
Probability

1. | Probabilistic models
σ-algebras

Definition 1 (Algebra). Let Ω be a set and A ⊂ P(Ω).
We say that A is an algebra over Ω if:

1. Ω ∈ A.

2. If A ∈ A, then Ac ∈ A.

3. If A,B ∈ A, then A ∪B ∈ A.

Proposition 2. Let A be an algebra over a set Ω. Then:

1. ∅ ∈ A.

2. If A,B ∈ A, then A ∩B ∈ A.

3. For all n ∈ N, if A1, . . . , An ∈ A, then:
n⋃

i=1
Ai ∈ A and

n⋂
i=1

Ai ∈ A

Definition 3 (σ-algebra). Let Ω be a set and A ⊂ P(Ω).
We say that A is a σ-algebra over Ω if:

1. Ω ∈ A.

2. If A ∈ A, then Ac ∈ A.

3. If A1, A2, . . . ∈ A, then:
∞⋃

n=1
An ∈ A

Proposition 4. Let Ω be a set, I be an index set and
{Ai : i ∈ I} be a collection of σ-algebras. Then,

⋂
i∈I Ai

is a σ-algebra.

Proposition 5. Let A be an σ-algebra over a set Ω.
Then:

1. ∅ ∈ A.

2. If A1, A2, . . . ∈ A, then:
∞⋂

n=1
An ∈ A

3. For all n ∈ N, if A1, . . . , An ∈ A, then:
n⋃

i=1
Ai ∈ A and

n⋂
i=1

Ai ∈ A

Definition 6. Let Ω be a set. The trivial σ-algebra is the
smallest σ-algebra over Ω, that is, {∅,Ω}.

Definition 7. Let Ω be a set. The discrete σ-algebra is
the largest σ-algebra over Ω, that is, P(Ω).

Definition 8. Let Ω be a set and A ⊆ Ω be a subset. The
σ-algebra generated by A, σ(A), is the smallest σ-algebra
over Ω containing A, that is:

σ(A) = {∅,Ω, A,Ac}

Definition 9. Let Ω be a set and C ⊆ P(Ω) be a sub-
set. The σ-algebra generated by C, σ(C), is the smallest
σ-algebra over Ω containing all the elements of C. More-
over, if {An : C ⊆ An, 1 ≤ n ≤ N}, N ∈ N ∪ {∞}, are all
the σ-algebras over Ω containing C, then:

σ(C) =
N⋂

n=1
An

Theorem 10. Let Ω be a set and C,B ⊆ P(Ω) be subsets.
Suppose:

1. B is a σ-algebra.

2. C ⊆ B.

Then, σ(C) ⊆ B.

Definition 11. Let (Ω, T ) be a topological space. The
Borel σ-algebra over (Ω, T ), B((Ω, T )), is the σ-algebra
generated by the open sets of (Ω, T ):

B((Ω, T )) := σ(T )

In particular, the Borel σ-algebra over R (together with
the usual topology) is:

B(R) := σ({U ⊆ R : U is open})

Proposition 12. Let (Ω, T ) be a topological space.
Then:

B((Ω, T )) = σ({C ⊆ Ω : C is closed})

Proposition 13. Consider the Borel σ-algebra over R,
B(R). Then:

1. B(R) = σ({(a, b) ⊂ R : a, b ∈ R, a < b})

2. B(R) = σ({[a, b] ⊂ R : a, b ∈ R, a < b})

3. B(R) = σ({[a, b) ⊂ R : a, b ∈ R, a < b})

4. B(R) = σ({(a, b] ⊂ R : a, b ∈ R, a < b})

5. B(R) = σ({(a,∞) ⊂ R : a ∈ R})

6. B(R) = σ({(−∞, a) ⊂ R : a ∈ R})

7. B(R) = σ({[a,∞) ⊂ R : a ∈ R})

8. B(R) = σ({(−∞, a] ⊂ R : a ∈ R})

1



Probability

Definition 14 (Sample space). The sample space Ω of
an experiment is the set of all possible outcomes of that
experiment.

Definition 15 (Kolmogorov axioms). Let Ω be a set
and A be a σ-algebra over Ω. A probability is any function

P : A −→ [0,∞)

satisfying the following properties:

• P(Ω) = 1.

• σ-additivity: If {An : n ≥ 1} ⊂ A are pairwise dis-
joint, then:

P

( ∞⊔
n=1

An

)
=

∞∑
n=1

P(An)

Definition 16. Let Ω be a set and A be a σ-algebra over
Ω. An event A ∈ A is a subset of Ω for which we want to
calculate the probability.

Definition 17. A probability space is a triplet (Ω,A,P)
where Ω is any set, A is a σ-algebra over Ω and P is a
probability over A.

Proposition 18. Let (Ω,A,P) be a probability space and
A,B ∈ A. Then, we have the following properties:

1. P(∅) = 0.

2. If Ai ∈ A, i = 1, . . . , n, is a finite set of pairwise
disjoint events, then:

P

(
n⊔

i=1
Ai

)
=

n∑
i=1

P(Ai)

3. P(A \B) = P(A) − P(A ∩B).

4. If B ⊂ A, then P(A \B) = P(A) − P(B).

5. If B ⊂ A, then P(B) ≤ P(A).

6. P(A) ≤ 1.

7. P(Ac) = 1 − P(A).

8. P(A ∪B) = P(A) + P(B) − P(A ∩B).

9. If A1, . . . , An ∈ A, then:

P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P(Ai)−

−
n∑

i,j=1
i<j

P(Ai ∩Aj) +
n∑

i,j,k=1
i<j<k

P(Ai ∩Aj ∩Ak) − · · · +

+ (−1)n+1P(A1 ∩ · · · ∩An)

10. If A1, . . . , An ∈ A, then:

P

(
n⋂

i=1
Ai

)
=

n∑
i=1

P(Ai)−

−
n∑

i,j=1
i<j

P(Ai ∪Aj) +
n∑

i,j,k=1
i<j<k

P(Ai ∪Aj ∩Ak) − · · · +

+ (−1)n+1P(A1 ∪ · · · ∪An)

11. Finite subadditivity: If A1, . . . , An ∈ A, then:

P

(
n⋃

i=1
Ai

)
≤

n∑
i=1

P(Ai)

Proposition 19. Let (Ω,A,P) be a probability space
such that Ω is finite and all its elements are equiproba-
ble. Let A ∈ A be an event. Then:

P(A) = |A|
|Ω|

Theorem 20 (Continuity from below). Let
(Ω,A,P) be a probability space and (An) ⊂ A be an in-
creasing sequence of events, that is:

A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · ·

Let A :=
⋃∞

n=1 An. Then:

P(A) = lim
n→∞

P(An)

Corollary 21 (Continuity from above). Let (Ω,A,P)
be a probability space and (An) ⊂ A be a decreasing se-
quence of events, that is:

A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · ·

Let A :=
⋂∞

n=1 An. Then:

P(A) = lim
n→∞

P(An)

Proposition 22 (Countable subadditivity). Let
(Ω,A,P) be a probability space and (An) ⊂ A be a se-
quence of events. Then:

P

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P(An)

Corollary 23. Let (Ω,A,P) be a probability space and
(An) ⊂ A be a sequence of events with probability 0.
Then:

P

( ∞⋃
n=1

An

)
= 0

Corollary 24. Let (Ω,A,P) be a probability space and
(An) ⊂ A be a sequence of events with probability 1.
Then:

P

( ∞⋂
n=1

An

)
= 1
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Conditional probability
Definition 25. Let (Ω,A,P) be a probability space and
A ∈ A be an event such that P(A) > 0. The conditional
probability that B ∈ A occurs given that A occurs is de-
fined as:

P(B | A) := P(A ∩B)
P(A)

Proposition 26. Let (Ω,A,P) be a probability space and
A ∈ A be an event such that P(A) > 0. Then, the function

P(· | A) : A −→ [0,∞]
B 7−→ P(B | A)

is a probability.

Proposition 27 (Compound probability formula).
Let (Ω,A,P) be a probability space and A ∈ A be an
event such that P(A) > 0. Then, ∀B ∈ A:

P(A ∩B) = P(B | A)P(A)

Proposition 28 (Generalized compound probabil-
ity formula). Let (Ω,A,P) be a probability space and
A1, . . . , An ∈ A, n ≥ 2, be events such that P(A1 ∩ · · · ∩
An−1) > 0. Then:

P(A1 ∩ · · · ∩An) = P(A1)P(A2 | A1)P(A3 | A2 ∩A1) · · ·
· · ·P(An | A1 ∩ · · · ∩An−1)

Definition 29. Let (Ω,A,P) be a probability space and
A = {An : 1 ≤ n ≤ N} ⊂ A, N ∈ N∪{∞}, be a collection
of events. We say that A is a partition of Ω if:

Ω =
N⊔

n=1
An

Proposition 30 (Law of total probability). Let
(Ω,A,P) be a probability space and {An : 1 ≤ n ≤ N} ⊂
A, N ∈ N∪ {∞}, be a partition of Ω such that P(An) > 0
for all 1 ≤ n ≤ N . Then, ∀A ∈ A:

P(A) =
N∑

n=1
P(An)P(A | An)

Proof.

P(A) = P(A ∩ Ω) = P

(
N⊔

n=1
(A ∩An)

)
=

=
N∑

n=1
P(A ∩An) =

N∑
n=1

P(An)P(A | An)

□

Proposition 31 (Bayes’ formula). Let (Ω,A,P) be
a probability space and {An : 1 ≤ n ≤ N} ⊂ A,
N ∈ N∪ {∞}, be a partition of Ω such that P(An) > 0 for
all 1 ≤ n ≤ N . Let A ∈ A with P(A) > 0. Then, ∀k ≤ N :

P(Ak | A) = P(Ak)P(A | Ak)∑N
n=1 P(An)P(A | An)

Independence of events

Definition 32. Let (Ω,A,P) be a probability space. We
say that A,B ∈ A are independent events if

P(A ∩B) = P(A)P(B)

Proposition 33. Let (Ω,A,P) be a probability space.
Then:

1. ∅ and Ω are independent of any event.

2. If A ∈ A satisfies either P(A) = 0 or P(A) = 1, then
A is independent of any other event B ∈ A.

3. If an event A ∈ A is independent of itself, then either
P(A) = 0 or P(A) = 1.

Proposition 34. Let (Ω,A,P) be a probability space and
A,B ∈ A be two events. The following statements are
equivalent:

• A and B are independent.

• Ac and B are independent.

• A and Bc are independent.

• Ac and Bc are independent.

Definition 35. Let (Ω,A,P) be a probability space and
n ∈ N. We say that A1, . . . , An ∈ A are independent
events if for any i1, . . . , ik ∈ {1, . . . , n}, we have:

P

(
k⋂

r=1
Air

)
=

k∏
r=1

P(Air
)

Definition 36. Let (Ω,A,P) be a probability space and
I be an arbitrary index set. We say that {Ai : i ∈
I} ⊂ A are independent events if for any finite subset
{Ai1 , . . . , Aik

: ir ∈ I for r = 1, . . . , k} of different events,
we have:

P

(
k⋂

r=1
Air

)
=

k∏
r=1

P(Air
)

2. | Lebesgue integration
Definition 37. Let A ⊂ Rn be a subset. Then, A is a null
set (or a set of zero-content) if ∀ε > 0 there exists a collec-
tion {Rk ⊂ Rn : Rk is a rectangle ∀k ∈ N} of rectangles
such that:

A ⊂
∞⋃

k=1
Rk and

∞∑
k=1

vol(Rk) < ε

Definition 38. Let E be a set and E be a σ-algebra over
E. We say that the function:

µ : E −→ [0,∞]
A 7−→ µ(A)

is a measure if:

1. There exists A ∈ E such that µ(A) < ∞.
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2. If {An ∈ E : n ∈ N} is a collection of pairwise dis-
joint sets, then:

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

The triplet (E, E , µ) is called a measure space.

Definition 39. The σ-algebra of all Lebesgue measurable
sets in Rn, Ln ⊂ P(Rn), is defined as:

Ln := {A ⊆ Rn : A = B ∪N}

where B ∈ B(Rn) and N is a null set.

Theorem 40. We can extend the concept of volume on
rectangles in Rn to all the elements in Ln. This extension
is called Lebesgue measure (or simply volume) in Rn.

Definition 41. Let (E, E , µ) be a measure space and
f : E → R be a function. We say that f is measurable if
∀B ∈ B(R) we have f−1(B) ∈ E . The Lebesgue integral of
f over E with respect to µ is denoted by:

ˆ

E

fdµ

Proposition 42. Let (E, E , µ) be a measure space and
f : E → R be a measurable function such that f(x) ≥ 0
∀x ∈ E. Then, we can always define the integral

ˆ

E

fdµ

taking into account that may be +∞.

Definition 43. Let (E, E , µ) be a measurable space and
f : E → R be a measurable function. We say that f is
Lebesgue integrable with respect to µ if:

ˆ

E

|f |dµ < ∞

Moreover if G ∈ E , we define:
ˆ

G

fdµ :=
ˆ

E

f1Gdµ

Proposition 44. Consider the measurable space
(Rn,Ln,mn), where mn is the volume in Rn. Let
f : Rn → R be a Riemann integrable function satisfy-
ing: ˆ

Rn

|f(x1, . . . , xn)| dx1 · · · dxn < ∞

Then, f is Lebesgue integrable and:
ˆ

Rn

|f(x1, . . . , xn)| dx1 · · · dxn =
ˆ

Rn

f dmn

Theorem 45 (Tonelli’s theorem). Let f : R2 → R be
a non-negative Lebesgue measurable function. Then:

ˆ

R2

f(x, y) dxdy =
+∞ˆ

−∞

 +∞ˆ

−∞

f(x, y) dx

 dy

=
+∞ˆ

−∞

 +∞ˆ

−∞

f(x, y) dy

 dx

Theorem 46 (Fubini’s theorem). Let f : R2 → R be
a Lebesgue measurable function such that at least one of
the following integrals is finite.

+∞ˆ

−∞

 +∞ˆ

−∞

|f(x, y)| dx

dy

+∞ˆ

−∞

 +∞ˆ

−∞

|f(x, y)| dy

dx

Then, f is Lebesgue integrable and:

ˆ

R2

f(x, y) dxdy =
+∞ˆ

−∞

 +∞ˆ

−∞

f(x, y) dx

 dy

=
+∞ˆ

−∞

 +∞ˆ

−∞

f(x, y) dy

 dx

3. | Random variables and random vec-
tors

Random variables
Definition 47. Let (Ω,A,P) be a probability space. A
real random variable (or simply random variable) X is a
function X : Ω → R satisfying for all B ∈ B(R):

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A

Proposition 48. Let (Ω,A,P) be a probability space, C
be a collection of subsets of R such that B(R) = σ(C)
and let X : Ω → R be a function. Then, X is a random
variable if and only if X−1(B) ∈ A, ∀B ∈ C.

Definition 49. Let (Ω,A,P) be a probability space, a, b ∈
R and B ∈ B(R). We define the following set:

{X ∈ B} := {ω ∈ Ω : X(ω) ∈ B} = X−1(B)

In particular:

{X ≤ a} := {ω ∈ Ω : X(ω) ≤ a} = X−1((−∞, a])
{X > b} := {ω ∈ Ω : X(ω) > b} = X−1((b,∞))

{a < X ≤ b} := {ω ∈ Ω : a < X(ω) ≤ b} = X−1([b, a))
{X = a} := {ω ∈ Ω : X(ω) = a} = X−1({a})

Proposition 50. Let (Ω,A,P) be a probability space, X,
Y be random variables and a ∈ R. Then:

1. X + Y is also a random variable.
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2. aX is also a random variable.

3. XY is also a random variable.

4. 1
X is also a random variable if X(ω) ̸= 0 ∀ω ∈ Ω.

Proposition 51. Let (Ω,A,P) be a probability space and
(Xn) be a sequence of random variables. Then, the fol-
lowing quantities are also random variables provided that
they are finite for all ω ∈ Ω:

1. supXn

2. inf Xn

3. lim sup
n→∞

Xn

4. lim inf
n→∞

Xn

Corollary 52. Let (Ω,A,P) be a probability space and
(Xn) be a sequence of random variables such that ∀ω ∈ Ω
the following limit exists and it is finite:

X(ω) := lim
n→∞

Xn(ω)

Then, X is a random variable.

Distribution of a random variable

Definition 53. Let (Ω,A,P) be a probability space. The
distribution of a random variable X is the function:

PX : B(R) −→ [0, 1]
B 7−→ P({X ∈ B})1

Proposition 54. Let (Ω,A,P) be a probability space.
Then, for any random variable X, the function PX is a
probability over B(R). Hence, (R,B(R),PX) is a proba-
bility space.

Definition 55. Let (Ω,A,P) be a probability space. We
say that two random variables X, Y are equal in distribu-
tion (denoted by X d= Y ) if they satisfy:

PX(B) = PY (B) ∀B ∈ B(R)

That is, X d= Y if they have the same distribution func-
tions.

Definition 56. Let (Ω,A,P) be a probability space. We
say that two random variablesX, Y are equal almost surely
(denoted by X a.s.= Y ) if P(X = Y ) = 1, or equivalently, if
P(X ̸= Y ) = 0.

Proposition 57. Let (Ω,A,P) be a probability space and
X, Y be two random variables such that X a.s.= Y . Then,
X

d= Y .

Definition 58 (Cumulative distribution function).
Let (Ω,A,P) be a probability space and X be a random
variable. We define the cumulative distribution function
(cdf) as:

FX : R −→ [0, 1]
x 7−→ P(X ≤ x) = PX((−∞, x])

Theorem 59. Let (Ω,A,P) be a probability space, X be
a random variable and FX be its cdf. Then:

1. If x < y, then FX(x) ≤ FX(y).

2. FX is càdlàg2.

3. lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1.

Reciprocally, if there is a function F satisfying these prop-
erties3, then there exists a random variable X on (Ω,A,P)
such that F is its cdf.
Proposition 60. Let (Ω,A,P) be a probability space, X
be a random variable and FX be its cdf. Then:

1. FX has at most a countable number of discontinu-
ities.

2. ∀x, y ∈ R such that s < t, we have:
P(x < X ≤ y) = F (y) − F (x)
P(x < X < t) = lim

t→y−
FX(y) − F (x)

P(x ≤ X ≤ y) = F (y) − lim
t→x−

FX(x)

P(x ≤ X < y) = lim
t→y−

FX(y) − lim
t→x−

F (x)

3. ∀x ∈ R, P(X < x) = lim
t→x−

FX(t).

4. For all x ∈ R:
P(X = x) = FX(x) − lim

t→x−
FX(t)

Hence, FX is discontinuous at x ⇐⇒ P(X = x) >
0.

Theorem 61. Let (Ω,A,P) be a probability space. Then,
the cdf completely determine a distribution of a random
variable X. That is, if X and Y are random variables such
that FX(t) = FY (t) ∀t ∈ R, then X

d= Y .

Discrete random variables
Definition 62. Let (Ω,A,P) be a probability space. We
say that a random variable X is discrete if there exists a
finite or countable set S ⊂ R such that P(X ∈ S) = 14.
In that case, S is called the support of X5.
Definition 63 (Probability mass function). Let
(Ω,A,P) be a probability space and X be a discrete ran-
dom variable with support points SX = {xi : i ∈ I}, where
I ⊆ N. The probability mass function (pmf) of the random
variable X is:

pX : SX −→ [0, 1]
xi 7−→ P(X = xi)

1From now on, in order to simplify the notation, we will write P(X ∈ B) := P({X ∈ B}).
2From French “continue à droite, limite à gauche” (right continuous with left limits).
3Such kind of functions are called distribution functions.
4By agreement, we will suppose that S only contains points x such that P(X = x) > 0.
5In general we will denote S by SX .
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Proposition 64. Let (Ω,A,P) be a probability space,
X be a discrete random variable with support points
SX = {xi : i ∈ I} and pX be its pmf. Then:

1. pX(xi) > 0 ∀i ∈ I.

2.
∑
i∈I

pX(xi) = 1.

3. ∀B ∈ B(R), we have:

P(X ∈ B) =
∑

i∈I:xi∈B

pX(xi)

Corollary 65. Let (Ω,A,P) be a probability space, X be
a discrete random variable with support points SX = {xi :
i ∈ I}, FX be its cdf and pX be its pmf. Then ∀x ∈ R we
have:

FX(x) = P(X ≤ x) =
∑

i∈I:xi≤x

pX(xi)

Definition 66 (Degenerated distribution). Let
(Ω,A,P) be a probability space. The degenerated distri-
bution consists in taking a constant random variable X so
that

P(X = a) = 1

for some a ∈ R. Here we have SX = {a}.

Definition 67 (Bernoulli distribution). Let
(Ω,A,P) be a probability space. The Bernoulli distribu-
tion is the one whose random variable X can only take
two values (1 and 0)6 with probabilities p and q := 1 − p:

P(X = 0) = p P(X = 1) = q

Here we have SX = {0, 1}. If X follows a Bernoulli distri-
bution of parameter p, we will write X ∼ Ber(p).

Definition 68 (Discrete uniform distribution). Let
(Ω,A,P) be a probability space. The discrete uniform dis-
tribution is the one whose random variable X takes values
on SX = {x1, . . . , xn} each of these with probability 1/n:

P(X = xi) = 1
n

∀i = 1, . . . , n

If X follows a discrete uniform distribution, we will
write X ∼ U({x1, . . . , xn}). The probability space
(S,P(S),PX) is an equiprobable space.

Definition 69 (Binomial distribution). Let
(Ω,A,P) be a probability space and A ∈ A. Suppose
P(A) = p. The binomial distribution is the one whose
random variable X is the number of successes of A in a
sequence of n repetitions. Thus, SX = {0, 1, . . . , n} and:

P(X = k) =
(
n

k

)
pk(1 − p)n−k ∀k = 0, 1, . . . , n

If X follows a binomial distribution of parameters n and
p, we will write X ∼ B(n, p)7.

Definition 70 (Poisson distribution). Let (Ω,A,P) be
a probability space and λ ∈ R>0. The Poisson distribu-
tion of parameter λ is the one whose random variable X
has support SX = N ∪ {0} and:

P(X = k) = e−λλ
k

k! ∀k ∈ N ∪ {0}

If X follows a Poisson distribution of parameter λ, we will
write X ∼ Pois(λ).
Theorem 71. Let (Ω,A,P) be a probability space. Let
(pn) ⊂ (0, 1) be a sequence such that:

lim
n→∞

npn = λ > 0

For each n ≥ 1, consider Xn ∼ B(n, pn). Then, ∀k ∈
N ∪ {0} we have:

lim
n→∞

P(Xn = k) = lim
n→∞

(
n

k

)
pn

k(1 − pn)n−k = e−λλ
k

k!
Corollary 72. Let (Ω,A,P) be a probability space and
suppose n ∈ N and p ∈ (0, 1) are such that n ≫ 1 and
p ≪ 1. Then, B(n, p) ≃ Pois(np)8.
Definition 73 (Geometric distribution). Let
(Ω,A,P) be a probability space and A ∈ A. Suppose
P(A) = p. The geometric distribution is the one whose
random variable X is the number of trials needed to get
one success. Thus, SX = N and:

P(X = k) = (1 − p)k−1
p ∀k ∈ N

If X follows a geometric distribution of parameter p, we
will write X ∼ Geo(p).
Definition 74 (Discrete memorylessness property).
Let (Ω,A,P) be a probability space and X be a dis-
crete random variable whose support is N and such that
P(X > m) > 0 ∀m ∈ N. The distribution of X is memo-
ryless if ∀m,n ∈ N, we have:

P(X > m+ n | X > m) = P(X > n)
Proposition 75. Let (Ω,A,P) be a probability space,
X be a discrete random variable and p ∈ (0, 1). Then,
X ∼ Geo(p) if and only if the distribution of X is memo-
ryless.
Definition 76 (Hypergeometric distribution). Let
(Ω,A,P) be a probability space. Suppose we have a pop-
ulation of size N of whom K have a special feature (suc-
cess). Let X be the random variable that counts the num-
ber of successes that we have obtained in n draws (without
replacement). Thus, the support of X is:

SX = {max{n+K −N, 0}, . . . ,min{n,K}}

And the pmf is given by:

P(X = k) =
(

K
k

)(
N−K
n−k

)(
N
n

)
This type of distribution is called hypergeometric distribu-
tion and it is denoted by X ∼ HG(N, p, n), where p = K

N
is the proportion of successes in the population.

6Also called success/true or failure/false, respectively.
7Note that, a Bernoulli distribution of parameter p may be considered as a Binomial distribution of parameters n = 1 and p. Hence,

Ber(p) = B(1, p).
8In practice, the approximation is good enough for n ≥ 10 and p ≤ 0.05.
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Theorem 77. Let (Ω,A,P) be a probability space and
X ∼ HG(N, p, n) such that when N → ∞, p remains con-
stant. Then:

lim
N→∞

P(X = k) = lim
N→∞

(
K
k

)(
N−K
n−k

)(
N
n

) =
(
n

k

)
pk(1 − p)n−k

which is the pmf of a binomial distribution B(n, p).

Definition 78 (Negative binomial distribution). Let
(Ω,A,P) be a probability space and A ∈ A. Suppose
P(A) = p. The negative binomial distribution is the one
whose random variable X is the number of trials needed
to get r ≥ 1 successes. Thus, SX = {r, r + 1, . . .} and:

P(X = k) =
(
k − 1
r − 1

)
pr(1 − p)k−r ∀k ≥ r

If X follows a negative binomial distribution of parameters
r and p, we will write X ∼ NB(r, p).

Absolutely continuous random variables
Definition 79. Let (Ω,A,P) be a probability space. We
say that a random variable X is absolutely continuous if
there exists a function f : R → R satisfying:

1. f(x) ≥ 0, ∀x ∈ R.

2. f is integrable over R and:

+∞ˆ

−∞

f(x) dx = 1

3. For all a, b ∈ R ∪ {±∞} with a ≤ b, we have:

P(a ≤ X ≤ b) =
bˆ

a

f(x) dx

The function f , denoted by fX , is called probability den-
sity function (pdf) of X. In general, a function satisfying
the first two properties is called a density function.

Proposition 80. Let (Ω,A,P) be a probability space, X
be an absolutely continuous random variable and FX be
its cdf. Then:

1. P(X = a) = 0, ∀a ∈ R.

2. P(X ∈ B) =
ˆ

B

fX(x) dx , ∀B ∈ B(R).

3. FX(b) = P(X ≤ b) =
bˆ

−∞

fX(x) dx , ∀b ∈ R.

4. FX is continuous on R.

5. If a, b ∈ R are such that a < b, then:

P(a < X < b) = P(a ≤ X < b) =
= P(a < X ≤ b) = P(a ≤ X ≤ b)

Definition 81 (Continuous uniform distribution).
Let (Ω,A,P) be a probability space. We say that an abso-
lutely continuous random variable X follows a continuous
uniform distribution on (a, b) (also [a, b]), and we denoted
it by X ∼ U(a, b), if X has the pdf

fX(x) = 1
b− a

1(a,b)(x)

where 1(a,b) is the indicator function. Therefore, its cdf is:

FX(x) = x− a

b− a
1(a,b)(x) + 1[b,∞)(x)

Definition 82 (Exponential distribution). Let
(Ω,A,P) be a probability space. We say that an abso-
lutely continuous random variable X follows an exponen-
tial distribution of parameter λ > 0, and we denoted it by
X ∼ Exp(λ), if X has the pdf:

fX(x) = λe−λx1(0,∞)

Furthermore, its cdf is:

FX(x) = (1 − e−λx)1(0,∞)(x)

Definition 83 (Continuous memorylessness prop-
erty). Let (Ω,A,P) be a probability space and X be an
absolutely continuous random variable such that P(X >
s) > 0 ∀s ∈ R≥0. The distribution of X is memoryless if
∀s, t ∈ R≥0, we have:

P(X > s+ t | X > s) = P(X > t)

Proposition 84. Let (Ω,A,P) be a probability space, X
be an absolutely continuous random variable and λ ∈ R>0.
Then, X ∼ Exp(λ) if and only if the distribution of X is
memoryless.

Definition 85 (Standard normal distribution). Let
(Ω,A,P) be a probability space. We say that an absolutely
continuous random variable Z follows a standard normal
distribution, and we denoted it by Z ∼ N(0, 1), if Z has
the pdf:

fX(x) = 1√
2π

e
−x2

2

Definition 86 (Normal distribution). Let (Ω,A,P) be
a probability space, µ ∈ R and σ ∈ R>0. We say that an
absolutely continuous random variable X follows a normal
distribution, and we denoted it by X ∼ N(µ, σ2), if X has
the pdf:

fX(x) = 1√
2πσ2

e
−(x−µ)2

2σ2

µ is called the mean or expectation of X; σ2, its variance,
and σ, its standard deviation.
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Figure 1: Probability density function of a normal distri-
bution

Proposition 87. Let (Ω,A,P) be a probability space and
X ∼ N(µ, σ2) and Z ∼ N(0, 1) be absolutely continuous
random variables. Then:

µ+ σZ
d= X

Therefore, ∀x ∈ R we have:

P(X ≤ x) = P
(
Z ≤ x− µ

σ

)
In this case, Z is called the standardized form of X.

Definition 88 (Gamma distribution). Let (Ω,A,P) be
a probability space. We say that an absolutely continuous
random variable X follows a gamma distribution of param-
eters α, β ∈ R>0, and we denoted it by X ∼ Gamma(α, β),
if X has the pdf:

fX(x) = βα

Γ(α)x
α−1e−βx1(0,∞)(x)

The parameter α is called shape; β, rate, and 1/β, scale.

Definition 89. Let a, b ∈ R>0. The beta function is de-
fined as9:

B(a, b) :=
1ˆ

0

xa−1(1 − x)b−1 dx

Proposition 90. For all a, b ∈ R>0, we have:

B(a, b) = Γ(a)Γ(b)
Γ(a+ b)

Definition 91 (Beta distribution). Let (Ω,A,P) be a
probability space. We say that an absolutely continuous
random variable X follows a beta distribution of parame-
ters a, b ∈ R>0, and we denoted it by X ∼ Beta(a, b), if
X has the pdf:

fX(x) = 1
B(a, b)x

a−1(1 − x)b−11(0,1)(x)

Definition 92 (Cauchy distribution). Let (Ω,A,P) be
a probability space, µ ∈ R and σ ∈ R>0. We say that an
absolutely continuous random variable X follows a Cauchy
distribution of parameters x0 ∈ R and γ ∈ R>0, and we
denoted it by X ∼ C(x0, γ), if X has the pdf:

fX(x) = 1

πγ

[
1 +

(
x−x0

γ

)2
]

Definition 93. A mixed random variable is a random
variable whose cdf is neither piecewise-constant (a discrete
random variable) nor absolutely continuous.

Theorem 94. Let (Ω,A,P) be a probability space and X
be a random variable with cdf FX . Suppose that:

1. FX is continuous.

2. FX is differentiable at any point except for, maybe,
a finite number of points.

3. FX is continuously differentiable at any point except
for, maybe, a finite number of points.

Then:

FX(x) =
xˆ

−∞

F ′(t) dt ∀x ∈ R

That is, FX
′ is the pdf of X.

Transformations of random variables
Proposition 95. Let (Ω,A,P) be a probability space,
X be an absolutely continuous random variable with pdf
fX and U , V be open sets such that P(X ∈ U) = 1.
Let h : U → V be a diffeomorphism of class C1. Then,
Y := h(X) is also an absolutely continuous random vari-
able and:

fY (y) = fX(h−1(y))|(h−1)′(y)|1V (y)

Proposition 96. Let (Ω,A,P) be a probability space, X
be an absolutely continuous random variable with pdf fX ,
U1, . . . , Uk be pairwise disjoint open intervals such that
P(X ∈ U1 ⊔ · · · ⊔ Uk) = 1. Let h : U1 ⊔ · · · ⊔ Uk → R and
denote hi = h|Ui

. Then, if hi : Ui → Vi are diffeomor-
phisms of class C1 for i = 1, . . . , k, then Y := h(X) is also
an absolutely continuous random variable and:

fY (y) =
k∑

i=1
fX(hi

−1(y))|(hi
−1)′(y)|1Vi(y)

Random vectors
Definition 97. Let (Ω,A,P) be a probability space. A
random vector X is a function X = (X1, . . . , Xn) : Ω → Rn

satisfying for all B ∈ B(Rn):

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} ∈ A

Proposition 98. Let (Ω,A,P) be a probability space.
X = (X1, . . . , Xn) : Ω → Rn is a random vector if and
only if Xi : Ω → R is a random variable for i = 1, . . . , n.

9Beta function should not be confused with binomial distribution, although we have used the same notation.
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Definition 99. Let (Ω,A,P) be a probability space and
X = (X1, . . . , Xn) be a random vector. For all B1 × · · · ×
Bn ∈ B(Rn), we have that:

{X ∈ B1 × · · · ×Bn} = {X1 ∈ B1} ∩ · · · ∩ {Xn ∈ Bn}

We will denote:

{X1 ∈ B1, . . . , Xn ∈ Bn} := {X1 ∈ B1} ∩ · · · ∩ {Xn ∈ Bn}

Definition 100. Let (Ω,A,P) be a probability space and
X = (X1, . . . , Xn) be a random vector. Then, the distri-
bution of X is the function:

PX : B(Rn) −→ [0, 1]
B 7−→ P(X ∈ B)

Definition 101. Let (Ω,A,P) be a probability space and
X = (X1, . . . , Xn) be a random vector. We say that X is
discrete if there exists a finite or countable subset S ⊂ Rn

such that P(X ∈ S) = 110. In that case, S is called the
support of X11.

Proposition 102. Let (Ω,A,P) be a probability space
and X = (X1, . . . , Xn) be a random vector. Then, X is
discrete if and only if Xi is a discrete random variable for
i = 1, . . . , n.

Definition 103 (Joint probability mass function).
Let (Ω,A,P) be a probability space and X = (X1, . . . , Xn)
be a discrete random vector. Then, the joint probability
mass function (joint pmf) of X is:

pX : SX1 × · · · × SXn
−→ [0, 1]

(x1, . . . , xn) 7−→ P(X1 = x1, . . . , Xn = xn)

Proposition 104. Let (Ω,A,P) be a probability space
and X be a discrete random vector. Then, the joint pmf
of X determines the distribution of X.

Definition 105 (Marginal probability mass func-
tions). Let (Ω,A,P) be a probability space and X =
(X1, . . . , Xn) be a discrete random vector with support
SX = SX1 × · · · × SXn

. Then, the marginal probability
mass functions (marginal pmf) of X are:

pXi
(xi) = P(Xi = xi)

=
∑

yj∈SXj

j ̸=i

pX(y1, . . . , yi−1, xi, yi+1, . . . , yn)

for i = 1, . . . , n.

Definition 106 (Multinomial distrbution). Let
(Ω,A,P) be a probability space and A1, . . . , Ar ∈ A. Sup-
pose P(Ai) = pi for i = 1, . . . , r such that p1 + · · ·+pr = 1.
The multinomial distribution is the one whose i-th ran-
dom variable Xi is the number of successes of Ai in
a sequence of n repetitions, for i = 1, . . . , r, that is,
Xi ∼ B(n, pi). Thus, for all n1, . . . , nr ∈ {0, 1, . . . , n}
such that n1 + · · · + nr = n we have:

P(X1 = n1, . . . , Xr = nr) = n!
n1! · · ·nr!p1

n1 · · · pr
nr

If X = (X1, . . . , Xr) follows a multinomial distribu-
tion of parameters n and p1, . . . , pr, we will write X ∼
Mult(n; p1, . . . , pr).

Definition 107. Let (Ω,A,P) be a probability space and
X = (X1, . . . , Xn) be a random vector. We say that X is
absolutely continuous if exists a function f : Rn → R such
that:

1. f(x) ≥ 0, ∀x ∈ Rn.

2.
+∞ˆ

−∞

(n)
· · ·

+∞ˆ

−∞

f(x1, . . . , xn) dx1 · · · dxn = 1

3. For all B ∈ B(Rn) we have:

P(X ∈ B) =
ˆ

B

f(x) dx

The function f , denoted by fX, is called joint probability
density function (joint pdf) of X.

Proposition 108 (Marginal probability density
functions). Let (Ω,A,P) be a probability space and
X = (X1, . . . , Xn) be an absolutely continuous random
vector with density fX. Then, Xi is an absolutely random
variable with pdf:

fXi(xi) =
+∞ˆ

−∞

(n−1)
· · ·

+∞ˆ

−∞

f(x1, . . . , xn) dx1 · · · dxi−1 ·

· dxi+1 · · · dxn

for i = 1, . . . , n. These functions fXi
are called marginal

probability density functions (marginal pdf) of X.

Definition 109 (Multivariate standard normal dis-
tribution). Let (Ω,A,P) be a probability space and
X = (X1, . . . , Xn) be an absolutely continuous random
vector. We say that X follows a multivariate normal dis-
tribution, denoted by X ∼ N(0, 1), if X has a joint pdf:

fX(x1, . . . , xn) = 1
(2π)

n
2

e− x12+···+xn
2

2

Moreover, Xi ∼ N(0, 1) for i = 1, . . . , n.

Definition 110 (Multivariate uniform distribution).
Let (Ω,A,P) be a probability space and X = (X1, . . . , Xn)
be an absolutely continuous random vector. We say that
X has a multivariate uniform distribution over B ∈ B(Rn),
with vol(B) < ∞, if it has joint pdf:

fX(x) = 1
vol(B)1B(x)

If X = (X1, . . . , Xr) follows a multivariate uniform, we
will write X ∼ U(B).

10By agreement, we will suppose that S only contains points x such that P(X = x) > 0.
11In general we will denote S by SX. Moreover, note that SX = SX1 × · · · × SXn , where SXi

is the support of the random variable Xi.
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Definition 111. Let (Ω,A,P) be a probability space and
X = (X1, . . . , Xn) be a random vector. The multivariate
cumulative distribution function (multivariate cdf) of X is
defined as:

FX(x1, . . . , xn) := P(X1 ≤ x1, . . . , Xn ≤ xn)

for (x1, . . . , xn) ∈ Rn.

Theorem 112. Let (Ω,A,P) be a probability space and
X be a random vector. Then, FX determines the distri-
bution of X.

Proposition 113. Let (Ω,A,P) be a probability space
and X = (X1, . . . , Xn) be a random vector. Then, the
multivariate cdf FX of X has the following properties:

1. It is monotonically increasing in each of its vari-
ables12.

2. It is right-continuous in each of its variables.

3. For all i = 1, . . . , n we have:

lim
xi→−∞

FX(x1, . . . , xn) = 0

lim
x1,...,xn→+∞

FX(x1, . . . , xn) = 1

4. For all i = 1, . . . , n we have:

lim
x1,...,xi−1,xi+1,...,xn→+∞

FX(x1, . . . , xn) = FXi
(xi)

5. If X is absolutely continuous, then:

FX(x1, . . . , xn) =

=
x1ˆ

−∞

· · ·
xnˆ

−∞

fX(s1, . . . , sn) ds1 · · · dsn

6. If X is absolutely continuous, then:

P(a1 < X1 < b1, . . . , an < Xn < bn) =

=
b1ˆ

a1

· · ·
bnˆ

an

fX(s1, . . . , sn) ds1 · · · dsn

Proposition 114. Let (Ω,A,P) be a probability space
and X = (X1, . . . , Xn) be an absolutely continuous ran-
dom vector. If X has a continuous joint pdf, then:

fX(x1, . . . , xn) = ∂nFX

∂x1 · · · ∂xn
(x1, . . . , xn)

Transformations of random vectors
Definition 115. We say that a function h : Rn → Rm is
Borel measurable if ∀B ∈ B(Rm) we have:

h−1(B) ∈ B(Rn)
Proposition 116. Let h : Rn → Rm be a continuous
function. Then, h is Borel measurable.
Proposition 117. Let (Ω,A,P) be a probability space,
X = (X1, . . . , Xn) be a random vector and h : Rn → Rm

be a Borel measurable function. Then, Y := h(X) is also
a random vector.
Proposition 118. Let (Ω,A,P) be a probability space,
U, V ⊆ Rn be open sets and X = (X1, . . . , Xn) be an ab-
solutely continuous random vector with joint pdf fX such
that P(X ∈ U) = 1. Let h : U → V be a diffeomorphism
of class C1. Then, Y := h(X) is absolutely continuous and

fY(y) = fX(h−1(y))|Jh−1(y)|1V (y)
where Jh−1(y) = det Dh−1(y) is the Jacobian of h−1 eval-
uated at y.
Definition 119 (Multivariate normal distribution).
Let (Ω,A,P) be a probability space, X ∼ N(0, 1) be an
absolutely continuous random vector and h : Rn → Rn be
a function defined as

h(x) = Ax + b x ∈ Rn13

where A ∈ GLn(R) and b ∈ Rn. Then, Y = h(X) is an
absolutely continuous random vector and it has joint pdf:

fY(y) = 1
(2π)

n
2

1
det Ae− ∥A−1(y−b)∥2

2

In this case, we write Y ∼ N(b,AAT). The vector b is
called mean vector and the matrix AAT, covariance ma-
trix.

Independent random variables
Definition 120. Let (Ω,A,P) be a probability space and
X1, . . . , Xn be random variables. We say that they are
independent if ∀B1, . . . , Bn ∈ B(R), we have:

P(X1 ∈ B1, . . . , Xn ∈ Bn) =
n∏

i=1
P(Xi ∈ Bi)

That is, the events {X1 ∈ B1}, . . . , {Xn ∈ Bn} are inde-
pendent. Moreover if they have the same distribution, we
will say that X1, . . . , Xn are independent and identically
distributed (abbreviated as i.i.d.).
Proposition 121. Let (Ω,A,P) be a probability
space, X1, . . . , Xn be independent random variables and
g1, . . . , gn : R → R be Borel measurable functions. Then,
Y1 = g1(X1), . . . , Yn = gn(Xn) are also independent ran-
dom variables.

12For the 2-dimensional case, we have that for all x < x′ and y < y′:

FX(x′, y′) − FX(x, y′) − FX(x′, y) + FX(x, y) ≥ 0

This positive quantity is called increment of FX in the rectangle (x, x′] × (y, y′]. In general a function f : R2 → R satisfying

f(x′, y′) − f(x, y′) − f(x′, y) + f(x, y) ≥ 0 ∀x < x′ and ∀y < y′

is said to be increasing.
13Here, we have thought (x1, . . . , xn) as the vector x in Rn.
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Proposition 122. Let (Ω,A,P) be a probability space
and X1, . . . , Xn be random variables. Then, X1, . . . , Xn

are independent if and only if

F(X1,...,Xn)(x1, . . . , xn) = FX1(x1) · · ·FXn(xn)

for all (x1, . . . , xn) ∈ Rn.

Proposition 123. Let (Ω,A,P) be a probability space
and X = (X1, . . . , Xn) be a discrete random vector with
support SX. Then, X1, . . . , Xn are independent if and
only if

pX(x1, . . . , xn) = pX1(x1) · · · pXn(xn)

for all (x1, . . . , xn) ∈ SX.

Proposition 124. Let (Ω,A,P) be a probability space
and X = (X1, . . . , Xn) be an absolutely continuous ran-
dom vector. Then, X1, . . . , Xn are independent if and only
if

fX(x1, . . . , xn) = fX1(x1) · · · fXn
(xn)

for all (x1, . . . , xn) ∈ Rn, except for, maybe, a null set.

Proposition 125. Let (Ω,A,P) be a probability space
and X1, . . . , Xn be absolutely continuous and independent
random variables. Then, X := (X1, . . . , Xn) is an abso-
lutely continuous random vector and

fX(x1, . . . , xn) = fX1(x1) · · · fXn
(xn)

for all (x1, . . . , xn) ∈ Rn, except for, maybe, a null set.

Conditional distributions
Definition 126. Let (Ω,A,P) be a probability space,
(X,Y ) be a discrete random vector with support SX ×SY

and y ∈ SY . The conditional probability mass function of
X given Y = y is defined as:

pX|Y (x | y) := P(X = x | Y = y) =
p(X,Y )(x, y)
pY (y)

for all x ∈ SX .

Proposition 127. Let (Ω,A,P) be a probability space
and (X,Y ) be a discrete random vector with support
SX × SY . Then, the pmf of Y together with the pmf
of X conditioned to Y = y determine the pmf of X in the
following way:

P(X = x) =
∑

y∈SY

pX|Y (x | y)pY (y) ∀x ∈ SX

Definition 128. Let (Ω,A,P) be a probability space,
(X,Y ) be an absolutely continuous random vector and
y ∈ SY . The conditional probability density function of X
given Y = y is defined as:

fX|Y (x | y) :=
{

f(X,Y )(x,y)
fY (y) if fY (y) > 0

a if fY (y) = 0

where x ∈ R and a ∈ R is an arbitrary value14.

Proposition 129. Let (Ω,A,P) be a probability space,
(X,Y ) be an absolutely continuous random vector, y ∈ SY

and a, b ∈ R ∪ {±∞} such that a < b. Then:

P(X ∈ (a, b) | Y = y) =
bˆ

a

fX|Y (x | y) dx

Proposition 130. Let (Ω,A,P) be a probability space
and (X,Y ) be an absolutely continuous random vector.
Then, the pdf of Y together with the pdf of X condi-
tioned to Y = y determine the pdf of X in the following
way:

fX(x) =
+∞ˆ

−∞

fX|Y (x | y)fY (y) dy ∀x ∈ R

4. | Expectation
Expectation of simple random variables
Definition 131. A simple random variable is a random
variable that takes a finite or countable number of val-
ues15.

Definition 132. Let (Ω,A,P) be a probability space
and X be a simple random variable whose outcomes are
{xi : i ∈ I}16, where I is a finite or countable index set.
We say that X has finite expectation or that it is integrable
if: ∑

i∈I

|xi|P(X = xi) < ∞

If so, we define the expectation of X as:

Es(X) :=
∑
i∈I

xiP(X = xi)

If the series of above is not absolutely convergent, we will
say that X is not integrable.

Lemma 133. Let (Ω,A,P) be a probability space and
suppose that a random variable X can be expressed as

X =
N∑

n=1
an1An

where N ∈ N ∪ {∞}, {An : n = 1, . . . , N} ⊆ A is a
partition of Ω and {an : n = 1, . . . , N} are not necessarily
distinct values. Then, X has finite expectation if and only
if

N∑
n=1

|an|P(An) < ∞

and in that case, Es(X) =
∑N

n=1 anP(An).

Proposition 134. Let (Ω,A,P) be a probability space
and X, Y be simple and integrable random variables.
Then, X + Y is also a simple and integrable random vari-
able and:

Es(X + Y ) = Es(X) + Es(Y )
14Usually chosen equal to 0.
15Note that a simple random variable is a particular case of a discrete random variable.
16Note that we can write X as X =

∑
i∈I

xi1{X=xi}, where the events {X = xi}, i ∈ I, form a partition of Ω.

11



Proposition 135. Let (Ω,A,P) be a probability space,
X be a simple and integrable random variable and c ∈ R.
Then, cX is also a simple and integrable random variable
and:

Es(cX) = cEs(X)

Proposition 136. Let (Ω,A,P) be a probability space,
X be a simple random variable such that |X| ≤ C for
some C ∈ R. Then, X is integrable and:

|Es(X)| ≤ C

Proposition 137. Let (Ω,A,P) be a probability space
and X be a random variable. For all n ∈ N and all
ω ∈ Ω ∃!k ∈ Z such that X(ω) ∈

[
k

2n ,
k+1
2n

)
. We define

Xn(ω) := k
2n . Then,

Xn =
∑
k∈Z

k

2n
1{ k

2n ≤X< k+1
2n }

is a simple random variable such that Xn(ω) ≤ X(ω)
∀n ∈ N and ω ∈ Ω17.

Extension of the expectation
Proposition 138. Let (Ω,A,P) be a probability space
and X be a random variable. Then, there exists a se-
quence (Xn) of simple random variables that converges
uniformly to X, that is:

lim
n→∞

sup{|Xn(ω) −X(ω)| : ω ∈ Ω} = 0

Furthermore, ∀ω ∈ Ω and ∀n ∈ N we have that Xn(ω) ≤
Xn+1(ω).

Theorem 139. Let (Ω,A,P) be a probability space and
X be a random variable such that there exists a sequence
(Xn) of simple and integrable random variables that con-
verges uniformly to X. Then, the following statements are
satisfied:

1. The limit lim
n→∞

Es(Xn) exists.

2. The limit lim
n→∞

Es(Xn) does not depend on the se-
quence (Xn).

3. If X is simple, then Es(X) = lim
n→∞

Es(Xn).

Definition 140 (Expectation). Let (Ω,A,P) be a prob-
ability space and X be a random variable. We say that X
has finite expectation or that it is integrable if there exists
a sequence (Xn) of simple and integrable random variables
that converges uniformly to X. In that case, we define the
expectation of X as:

E(X) := lim
n→∞

Es(Xn)18

Proposition 141. Let (Ω,A,P) be a probability space
and X, Y be random variables and c ∈ R. Then:

1. If X and Y are integrable, then X + Y is also inte-
grable and:

E(X + Y ) = E(X) + E(Y )

2. If X is integrable, then cX is also integrable and:

E(cX) = cE(X)

3. If |X| ≤ C for some C ∈ R, then X is integrable.

4. If X is integrable and X ≥ 0, then E(X) ≥ 0.

5. If X and Y are integrable and Y ≥ X, then E(Y ) ≥
E(X).

6. If m ≤ X ≤ M for some m,M ∈ R, then X is
integrable and

m ≤ E(X) ≤ M

7. Comparison test: If X is integrable and |Y | ≤ X,
then Y is integrable.

8. X is integrable ⇐⇒ |X| is integrable.

9. If P(A) = 0 for some A ∈ A, then for any ran-
dom variable X, we have that X1A is integrable and
E(X1A) = 0.

10. If X a.s.= Y and one of them is integrable, then so will
be the other one and, furthermore, E(X) = E(Y ).

Corollary 142. Let (Ω,A,P) be a probability space, X
be a random variable and A ∈ A. Then, E(1{X∈A}) =
P(X ∈ A).

Proposition 143. Let (Ω,A,P) be a probability space
and X be a random variable with support N∪ {0}. Then:

E(X) =
∞∑

k=0
P(X > k)

Proof.

∞∑
k=0

P(X > k) =
∞∑

k=0

∞∑
n=k+1

P(X = n) =

=
∞∑

n=1

n−1∑
k=0

P(X = n) =
∞∑

n=1
nP(X = n) = E(X)

□

Theorem 144 (Monotone convergence theorem).
Let (Ω,A,P) be a probability space and (Xn) be an in-
creasing sequence of non-negative random variables such
that lim

n→∞
Xn

a.s.= X19, for some random variable X. Then:

lim
n→∞

E(Xn) = E(X)

Sketch of the proof. Check the proof of ?? ??. □

17The partition R =
⊔
k∈Z

[
k

2n
,

k + 1
2n

)
is called dyadic partition of order n.

18Theorem 139 proves that this definition is well-defined.
19See Theorem 196.
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Theorem 145 (Dominated convergence theorem).
Let (Ω,A,P) be a probability space and (Xn) be sequence
of random variables such that lim

n→∞
Xn

a.s.= X, for some
random variable X. Suppose that there exists an inte-
grable random variable Y such that

|X| ≤ Y ∀n ≥ 1

Then:
lim

n→∞
E(Xn) = E(X)

Sketch of the proof. Check the proof of ?? ??. □

Theorem 146 (Fatou’s lemma). Let (Ω,A,P) be a
probability space and (Xn) be a sequence of non-negative
random variables. Then:

E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn)

Sketch of the proof. Check the proof of ?? ??. □

Expectation of absolutely continuous random
variables
Theorem 147. Let (Ω,A,P) be a probability space and
X be an absolutely continuous random variable with den-
sity fX . Then, X is integrable if and only if

+∞ˆ

−∞

|x|fX(x) dx < ∞

In that case, we have:

E(X) =
+∞ˆ

−∞

xfX(x) dx < ∞

Expectation of transformations of random vec-
tors
Proposition 148. Let (Ω,A,P) be a probability space,
X = (X1, . . . , Xn) be a discrete random vector with sup-
port SX and h : Rn → R be a function. Then, Y := h(X)
is an integrable random variable if and only if∑
(x1,...,xn)∈SX

|h(x1, . . . , xn)|P(X1 = x1, . . . , Xn = xn) < ∞

In that case, we have:

E(Y ) =

=
∑

(x1,...,xn)∈SX

h(x1, . . . , xn)P(X1 = x1, . . . , Xn = xn)

Proposition 149. Let (Ω,A,P) be a probability space,
X = (X1, . . . , Xn) be an absolutely continuous random
vector with density fX and h : Rn → R be a Borel measur-
able function. Then, Y := h(X) is an integrable random
variable if and only ifˆ

Rn

|h(x1, . . . , xn)|fX(x1, . . . , xn) dx1 · · · dxn < ∞

In that case, we have:

E(Y ) =
ˆ

Rn

h(x1, . . . , xn)fX(x1, . . . , xn) dx1 · · · dxn

Expectation of non-negative and mixed ran-
dom variables

Proposition 150. Let (Ω,A,P) be a probability space,
X ≥ 0 be a non-negative random variable and (Xn) ≥ 0
be a sequence of simple random variables that converges
uniformly to X. Then:

• If Xn is integrable ∀n ∈ N, then:

E(X) = lim
n→∞

E(Xn)

• If ∃m ∈ N such that Xm isn’t integrable, then:

E(X) = ∞

Definition 151. Let (Ω,A,P) be a probability space and
X be a mixed random variable. Suppose that the discrete
part of X has support SX and “pmf” pX(x)20. More-
over, suppose that the absolutely continuous part of X
has “pdf” fX(x)21 We say that X has finite expectation if:

∑
x∈S

|x|pX(x) +
+∞ˆ

−∞

|x|fX(x) dx < ∞

If so, we define the expectation of X as:

E(X) :=
∑

x∈SX

xpX(x) +
+∞ˆ

−∞

xfX(x) dx

Moments

Definition 152 (Moment). Let (Ω,A,P) be a probabil-
ity space, X be a random variable and k ∈ N. We say that
X has finite moment of order k (or finite k-th moment)
if Xk has finite expectation. We denote by µk the k-th
moment of X:

µk = E(Xk)

Proposition 153. Let (Ω,A,P) be a probability space,
X, Y be random variables such that they have finite k-th
moment. Then:

1. X and Y have finite r-th moment ∀r ∈ {1, . . . , k}.

2. X + Y has finite k-th moment.

Proposition 154. Let (Ω,A,P) be a probability space,
X, Y be random variables such that they have finite 2k-th
moment. Then, XY has finite k-th moment.

20We write pmf in quotation marks because pX(x) is not exactly a probability mass function since
∑

x∈SX
pX(x) < 1.

21Again, we write pdf in quotation marks because fX(x) is not exactly a probability density function since
´+∞

−∞ fX(x) dx < 1.
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Theorem 155 (Cauchy-Schwarz inequality). Let
(Ω,A,P) be a probability space and X, Y be two random
variables such that E(X2) < ∞. Then:

E(|XY |) ≤
(
E(X2)E(Y 2)

)1/2

Definition 156 (Variance). Let (Ω,A,P) be a prob-
ability space and X be a random variable such that
E(X2) < ∞. We define the variance of X as:

Var(X) := E
(

(X − E(X))2
)

≥ 0

Proposition 157. Let (Ω,A,P) be a probability space
and X be a random variable such that E(X2) < ∞. Then:

Var(X) = E(X2) − E(X)2

Definition 158 (Standard deviation). Let (Ω,A,P)
be a probability space and X be a random variable such
that E(X2) < ∞. We define the standard deviation (or
standard error) of X as:

σ(X) :=
√

Var(X)22

Proposition 159. Let (Ω,A,P) be a probability space
and X be a random variable such that E(X2) < ∞. If
Var(X) = 0, then X

a.s.= E(X).

Proposition 160. Let (Ω,A,P) be a probability space
and X, Y be independent random variables with finite
expectation. Then, XY has finite expectation and:

E(XY ) = E(X)E(Y )

Definition 161 (Covariance). Let (Ω,A,P) be a proba-
bility space and X, Y be two random variables with finite
2nd moments. We define the covariance between X and
Y as:

Cov(X,Y ) := E ([X − E(X)][Y − E(Y )])

Proposition 162. Let (Ω,A,P) be a probability space
and X, Y be two random variables with finite 2nd mo-
ments. Then:

Cov(X,Y ) = E(XY ) − E(X)E(Y )

Proposition 163. Let (Ω,A,P) be a probability space
and X, Y be independent random variables with fi-
nite expectation. Then, Cov(X,Y ) is well-defined and
Cov(X,Y ) = 0.

Definition 164. Let (Ω,A,P) be a probability space. We
say that two random variables X, Y are uncorrelated if
Cov(X,Y ) = 0.

Proposition 165. Let (Ω,A,P) be a probability space, X
be a random variable such that E(X2) < ∞ and a, b ∈ R.
Then:

Var(aX + b) = a2Var(X)

Proposition 166. Let (Ω,A,P) be a probability space
and X1, . . . , Xn be random variables with finite 2nd mo-
ments. Then:

Var(X1 + · · ·+Xn) =
n∑

i=1
Var(Xi)+2

∑
1≤i<j≤n

Cov(Xi, Xj)

Corollary 167. Let (Ω,A,P) be a probability space and
X1, . . . , Xn be random variables with finite 2nd moments
such that they are pairwise uncorrelated. Then:

Var(X1 + · · · +Xn) =
n∑

i=1
Var(Xi)

Definition 168 (Pearson correlation coefficient).
Let (Ω,A,P) be a probability space and X, Y be non-
constant random variables with finite 2nd moments. We
define the Pearson correlation coefficient (or simply cor-
relation coefficient)23 as:

ρ(X,Y ) := Cov(X,Y )
σ(X)σ(Y ) = Cov(X,Y )√

Var(X)
√

Var(Y )

Proposition 169. Let (Ω,A,P) be a probability space,
X, Y be non-constant random variables with finite 2nd
moments and ρ := ρ(X,Y ). Then:

1. |ρ| ≤ 1

2. If ρ = 1, then ∃a, b ∈ R with a > 0 such that
Y = aX + b.

3. If ρ = −1, then ∃a, b ∈ R with a < 0 such that
Y = aX + b.

Theorem 170 (Markov’s inequality). Let (Ω,A,P) be
a probability space, X ≥ 0 be a non-negative random vari-
able with finite expectation and λ ∈ R>0. Then:

P(X > λ) ≤ P(X ≥ λ) ≤ E(X)
λ

Corollary 171. Let (Ω,A,P) be a probability space and
X ≥ 0 be a non-negative random variable such that
E(X) = 0. Then, X a.s.= 0.

Corollary 172. Let (Ω,A,P) be a probability space, p ∈
R>0 and X be a random variable such that E(|X|p) < ∞.
Then, for all a ∈ R>0:

P(|X| ≥ a) ≤ E(|X|p)
ap

Corollary 173 (Chebyshev’s inequality). Let
(Ω,A,P) be a probability space, X be a random vari-
able such that E(X2) < ∞ and δ ∈ R>0. Then:

P(|X − E(X)| ≥ δ) ≤ Var(X)
δ2

Furthermore, if σ := σ(X) and we take δ = kσ, k ∈ R>0,
then:

P(|X − E(X)| < kσ) ≥ 1 − 1
k2

22Therefore, Var(X) is sometimes expressed as σ2(X).
23The correlation coefficient measures the linear correlation between two random variables.
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Definition 174 (Moment-generating function). Let
(Ω,A,P) be a probability space and X be a random vari-
able. The moment-generating function ofX is the function
ψX defined as:

ψX : R −→ R>0 ∪ {+∞}
t 7−→ E(etX)

Theorem 175. Let (Ω,A,P) be a probability space, X,
Y be random variables such that ψX(t), ψY (t) < +∞ in
a neighbourhood of 0 and such that ψX , ψY are equal in
another neighbourhood of 0. Then, X d= Y .

Theorem 176. Let (Ω,A,P) be a probability space and
X be a random variable such that ψX(t) < +∞ in a neigh-
bourhood of 0. Then, X has moment of order k ∀k ∈ N
and:

E(Xk) = ψX
(k)(0)

Theorem 177. Let (Ω,A,P) be a probability space, X,
Y be independent random variables. Then, for all t such
that ψX(t), ψY (t) < +∞, the function ψX+Y (t) is finite
and:

ψX+Y (t) = ψX(t)ψY (t)

Proof.

ψX+Y (t) = E(et(X+Y )) = E(etX)E(etY ) = ψX(t)ψY (t)

□

where the second equality is because of the independence
of X and Y .

Proposition 178. Let (Ω,A,P) be a probability space,
p ∈ (0, 1), λ ∈ R>0 and X1, . . . , Xn be i.i.d. random vari-
ables.

• If X1 ∼ Ber(p), then X1 + · · · +Xn ∼ B(n, p)

• If X1 ∼ Geo(p), then X1 + · · · +Xn ∼ NB(n, p)

• If X1 ∼ Exp(λ), then X1 + · · ·+Xn ∼ Gamma(n, λ)

Proposition 179. Let (Ω,A,P) be a probability space
and Xi ∼ Pois(λi) be random variables for some λi > 0,
i = 1, . . . , n. Suppose that X1, . . . , Xn are independent.
Then:

X1 + · · · +Xn ∼ Pois(λ1 + · · · + λn)

Proposition 180. Let (Ω,A,P) be a probability space,
µi ∈ R and σi ∈ R for i = 1, . . . , n. Let Xi ∼ N(µi, σi

2)
be independent random variables for i = 1, . . . , n. Then:

X1 + · · · +Xn ∼ N(µ1 + · · · + µn, σ1
2 + · · · + σn

2)

Conditional expectation

Definition 181. Let (Ω,A,P) be a probability space,
(X,Y ) be a discrete random vector with support SX ×SY

and y ∈ SY . The conditional expectation of X given Y = y
is defined as:

E(X | Y = y) :=
∑

x∈SX

xP(X = x | Y = y)

provided that the series is absolutely convergent. More
generally, if X is a discrete random vector with support
SX and h : SX → R is a function, then the conditional
expectation of h(X) given Y = y is defined as:

E(h(X) | Y = y) :=
∑

x∈SX

h(x)P(X = x | Y = y)

provided that the series is absolutely convergent.

Proposition 182 (Law of total expectation). Let
(Ω,A,P) be a probability space, X be a discrete random
vector with support SX, Y be a random variable with sup-
port SY and h : SX → R be a function. If h(X) has finite
expectation, then:

E(h(X)) =
∑

y∈SY

E(h(X) | Y = y)P(Y = y)

Proof. We have that:

E(h(X)) =
∑

x∈SX

h(x)P(X = x)

=
∑

x∈SX

∑
y∈SY

h(x)P(X = x | Y = y)P(Y = y)

=
∑

y∈SY

∑
x∈SX

h(x)P(X = x | Y = y)P(Y = y)

=
∑

y∈SY

E(h(X) | Y = y)P(Y = y)

where in the second equality we have used the 30 Law of
total probability and in the third step we can rearrange
the terms due to the finite expectation of h(X). □

Definition 183. Let (Ω,A,P) be a probability space,
(X,Y ) be an absolutely continuous random vector with
support SX × SY and y ∈ SY . The conditional expecta-
tion of X given Y = y is defined as:

E(X | Y = y) :=
ˆ

SX

xfX|Y (x | y) dx

provided that the integral is absolutely convergent. More
generally, if X is an absolutely continuous random vector
with support SX and h : SX → R is a function, then the
conditional expectation of h(X) given Y = y is defined as:

E(h(X) | Y = y) :=
ˆ

SX

h(x)fX|Y (x | y) dx

provided that the integral is absolutely convergent.

Proposition 184 (Law of total expectation). Let
(Ω,A,P) be a probability space, X be an absolutely con-
tinuous random vector with support SX, Y be a random
variable with support SY and h : SX → R be a function.
If h(X) has finite expectation, then:

E(h(X)) =
+∞ˆ

−∞

E(h(X) | Y = y)fY (y) dy

Sketch of the proof. Adapt the proof of 182 Law of total
expectation. □
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X E(X) Var(X)
c ∈ R c 0

U({x1, . . . , xn}) 1
n

∑n
i=1 xi

1
n

∑n
i=1(xi

2 − xi)
B(n, p) np np(1 − p)
Pois(λ) λ λ

Geo(p) 1/p 1 − p

p2

HG(N, p, n) np np(1 − p)N − n

N − 1
NB(r, p) r

p
n

1 − p

p2

U(a, b) (a+ b)/2 (b− a)2
/12

Exp(λ) 1/λ 1/λ2

N(µ, σ2) µ σ2

Gamma(α, β) α/β α/β2

Beta(a, b) a

a+ b

ab

(a+ b)2(a+ b+ 1)
C(x0, γ) +∞ +∞

Table 1: Expectations and variances of common distribu-
tions.

5. | Convergence of random variables
Convergence in probability
Definition 185. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. We say that (Xn) converges in probability
to X, and we denote it by Xn

P−→ X, if ∀ε > 0 we have:

lim
n→∞

P(|Xn −X| ≥ ε) = 0

Or equivalently:

lim
n→∞

P(|Xn −X| < ε) = 1

Proposition 186. Let (Ω,A,P) be a probability space.
Then, the limit in probability is unique almost surely.
That is, if (Xn) is a sequence of random variables and
X, Y are a random variables such that Xn

P−→ X and
Xn

P−→ Y , then P(X ̸= Y ) = 0.

Proposition 187. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables, X be a random
variable such that Xn

P−→ X and f : R → R be continuous
function. Then, f(Xn) P−→ f(X).

Proposition 188. Let (Ω,A,P) be a probability space,
(X1n), . . . , (Xmn) be m sequences of random variables,
X1, . . . , Xm be a random variable such that Xin

P−→ Xi

∀i = 1, . . . ,m and f : Rm → R be continuous function.
Then:

f(X1n, . . . , Xmn) P−→ f(X1, . . . , Xm)

Corollary 189. Let (Ω,A,P) be a probability space,
(X1n), . . . , (Xmn) be m sequences of random variables,

X1, . . . , Xm be a random variable such that Xin
P−→ Xi

∀i = 1, . . . ,m and f : Rm → R be continuous function.
Then:

• X1n + · · · +Xmn
P−→ X1 + · · · +Xm.

• X1n · · ·Xmn
P−→ X1 · · ·Xm.

Lemma 190. Let (Ω,A,P) be a probability space. Then,
the set L0 of all random variables of (Ω,A,P) is a vector
space. Moreover, the relation ∼ defined in L0 as

X ∼ Y ⇐⇒ X
a.s.= Y ∀X,Y ∈ L0

is an equivalence relation. The quotient set L0/∼ is de-
noted by L024.

Proposition 191. Let (Ω,A,P) be a probability space.
We define the function dP in L0 as:

dP : L0 × L0 −→ R
(X,Y ) 7−→ E

(
|X−Y |

1+|X−Y |

)
Then, (L0, dP) is a metric space.

Proposition 192. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. Then:

Xn
P−→ X ⇐⇒ lim

n→∞
dP(Xn, X) = 0

Because of that, the convergence in probability is said to
be metrizable.

Definition 193. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. We say that (Xn) satisfies the Cauchy con-
dition in probability (or is Cauchy in probability) if ∀ε > 0
we have:

lim
n,m→∞

P(|Xn −Xm| ≥ ε) = 0

Proposition 194. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. Then:

Xn
P−→ X ⇐⇒ (Xn) is Cauchy in probability

Thus, (L0, dP) is a complete metric space.

Proposition 195. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable such that Xn

P−→ X. Then, all subsequence
(Xnk

) of (Xn) converges in probability to X.

Almost surely convergence
Definition 196. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. We say that (Xn) converges almost surely
to X, and we denote it by Xn

a.s.−→ X, if

P
(

lim
n→∞

Xn = X
)

= 1

That is,
lim

n→∞
Xn(ω) = X(ω)

24If X ∈ L0, we will use the same notation for its equivalence class.
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for all ω ∈ Ω except for maybe a set of probability
zero. Another equivalent expression is the following one:
Xn

a.s.−→ X if and only if

P

 ⋂
ε∈Q>0

∞⋃
n=1

∞⋂
k=n

{ω ∈ Ω : |Xk(ω) −X(ω)| < ε}

 = 1

Proposition 197. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. Then, Xn

a.s.−→ X if and only if ∀ε > 0 we
have:

lim
n→∞

P

( ∞⋃
k=n

{|Xk −X| ≥ ε}

)
= 0

Proposition 198. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. Then:

Xn
a.s.−→ X =⇒ Xn

P−→ X

Proposition 199. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables, X be a random
variable such that Xn

a.s.−→ X and f : R → R be continuous
function. Then, f(Xn) a.s.−→ f(X).
Proposition 200. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. Suppose that Xn

P−→ X. Then, there exists
a subsequence (Xnk

) of (Xn) such that Xnk

a.s.−→ X.
Proposition 201. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. Suppose that ∀ε > 0 we have:

∞∑
n=1

P(|Xn −X| ≥ ε) < ∞

Then, Xn
a.s.−→ X.

Definition 202. Let Ω be a set and (An) ⊂ Ω be a se-
quence of subsets. We define the limit superior of (An)
as:

lim sup
n→∞

An :=
∞⋂

n=1

∞⋃
k=n

Ak

That is:

ω ∈ lim sup
n→∞

An ⇐⇒ ∀n ≥ 1 ∃k ≥ n such that ω ∈ Ak

We can express that as:

lim sup
n→∞

An = {ω ∈ Ω : ω ∈ An infinitely often}

Definition 203. Let Ω be a set and (An) ⊂ Ω be a se-
quence of subsets. We define the limit inferior of (An)
as:

lim inf
n→∞

An :=
∞⋃

n=1

∞⋂
k=n

Ak

That is:

ω ∈ lim inf
n→∞

An ⇐⇒ ∃n ≥ 1 such that ∀k ≥ n, ω ∈ Ak

We can express that as:

lim inf
n→∞

An = {ω ∈ Ω : ω ∈ An eventually}

Proposition 204. Let Ω be a set and (An) ⊂ Ω be a
sequence of subsets. Then:

1. lim inf
n→∞

An ⊆ lim sup
n→∞

An

2.
(

lim sup
n→∞

An

)c

= lim inf
n→∞

An
c

Definition 205. Let Ω be a set and (An) ⊂ Ω be a se-
quence of subsets. We say that (An) has limit if:

lim inf
n→∞

An = lim sup
n→∞

An

In that case, A := lim sup
n→∞

An is called the limit of the
sequence.

Lemma 206 (First Borel-Cantelli lemma). Let
(Ω,A,P) be a probability space and (An) ⊂ A be a se-
quence of events such that:

∞∑
n=1

P(An) < ∞

Then, P
(

lim sup
n→∞

An

)
= 0.

Proof. Let Bn :=
⋃

k≥n Ak and note that Bn+1 ⊆ Bn.
Thus, using the definition of lim sup and 21 Continuity
from above we have that

P
(

lim sup
n→∞

An

)
= lim

n→∞
P(Bn) ≤ lim

n→∞

∑
k≥n

P(An) = 0

because it is the tail of a convergent sequence. □

Lemma 207 (Second Borel-Cantelli lemma). Let
(Ω,A,P) be a probability space and (An) ⊂ A be a se-
quence of independent events such that:

∞∑
n=1

P(An) = ∞

Then, P
(

lim sup
n→∞

An

)
= 1.

Proof. We will prove that P
([

lim sup
n→∞

An

]c)
= 0. From

20 Continuity from below, if Bn :=
⋂

k≥n Ak
c we have:

P
([

lim sup
n→∞

An

]c)
= lim

n→∞
P(Bn)

Now, ∀N ≥ n we have P(Bn) ≤ P
(⋂N

k=n An
c
)

. Using the
independence and the inequality 1 + x ≤ ex, we get:

P(Bn) ≤
N∏

k=n

(1 − P(An)) ≤ e−
∑N

k=n
N→∞−→ 0

□
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Convergence in mean

Definition 208. Let (Ω,A,P) be a probability space,
p ≥ 1, (Xn) be a sequence of random variables such that
E(|Xn|p) < ∞ and X be a random variable such that
E(|X|p) < ∞. We say that (Xn) converges in the p-th
mean to X, and we denote it by Xn

Lp

−→ X, if

lim
n→∞

E(|Xn −X|p) = 0

Proposition 209. Let (Ω,A,P) be a probability space,
p ≥ 1, (Xn) be a sequence of random variables such that
E(|Xn|p) < ∞ and X be a random variable such that
E(|X|p) < ∞. Then:

Xn
Lp

−→ X =⇒ Xn
P−→ X

Theorem 210 (Dominated convergence theorem).
Let (Ω,A,P) be a probability space, p ≥ 1, X be a ran-
dom variable and (Xn) be a sequence of random variables
such that Xn

P−→ X or Xn
a.s.−→ X. Suppose that there

exists a random variable Y such that |Xn| ≤ Y ∀n ≥ 1
and E(|Y |p) < ∞. Then, Xn

Lp

−→ X.

Lemma 211. Let (Ω,A,P) be a probability space and
p ≥ 1. Define the set Lp of all random variables of
(Ω,A,P) such that E(|X|p) < ∞. Then, Lp is a vector
space. Moreover, the relation ∼ defined in Lp as

X ∼ Y ⇐⇒ X
a.s.= Y ∀X,Y ∈ Lp

is an equivalence relation. The quotient set Lp/∼ is de-
noted by Lp25.

Proposition 212. Let (Ω,A,P) be a probability space
and p ≥ 1. We define the function:

∥ · ∥p : Lp −→ R
X 7−→ E(|X|p)

Then, (Lp, ∥ · ∥p) is a normed vector space. Moreover, the
norm ∥ · ∥p induces a distance dp defined as:

dp(X,Y ) := ∥X − Y ∥p ∀X,Y ∈ Lp

Proposition 213. Let (Ω,A,P) be a probability space,
p ≥ 1, (Xn) ⊂ Lp be a sequence of random variables and
X ∈ Lp. Then:

Xn
Lp

−→ X ⇐⇒ lim
n→∞

dp(Xn, X) = 0

Therefore, the convergence in p-th mean is metrizable.

Definition 214. Let (Ω,A,P) be a probability space,
p ≥ 1, (Xn) ⊂ Lp be a sequence of random variables and
X ∈ Lp. We say that (Xn) satisfies the Cauchy condition
in p-th mean (or is Cauchy in p-th mean) if:

lim
n,m→∞

E(|Xn −Xm|p) = 0

Proposition 215. Let (Ω,A,P) be a probability space,
p ≥ 1, (Xn) ⊂ Lp be a sequence of random variables and
X ∈ Lp. Then:

Xn
Lp

−→ X ⇐⇒ (Xn) is Cauchy in p-th mean

Thus, Lp is a Banach space and L2 is a Hilbert space.

Proposition 216. Let (Ω,A,P) be a probability space,
p ≥ 1, X,Y ∈ Lp and (Xn), (Yn) ⊂ Lp be sequences of
random variables such that Xn

Lp

−→ X and Yn
Lp

−→ Y .
Then:

Xn + Yn
Lp

−→ X + Y

Proposition 217. Let (Ω,A,P) be a probability space,
X,Y ∈ L2 and (Xn), (Yn) ⊂ L2 be sequences of random
variables such that Xn

L2

−→ X and Yn
L2

−→ Y . Then:

XnYn
L1

−→ XY

Proposition 218. Let (Ω,A,P) be a probability space,
p ≥ 1, X ∈ Lp and (Xn) ⊂ Lp be a sequence of random
variables such that Xn

Lp

−→ X. Then:

1. lim
n→∞

∥Xn∥p = ∥X∥p

2. If 1 ≤ r < p, then:

Xn
Lp

−→ X =⇒ Xn
Lr

−→ X

3. If p = 1, then:

lim
n→∞

E(Xn) = E(X)

Convergence in distribution
Definition 219. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. We say that (Xn) converges in distribution
to X, and we denote it by Xn

d−→ X, if ∀B ∈ B(R) such
that P(X ∈ ∂ B) = 0 we have:

lim
n→∞

P(Xn ∈ B) = P(X ∈ B)

Definition 220. Let A ⊆ R be a set and f : A → R be a
function. We denote by C(f) the set of points where f is
continuous.

Proposition 221. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables with cdfs FXn

∀n ∈ N and X be a random variable be a random variable
with cdf FX . Then:

Xn
d−→ X ⇐⇒ lim

n→∞
FXn

(t) = FX(t) ∀t ∈ C(FX)26

Proposition 222. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X, Y be ran-
dom variables such that Xn

d−→ X and Xn
d−→ Y . Then,

X
d= Y .

25If X ∈ Lp, we will use the same notation for its equivalence class.
26That is, Xn

d−→ X ⇐⇒ ∀t ∈ R such that P(X = t) = 0 we have lim
n→∞

P(Xn ≤ t) = P(X ≤ t).
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Theorem 223 (Skorokhod’s representation theo-
rem). Let (Ω,A,P) be a probability space, (Xn) be a
sequence of random variables and X be a random variable
be such that Xn

d−→ X. Then, there exists a probabil-
ity space (Ω′,A′,P′), and random variables (X ′

n) and X
defined on Ω′ such that:

1. Xn
d= X ′

n ∀n ≥ 1

2. X d= X ′

3. X ′
n

a.s.−→ X ′

Theorem 224. Let (Ω,A,P) be a probability space, (Xn)
be a sequence of random variables andX be a random vari-
able. Then, Xn

d−→ X if and only if for any continuous
and bounded function f : R → R we have:

lim
n→∞

E(f(Xn)) = E(f(X))

Lemma 225. Let (Ω,A,P) be a probability space, (Xn)
be a sequence of random variables and X be a random
variable be such that both (Xn) and X take values in N.
Then, Xn

d−→ X if and only if ∀k ∈ N, we have:

lim
n→∞

P(Xn = k) = P(X = k)

Proposition 226. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables, X be a random
variable and a ∈ R. Then:

1. Xn
P−→ X =⇒ Xn

d−→ X

2. Xn
d−→ a =⇒ Xn

P−→ a

Proposition 227. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables, X be a random
variable such that Xn

d−→ X and f : R → R be a contin-
uous function. Then, f(Xn) d−→ f(X).
Corollary 228. Let (Ω,A,P) be a probability space,
(Xn) be a sequence of random variables and X be a ran-
dom variable. Then:

1. Xn + a
d−→ X + a

2. aXn
d−→ aX

Theorem 229 (Slutsky’s theorem). Let (Ω,A,P) be
a probability space, (Xn), (Yn) be sequences of random
variables and X be a random variable and a ∈ R such
that Xn

d−→ X and Yn
d−→ a. Then:

1. Xn + Yn
d−→ X + a

2. XnYn
d−→ aX

3. Xn

Yn

d−→ X
a provided that a ̸= 0.

6. | Laws of large numbers
Definition 230. Let (Ω,A,P) be a probability space and
(Xn) be a sequence of random variables. We define the
sequence of partial sums (Sn) as:

Sn :=
n∑

i=1
Xi

Weak laws
Theorem 231 (Weak law of large numbers). Let
(Ω,A,P) be a probability space and (Xn) be a sequence
of i.i.d. random variables with finite 2nd moment. Then:

Sn

n

P−→ E(X1) and Sn

n

L2

−→ E(X1)

Theorem 232 (Weak law of large numbers). Let
(Ω,A,P) be a probability space and (Xn) be a sequence
of pairwise uncorrelated random variables with finite 2nd
moment. Suppose that:

lim
n→∞

1
n

n∑
i=1

E(Xi) = µ < ∞ and lim
n→∞

1
n2

n∑
i=1

Var(Xi) = 0

Then:
Sn

n

P−→ µ and Sn

n

L2

−→ µ

Strong laws
Theorem 233 (Kolmogorov’s strong law of large
numbers). Let (Ω,A,P) be a probability space and (Xn)
be a sequence of i.i.d. random variables.

1. If E(X1) < ∞, then:

Sn

n

a.s.−→ E(X1)

2. If E(X1) = ∞, then:

lim sup
n→∞

|Sn|
n

a.s.= +∞

Theorem 234 (Strong law of large numbers). Let
(Ω,A,P) be a probability space and (Xn) be a sequence
of i.i.d. random variables such that E(X1

4) < ∞. Then:

Sn

n

a.s.−→ E(X1)

Corollary 235. Let (Ω,A,P) be a probability space,
A ∈ A. Let (Xn) be a sequence of i.i.d. random variables
such that Xn ∼ Ber(P(A)) ∀n ∈ N. Then:

Sn

n

a.s.−→ P(A)

Definition 236. Let x ∈ [0, 1) and b ∈ N≥2. Sup-
pose the expression of x in base b is xb = 0.a1a2a3 · · · .
Let Nx,b(k, n) denote the number of times the digit k ∈
{0, 1, . . . , b− 1} appears in the decimal expansion of xb in
the first n digits. We say that x is simply normal if there
exists b ∈ N≥2 such that

lim
n→∞

Nx,b(k, n)
n

= 1
b

∀k ∈ {0, 1, . . . , b− 1}

We say that x is normal if

lim
n→∞

Nx,b(k, n)
n

= 1
b

∀k ∈ {0, 1, . . . , b− 1}, ∀b ∈ N≥2

Theorem 237 (Borel’s theorem). All the numbers in
[0, 1), except for a null set, are normal.
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7. | Central limit theorem
Characteristic function

Definition 238. Let (Ω,A,P) be a probability space. A
complex random variable is a function Z : Ω → C such
that Re(Z) and Im(Z) are real random variables. There-
fore, Z may be written as Z = X + iY , where X and Y
are real random variables.

Proposition 239. Let (Ω,A,P) be a probability space
and Z = X + iY be a complex random variable. Then27:

1. E(Z) = E(X) + iE(Y )

2. E(Z) = E(Z)

3. |E(Z)| ≤ E(|Z|)

Definition 240 (Characteristic function). Let
(Ω,A,P) be a probability space and X be a real random
variable. The characteristic function of X is the function
φX defined as:

φX : R −→ C
t 7−→ E(eitX)

Proposition 241. Let (Ω,A,P) be a probability space
and X be a discrete random variable with support SX .
Then:

φX(t) =
∑

x∈SX

eitxP(X = x)

Proposition 242. Let (Ω,A,P) be a probability space
and X be an absolutely continuous random variable with
density fX . Then:

φX(t) =
+∞ˆ

−∞

eitxfX(x) dx

Proposition 243. Let (Ω,A,P) be a probability space
and X be a random variable. Then:

1. φX(0) = 1

2. |φX(t)| ≤ 1 ∀t ∈ R

3. φX(t) = φX(−t) ∀t ∈ R

4. If Y = aX + b for some a, b ∈ R, then:

φY (t) = eitbφX(at) ∀t ∈ R

5. φX is uniformly continuous.

Theorem 244. Let (Ω,A,P) be a probability space and
X1, . . . , Xn be independent random variables. Let Y :=∑n

i=1 Xi. Then:

φY (t) =
n∏

i=1
φXi(t) ∀t ∈ R

Theorem 245. Let (Ω,A,P) be a probability space and
X, Y be random variables. Then:

X
d= Y ⇐⇒ φX(t) = φY (t)

Theorem 246. Let (Ω,A,P) be a probability space, (Xn)
be a sequence of random variables and X be a random
variable. Then:

Xn
d−→ X ⇐⇒ lim

n→∞
φXn(t) = φX(t) ∀t ∈ R

Proposition 247. Let (Ω,A,P) be a probability space
and X be random variables with finite n-th moment for
some n ∈ N. Then, there exists the derivative of order n
of φX and it satisfies:

φX
(n)(t) = inE

(
XneitX

)
∀t ∈ R

In particular, φX
(n)(0) = inE (Xn).

Central limit theorem
Theorem 248 (Lévy-Lindeberg central limit theo-
rem). Let (Ω,A,P) be a probability space and (Xn) be
a sequence of i.i.d. random variables with finite 2nd mo-
ments. Let µ := E(X1) and σ2 := Var(X1). Then:

Sn − nµ

σ
√
n

d−→ Z

where Z ∼ N(0, 1).

Theorem 249 (Lyapunov central limit theorem).
Let (Ω,A,P) be a probability space and (Xn) be a se-
quence of independent random variables each with finite
expectation µi := E(Xi) and variance σi

2 := Var(Xi)
∀i = 1, . . . , n. Then:∑n

i=1(Xi − µi)√∑n
i=1 σi

2
d−→ Z

where Z ∼ N(0, 1).

Corollary 250. Let (Ω,A,P) be a probability space and
(Xn) be a sequence of i.i.d. random variables with finite
2nd moments. Let µ := E(X1) and σ2 := Var(X1). Then,
∀s, t ∈ R such that s < t we have

lim
n→∞

P
(
s <

Sn − nµ

σ
√
n

≤ t

)
= FZ(t) − FZ(s)

where Z ∼ N(0, 1).

Definition 251. Let (Ω,A,P) and X1, . . . , Xn be random
variables. We define the sample mean of X1, . . . , Xn as:

Xn := 1
n
Sn = 1

n

n∑
i=1

Xi

If the value of n is fixed, we denoted Xn by X.

Proposition 252. Let (Ω,A,P) and X1, . . . , Xn be i.i.d.
random variables. Then:

E(Xn) = E(X1) and Var(Xn) = 1
n

Var(X1)
27Here we have only exposed two properties of the expectation of a complex random variable but in general all the properties of the

expectation that we’ve already seen in Section 4 can be extended conveniently to complex random variables.
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Corollary 253. Let (Ω,A,P) be a probability space and
X1, . . . , Xn be i.i.d. random variables. Let µ := E(X1)
and σ2 := Var(X1). Then:

Xn
d≃ N

(
µ,
σ2

n

)
for n large enough

Corollary 254 (De Moivre-Laplace theorem). Let
(Ω,A,P) be a probability space and X1, . . . , Xn be i.i.d.
random variables such that Xn ∼ Ber(p) ∀n ∈ N. Then:

B(n, p) d≃ N (np, np(1 − p)) for n large enough28

Definition 255 (Continuity correction). The conti-
nuity correction is an adjustment that is made when a
discrete distribution is approximated by a continuous dis-
tribution. For example if X ∼ B(n, p) is a random variable
and np(1 − p) is large enough, then P(X ≤ k) is well ap-
proximated by P(Z ≤ k + 1

2 ), where Z ∼ N(0, 1) which is
even better than the approximation given by P(Z ≤ k).

X Moment-generating function Characteristic function

c ∈ R etc eitc

U({x1, . . . , xn}) 1
n

∑n
i=1 etxi 1

n

∑n
i=1 eitxi

B(n, p) (pet + 1 − p)n (peit + 1 − p)n

Pois(λ) eλ(et−1) eλ(eit−1)

Geo(p) pet

1 − (1 − p)et

peit

1 − (1 − p)eit

NB(r, p)
(

1 − p

1 − pet

)r

for t < − ln p
(

1 − p

1 − peit

)r

U(a, b)
{

etb−eta

t(b−a) if t ̸= 0
1 if t = 0

{
eitb−eita

it(b−a) if t ̸= 0
1 if t = 0

.

Exp(λ) λ

λ− t
for t < λ

λ

λ− it
N(µ, σ2) eµt+ σ2t2

2 eiµt− σ2t2
2

Gamma(α, β)
(

β

β − t

)α

for t < β

(
β

β − it

)α

C(x0, γ) Does not exist eitx0−γ|t|

Table 2: Moment-generating functions and characteristic functions of common distributions.

28In practice, the approximation is good enough for np(1 − p) ≥ 18.
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