finite for all w €

1. sup X,

2. inf X,

b

lim sup X,

n—oo

N

. liminf X,

n—o0

Let (92,.A,P) be a probability space and
(X,) be a sequence of random variables such that Yw € Q
the following limit exists and it is finite:

X(w) = lim X, (w)

n— oo

Then, X is a random variable.

Distribution of a random variable

Let (2, .A,P) be a probability space. The
distribution of a random variable X is the function:

Py :B(R) —  [0,1]

B —P({X e BY))

Let (92, A,P) be a probability space.
Then, for any random variable X, the function Px is a
probability over B(R). Hence, (R, B(R),Px) is a proba-
bility space.

Let (2, A,P) be a probability space. We
say that two random variables X, Y are equal in distribu-

tion (denoted by X 4 Y) if they satisfy:

Px(B) =Py(B) VB e B(R)

That is, X Ly i they have the same distribution func-
tions.

Let (£2, A, P) be a probability space. We
say that two random variables X, Y are equal almost surely
(denoted by X “2'Y) if P(X =Y) = 1, or equivalently, if
P(X #Y)=0.

Let (2, A,P) be a probability space and
X, Y be two random variables such that X = Y. Then,
x4y,

(Cumulative distribution function)
Let (Q, A,P) be a probability space and X be a random

variable. We define the cumulative distribution function
(cdf) as:
Fx :R— [0, 1]
z+— P(X <z) =Px((—o0,z])

Let (22, .A,P) be a probability space, X be
a random variable and F'x be its cdf. Then:

1. If z < y, then Fx(x) < Fx(y).
2. Fx is cadlag”.
3. lim Fx(z)=0and lim Fx(z)=1.
T——00 T—00
Reciprocally, if there is a function F satisfying these prop-

erties’, then there exists a random variable X on (2, A, P)
such that F is its cdf.

Let (2, A, P) be a probability space, X
be a random variable and F'x be its cdf. Then:

1. Fx has at most a countable number of discontinu-

ities.

2. Vz,y € R such that s < ¢, we have:
Plz <X <y)=F(y) - F(z)
Pae< X <t)= hm Fx(y) —

( ) — hm_ Fx(z)

Px<X<y) = hm Fx(y) — lim F(z)

t—x—

F(x)

)=
Pla <X <y)=
)=

3. Ve e R, P(X <z)= lim Fx(t).
t—x—

4. For all x € R:

P(X =2) = Fx(x )— lim Fx(t)

—T

Hence, Fx is discontinuous at z <= P(X =
0.

x) >

Let (2, A, P) be a probability space. Then,
the cdf completely determine a distribution of a random
variable X. That is, if X and Y are random variables such

that Fx (t) = Fy () Vt € R, then X 2 V.

Discrete random variables

Let (2, A,P) be a probability space. We
say that a random variable X is discrete if there exists a
finite or countable set S C R such that P(X € S) =1
In that case, S is called the support of X .

(Probability mass function). Let
(©, A, P) be a probability space and X be a discrete ran-
dom variable with support points Sx = {z; : i € I'}, where
I C N. The probability mass function (pmf) of the random
variable X is:
px : Sx — [0, 1]

1From now on, in order to simplify the notation, we will write P(X € B) := P({X € B}).
2From French “continue & droite, limite & gauche” (right continuous with left limits).

3Such kind of functions are called distribution functions.

4By agreement, we will suppose that S only contains points = such that P(X = ) > 0.

5In general we will denote S by Sx.



Let (92, A,P) be a probability space,
X be a discrete random variable with support points
Sx ={z; :i € I} and px be its pmf. Then:

1. px(z;)) >0Viel
2. pr(;vi) =1.

i€l

3. VB € B(R), we have:

P(XeB)= Y  px(w)

i€l:x;EB

Let (€2, A, P) be a probability space, X be
a discrete random variable with support points Sx = {z; :
i € I}, Fx be its cdf and px be its pmf. Then Vz € R we
have:
Fx(@)=P(X <a)= 3 px(w)

icl:x; <z

(Degenerated distribution). Let
(2, A,P) be a probability space. The degenerated distri-
bution consists in taking a constant random variable X so
that
P(X=a)=1

for some a € R. Here we have Sx = {a}.

(Bernoulli distribution). Let
(Q, A,P) be a probability space. The Bernoulli distribu-
tion is the one whose random variable X can only take
two values (1 and 0)" with probabilities p and ¢ := 1 — p:

P(X=1)=¢q

Here we have Sx = {0,1}. If X follows a Bernoulli distri-
bution of parameter p, we will write X ~ Ber(p).

(Discrete uniform distribution). Let
(©2, A, P) be a probability space. The discrete uniform dis-
tribution is the one whose random variable X takes values
on Sx = {x1,...,2,} each of these with probability 1/n:

P(X =u;)= Vi=1,...,n

1
n
If X follows a discrete uniform distribution, we will
write X ~ U({x1,...,2,}). The probability space
(S,P(S),Px) is an equiprobable space.

(Binomial distribution). Let
(Q, A,P) be a probability space and A € A. Suppose
P(A) = p. The binomial distribution is the one whose
random variable X is the number of successes of A in a
sequence of n repetitions. Thus, Sx = {0,1,...,n} and:

P(X = k) = (Z);)m —p)" " Vk=0,1,...,n

If X follows a binomial distribution of parameters n and
p, we will write X ~ B(n,p)".

6 Also called success/true or failure/false, respectively.

(Poisson distribution). Let (2, A, P) be
a probability space and A € Ryg. The Poisson distribu-
tion of parameter \ is the one whose random variable X
has support Sx = NU {0} and:

O AF
If X follows a Poisson distribution of parameter A\, we will
write X ~ Pois(A).

Let (€2, A,P) be a probability space. Let
(pn) C (0,1) be a sequence such that:

Vk e NU {0}

lim np, =A>0
n—oo

For each n > 1, consider X,, ~ B(n,p,). Then, Vk €

NU {0} we have:
k
lim P(X, =k) = lim (Z)pn’“(l — )" = efki

n— oo n—oo

k!

Let (2,.A,P) be a probability space and
suppose n € N and p € (0,1) are such that n > 1 and
p < 1. Then, B(n, p) ~ Pois(np)".

(Geometric distribution). Let
(Q, A,P) be a probability space and A € A. Suppose
P(A) = p. The geometric distribution is the one whose
random variable X is the number of trials needed to get
one success. Thus, Sx = N and:

P(X =k)=(1-p)"'p

If X follows a geometric distribution of parameter p, we
will write X ~ Geo(p).

Vk e N

(Discrete memorylessness property)

Let (Q,A,P) be a probability space and X be a dis-

crete random variable whose support is N and such that

P(X > m) > 0 Vm € N. The distribution of X is memo-
ryless if Ym,n € N, we have:

PX>m+n|X >m)=PX >n)

Let (Q,A,P) be a probability space,

X be a discrete random variable and p € (0,1). Then,

X ~ Geo(p) if and only if the distribution of X is memo-

ryless.

(Hypergeometric distribution). Let

(Q, A, P) be a probability space. Suppose we have a pop-

ulation of size N of whom K have a special feature (suc-

cess). Let X be the random variable that counts the num-

ber of successes that we have obtained in n draws (without
replacement). Thus, the support of X is:

Sx = {max{n + K — N,0},...,min{n, K}}
And the pmf is given by:
K\ (N-K
() Gioi)
N
()
This type of distribution is called hypergeometric distribu-

tion and it is denoted by X ~ HG(N, p,n), where p = £
is the proportion of successes in the population.

P(X = k) =

"Note that, a Bernoulli distribution of parameter p may be considered as a Binomial distribution of parameters n = 1 and p. Hence,

Ber(p) = B(1, p).

81In practice, the approximation is good enough for n > 10 and p < 0.05.



Let (22, A,P) be a probability space and
X ~ HG(N, p,n) such that when N — oo, p remains con-

stant. Then:
. WG e
ﬁ&MXZMZJ%Ok@f“:<J““‘m '

which is the pmf of a binomial distribution B(n, p).

(Negative binomial distribution). Let
(©Q, A,P) be a probability space and A € A. Suppose
P(A) = p. The negative binomial distribution is the one
whose random variable X is the number of trials needed
to get r > 1 successes. Thus, Sx = {r,r+1,...} and:

k—1

MX:k%:Q_l

)ﬂu—pﬁ” Vk>r

If X follows a negative binomial distribution of parameters
r and p, we will write X ~ NB(r, p).

Absolutely continuous random variables

Let (Q,.A,P) be a probability space. We
say that a random variable X is absolutely continuous if
there exists a function f : R — R satisfying:

1. f(z) >0,V eR.

2. f is integrable over R and:
+oo
/ flz)de =1

3. For all a,b € RU {£o0} with a < b, we have:
b
Pla< X <b) = /f(x)da:

The function f, denoted by fx, is called probability den-
sity function (pdf) of X. In general, a function satisfying
the first two properties is called a density function.

Let (92,.A,P) be a probability space, X
be an absolutely continuous random variable and Fx be
its cdf. Then:

1. (X =a) =0,

4. Fx is continuous on R.

5. If a,b € R are such that a < b, then:

)

X <b) =
X<b)=Pa<X<bh)

<
<

(Continuous uniform distribution)
Let (£2,.A,P) be a probability space. We say that an abso-
lutely continuous random variable X follows a continuous
uniform distribution on (a,b) (also [a,b]), and we denoted
it by X ~ U(a,b), if X has the pdf

fx(z) = ﬁlm,b) (z)

where 1(, ) is the indicator function. Therefore, its cdf is:

r—a
Fy(z) = ml(a,b) () + Ljp,00) (7)
(Exponential distribution). Let

(Q, A,P) be a probability space. We say that an abso-
lutely continuous random variable X follows an exponen-

tial distribution of parameter A > 0, and we denoted it by
X ~ Exp(A), if X has the pdf:

fX (.%') = )\e_)\wl(oyoo)

Furthermore, its cdf is:
Fx(z) = (1= ) 1(g,00) ()

(Continuous memorylessness prop-
erty). Let (Q, A, P) be a probability space and X be an
absolutely continuous random variable such that P(X >
s) > 0 Vs € R>¢. The distribution of X is memoryless if
Vs,t € R>o, we have:

PX >s+t]| X >s)=P(X >1t)

Let (2, A, P) be a probability space, X
be an absolutely continuous random variable and A € R+ .
Then, X ~ Exp(A) if and only if the distribution of X is
memoryless.

(Standard normal distribution). Let
(Q, A, P) be a probability space. We say that an absolutely
continuous random variable Z follows a standard normal
distribution, and we denoted it by Z ~ N(0,1), if Z has
the pdf:

1 7:52
e 2
V2T

fx(x) =

(Normal distribution). Let (Q, A, P) be
a probability space, u € R and o € Ryg. We say that an
absolutely continuous random variable X follows a normal
distribution, and we denoted it by X ~ N(u,0?), if X has
the pdf:

p is called the mean or expectation of X; o2, its variance,
and o, its standard deviation.
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Figure 1: Probability density function of a normal distri-

bution

Let (€2, A, P) be a probability space and
X ~ N(u,0?) and Z ~ N(0,1) be absolutely continuous
random variables. Then:

/LJFO'ZgX

Therefore, Vx € R we have:

IP’(X<:U):IE”(Z< ”““)
o
In this case, Z is called the standardized form of X.

(Gamma distribution). Let (22, 4, P) be
a probability space. We say that an absolutely continuous
random variable X follows a gamma distribution of param-
eters a, 8 € Ry, and we denoted it by X ~ Gamma(c, ),
if X has the pdf:

fx(z) = Fﬁ(;x“-le"”lmm)(m

The parameter « is called shape; 3, rate, and 1/, scale.

Let a,b € Rsg. The beta function is de-
fined as”’:

2)' " dw

B(a,b) := jz“l(l -
0

For all a,b € R+, we have:

[(a)I'(b)

B(a,b) = T(ath)

(Beta distribution). Let (Q2,.4,P) be a
probability space. We say that an absolutely continuous
random variable X follows a beta distribution of parame-
ters a,b € Rsp, and we denoted it by X ~ Beta(a,b), if
X has the pdf:

1
B(a,b)

fx(z) = 21— 2)" 1) (@)

(Cauchy distribution). Let (2, 4,P) be
a probability space, 4 € R and 0 € Ryy. We say that an
absolutely continuous random variable X follows a Cauchy
distribution of parameters g € R and v € Ryq, and we
denoted it by X ~ C(xg,7), if X has the pdf:

1
2
- [1 i (=) ]
A mized random wvariable is a random

variable whose cdf is neither piecewise-constant (a discrete
random variable) nor absolutely continuous.

fx(z) =

Let (2, A, P) be a probability space and X
be a random variable with cdf Fx. Suppose that:

1. Fx is continuous.

2. Fx is differentiable at any point except for, maybe,
a finite number of points.

3. Fx is continuously differentiable at any point except
for, maybe, a finite number of points.

Then:

Fx(x) = /F’(t)dt Ve eR

That is, Fx' is the pdf of X.

Transformations of random variables

Let (92, A,P) be a probability space,
X be an absolutely continuous random variable with pdf
fx and U, V be open sets such that P(X € U) = 1.
Let h : U — V be a diffeomorphism of class C!. Then,
Y := h(X) is also an absolutely continuous random vari-
able and:

Sy (@) = Fx(W @)Y ()1 (y)

Let (£2,.A,P) be a probability space, X
be an absolutely continuous random variable with pdf fx,
Uy, ...,U; be pairwise disjoint open intervals such that
P(XeUU---UU;)=1. Let h:U;U---UUr — R and
denote h; = h|y,. Then, if h; : U; — V; are diffeomor-
phisms of class C! for i = 1,...,k, then Y := h(X) is also
an absolutely continuous random variable and:

k
fy(y) = ZfX(hi_l(y))l(hfl)’(y)\lm(y)

Random vectors

Let (Q,A,P) be a probability space. A
random vector X is a function X = (X3,...,X,) : @ - R”
satisfying for all B € B(R"):

{XeB}={weQ:X(w)eB}eA

Let (92, A,P) be a probability space.
X =(X1,...,X,) : 2 - R" is a random vector if and
only if X; :  — R is a random variable for i = 1,...,n.

9Beta function should not be confused with binomial distribution, although we have used the same notation.



Let (€2,.4,P) be a probability space and
X = (X1,...,X,) be a random vector. For all By x --- X
B,, € B(R™), we have that:

(XeBi x-xBy}={X;€B}n---N{X, € B}

We will denote:

{X1 €By,....X, € Bn} = {X1 S Bl}ﬂ“-ﬂ{Xn S Bn}
Let (2, A,P) be a probability space and
X = (Xi,...,X,) be a random vector. Then, the distri-

bution of X is the function:

Px : B(R") —  [0,1]
B > P(X€DB)

Let (£2, A, P) be a probability space and
X = (Xy,...,Xn) be a random vector. We say that X is
discrete if there exists a finite or countable subset .S C R"
such that P(X € S) = 1'". In that case, S is called the
support of X

Let (Q,.A,P) be a probability space
and X = (Xq,...,X,) be a random vector. Then, X is
discrete if and only if X; is a discrete random variable for
1=1,...,n.

(Joint probability mass function)
Let (2, A, P) be a probability space and X = (X1,...,X,,)
be a discrete random vector. Then, the joint probability
mass function (joint pmf) of X is:

px :Sx, X - x Sx, — [0, 1]
(1, 2pn) +—P(Xy=2,.... X, =2,)

Let (92, 4,P) be a probability space
and X be a discrete random vector. Then, the joint pmf
of X determines the distribution of X.

(Marginal probability mass func-
tions). Let (92,.A4,P) be a probability space and X =
(X1,...,X,) be a discrete random vector with support
Sx = Sx, X --- x Sx,. Then, the marginal probability
mass functions (marginal pmjf) of X are:

px; (i) = P(X; = 2y)

= Z X5 Vi1, T Yit 15 -+ Yn)
YjE€5X;
J#i
fori=1,...,n.
(Multinomial distrbution). Let
(Q, A,P) be a probability space and A4, ..., A, € A. Sup-

pose P(A;) =p; fori=1,...,rsuch that p;+---+p, = 1.
The multinomial distribution is the one whose i-th ran-
dom variable X; is the number of successes of A; in
a sequence of m repetitions, for ¢ = 1,...,r, that is,
X; ~ B(n,p;). Thus, for all ny,...,n, € {0,1,...,n}
such that n; + --- + n,, = n we have:

n!

P(X1 =n,..., X, =n,) =

o1
ny re

If X = (Xi,...,X,) follows a multinomial distribu-
tion of parameters n and pq,...,p,, we will write X ~
Mult(n;p1,...,pr).

Let (£2, A,P) be a probability space and
X = (X1,...,X,) be a random vector. We say that X is
absolutely continuous if exists a function f : R™ — R such
that:

1. f(z) >0, Vz € R".

2.
o0 +

/ ()
Jo

3. For all B € B(R™) we have:

flz,. ... zp)day - -dzy, =1

oo

P(X € B) = /f(a:) de

B

The function f, denoted by fx, is called joint probability
density function (joint pdf) of X.

(Marginal probability density
functions). Let (Q,A,P) be a probability space and
X = (X1,...,Xn) be an absolutely continuous random
vector with density fx. Then, X; is an absolutely random
variable with pdf:

+oo +o0
(n—1)
fxi(a:i):/ /f(xl,...,xn)dxy--dmi_l~

cdzigy - da,

for i = 1,...,n. These functions fx, are called marginal
probability density functions (marginal pdf) of X.

(Multivariate standard normal dis-
tribution). Let (Q2,.4,P) be a probability space and
X = (Xi,...,X,) be an absolutely continuous random
vector. We say that X follows a multivariate normal dis-
tribution, denoted by X ~ N(0,1), if X has a joint pdf:

1 _ @4 qon?
2

fx(l’l, e

Moreover, X; ~ N(0,1) fori=1,...,n.

(Multivariate uniform distribution)
Let (2, A, P) be a probability space and X = (X1, ..., X,,)
be an absolutely continuous random vector. We say that
X has a multivariate uniform distribution over B € B(R™),
with vol(B) < oo, if it has joint pdf:

1

fx(z) = voli(lﬂlB("T)

If X = (Xy,...,X,) follows a multivariate uniform, we
will write X ~ U(B).

10By agreement, we will suppose that S only contains points « such that P(X = ) > 0.
1n general we will denote S by Sx. Moreover, note that Sx = Sx; X --+x Sx, , where Sx, is the support of the random variable X;.



Let (£2, A, P) be a probability space and
X = (Xy,...,X,) be a random vector. The multivariate

cumulative distribution function (multivariate cdf) of X is
defined as:

Fx(z1,...,x,) =P(X5 <21,..., X, < zp)

for (x1,...,z,) € R™

Let (2, A,P) be a probability space and
X be a random vector. Then, Fx determines the distri-
bution of X.

Let (©,.A,P) be a probability space
and X = (X1,...,X,) be a random vector. Then, the

multivariate cdf Fx of X has the following properties:

1. It is monotonically increasing in each of its vari-

ables
2. It is right-continuous in each of its variables.
3. Foralli=1,...,n we have:
lim Fx(x1,...,2,) =0
T;—r—0Q
xl,...,lifl—>+oo Fx(z1,...,m,) =1
4. For alli=1,...,n we have:
xla“~7$i7173:1il<+1:1117-<~7£n_>+00 Fx(.’L‘l, o ,SL’n) - FXi (xl)
5. If X is absolutely continuous, then:
Fx(z1,...,20) =
1 Tn
= / / fx(s1y...,8,)dsy -+ -dsy,
6. If X is absolutely continuous, then:
Pla; < X1 <b1,...,an < X, <bp) =
bl bn
:/-~-/fx(sl,...,sn)dsl~~d5n
aq An
Let (Q,.A,P) be a probability space
and X = (X3,...,X,) be an absolutely continuous ran-
dom vector. If X has a continuous joint pdf, then:
0" Fx
fx(x17 e ,xn) = m(flil, Ce 71}”)

Transformations of random vectors

We say that a function h : R” — R™ is

Borel measurable if VB € B(R™) we have:

h™!(B) € B(R")

Let h : R® — R™ be a continuous
function. Then, h is Borel measurable.

Let (2, A,P) be a probability space,
X = (Xy,...,X,) be a random vector and h : R" — R™
be a Borel measurable function. Then, Y := h(X) is also
a random vector.

Let (2,.A,P) be a probability space,
U,V C R" be open sets and X = (X1,...,X,,) be an ab-
solutely continuous random vector with joint pdf fx such

that P(X € U) = 1. Let h : U — V be a diffeomorphism
of class C. Then, Y := h(X) is absolutely continuous and

Fx(y) = fx(07 (y)|Th™ (y)[1v (y)

where Jh™'(y) = det Dh™*(y) is the Jacobian of h™* eval-
uated at y.

(Multivariate normal distribution)
Let (2, A,P) be a probability space, X ~ N(0,1) be an
absolutely continuous random vector and h : R® — R” be
a function defined as

h(x) =Ax+b x € R"

where A € GL,(R) and b € R”. Then, Y = h(X) is an
absolutely continuous random vector and it has joint pdf:

fx(y) ! !

(2r)% det A¢

— 2
_Ia"ty-b)|
2

In this case, we write Y ~ N(b, AAT). The vector b is
called mean vector and the matrix AA™T, covariance ma-
triz.

Independent random variables

Let (2, .A,P) be a probability space and
., X, be random variables. We say that they are
., B € B(R), we have:

Xq,..
independent if VB, ..

n
P(X, € By,...,Xn € B,) = H]P’(Xi € By)
i=1
That is, the events {X; € B1},...,{X,, € B,} are inde-
pendent. Moreover if they have the same distribution, we
will say that Xq,..., X, are independent and identically
distributed (abbreviated as i.7.d.).

Let (9, A,P) be a probability
space, X1,...,X, be independent random variables and
Ji,---,9n : R = R be Borel measurable functions. Then,

Y1 = q1(Xq),...,Yn = gn(X,,) are also independent ran-
dom variables.

12For the 2-dimensional case, we have that for all z < 2’ and y < y':
Fx(m/’ yl) - Fx(iﬂ, yl) - FX(Cﬂ/, y) + FX(:E’ y) Z 0

This positive quantity is called increment of Fx in the rectangle (z,2'] x (y,%']. In general a function f: R? — R satisfying

f(xlzy/) - f(xvyl) - f(zlvy) + f(xvy) 2 0

is said to be increasing.

L3Here, we have thought (z1,...,2,) as the vector x in R™.

10

Vo <z’ and Vy < ¢/



Let (Q,.A,P) be a probability space
and X1q,...,X, be random variables. Then, Xy,...,X,
are independent if and only if

cyn) = Fx,(21) - Fx, (zn)

for all (z1,...,z,) € R™
Let (Q,A,P) be a probability space
and X = (Xq,...,X,) be a discrete random vector with

support Sx. Then, Xi,..., X, are independent if and
only if

px (1,5 Tn) = px, (¥1) - px, (Tn)
for all (z1,...,2,) € Sx.

Let (92, 4,P) be a probability space
and X = (Xy,...,X,) be an absolutely continuous ran-
dom vector. Then, X7, ..., X,, are independent if and only
if

Ix(@1,. . n) = fx, (21) - fx, (Tn)
for all (z1,...,2,) € R™, except for, maybe, a null set.

Let (92, 4,P) be a probability space

and X1, ..., X, be absolutely continuous and independent

random variables. Then, X := (X, ...
lutely continuous random vector and

fx(@1, .. wn) = fx, (21) - fx, (%)

for all (z1,...,2,) € R", except for, maybe, a null set.

,Xn) is an abso-

Conditional distributions

Let (Q,A,P) be a probability space,
(X,Y) be a discrete random vector with support Sx x Sy
and y € Sy. The conditional probability mass function of
X given Y = y is defined as:

pxpy (@ | y) :P(Xx|yy)w

for all z € Sx.

Let (2, 4,P) be a probability space
and (X,Y) be a discrete random vector with support
Sx x Sy. Then, the pmf of Y together with the pmf
of X conditioned to Y = y determine the pmf of X in the
following way:

P(X =)= Y pxy(@|ypy(y) VaeSx

yESy

Let (Q,A,P) be a probability space,
(X,Y) be an absolutely continuous random vector and
y € Sy. The conditional probability density function of X
given Y = y is defined as:

Tl it fy (y) >

fX|Y(~T | y) == {a it fy (y) :8

where x € R and a € R is an arbitrary value

14Usually chosen equal to 0.

Let (92,.A,P) be a probability space,
(X,Y) be an absolutely continuous random vector, y € Sy
and a,b € RU {£oo} such that a < b. Then:

b
POXE @)Y =1)= [ fayle|y)ds

Let (2, A4,P) be a probability space
and (X,Y) be an absolutely continuous random vector.
Then, the pdf of Y together with the pdf of X condi-
tioned to Y = y determine the pdf of X in the following
way:

“+oo
fx(x) = / fxiy( |y fy(y)dy VeeR

4. | Expectation

Expectation of simple random variables

A simple random variable is a random
variable that takes a finite or countable number of val-
ues

Let (92, A,P) be a probability space
and X be a simple random variable whose outcomes are
{z; : i € I}'", where I is a finite or countable index set.
We say that X has finite expectation or that it is integrable

if:
Z |z;|P(X = ;) < 00
iel

If so, we define the expectation of X as:

Eo(X) =Y aP(X = ;)

icl

If the series of above is not absolutely convergent, we will
say that X is not integrable.

Let (2, A,P) be a probability space and
suppose that a random variable X can be expressed as

N
X = ZanlAn

n=1

where N € NU {0}, {4, : n =1,....N} C Ais a
partition of  and {a, : n =1,..., N} are not necessarily
distinct values. Then, X has finite expectation if and only
if

N
> lanP(An) < o0
n=1

and in that case, Eq(X) = 2521 an,P(Ay).

Let (Q, A,P) be a probability space
and X, Y be simple and integrable random variables.
Then, X +Y is also a simple and integrable random vari-
able and:

]ES(X + Y) = ]ES(X) + ES(Y)

15Note that a simple random variable is a particular case of a discrete random variable.
16Note that we can write X as X = Ziel ®il{x=¢,}, Wwhere the events {X =a;}, i € I, form a partition of .

11



Let (92,.A,P) be a probability space,
X be a simple and integrable random variable and ¢ € R.
Then, cX is also a simple and integrable random variable
and:
)

Let (92,.A,P) be a probability space,
X be a simple random variable such that |X| < C for
some C € R. Then, X is integrable and:

Es(eX) = cBg(X

E(X)[<C

Let (92, 4,P) be a probability space
and X be a random variable. For all n € N and all

w € Q 3k € Z such that X(w) € [£,5EL). We define
Xn(w) = 2% Then,
k
X =D ouli g exaiit)
keZ

is a simple random variable such that X, (w) < X(w)
Vn € Nand w € Q

Extension of the expectation

Let (Q, A,P) be a probability space
and X be a random variable. Then, there exists a se-
quence (X,,) of simple random variables that converges
uniformly to X, that is:

lim sup{|X,(w) — X(w)|:weQ}=0

n—oo
Furthermore, Vw € Q and Vn € N we have that X,,(w) <
Xn—i—l(w)-

Let (92, A,P) be a probability space and
X be a random variable such that there exists a sequence
(X,) of simple and integrable random variables that con-
verges uniformly to X. Then, the following statements are
satisfied:

1. The limit lim Eq(X,,) exists.
n—oo

2. The limit lim Eg(X,,) does not depend on the se-
n—oo

quence (Xp,).
If X is simple, then Eq(X) = lim E (X,).

n—oo

(Expectation). Let (2, A,P) be a prob-
ability space and X be a random variable. We say that X
has finite expectation or that it is integrable if there exists
a sequence (X,,) of simple and integrable random variables
that converges uniformly to X. In that case, we define the
expectation of X as:

E(X) := lim Ey(X,)

n—oo
Let (Q,.A,P) be a probability space

and X, Y be random variables and ¢ € R. Then:
k k+1
on’ 9on

17The partition R = |_| {

kEZL
18 proves that this definition is well-defined.

19Gee

12

. If X and Y are integrable, then X 4+ Y is also inte-
grable and:

E(X +Y) =E(X) +EY)

If X is integrable, then cX is also integrable and:
E(eX) = cE(X)

If | X| < C for some C € R, then X is integrable.
If X is integrable and X > 0, then E(X) > 0.

If X and Y are integrable and Y > X, then E(Y) >
E(X).

If m < X < M for some m,M € R, then X is
integrable and

m<EX)<M

Comparison test: If X is integrable and |Y| < X,
then Y is integrable.

X is integrable <= |X]| is integrable.

If P(A) = 0 for some A € A, then for any ran-
dom variable X, we have that X1 4 is integrable and
E(X14)=0.

10. If X =Y and one of them is integrable, then so will

be the other one and, furthermore, E(X) = E(Y).

Let (92, A,P) be a probability space, X
be a random variable and A € A. Then, E(1{xeca}) =
P(X € A).

Let (2, A4,P) be a probability space
and X be a random variable with support NU{0}. Then:

= ip(x > k)
k=0

oo

ZIP’X>I<:

k=0

o

n=1

S B
k+1

P(X
0

n=
1

=Y nP(X =n) =E(X)

=

(Monotone convergence theorem)
Let (€2, A,P) be a probability space and (X,,) be an in-
creasing sequence of non-negative random variables such
that nh—>Irolo X, == X' for some random variable X. Then:

nh—{goE(X") =E(X)
Check the proof of 77 ?77.

) is called dyadic partition of order n.



(Dominated convergence theorem)
Let (€2, A, P) be a probability space and (X,,) be sequence

of random variables such that lim X, “= X, for some
n—oo

random variable X. Suppose that there exists an inte-
grable random variable Y such that

IX|<Y Vn>1

Then:
lim E(X,) =E(X)

n—oo

Check the proof of 77 ?7.

(Fatou’s lemma). Let (Q,A,P) be a
probability space and (X,,) be a sequence of non-negative
random variables. Then:

E(liminf X,,) < liminf E(X,)

n—oo n—oo

Check the proof of 77 ?77.

Expectation of absolutely continuous random
variables

Let (2, A,P) be a probability space and
X be an absolutely continuous random variable with den-
sity fx. Then, X is integrable if and only if

+o0
/ |z| fx (z) de < o0
“o0
In that case, we have:
+00
E(X) = / zfx(x)dr < oo

Expectation of transformations of random vec-
tors

Let (2,.A,P) be a probability space,
X = (Xy,...,X,) be a discrete random vector with sup-
port Sx and h: R™ — R be a function. Then, Y := h(X)
is an integrable random variable if and only if

>

(Ih---,wn)esx

[h(z1,. . 2n)|P(X1 =21,..., Xp =2,) < 0

In that case, we have:

>

(21,070 )ESX

h(zy,...,z,)P( X1 =21,..., X, = xp)

Let (2,.A,P) be a probability space,
X = (Xy,...,X,) be an absolutely continuous random
vector with density fx and h : R™ — R be a Borel measur-
able function. Then, Y := h(X) is an integrable random
variable if and only if

/|h($1w--,l‘n)\fx(ffl7~-~>$n)d$1"-dﬂfn < 00
RTL

20We write pmf in quotation marks because px () is not exactly

In that case, we have:

E(Y) @) day - - -dxy,

/h(l’l, . 7$n)fx(.’r17 N

R

Expectation of non-negative and mixed ran-
dom variables

Let (Q,A,P) be a probability space,
X > 0 be a non-negative random variable and (X,,) > 0
be a sequence of simple random variables that converges
uniformly to X. Then:

e If X, is integrable Vn € N, then:

E(X) = lim E(X,)

n—oo

e If 9m € N such that X, isn’t integrable, then:

E(X) =00

Let (2, .A,P) be a probability space and
X be a mixed random variable. Suppose that the discrete
part of X has support Sy and “pmf” px(z) More-
over, suppose that the absolutely continuous part of X
has “pdf” fx(z)”' We say that X has finite expectation if:

+o00
Z |z|px () + / || fx (z) dz < oo
TES o

If so, we define the expectation of X as:

+oo

Z xpx(x) + /fo(z)d;v

TESx

E(X) :

— 00

Moments

(Moment). Let (2, A,P) be a probabil-
ity space, X be a random variable and k € N. We say that
X has finite moment of order k (or finite k-th moment)
if X* has finite expectation. We denote by py the k-th
moment of X:

e = E(X")

Let (92,.A4,P) be a probability space,
X, Y be random variables such that they have finite k-th
moment. Then:

1. X and Y have finite 7-th moment Vr € {1,...,k}.
2. X 4+ Y has finite k-th moment.
Let (Q,A,P) be a probability space,

X, Y be random variables such that they have finite 2k-th
moment. Then, XY has finite k-th moment.

a probability mass function since Zmesx px(z) < 1.

21 Again, we write pdf in quotation marks because fx (x) is not exactly a probability density function since j_oo x(x)dz < 1.
g S
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(Cauchy-Schwarz inequality). Let
(Q, A,P) be a probability space and X, Y be two random
variables such that E(X?) < co. Then:

E(XY]) < (E(X2)E(Y?2)"?

(Variance). Let (€2, A,P) be a prob-
ability space and X be a random variable such that
E(X?) < co. We define the variance of X as:

Var(X) := E ((X - E(X))Q) >0

Let (Q,.A,P) be a probability space
and X be a random variable such that E(X?) < co. Then:

Var(X) = E(X?) — E(X)?

(Standard deviation). Let (Q2,A4,P)
be a probability space and X be a random variable such
that E(X?) < co. We define the standard deviation (or
standard error) of X as:

o(X) :=+/Var(X)

Let (Q,.A,P) be a probability space
and X be a random variable such that E(X?) < oco. If
Var(X) = 0, then X = E(X).

Let (Q,.A,P) be a probability space
and X, Y be independent random variables with finite
expectation. Then, XY has finite expectation and:

E(XY) = E(X)E(Y)

(Covariance). Let (2, A, P) be a proba-
bility space and X, Y be two random variables with finite
2nd moments. We define the covariance between X and
Y as:

Cov(X,Y):=E([X —EX)][Y —EY))

Let (Q,.A,P) be a probability space
and X, Y be two random variables with finite 2nd mo-
ments. Then:

Cov(X,Y) = E(XY) — E(X)E(Y)

Let (Q,.A,P) be a probability space
and X, Y be independent random variables with fi-
nite expectation. Then, Cov(X,Y) is well-defined and
Cov(X,Y) =0.

Let (2, A, P) be a probability space. We
say that two random variables X, Y are uncorrelated if
Cov(X,Y) =0.

Let (92, A, P) be a probability space, X
be a random variable such that E(X?) < oo and a,b € R.
Then:
Var(aX +b) = a*Var(X)

22Therefore, Var(X) is sometimes expressed as o2 (X).

Let (Q,A,P) be a probability space
and X1,..., X, be random variables with finite 2nd mo-
ments. Then:

Var(X1++Xn) — ZV&I‘(XZ)+2 Z COV(XZ‘,XJ‘)
i=1 1<i<j<n
Let (2, A,P) be a probability space and
X1,..., X, be random variables with finite 2nd moments
such that they are pairwise uncorrelated. Then:

Var(Xy + -+ X,) = »_ Var(X;)
=1

(Pearson correlation coefficient)
Let (2, A,P) be a probability space and X, Y be non-
constant random variables with finite 2nd moments. We
define the Pearson correlation coefficient (or simply cor-
relation coefficient)” as:

_ Cov(X,Y) Cov(X,Y)
Co(X)o(Y) V/Var(X)y/Var(Y)

p(X,Y):

Let (Q,.A,P) be a probability space,
X, Y be non-constant random variables with finite 2nd
moments and p := p(X,Y). Then:

L |p| <1

2. If p = 1, then Ja,b € R with a > 0 such that

Y =aX+0.

If p = —1, then da,b € R with a < 0 such that
Y =aX +0.

(Markov’s inequality). Let (2, A,P) be
a probability space, X > 0 be a non-negative random vari-
able with finite expectation and A € R-g. Then:

E(X)

A

Let (£2,.A4,P) be a probability space and
X > 0 be a non-negative random variable such that
E(X) = 0. Then, X *2 0.

P(X > \) <P(X > )) <

Let (2, A, P) be a probability space, p €
R~ and X be a random variable such that E(]X|") < oo.
Then, for all a € Rsq:

E(XT)

B(X| 2 0) < o

(Chebyshev’s inequality). Let
(Q, A,P) be a probability space, X be a random vari-
able such that E(X?) < co and § € Rsq. Then:

Var(X)

52
Furthermore, if 0 := ¢(X) and we take § = ko, k € Ry,
then:

P(IX —E(X)[ > 94) <

1
>1-—

P(|X — E(X)| < ko) e

23The correlation coefficient measures the linear correlation between two random variables.
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(Moment-generating function). Let
(Q, A,P) be a probability space and X be a random vari-
able. The moment-generating function of X is the function
1x defined as:

¢xj:1R ——%IR>0LJ{;¥OO}
t —  E(etX)

Let (€2, 4,P) be a probability space, X,
Y be random variables such that ¥x(t), ¥y (t) < +oo in
a neighbourhood of 0 and such that i x, ¥y are equal in

another neighbourhood of 0. Then, X dy.

Let (2, A,P) be a probability space and
X be a random variable such that ¢ x (t) < 400 in a neigh-
bourhood of 0. Then, X has moment of order k£ Vk € N

and:
) =1x*(0)

Let (2, A,P) be a probability space, X,
Y be independent random variables. Then, for all £ such
that ¢x(t), ¥y () < +o0o, the function x4y (t) is finite
and:

E(X*

Yx 1y () = Px (t)y ()

Uxay (1) = EEE)) = E(e)E () = ¢x () (1)

where the second equality is because of the independence
of X and Y.

Let (©2, A,P) be a probability space,
1), A € Ryp and X3,..., X, be i.i.d. random vari-

€ (0,

ables.

o If X; ~ Ber(p), then X; +--- 4+ X, ~ B(n,p)

o If X; ~ Geo(p), then X; +---+ X,, ~ NB(n,p)

o If X7 ~ Exp(A), then X3 +---+ X,, ~ Gamma(n, \)

Let (92, 4,P) be a probability space

and X; ~ P01s()\ ) be random variables for some \; > 0,

i =1,...,n. Suppose that Xi,..., X, are independent.
Then:

X1+

4 X ~ Pois(Aq + -+ Ap)

Let (92,.A,P) be a probability space,

w; € Rand o; € R for i = 1,...,n. Let X; ~ N(u;,0:°)
be independent random variables for ¢ = 1,...,n. Then:
X1+ +’0n2)

+X71,NN(,LL1+"'+,UJ'[L70'12+"'

Conditional expectation

Let (2,.A4,P) be a probability space,

(X,Y) be a discrete random vector with support Sx x Sy

and y € Sy. The conditional expectation of X given Y =y
is defined as:

E(X|Y =y):=» aP(X=z|Y=y)

x€Sx

15

provided that the series is absolutely convergent. More
generally, if X is a discrete random vector with support
Sx and h : Sx — R is a function, then the conditional
expectation of h(X) given Y = y is defined as:

E(h(X) =) h(x)

XESxX

Y =y) X=x|Y=y)

provided that the series is absolutely convergent.

(Law of total expectation). Let
(©, A,P) be a probability space, X be a discrete random
vector with support Sx, Y be a random variable with sup-
port Sy and h : Sx — R be a function. If h(X) has finite
expectation, then:

E(h(X))

Y E(RX)|Y =y)BY =y)

yESy

We have that:

xXESx

> Mx)PX

xESx yESy

> > hx)PX

yESy XESx

S E(W(X) | Y = y)B(Y =

yESy

=x|Y =y)P(Y =y)
=x|Y =y)P(Y =y)
y)

where in the second equality we have used the
and in the third step we can rearrange
the terms due to the finite expectation of h(X).

Let (Q,A,P) be a probability space,
(X,Y) be an absolutely continuous random vector with
support Sx x Sy and y € Sy. The conditional expecta-
tion of X given Y = y is defined as:

E(X|Y =y):= /xfx|y(w | y) dz

Sx

provided that the integral is absolutely convergent. More
generally, if X is an absolutely continuous random vector
with support Sx and h : Sx — R is a function, then the
conditional expectation of h(X) given Y = y is defined as:

E(h(X) | Y = y) = / B fxpy (x| ) dx

Sx
provided that the integral is absolutely convergent.

(Law of total expectation). Let
(Q, A, P) be a probability space, X be an absolutely con-
tinuous random vector with support Sx, ¥ be a random
variable with support Sy and h : Sx — R be a function.
If h(X) has finite expectation, then:

—+oo

/ E(h(X) | Y = y)fy (4) dy

— 00

E(h(X))

Adapt the proof of



X E(X) Var(X)
ceR c 0
U({xlv"'vxn}) %Z?:l i %zj?:l(xi2 _xi)
B(n,p) np np(l = p)
Pois()) A A
Geo(p) 1/p lp—gp
HG(N,p,n) np np(1 —117) ]]\\; : 711
r — D
NB(Ta p) ]; n p2
Ula,b) (a+1b)/2 (b—a)?/12
Exp()) 1/A 1/2%
N(n,0?) 2 o
Gamma(a, ) /B o/B°
a ab
Beta(a,b) at+b | (a+b)’(a+b+1)
C(zo,7) +00 +oo

Table 1: Expectations and variances of common distribu-
tions.

5. | Convergence of random variables

Convergence in probability

Let (2,.A,P) be a probability space,
(X,) be a sequence of random variables and X be a ran-
dom variable. We say that (X,,) converges in probability

to X, and we denote it by X, N X, if Ve > 0 we have:
lim P(|X,, — X|>¢)=0

n—oo

Or equivalently:

lim P(| X, — X|<e)=1

n— 00

Let (92,.A,P) be a probability space.
Then, the limit in probability is unique almost surely.
That is, if (X,,) is a sequence of random variables and

X, Y are a random variables such that X, Py X and
X, —> Y, then P(X £Y) = 0.

Let (92,.A,P) be a probability space,
(X,) be a sequence of random variables, X be a random
variable such that X, £, X and f : R — R be continuous
function. Then, f(X,,) N f(X).

Let (2,.A,P) be a probability space,

(X1n),--+,(Xmmn) be m sequences of random variables,
Xi,...,X,, be a random variable such that X;,, LN X;
Vi =1,...,m and f : R™ — R be continuous function.
Then:
F Xt Xon) = F(X1,e, Xo)
Let (2, A,P) be a probability space,
(X1p)s-++, (Ximpn) be m sequences of random variables,

24If X € £°, we will use the same notation for its equivalence class.

..., X;m be a random variable such that X;,, L X;
,...,m and f : R™ — R be continuous function.

o Xy — X+ 4 X

e X = X X
Let (2, A,P) be a probability space. Then,

the set L0 of all random variables of (£2, A, P) is a vector
space. Moreover, the relation ~ defined in £° as

Y VX,Y er’

S

X~Y < X%

is an equivalence relation. The quotient set £°/ ~ is de-
noted by L°

Let (92,.A,P) be a probability space.
We define the function dp in L9 as:

de:L°xI' — R
X-Y
(x,v) — E (L)

Then, (L°, dp) is a metric space.

Let (Q,.A,P) be a probability space,
(X,) be a sequence of random variables and X be a ran-
dom variable. Then:

X, 5 X < lim dp(X,,X) =0

n— oo

Because of that, the convergence in probability is said to
be metrizable.

Let (2, A,P) be a probability space,
(X,.) be a sequence of random variables and X be a ran-
dom variable. We say that (X,,) satisfies the Cauchy con-
dition in probability (or is Cauchy in probability) if Ve > 0
we have:

lim P(|X, — Xm| >¢) =0

n,m—oo

Let (2, A,P) be a probability space,
(X») be a sequence of random variables and X be a ran-
dom variable. Then:

X, —+ X <= (X,) is Cauchy in probability
Thus, (L°,dp) is a complete metric space.

Let (2, A,P) be a probability space,
(X») be a sequence of random variables and X be a ran-

dom variable such that X, LS Then, all subsequence
(Xn,,) of (X,,) converges in probability to X.

Almost surely convergence

Let (Q,A,P) be a probability space,
(X,) be a sequence of random variables and X be a ran-
dom variable. We say that (X,,) converges almost surely
to X, and we denote it by X,, == X if

):1

lim X, (w) = X(w)

n—roo

P (nli_)rrgo X, = X

That is,
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for all w € Q except for maybe a set of probability
zero. Another equivalent expression is the following one:
X, &% X if and only if

Pl () U MMwe: [Xilw) - Xw)<e} | =1
e€Qson=1k=n
Let (2,.A,P) be a probability space,
(X,) be a sequence of random variables and X be a ran-
dom variable. Then, X,, =2 X if and only if Ye > 0 we

S "

Let (2,.A,P) be a probability space,
(X,,) be a sequence of random variables and X be a ran-
dom variable. Then:

lim P

n—oo

U{xe—X|> ¢}

k=n

X, 2% X — X, — X

Let (2,.A,P) be a probability space,
(X,) be a sequence of random variables, X be a random
variable such that X,, == X and f : R — R be continuous
function. Then, f(X,) 3 f(X).

Let (92,.A,P) be a probability space,
(X,) be a sequence of random variables and X be a ran-

dom variable. Suppose that X,, — X. Then, there exists
a subsequence (X, ) of (X,,) such that X,,, *% X.

Let (2,.A,P) be a probability space,
(X,,) be a sequence of random variables and X be a ran-
dom variable. Suppose that Ve > 0 we have:

> P(X, - X|>¢e) <o

n=1
Then, X,, =% X.

Let © be a set and (A4,) C Q be a se-
quence of subsets. We define the limit superior of (A,)
as:
o oo
limsup A, := A
ey 'rDl kL:Jn ’

That is:

w € limsup A, <= Vn >1 3k > n such that w € A,

n—oo

We can express that as:

limsup A, = {w € Q: w € A, infinitely often}
n—oo
Let © be a set and (4,) C Q be a se-
quence of subsets. We define the limit inferior of (A,)
as: o w
llnrggf A, = Ql ko Ay

That is:

w € liminf A,, <= 3n > 1 such that Vk > n, w € Ay

n—oo

We can express that as:

liminf A, = {w € Q:w € A, eventually}

n—o

Let Q be a set and (4,) C Q be a
sequence of subsets. Then:

1. liminf A,, C limsup A,

n—o0 n—00

2 ( )

Let Q be a set and (4,) C Q be a se-
quence of subsets. We say that (A,) has limit if:

= liminf A4,,¢
n— o0

lim sup A,
n—oo

liminf A,, = limsup A,
n—00 n—00

In that case, A := limsup A, is called the limit of the
sequence. e

(First Borel-Cantelli lemma). Let
(Q, A,P) be a probability space and (A,) C A be a se-
quence of events such that:

i P(A,) < oo
n=1

)-o.

Let B, := Ujs, Ax and note that B,41 C B,.
Thus, using the definition of limsup and
we have that
“(

)

because it is the tail of a convergent sequence.

limsup A,
n— oo

Then, P <

limsup A,
n—oo

= lim P(B,)

n—oo

< nll)rrolo Z P(A,) =0

k>n

(Second Borel-Cantelli lemma). Let
(Q, A,P) be a probability space and (A,) C A be a se-
quence of independent events such that:

> P(4,) =
n=1
Then, P (lim sup An> =1.
n—oo

We will prove that P ([lim sup A,

] ) = 0. From
n—o0
,if B, := ﬂan A we have:
1
Now, VN > n we have P(B,) <P (ﬂkN:n Anc). Using the

} ) = lim P(B,)
independence and the inequality 1 + x < e”, we get:

n—oo

limsup A,
n—oo

N
P(B) < [[(1-P(4,) e 2

k=n

N

N—oo
k=n ——p

0
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Convergence in mean

Let (2, A4,P) be a probability space,
p > 1, (X,,) be a sequence of random variables such that
E(|X,") < co and X be a random variable such that
E(X|") < co. We say that (X,,) converges in the p-th

mean to X, and we denote it by X, L X, if
lim E(|X, - X[")=0
n—roo
Let (2,.A,P) be a probability space,
> 1, (X,) be a sequence of random variables such that

X,|") < oo and X be a random variable such that
X1|?) < co. Then:

x, Yx — x, B x

(Dominated convergence theorem)
Let (2,.A,P) be a probability space, p > 1, X be a ran-
dom variable and (X,,) be a sequence of random variables
such that X, o X or X, 2% X. Suppose that there
exists a random variable Y such that |X,| <Y Vn > 1

and E(|Y]?) < co. Then, X, ~» X.

Let (Q,.A,P) be a probability space and
p > 1. Define the set LP of all random variables of
(2, A,P) such that E(|X|") < co. Then, LP is a vector
space. Moreover, the relation ~ defined in £? as

X~Y < X2Y VX, Yerr

is an equivalence relation. The quotient set £P/ ~ is de-
noted by LP

Let (Q,.A,P) be a probability space
and p > 1. We define the function:

I-l,:L» — R

X — E(|X?)
Then, (L?, || -|,) is a normed vector space. Moreover, the
norm || - [|, induces a distance d,, defined as:

d,(X,Y):=||X - Y|, VX,Y €L

Let (92,.A,P) be a probability space,
p > 1, (X,,) C L? be a sequence of random variables and
X € LP. Then:

X, 2 X = lim dy(X,, X)=0

n—oo
Therefore, the convergence in p-th mean is metrizable.

Let (2, A,P) be a probability space,
p > 1, (X,,) C L? be a sequence of random variables and
X € LP. We say that (X,,) satisfies the Cauchy condition
in p-th mean (or is Cauchy in p-th mean) if:

lim E(X, - X)) =0

n,m-—oo

25If X € LP, we will use the same notation for its equivalence class.

26That is, Xn i> X <= Vt € R such that P(X =t) = 0 we have

Let (92,.A,P) be a probability space,
1, (X,) C L? be a sequence of random variables and

=1,
€ LP. Then:

p
X
X, 2 X = (X,) is Cauchy in p-th mean

Thus, L? is a Banach space and L? is a Hilbert space.
Let (2, A,P) be a probability space,
p>1, X,V € LP and (X,),(Y,,) C L? be sequences of

random variables such that X, L—p> X and Y, L—p> Y.
Then: )
X, 4+Y, 5 X+y

Let (2, A,P) be a probability space,
X,Y € L? and (X,,),(Y,) C L? be sequences of random

2 2
variables such that X, L% X and Y, L% Y. Then:

Ll
XY, — XY

Let (92,.A,P) be a probability space,
p>1, X € LP and (X,,) C LP be a sequence of random

variables such that X, L% X. Then:
L dim X, = X1,
2. If 1 <r < p, then:

X, 2 x — x, L x

3. If p=1, then:

lim E(X,) =E(X)

n—o0

Convergence in distribution

Let (©,A,P) be a probability space,
(X,) be a sequence of random variables and X be a ran-
dom variable. We say that (X,,) converges in distribution

to X, and we denote it by X, —% X, if VB € B(R) such
that P(X € 9 B) = 0 we have:

lim P(X, € B)=P(X € B)

n—oo

Let ACRbeasetand f: A— R be a
function. We denote by C(f) the set of points where f is
continuous.

Let (Q,.A,P) be a probability space,
(X,) be a sequence of random variables with cdfs Fx,
Vn € N and X be a random variable be a random variable
with cdf Fx. Then:

X, -5 X < lim Fx, (t)=Fx(t) Vte C(Fx)

n—00
Let (Q,.A,P) be a probability space,
(X)) be a sequence of random variables and X, Y be ran-
dom variables such that X,, -% X and X,, - Y. Then,
d
X=Y.

lim P(X, <t) =P(X < ¢).

n—oo
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(Skorokhod’s representation theo-
rem). Let (Q, 4, P) be a probability space, (X,,) be a
sequence of random variables and X be a random variable

be such that X, 4 X, Then, there exists a probabil-
ity space (@', A, P’), and random variables (X ) and X
defined on Q' such that:

1L X, L X ¥n>1
2. X L x'
3. X 25 X!
Let (2, A, P) be a probability space, (X,)

be a sequence of random variables and X be a random vari-

able. Then, X, 4 X if and only if for any continuous
and bounded function f: R — R we have:

Jim E(f(Xn)) = E(f(X))

Let (2, A,P) be a probability space, (X,)
be a sequence of random variables and X be a random
variable be such that both (X,,) and X take values in N.

Then, X, -5 X if and only if V& € N, we have:
lim P(X, = k) =P(X = k)

n—oo

Let (2,.A,P) be a probability space,
(X,,) be a sequence of random variables, X be a random
variable and a € R. Then:

L X, 5 x — X, 4% x

2. X, i) a = X, i) a
Let (92,.A,P) be a probability space,
(X,) be a sequence of random variables, X be a random
variable such that X, 45 X and f : R — R be a contin-
uous function. Then, f(X,) <4 f(X).
Let (2, A,P) be a probability space,
(X,) be a sequence of random variables and X be a ran-

dom variable. Then:

1. Xn—l—ai)X—&—a

2. aX, i) aX

(Slutsky’s theorem). Let (Q,.A4,P) be
a probability space, (X,), (Y,) be sequences of random
variables and X be a random variable and a € R such
that X, 4 X and Y., 9, 4. Then:

L X,+Y, L X+ta

2. XY, L ax

3. % N % provided that a # 0.

6.

Laws of large numbers

Let (£2, A, P) be a probability space and
(X,) be a sequence of random variables. We define the
sequence of partial sums (S,,) as:

19

Weak laws

(Weak law of large numbers). Let
(Q, A, P) be a probability space and (X,,) be a sequence
of i.i.d. random variables with finite 2nd moment. Then:

Sn

PUR(X)) and 2n ELE(x))
n

n
(Weak law of large numbers). Let
(Q, A,P) be a probability space and (X,,) be a sequence
of pairwise uncorrelated random variables with finite 2nd
moment. Suppose that:

n

1 1 <
nh_)rr;o - ;E(Xl) = p < oo and nh_)rr;o o ;Var(Xi) =0
Then
S’I’L P Sn L?
— —pu and — —pu
n n

Strong laws

(Kolmogorov’s strong law of large
numbers). Let (Q2, A, P) be a probability space and (X,,)
be a sequence of i.i.d. random variables.

1. fE(X;) < oo, then:

% 25 B(x0)
n

2. If E(X;) = oo, then:

ISn| a.s.

limsup — =" 400

n—oo

(Strong law of large numbers). Let
(Q, A,P) be a probability space and (X,,) be a sequence
of i.i.d. random variables such that E(X;*) < co. Then:

% 25 B (xy)
n

Let (2, A4,P) be a probability space,
A e A. Let (X,,) be a sequence of i.i.d. random variables
such that X, ~ Ber(P(A4)) ¥n € N. Then:

Sn as, P(A)

n

Let z € [0,1) and b € Nso. Sup-
pose the expression of z in base b is x, = 0.a1aza3 - -.
Let Ny (k,n) denote the number of times the digit k €
{0,1,...,b— 1} appears in the decimal expansion of z; in
the first n digits. We say that x is simply normal if there
exists b € N>5 such that

. Nl-b(k’,n) 1
lim ——————~ == Vke{0,1,...;b6—1
A T TRe {0l b el
We say that x is normal if
Ny p(k 1
hmM—* VkE{O,l,...,b—l},Vb€N>2
n—00 n b =

(Borel’s theorem). All the numbers in
[0,1), except for a null set, are normal.



7. | Central limit theorem

Characteristic function

Let (2, A,P) be a probability space. A
complex random wvariable is a function Z : 0 — C such
that Re(Z) and Im(Z) are real random variables. There-
fore, Z may be written as Z = X +1iY, where X and Y
are real random variables.

Let (2, 4,P) be a probability space
and Z = X +1Y be a complex random variable. Then

1. E(Z) = E(X) +iE(Y)
2. E(2) =E(2)
3. |E(2)| <E(|Z])

(Characteristic function). Let
(Q, A,P) be a probability space and X be a real random
variable. The characteristic function of X is the function
px defined as:

<,0le—> C
t — E(elX)

Let (Q, A,P) be a probability space
and X be a discrete random variable with support Sx.
Then:

px(t)= Y "P(X =)

TESx

Let (Q,.A,P) be a probability space
and X be an absolutely continuous random variable with
density fx. Then:

+oo

/ e fx () da

—0o0

px(t) =

Let (Q,.A,P) be a probability space
and X be a random variable. Then:

L oox(0)=1

2. lox(t)| <1VteR

3. ox(t) = px(—t) Vt € R

4. If Y = aX 4+ b for some a,b € R, then:

oy (t) =eox(at) VteR

5. @x is uniformly continuous.

Let (Q,.A,P) be a probability space and
Xi,...,X,, be independent random variables. Let Y :=
>, Xi. Then:

ey(t)=[[ex.(t) VteRr
i=1

Let (€2, A,P) be a probability space and
X, Y be random variables. Then:

XLY — ox(t) = pv(t)

Let (92, A, P) be a probability space, (X,)
be a sequence of random variables and X be a random
variable. Then:

X, 5 X « lim px, (t) =px(t) HeR
n— oo

Let (Q,A,P) be a probability space
and X be random variables with finite n-th moment for
some n € N. Then, there exists the derivative of order n
of px and it satisfies:

ex™M(t) =1i"E (X"e"X) VteR

In particular, @ x (™ (0) = i"E (X").

Central limit theorem

(Lévy-Lindeberg central limit theo-
rem). Let (2, 4,P) be a probability space and (X,,) be
a sequence of i.i.d. random variables with finite 2nd mo-
ments. Let = E(X;) and 02 := Var(X;). Then:

Sn—np d
- Z
ov/n -
where Z ~ N(0,1).

(Lyapunov central limit theorem)
Let (Q,A,P) be a probability space and (X,) be a se-
quence of independent random variables each with finite
expectation u; = E(X;) and variance ;2 := Var(X;)
Vi=1,...,n. Then:

Yim(Xi—p) a,
D1 0’

where Z ~ N(0,1).

Let (2,.A,P) be a probability space and
(X,) be a sequence of i.i.d. random variables with finite
2nd moments. Let p := E(X;) and 02 := Var(X;). Then,
Vs,t € R such that s < t we have

Sn — np

lim P —F— <t)=Fz(t) - F
Jim P (s < 222 <t) = R0 - P
where Z ~ N(0,1).

Let (Q, A, P) and X4, ..., X, be random

variables. We define the sample mean of X,..., X, as:
- 1 1<
X, = ESn = ZZ;XZ
If the value of n is fixed, we denoted X, by X.
Let (Q,A,P) and Xy,..., X, beiid.

random variables. Then:

E(X,)=E(X;) and Var(X,)= %Var(Xl)

2"Here we have only exposed two properties of the expectation of a complex random variable but in general all the properties of the

expectation that we’ve already seen in

can be extended conveniently to complex random variables.



X1,.. .,

and o

Let (2, A,P) be a probability space and
X,, be ii.d. random variables.
2 := Var(X;). Then:

(De Moivre-Laplace theorem). Let
(©, A,P) be a probability space and Xy, ...,

Let p := E(X3)

d o?
X, 2N (,u, ) for n large enough
n

(Continuity correction). The conti-
nuity correction is an adjustment that is made when a
discrete distribution is approximated by a continuous dis-
tribution. For example if X ~ B(n,p) is a random variable
and np(1l — p) is large enough, then P(X < k) is well ap-
proximated by P(Z < k + 1), where Z ~ N(0,1) which is

X,, be ii.d.

random variables such that X,, ~ Ber(p) Vn € N. Then:

B(n,p)

even better than the approximation given by P(Z < k).

&N (np,np(1 —p))  for n large enough
X Moment-generating function | Characteristic function
ceR etc eitc
U({mla R 7xn}) % Z?:l etml % Z?:l eitzi
B(n,p) (pe! +1—p)" (et +1—p)"
Pois(\) e 1) A =1)
L it
pe pe
G s _ e
eo(p) 1 — (rl ) e
1 — 1—p \"
NB(r,p) — p fort < —Inp (1—pelt>
et et . eitb_eita .
Ula,b) Wy Tt#0 S HEFO0
ift=0 1 ift=0
A
Exp(A for t < \
xp(A) P or22< )\—iQt
N(P’a 0-2) elltJrU Zt e' 5
Gamma(c, () (Bﬁ—t) fort < f <5 f it)
C(zo,7) Does not exist eltzo—lt|

Table 2:

281n practice, the approximation is good enough for np(1 — p) > 18.
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Moment-generating functions and characteristic functions of common distributions.
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