
Galois theory

1. | Introduction
Solvability of quadratic, cubic and quartic
polynomials

Definition 1. A quadratic polynomial over a field K is a
function of the form:

p(x) = ax2 + bx+ c

where a, b, c ∈ K. A cubic polynomial over a field K is a
function of the form:

p(x) = ax3 + bx2 + cx+ d

where a, b, c, d ∈ K. A quartic polynomial over a field K
is a function of the form:

p(x) = ax4 + bx3 + cx2 + dx+ e

where a, b, c, d, e ∈ K.

Lemma 2. Let K be a field, n ≥ 2 and

p(x) = xn + an−1x
n−1 + · · · + a1x+ a0

where ai ∈ K for i = 0, . . . , n − 1. Then, the change of
variable x = u − an−1

n transforms the previous equation
into

p(u) = un + bn−2u
n−2 + · · · + b1u+ b0

for some bi ∈ K for i = 0, . . . , n− 1. This new equation is
called depressed equation.

Proposition 3. The solutions of the quadratic polyno-
mial x2 + bx+ c are:

−b±
√
b2 − 4c

2

Proposition 4. The solutions of the cubic depressed
polynomial x3 + px+ q are:

α+ β :=
3

√
−q

2 +
√
q2

4 + p3

27 +
3

√
−q

2 −
√
q2

4 + p3

27

where the cubic roots are chosen such that αβ = −p/3.

Proposition 5. The solutions of the quartic depressed
polynomial x4 + ax2 + bx+ c are:

−S ± 1
2

√
−4S2 − 2a+ b

S
and S ± 1

2

√
−4S2 − 2a− b

S

where

S =

√
− 2

3a+ 1
3

(
Q+ ∆0

Q

)
2 Q =

3

√
∆1 +

√
∆1

2 − 4∆0
3

2
∆0 = a2 + 12c ∆1 = 2a3 + 27b2 − 72ac

Rings, integral domains and fields

Proposition 6.

1. A subring of an integral domain is an integral do-
main.

2. A field is an integral domain.

3. A subring of a field is an integral domain.

Lemma 7. Let K be a field and R ̸= {0} be a ring. Then,
all ring morphisms f : K → R are injective.

Definition 8. Let K, L be fields. A field morphism be-
tween K and L is a ring morphism K → L.

Lemma 9. Let R be a ring. Then, there exists a unique
ring morphism f : Z → R satisfying:

• f(1 +
(n)
· · · + 1) = 1R +

(n)
· · · + 1R if n ≥ 1.

• f(n) = −f(−n) if n ≤ −1.

Definition 10. Let R be a ring and f : Z → R be the ring
morphism from Z to R. The characteristic of R, char(R),
is defined to be the value of n such that ker f = Z/nZ.

Proposition 11. Let K be a field. Then, either charK
is prime or charK = 0.

Definition 12. Let R be a ring. We define the polynomial
ring R[x] as:

R[x] := {r0 + r1 · x+ · · · + rn · xn : ri ∈ R ∀i and n ≥ 0}

Moreover, we can iterate this definition to define the poly-
nomial ring in m unknowns:

R[x1, . . . , xm] = (R[x1, . . . , xm−1]) [xm]

Proposition 13 (Universal property of polynomials
in several variables). Let R, S be two rings, f : R → S
be a ring morphism and s1, . . . , sn ∈ S be not necessar-
ily distinct elements of S. Then, the function φs1,...,sn

:
R[x1, . . . , xn] → S defined by

φs1,...,sn

 ∑
i1,...,in≥0

ri1,...,inx1
i1 · · ·xnin

 =

=
∑

i1,...,in≥0
f(ri1,...,in)s1

i1 · · · snin

is the unique ring morphism such that φs1,...,sn(r) = f(r)
∀r ∈ R and φs1,...,sn

(xi) = si for i = 1, . . . , n. This func-
tion is called evaluation of s1, . . . , sn through f .
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Field of fractions

Theorem 14 (Universal property of the field of
fractions). All integral domains are a subring of a field.
More explicitly, if R is an integral domain and K is a
field, there exists another field Q(R)1 and an injective ring
morphism ι : R ↪→ Q(R) so that for all injective ring mor-
phism f : R ↪→ K, there exists a unique field morphism
ψf : Q(R) → K defined by

ψf : Q(R) −→ K
a

b
7−→ f(a)f(b)−1

such that f = ψf ◦ ι.

Corollary 15. Let R be an integral domain. The field
Q(R) with the injection ι is unique up to isomorphism,
that is, if there is a field Q′(R) and an injective ring mor-
phism ι′ : R ↪→ Q′(R) satisfying the property of above,
then there is a unique isomorphism ψι′ : Q(R) ∼= Q′(R)
such that ι′ = ψι′ ◦ ι, where ι : R ↪→ Q(R). This field
Q(R) is called field of fractions of R.

Definition 16. Let K be a field. The field of fractions of
K[x] is defined as K(x) := Q(K[x]) and it is called field
of rational functions. More generally, the field of fractions
of K[x1, . . . , xn] is defined as:

K(x1, . . . , xn) := Q(K[x1, . . . , xn])

The elements of K(x1, . . . , xn) are of the form:{
p(x1, . . . , xn)
q(x1, . . . , xn) : p, q ∈ K[x1, . . . , xn]

}
Lemma 17. Let R be an integral domain. Then, R[x] is
also an integral domain and:

Q(R[x]) ∼= Q(R)(x)

Corollary 18. Let K be a field. For all n ≥ 2 we have:

K(x1, . . . , xn) ∼= K(x1, . . . , xn−1)(xn)

Subring and subfield generated by a set

Definition 19. Let (R,+, ·) be a ring and X ⊆ R be a
subset of R. Let

P := {S ⊆ R : X ⊆ S ∧ (S,+, ·) ≤ (R,+, ·)}

Then, the subring generated by X is the smallest subring
of (R,+, ·) containing X. That is:

⟨X⟩ring =
⋂
S∈P

S

Definition 20. Let R be a ring, S ⊆ R be a subring of
R and A ⊆ R be a subset of R. We denote by S[A] the
smallest subring of R containing S and A.

Lemma 21. Let A be a finite set, R and S be rings and
φ : R[xa : a ∈ A] → S be the evaluation morphism such
that φ(r) = r ∀r ∈ R and φ(xa) = a ∀a ∈ A. Then,
S[A] = imφ.

Definition 22. Let (K,+, ·) be a field and X ⊆ K be a
subset of K. Let

P := {L ⊆ K : X ⊆ L, (L,+, ·) is a subfield of (R,+, ·)}

Then, the subfield generated by X is the smallest subfield
of (K,+, ·) containing X. That is:

⟨X⟩field =
⋂
L∈P

L

Definition 23. Let L be a field, K ⊆ L be a subfield of
L and A ⊆ L be a subset of L. We denote by K(A) the
smallest subfield of L containing K and A.

Symmetric polynomials
Definition 24 (Symmetric polynomials). Let R be a
ring, n ∈ N and p ∈ R[x1, . . . , xn]. We say that p is a sym-
metric polynomial if ∀σ ∈ Sn, we have that p(x1, . . . , xn) =
p(xσ(1), . . . , xσ(n)). We denote by R[x1, . . . , xn]Sn the set
of all symmetric polynomials over R[x1, . . . , xn].

Definition 25. Let R be a ring and n ∈ N. We define
the elementary symmetric polynomials s1, . . . , sn as:

sk =
∑

1≤i1<···<ik≤n

xi1 · · ·xik for k = 1, . . . , n2

Definition 26. Let n ∈ N. We define the lexicographic
order <lex in Nn as:

(a1, . . . , an) <lex (b1, . . . , bn) ⇐⇒
⇐⇒ ∃j ∈ N : a1 = b1, . . . , aj = bj , aj+1 < bj+1

Proposition 27. The pair (Nn, <lex) is a totally ordered
set. Moreover, if x, y, z, t ∈ Nn are such that x <lex y and
z <lex t, then x+ z <lex y + t.

Definition 28. Let R be a ring, n ∈ N and p ∈
R[x1, . . . , xn]. Suppose p is of the form:

p(x1, . . . , xn) =
n∑

i1,...,in=1
i1+···+in=n

ai1,...,inx1
i1 · · ·xnin

If p(x1, . . . , xn) ̸= 0, we define the lexicographic degree of
p as:

deg<lex
(p) := max

<lex
{(i1, . . . , in) : ai1,...,in ̸= 0}3

If p(x1, . . . , xn) = 0, we define deg<lex
(p) := −∞.

Proposition 29. Let R be a ring, n ∈ N and p, q ∈
R[x1, . . . , xn]. Then:

1. deg<lex
(p+ q) ≤ max{deg<lex

(p), deg<lex
(q)}.

2. deg<lex
(pq) = deg<lex

(p) + deg<lex
(q).

1Recall ?? for a formal definition of the field Q(R).
2For example, for n = 3 we have: s1 = x1 + x2 + x3, s2 = x1x2 + x1x3 + x2x3 and s3 = x1x2x3.
3Here, the notation max

<lex
means that the maximum is taken with respect to the order <lex.
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Lemma 30 (Waring’s method). Let R be an inte-
gral domain and p ∈ R[x1, . . . , xn]Sn . Suppose that
deg<lex

(p) = (a1, . . . , an) and let λ ∈ R\ {0} be the coeffi-
cient of x1

a1 · · ·xnan in p(x1, . . . , xn). Then, a1 ≥ · · · ≥ an
and if

q := p− λsn
ansn−1

an−1−ansn−2
an−2−an−1 · · · s1

r1−r2

then we have deg<lex
(q) <lex deg<lex

(p).

Theorem 31 (Fundamental theorem of symmetric
polynomials). Let R be a ring and n ∈ N. Then:

R[x1, . . . , xn]Sn = R[s1, . . . , sn]

That is, every polynomial in R[x1, . . . , xn]Sn can be ex-
pressed uniquely in terms of elementary symmetric poly-
nomials.

Cyclotomic polynomials
Definition 32. We define the n-th cyclotomic polynomial
as the unique irreducible polynomial Φn(x) ∈ Z[x] such
that Φn(x) | xn − 1 and Φn(x) ∤ xm − 1 for all m < n. For
example, the first 8 cyclotomic polynomials are:

Φ1(x) = x− 1
Φ2(x) = x+ 1
Φ3(x) = x2 + x+ 1
Φ4(x) = x2 + 1
Φ5(x) = x4 + x3 + x2 + x+ 1
Φ6(x) = x2 − x+ 1
Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1
Φ8(x) = x4 + 1

Proposition 33. Let n ∈ N. Then:

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x− e2πi k

n

)

Theorem 34. Let n ∈ N. Then:

xn − 1 =
∏
d|n

Φd(x)

2. | Field extensions
Proposition 35. Let K, L be fields. Then, any field
morphism K → L is injective.

Definition 36. Let K, L be two fields. A field extension
L/K is a field morphism K ↪→ L.

Proposition 37. Let L/K be a field extension. Then,
L is a vector space over K. Reciprocally, if L is a vector
space over K satisfying:

(λ · 1) · (µ · 1) = (λ · µ) · 1 ∀λ, µ ∈ K

then the morphism f : K → L defined as f(λ) = λ · 1 is a
field morphism and L/K is a field extension.

Definition 38. Let L/K be a field extension. We define
the degree of the extension L/K as:

[L : K] := dimK(L)

We say that the extension L/K is finite if [L : K] is finite.
Otherwise, we say that L/K is infinite.

Lemma 39 (Kronecker’s lemma). Let K be a field,
p(x) ∈ K[x] a monic and irreducible polynomial of degree
d ≥ 1 and L = K[x]/(p(x)). Then, L/K is a field exten-
sion of degree d, and the set {1, x, . . . , xd−1} is a basis of
the vector space L over K. Furthermore, x ∈ L is a root
of p(x) in L.

Corollary 40. Let K be a field, p(x) ∈ K[x] a monic and
irreducible polynomial of degree d ≥ 1. Then, there exists
a field extension L/K such that p(x) has a root in L.

Algebraic and transcendental numbers
Definition 41. Let L/K be a field extension and α ∈ L.
Consider the ring morphism:

φα : K[x] −→ L
p(x) 7−→ p(α)

1. We say that α is algebraic over K if kerφα = (p(x)),
where p(x) ∈ K[x] is an irreducible polynomial
of degree d ≥ 1. This polynomial is called irre-
ducible polynomial of α over K and it is denoted
by Irr(α,K)(x).

2. We say that α is transcendental over K if kerφα =
(0), or equivalently, if it is not algebraic.

Proposition 42. π and e are transcendental over Q.

Proposition 43. Let L/K be a field extension and α ∈ L
be a root of a monic and irreducible polynomial p(x) ∈
K[x]. Then, α is algebraic and Irr(α,K)(x) = p(x).

Theorem 44. Let Q ⊂ C be the set of algebraic numbers
over Q. Then, Q is countable.

Simple extensions
Definition 45. A field extension L/K is called simple if
L = K(α) for some α ∈ L. In that case, the element α is
called primitive element of L over K.

Theorem 46 (Steinitz’s theorem). Let L/K be a fi-
nite field extension. Then, L/K is simple if and only if
there is a finite number of intermediate fields between K
and L.

Proposition 47. Let L/K be a field extension and α ∈ L.
Then:

• If α is algebraic over K, then:

K(α) = K[α] ∼= K[x]/
(Irr(α,K)(x))

• If α is transcendental over K, then:

K(α) ∼= K(x)
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Corollary 48. Let L/K be a field extension and α ∈ L.
Then, K(α)/K is finite if and only if α is algebraic over
K. Furthermore in that case:

[K(α) : K] = deg(Irr(α,K)(x))

Theorem 49 (Tower formula). Let F/L and L/K be
field extensions. Then:

[F : K] = [F : L][L : K]

Proposition 50. Let L/K be a field extension and α ∈ L
be algebraic. Then:

1. The following statements are equivalent:

i) α ∈ K

ii) Irr(α,K)(x) = x− α

iii) deg(Irr(α,K)(x)) = 1

2. If K ′/K is another field extension, then:

Irr(α,K ′)(x) | Irr(α,K)(x)

and, moreover, Irr(α,K ′)(x) = Irr(α,K)(x) ⇐⇒
deg(Irr(α,K ′)(x)) = deg(Irr(α,K)(x)).

3. deg(Irr(α,K)(x)) | [L : K]

Definition 51. Let n ∈ N and K0, . . . ,Kn be fields. A
tower of fields is a sequence of field extensions Kj/Kj−1
for j = 1, . . . , n. We will denote this tower of fields as:

Kn/Kn−1/ · · · /K0

Corollary 52. Let n ∈ N and Kn/Kn−1/ · · · /K0 be a
tower of fields. Then:

[Kn : K0] = [Kn : Kn−1][Kn−1 : Kn−2] · · · [K1 : K0]

Definition 53. A field extension L/K is called finitely
generated if there exists α1, . . . , αn ∈ L such that L =
K(α1, . . . , αn).

Definition 54. Let L/K, F/K be field extensions. We
define the compositum of L and F , denoted as LF , as
smallest field containing L and F .

Proposition 55. Let L/K, F/K be field extensions.
Then,

[FL : K] ≤ [F : K][L : K]
and the equality holds if the numbers [F : K] are [L : K]
coprime.

Algebraic extensions
Definition 56. Let L/K be a field extension. We say
that L/K is algebraic if ∀α ∈ L, α is algebraic over K.

Definition 57. Let L/K be a field extension. We say
that L/K is purely transcendental if ∀α ∈ L \ K, α is
transcendental over K.

Lemma 58. Let L/K be a finite field extension. Then,
L/K is algebraic.

Proposition 59. Let L/K be a field extension. The fol-
lowing are equivalent:

1. L/K is finite.

2. L/K is algebraic and there exist α1, . . . , αn ∈ L such
that L = K(α1, . . . , αn).

3. There exist α1, . . . , αn ∈ L with αi algebraic over
K(α1, . . . , αi−1) for i = 1, . . . , n such that L =
K(α1, . . . , αn).

Proposition 60. Let L/F/K be a tower of fields such
that F/K is algebraic, and α ∈ L. Suppose that α is
algebraic over F . Then, α is algebraic over K.

Proposition 61. Let L/F/K be a tower of fields. Then:

1. If L/K is algebraic, any subring R such that K ⊆
R ⊆ L is a subfield.

2. L/F and F/K are algebraic ⇐⇒ L/K is algebraic.

3. If α, β ∈ L are algebraic over K, then so are α + β,
αβ and αβ−1 (if β ̸= 0).

4. The set

E := {α ∈ L : α is algebraic over K}

is a subfield of L, the field extension E/K is alge-
braic and if L ̸= E, then L/E is purely transcenden-
tal.

Morphisms of extensions
Definition 62. Let K, L, F be fields and f : K ↪→ L and
g : K ↪→ F be field extensions. A morphism of field ex-
tensions between f and g (sometimes called K-field mor-
phism) is a field morphism h : L → F such that g = h ◦ f .
We will denote the set of all such morphisms by:

MorK(f, g) := {h : L −→ F : h ◦ f = g}

If f and g are the natural inclusions, we will denote:

MorK(L,F ) := MorK(f, g) = {h : L −→ F : h|K = idK}

If f is the natural inclusion but g isn’t, we will denote:

MorK(L, g) := MorK(f, g) = {h : L −→ F : h|K = g}

Finally, if g is the natural inclusion but f isn’t, we will
denote:

MorK(f, F ) := MorK(f, g) = {h : L −→ F : h ◦ f = idK}

Definition 63. Let K, L, F be fields and f : K ↪→ L and
g : K ↪→ F be field extensions. We define the following
sets:

IsoK(f, g) := {h ∈ MorK(f, g) : h is bijective}
AutK(f) := IsoK(f, f)

If f and g are the natural inclusions, we will denote4:

IsoK(L,F ) := {h ∈ MorK(L,F ) : h is bijective}
AutK(L) := IsoK(L,L)

4And we define IsoK(L, g) and IsoK(f, F ) analogously as we did before.
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Lemma 64. Let L/K be a field extension. Then,
(AutK(L), ◦) is a group and it is called Galois group of
L/K. Hence, AutK(L) is also denoted as Gal(L/K)5.

Proposition 65. Let L/K be a finite field extension.
Then, Gal(L/K) = MorK(L,L).

Lemma 66. Let K, L, F be fields and f : K → L,
g : K → F be field morphisms. Let h ∈ MorK(f, g),
α ∈ L, and p(x) ∈ K[x]. Then:

h(f(p)(α)) = g(p)(h(α))6

If f and g are the natural inclusions, then:

h(p(α)) = p(h(α))

Lemma 67. Let L/K, g : K ↪→ F be field extensions and
α ∈ L be algebraic over K. Then, we have the bijection

MorK(K(α), g)
ψ∼= {β ∈ F : g(Irr(α,K))(β) = 0}

given by ψ(h) = h(α). If g is the natural inclusion, then:

MorK(K(α), F )
ψ∼= {β ∈ F : Irr(α,K)(β) = 0}

given by ψ(h) = h(α).

Corollary 68. Let K(α)/K be a finite field extension.
Then:

Gal(K(α)/K) ∼= {β ∈ K(α) : Irr(α,K)(β) = 0}

Therefore, Gal(K(α)/K) is finite and:

| Gal(K(α)/K)| ≤ [K(α) : K]

Proposition 69. Let K, L, F be fields and f : K ↪→ L
and g : K ↪→ F be field extensions. Then:

1. If f ′ : K → L′, φ : L′ → L are field extensions, then:

MorK(f, g) =
⊔

h∈MorK (f ′,g)

MorL′(φ, h)

In particular, if f , g, f ′ and φ are the natural inclu-
sions, then:

MorK(L,F ) =
⊔

h∈MorK(L′,F )

MorL′(L, h)

2. If IsoK(f, g) ̸= ∅, then IsoK(f, g) ∼= Gal(f) by send-
ing h 7→ h ◦ h0

−1, where h0 ∈ IsoK(f, g) is a fixed
isomorphism. Analogously, if IsoK(L,F ) ̸= ∅, then
IsoK(L,F ) ∼= Gal(L/K).

3. | Finite fields
Definition 70 (Finite field). A finite field F is a finite
set which is a field.

Proposition 71. Let F be a finite field. Then, F = pn

where p is a prime number and n ∈ N.

Theorem 72. Let p be a prime number and n ∈ N. Then,
there exists a unique field with pn elements up to isomor-
phism which we will denote by Fpn

7.

Proposition 73. Let p be a prime number and d, n ∈ N.
Then:

Fpd ⊆ Fpn ⇐⇒ d | n

And in that case, [Fpn : Fpd ] = n
d .

Theorem 74. Let p be a prime number and d ∈ N. We
define the set Pp,d as:

Pp,d := {f(x) ∈ Fp[x] : deg(f(x)) = d ∧
f(x) is monic and irreducible}

Then, for all n ∈ N we have:

xp
n

− x =
∏
d|n

∏
f(x)∈Pp,d

f(x)

Corollary 75. Let p be a prime number and d, n ∈ N.
Then:

pn =
∑
d|n

d|Pp,d|

Corollary 76. For all prime numbers p and for all n ∈ N,
there exists a monic and irreducible polynomial of degree
n in Fp[x].

Corollary 77. Let p be a prime number and n ∈ N.
Then, Fpn = Fp(α) for some α ∈ Fpn . Thus, the extension
Fpn/Fp is simple.

Definition 78. Let p be a prime number and R be a ring
such that charR = p. We define the Frobenius endomor-
phism as:

FrobR : R −→ R
r 7−→ rp

Theorem 79. Let p be a prime number and n ∈ N. Then,
FrobFpn ∈ Gal(Fpn/Fp) and, furthermore:

Gal(Fpn/Fp) = ⟨FrobFpn ⟩ ∼= Z
/
nZ

Corollary 80. Let p be a prime number, n ∈ N, q = pn

and denote Frobq :=
(
FrobFpn

)n. Then, for all r ∈ N:

Gal(Fqr/Fq) = ⟨Frobq⟩ ∼= Z
/
rZ

Definition 81 (Perfect fields). A field K is called
perfect if either charK = 0 or charK = p > 0 and
FrobK ∈ Aut(K).

5For the general case when f : K ↪→ L is a field extension, we define Gal(f) := AutK(f).
6Here f(p) denotes the evaluation through f of the polynomial p(x). That is, assuming that p(x) is of the form p(x) =

∑n

i=1 aix
i, then

f(p) :
∑n

i=1 aix
i 7−→

∑n

i=1 f(ai)xi.
7Another commonly used notation to denote the field with pn elements is GF(pn).
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4. | Algebraic field extensions
Splitting field
Definition 82. Let K, L be fields and p(x) ∈ K[x] be a
polynomial such that deg p(x) = n ≥ 1. We say that p(x)
splits into linear factors on L if p(x) = an

∏n
i=1(x − ai),

where ai ∈ L for i = 1, . . . , n.

Theorem 83 (Kronecker’s theorem). Let K be a field
and S ⊂ K[x] be a finite set. Then, there exists a finite
field extension L/K such that all polynomials in S split
into linear factors on L.

Theorem 84. Let K be a field and L = K(α1, . . . , αn).
Let f : K ↪→ F be a field morphism such that
f(Irr(αi,K))(x) splits into linear factors on F for all
i = 1, . . . , n. Then,

1 ≤ | MorK(L, f)| ≤ [L : K]

and, furthermore, | MorK(L, f)| = [L : K] if and only
if f(Irr(αi,K))(x) has no repeated roots on F for all
i = 1, . . . , n.

Definition 85 (Splitting field). Let L/K be a finite
field extension and p(x) ∈ K[x] \K be such that it splits
into linear factors in L. Let α1, . . . , αn be their roots.
The splitting field of p(x) over K is the smallest subfield
K(α1, . . . , αn) of L where p(x) splits into linear factors.

Proposition 86. Let K be a field and p(x) ∈ K[x] \ K.
Then, L is a splitting field of p(x) if and only if p(x) splits
into linear factors on L and for all tower of fields L/F/K
with F ̸= L, p(x) doesn’t split into linear factors on F .

Theorem 87 (Existence of the splitting field). Let
K be a field and p(x) ∈ K[x] \ K. Then, there exists a
splitting field of p(x) over K.

Theorem 88. Let K be a field, p(x) ∈ K[x]\K and L/K
and F/K be two splitting fields of p(x) over K. Then,
[L : K] = [F : K] and

1 ≤ | IsoK(L,F )| ≤ [L : K]

Furthermore, | IsoK(L,F )| = [L : K] if and only if all
irreducible factors of p(x) have no repeated roots on F .

Corollary 89. Let K1, K2 be fields, f : K1 → K2 be a
field isomorphism, p(x) ∈ K[x] \K and L1/K1, L2/K2 be
two field extensions. Suppose L1 is the splitting of p(x)
over K1 and L2 be the splitting of f(p)(x) over K2. Then,
there exists a field isomorphism φ : L1 → L2 such that
φ|K1 = f .

Corollary 90 (Unicity of the splitting field). Let K
be a field and p(x) ∈ K[x] \ K. Then, any two splitting
fields of p(x) over K are isomorphic.

Corollary 91. Let K be a field, p(x) ∈ K[x] \ K and L
be the splitting field of p(x) over K. Then:

|Gal(L/K)| ≤ [L : K]

and |Gal(L/K)| = [L : K] if and only if p(x) has no re-
peated roots on L.

Corollary 92. Let L/K be a field extension and p(x) ∈
K[x]. Then, the splitting field of p(x) over L contains the
splitting field of p(x) over K.

Proposition 93. Let p be a prime number and n ∈ N.
Then, Fpn is the splitting field of xpn − x ∈ Fp[x].

Normal extensions
Definition 94. An algebraic field extension L/K is nor-
mal if for all irreducible polynomial p(x) ∈ K[x] we have
that if p(x) has a root in L, then p(x) splits into linear
factors in L.

Proposition 95. Let L/K be finite field extension of de-
gree 2. Then, L/K is normal.

Theorem 96. Let L/K be finite field extension. L/K
is normal if and only if L is the splitting field of some
polynomial p(x) ∈ K[x] \K.

Corollary 97. Let L/K be finite field extension. Then,
there exists a field extension F/L such that:

1. F/K is finite and normal.

2. For all field extensions H/L with H/K normal there
is at least one L-field morphism f : F → H.

The extension F/L is called normal closure of L/K.

Corollary 98. Let L/F/K be a tower of fields such that
L/K is finite and normal. Then, L/F is also finite and
normal.

Corollary 99. Let L/F/K be a tower of fields such that
L/K is finite and normal. Let f ∈ MorK(F,L). Then,
there exists at least one automorphism φ ∈ Gal(L/K)
such that φ|F = f .

Corollary 100. Let L/K be a finite field extension.
Then:

| Gal(L/K)| ≤ [L : K]
Hence, Gal(L/K) is a finite group.

Corollary 101. Let L/F/K be a tower of fields such that
L/K is finite and normal. Then, F/K is normal if and only
if φ(F ) = F ∀φ ∈ Gal(L/K).

Separable polynomials
Definition 102 (Formal derivative). Let R be a ring
and p(x) =

∑d
n=0 anx

n ∈ R[x]. We define formal deriva-
tive of p(x) as:

p′(x) :=
d∑

n=1
nanx

n−1

Proposition 103. LetR be a ring, a ∈ R and p(x), q(x) ∈
R[x]. Then:

1. (p(x) + q(x))′ = p′(x) + q′(x)

2. (ap(x))′ = ap′(x)

3. (p(x)q(x))′ = p′(x)q(x) + p(x)q′(x)
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4.
deg(p′(x)) ≤ deg(p(x)) − 1

And the inequality holds if either char(R) = 0 or
gcd(char(R), deg(p(x))) = 1.

Proposition 104. Let K be a field, p(x) ∈ K[x] \
K, L be a splitting field of p(x) over K and d(x) :=
gcd(p(x), p′(x)). Then:

{α ∈ L : d(α) = 0} = {α ∈ L : (x− α)2 | p(x)}

Definition 105. Let K be a field and p(x) ∈ K[x]. We
say that p(x) is separable if it doesn’t have multiple roots
in its splitting field.

Corollary 106. Let K be a field and p(x) ∈ K[x] \ K.
Then:

p(x) is separable ⇐⇒ gcd(p(x), p′(x)) = 1

Corollary 107. Let K be a field such that charK = 0
and p(x) ∈ K[x] be an irreducible polynomial. Then, p(x)
is separable.

Lemma 108. Let K be a field such that charK = p > 0
and p(x) ∈ K[x]. Then:

p′(x) = 0 ⇐⇒ ∃q(x) ∈ K[x] : p(x) = q(xp)

Corollary 109. Let K be a field such that charK = p >
0, p(x) ∈ K[x] and q(x) := p(xp). Then, all roots of q(x)
are multiple.

Corollary 110. Let K be a field such that charK = p >
0, p(x) ∈ K[x] and q(x) := p(xp) + bx, where b ∈ K∗.
Then, all roots of q(x) are simple.

Theorem 111. Let K be a perfect field. Then, any irre-
ducible polynomial over K is separable.

Separable extensions
Definition 112 (Separable extension). Let L/K be
an algebraic field extension and α ∈ L. We say that α is
separable over K if Irr(α,K)(x) is separable. We say that
L/K is separable if and only if ∀α ∈ L, α is separable over
K.

Corollary 113. Let K be a perfect field. Then, any al-
gebraic extension L/K is separable.

Theorem 114 (Separability theorem). Let
K(α1, . . . , αn)/K be a finite field extension and f : K → L
a field morphism such that f(Irr(αi,K))(x) splits into lin-
ear factors ∀i = 1, . . . , n. Then, the following statements
are equivalent:

1. K(α1, . . . , αn)/K is separable.

2. α1, . . . , αn are separable over K.

3. | MorK(K(α1, . . . , αn), f)| = [K(α1, . . . , αn) : K].

Corollary 115. Let K be a field and L be the splitting
field of a separable polynomial p(x) ∈ K[x]. Then, L/K
is separable.

Proposition 116. Let L/F/K be a tower of fields. Then:

1. L/F and F/K are separable ⇐⇒ L/K is separable.

2. The set

E := {α ∈ L : α is separable over K}

is a subfield of L, the field extension E/K is separa-
ble and if L ̸= E, then ∀β ∈ L\E, β is not separable
over E. In that case, and if the extension L/E is al-
gebraic, we say that L/E is purely inseparable.

Theorem 117 (Primitive element theorem). Let
L/K be a finite and separable field extension. Then, L/K
is simple.

Galois extensions
Definition 118. We say that a field extension L/K is a
Galois extension (or is Galois) if it is normal and separa-
ble.

Theorem 119. Let L/K be a finite field extension. Then:

L/K is Galois ⇐⇒ | Gal(L/K)| = [L : K]

Lemma 120. Let L/F/K be a tower of fields such that
L/K is Galois. Then, L/F is Galois.

Proposition 121. Let L/K be a Galois extension. Then,
α ∈ L is primitive if and only if ∀σ ∈ Gal(L/K) \ {id},
σ(α) ̸= α.

5. | Fundamental theorem of Galois
theory

Definition 122. Let L/K be a finite field extension and
G be a group. We define the following sets:

K(L/K) := {F ⊆ L : L/F/K is a tower of fields}
S(G) := {H ⊆ G : H is a subgroup of G}

Lemma 123. Let H ∈ S(Gal(L/K)) and

LH := {a ∈ L : σ(a) = a ∀σ ∈ H}

Then, LH is a field (called fixed field of H) and LH ∈
K(L/K).

Lemma 124. Let L/K be a finite field extension and F ∈
K(L/K). Then, Gal(L/F ) is a subgroup of Gal(L/K).

Definition 125. Let L/K be a finite field extension. We
define the following functions:

F : S(Gal(L/K)) −→ K(L/K)
H 7−→ LH

G : K(L/K) −→ S(Gal(L/K))
F 7−→ Gal(L/F )

Proposition 126. Let L/K be a finite field extension.
Then:

1. F({id}) = L.

2. G(L) = {id} and G(K) = Gal(L/K).
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3. If H1, H2 ∈ S(Gal(L/K)) are such that H1 ⊆ H2,
then F(H1) ⊇ F(H2).

4. If F1, F2 ∈ K(L/K) are such that F1 ⊆ F2, then
G(F1) ⊇ G(F2).

5. H ⊆ G(F(H)) ∀H ∈ S(Gal(L/K)).

6. F ⊆ F(G(F )) ∀F ∈ K(L/K).

7. F ◦ G ◦ F = F .

8. G ◦ F ◦ G = G.

Lemma 127 (Artin’s lemma). Let L/K be a finite
field extension and H be a subgroup of Gal(L/K). Then,
H = Gal(L/LH) and |H| = [L : LH ].

Corollary 128. Let L/K be a finite field extension.
Then, G ◦ F = id. Thus, F is injective and G is surjective.

Theorem 129 (Fundamental theorem of Galois the-
ory). Let L/K be a finite and Galois field extension.
Then, F ◦ G = id. Thus, F and G are bijective and they
are inverses of each other. Furthermore, if F ∈ K(L/K),
then:

F/K is normal ⇐⇒ Gal(L/F ) ⊴ Gal(L/K)

And in that case:
Gal(L/K)/

Gal(L/F )
∼= Gal(F/K)

Corollary 130. Let L/K be a finite and Galois field ex-
tension and H be a subgroup of Gal(L/K). Then:

[LH : K] = | Gal(L/K)|
|H|

Definition 131. Let G be a group. The lattice of sub-
groups of G is the following graph:

• The vertices of the graph are the subgroups of G.

• Two vertices (corresponding to two subgroups Hi,
Hj of G) are connected by an edge if Hi ≤ Hj , with
i ̸= j, and such that there is no k ̸= i, j such that
Hi ≤ Hk ≤ Hj .

{(0, 0)}

⟨(2, 1)⟩ ⟨(2, 0)⟩ ⟨(0, 1)⟩

⟨(1, 0)⟩ ⟨(2, 0), (0, 1)⟩ ⟨(1, 1)⟩

Z/4Z× Z/2Z

Figure 1: Lattice of subgroups of the group Z/4Z × Z/2Z

Definition 132. Let K be a field, p(x) ∈ K[x] and
L be the splitting field of p(x) over K. We denote
Gal(p(x)/K) := Gal(L/K).

Definition 133. A subgroup H of Sn is called transitive
if ∀i, j ∈ {1, . . . , n}, ∃σ ∈ H such that σ(i) = j.

Lemma 134. The transitive subgroups of S4, up to iso-
morphism, are S4, A4, D4, V4 and C4, where:

V4 = ⟨(1, 2)(3, 4), (1, 3)(2, 4)⟩ and C4 = ⟨(1, 2, 3, 4)⟩

Corollary 135. The transitive subgroups of A4, up to
isomorphism, are A4 and V4.

Lemma 136. Let K be a field, p(x) ∈ K[x] be an ir-
reducible and separable polynomial of degree n and L
be its splitting field. Let α1, . . . , αn ∈ L be the roots
of p(x). Then, there exists a unique monomorphism
ι : Gal(p(x)/K) ↪→ Sn such that σ(αi) = αι(σ)(i).

Lemma 137. Let K be a field, p(x) ∈ K[x] be an ir-
reducible and separable polynomial of degree n and ι :
Gal(p(x)/K) ↪→ Sn be the monomorphism obtained by
fixing an order of the roots of p(x) (in its splitting field).
Then, im(ι) is a transitive subgroup of Sn.

Definition 138. Let K be a field, p(x) ∈ K[x] and
α1, . . . , αn be the roots of p(x) in its splitting field. We
define δ(p) as:

δ(p) :=
∏

1≤i<j≤n

(αj − αi)

We define the discriminant of p(x), Disc(p), as:

Disc(p) :=
∏

1≤i<j≤n

(αj − αi)2 = δ(p)2

Proposition 139. Let K be a field, p(x) ∈ K[x] and
α1, . . . , αn be the roots of p(x) in its splitting field. Then,
Disc(p) ∈ K[α1, . . . , αn]Sn .

Lemma 140. Let K be a field, p(x) ∈ K[x] be an ir-
reducible and separable polynomial of degree n, L be
its splitting field and α1, . . . , αn ∈ L be the roots of
p(x). Then, if we think Gal(L/K) as a subgroup of
Sn via the inclusion ι of above, we have that ∀σ ∈ Sn,
σ(δ(p)) = sgn(σ)δ(p).

Corollary 141. Let K be a field, p(x) ∈ K[x] be an ir-
reducible and separable polynomial of degree n, L be its
splitting field and α1, . . . , αn ∈ L be the roots of p(x).
Then, Disc(p) ∈ K.

Corollary 142. Let K be a field, p(x) ∈ K[x] be an ir-
reducible and separable polynomial of degree n, L be its
splitting field and α1, . . . , αn ∈ L be the roots of p(x).
Then:

δ(p) ∈ K ⇐⇒ Gal(L/K) ⊆ An

Proposition 143. Let f(x) = x2 + bx + c and g(x) =
x3 + px+ q. Then:

• Disc(f) = b2 − 4c

• Disc(g) = −4p3 − 27q2
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6. | Fundamental theorem of algebra
Definition 144. We say that a field K is algebraically
closed if each polynomial in K[x] splits into linear factors
in K.

Proposition 145. Let K be a field. The following state-
ments are equivalent:

1. K is algebraically closed.

2. If p(x) ∈ K[x] is irreducible, then deg(p(x)) = 1.

3. K/K is the only algebraic extension of K.

4. If L/K is a finite field extension, then [L : K] = 1.

Lemma 146. Let G be a 2-group. Then, G has a normal
subgroup of index 2.

Theorem 147. Let L/R be a finite Galois field extension.
Then, either L = R or L = C.

Theorem 148 (Fundamental theorem of algebra).
C is algebraically closed.

Theorem 149. Let K be a field. Then, there exists an
algebraic field extension K/K such that K is algebraically
closed. This field K is called the algebraic closure of K.

7. | Galois theory of solvable equations

Solvable groups

Definition 150. Let G be a finite group. We say G is
solvable if there is a chain of subgroups Hi of G satisfying:

{e} = H0 ⊴H1 ⊴ · · · ⊴Hn = G

and such that Hi/Hi−1 are abelian for all i = 1, . . . , n.

Definition 151. Let G be a group. We say that G is
simple if its only normal subgroups are the trivial group
and the group itself.

Proposition 152. Let G be a solvable group and H be
a subgroup of G. Then, H is solvable.

Proposition 153. Let G be a finite group and H be a
subgroup of G such that H ⊴ G. Then, G is solvable if
and only if H and G/H are solvable.

Proposition 154. LetG be a solvable group. Then, there
exists a chain of subgroups

{e} = H0 ⊴H1 ⊴ · · · ⊴Hn = G

such that Hi/Hi−1 are cyclic for all i = 1, . . . , n.

Theorem 155. An is simple for all n ≥ 5.

Theorem 156. Sn and An aren’t solvable for all n ≥ 5.

Radical, cyclotomic and cyclic extensions
Definition 157. We say that a finite field extension L/K
is radical if there exist n ∈ N and α ∈ L such that
L = K(α) and αn ∈ K. Moreover, if αn = 1 we say
the the extension L/K is cyclotomic.

Definition 158. We say that a tower of fields
Kn/Kn−1/ · · · /K0 is a radical tower if Ki/Ki−1 is a radi-
cal extension ∀i = 1, . . . , n.

Definition 159. We say that a field extension L/K is
solvable by radicals if there exists a radical tower of fields
Kn/Kn−1/ · · · /K1/K such that L ⊆ Kn.

Definition 160. Let K be a field and p(x) ∈ K[x]. We
say that p(x) is solvable by radicals if the splitting field of
p(x) over K is solvable by radicals.

Definition 161. Let n ∈ N and K be a field. A n-th root
of unity is a number z ∈ K such that zn = 1. A n-th
primitive root of unity is a n-th root of unity z ∈ K such
that zm ̸= 1 for all m = 1, . . . , n− 1.

Proposition 162. Let K be a field such that charK = 0,
n ≥ 2 and L be the splitting field of xn−1 over K. Denote
by ξn a n-th primitive root of unity. Then, L = K(ξn) and
Gal(L/K) ∼= H for some H ∈ S

(
(Z/nZ)∗)

. Furthermore
if K = Q, we have that Gal(L/K) ∼= (Z/nZ)∗.

Proposition 163. Let K be a field such that charK = 0
and xn − 1 splits into linear factors in K. Let K(α)/K
be a radical extension. Then, K(α)/K is Galois and
Gal(K(α)/K) ∼= Z/dZ, for some d such that d | n. Fur-
thermore, αd ∈ K and Irr(α,K) = xd − αd.

Definition 164. We say that a Galois extension L/K is
abelian if Gal(L/K) is abelian. In particular, we say that
L/K is cyclic if Gal(L/K) is cyclic.

Lemma 165 (Dedekind’s lemma). Let L and F be
fields and f1, . . . , fn : L → F be distinct field morphisms.
Then, if λ1, . . . , λn ∈ F are such that λ1f1+· · ·+λnfn = 0,
then λ1 = · · · = λn = 0. In that case, we say that
f1, . . . , fn are F -linearly independent.

Theorem 166. Let K be a field such that charK = 0
and xn − 1 splits into linear factors in K. Then, L/K is
cyclic of degree n if and only if L/K is radical of degree
n.

Lemma 167. Let F/K be a field extension, p(x) ∈ K[x]
be a separable polynomial, L/K be a splitting field of p(x)
over K and E/F be a splitting field of p(x) over F . Then,
Gal(E/F ) ∼= H for some H ∈ S(Gal(L/K))

Theorem 168. Let K be a field such that charK = 0,
and p(x) ∈ K[x]. Then:

p(x) is solvable by radicals ⇐⇒ Gal(p(x)/K) is solvable

Lemma 169. Let K be a field, n ∈ N, a1, . . . , an be un-
knowns and s1, . . . , sn be the elementary symmetric poly-
nomials in the variables a1, . . . , an. Then:

Gal(K(a1, . . . , an)/K(s1, . . . , sn)) ∼= Sn
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Corollary 170. Let K be a field, a1, . . . , an be unknowns,
δ :=

∏
1≤i<j≤n(aj − ai) and s1, . . . , sn be the elementary

symmetric polynomials in the variables a1, . . . , an.. Then:
K(a1, . . . , an)An = K(s1, . . . , sn)(δ)

Theorem 171 (Abel-Ruffini theorem). There is no
solution in radicals to polynomial equations of degree five
or higher with arbitrary coefficients.
Proposition 172. Let K be a field such that charK = 0,
and p(x) ∈ K[x] be an irreducible polynomial of degree 5.
Then:
p(x) is solvable by radicals ⇐⇒ Gal(p(x)/K) ≇ S5,A5

Theorem 173 (Nart-Vila theorem). For all n ≥ 2,
Gal(xn − x− 1/Q) ∼= Sn.

Corollary 174. Let G be a finite group. Then, there
exists finite field extensions K/Q and L/K such that
Gal(L/K) ∼= G.

Biquadratic polynomials

Theorem 175. Let K be a field such that charK = 2,
p(x) = x4 + ax2 + b ∈ K[x] be an irreducible polynomial
over K and d := a2 − 4b ∈ K. Then:

• If
√
b ∈ K =⇒ Gal(p(x)/K) ∼= Z/2Z × Z/2Z

• If
√
b ∈

√
dK =⇒ Gal(p(x)/K) ∼= Z/4Z

• If
√
b /∈ K ∪

√
dK =⇒ Gal(p(x)/K) ∼= D4
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