
Differential geometry

1. | Differentiable curves
Inner product of Rn

Proposition 1. Let u, v ∈ Rn be vectors and ⟨u, v⟩ be
the usual inner product between u and v in Rn. Then:

• Cauchy-Schwarz inequality:

|⟨u, v⟩| ≤ ∥u∥∥v∥

• Triangular inequality:

∥u + v∥ ≤ ∥u∥ + ∥v∥

• Polarization identity:

⟨u, v⟩ = 1
2
(
∥u + v∥2 − ∥u∥2 − ∥v∥2)

Definition 2. Let u, v ∈ Rn be vectors. We define the
angle between u and v as the unique value θ ∈ [0, π] such
that:

cos θ = ⟨u, v⟩
∥u∥∥v∥

Parametrized curves
Definition 3. Let U ⊆ Rn be an open set and f : U → Rn

be a differentiable function. We say that f is a local diffeo-
morphism if ∀p ∈ U , there exists a neighbourhood V ⊆ U
of p such that f |V : V → f(V ) is a diffeomorphism.

Proposition 4. Let I ⊆ R be an open interval and
f : I → R be a differentiable function. If f ′(x) ̸= 0 ∀x ∈ I,
then f(I) is an open set and f is a diffeomorphism.

Proposition 5. Let I ⊆ R be an open interval and
α,β : I → Rn be differentiable functions. Then:

1. ⟨α(t),β(t)⟩′ = ⟨α′(t),β(t)⟩ + ⟨α(t),β′(t)⟩

2. If t 7→ ∥α(t)∥ is a constant function, then α ⊥ α′.

Definition 6. Let I ⊆ R be an open interval and C ⊂ Rn

be a curve. A parametrization of C of class Ck is a function
α : I → Rn of class Ck such that α(I) = C. The image of
α, C, is called the trace of α, and it is sometimes denoted
by α∗ := im(α)1.

Definition 7. Let I ⊆ R be an open interval, C ⊂ Rn

be a curve and α : I → Rn be a parametrization of C of
class C1. We define the tangent vector of α at t0 ∈ R as
α′(t0). We say that α is regular if α′(t) ̸= 0 ∀t ∈ I. In
that last case, we define the tangent line of α at α(t0) as
the following parametrized line in Rn:

s 7−→ α(t0) + sα′(t0)

Definition 8. Let C ⊂ Rn be a curve. We say that C is
a plane curve if it is contained in a plane of Rn.

Definition 9. Let I, J ⊆ R be open intervals, C ⊂ Rn

be a curve, α : I → Rn be a regular parametrization of
C of class C1 and h : J → I be a diffeomorphism. Then,
β := α ◦ h : J → Rn is a regular parametrization of C
satisfying:

β′(s) = α′(h(s))h′(s) ∀s ∈ J

It is said that β is a reparametrization of α and h is a
change of parameter. Moreover, the reparametrization is
positive if h′(s) > 0 ∀s ∈ J , and it is negative if h′(s) < 0
∀s ∈ J .

Length of curves

Definition 10. Let I ⊆ R be an open interval, C ⊂ Rn

be a curve, α : I → Rn be a continuous parametrization
of C, [a, b] ⊂ I, P([a, b]) be the set of all partitions of
[a, b] and P = {t0, . . . , tn} ∈ P. We define the length of
the polygonal with vertices at α(ti), i = 1, . . . , n as:

La,b(α, P) =
n∑

i=1
∥α(ti) −α(ti−1)∥

We define La,b(α) as:

La,b(α) := sup{La,b(α, P) : P ∈ P([a, b])} ∈ R≥0 ∪ {+∞}

If La,b(α) < +∞, we say that C is rectifiable and that
La,b(α) is its length in [a, b].

Proposition 11. Let I ⊆ R be an open interval, [a, b] ⊂
I, C ⊂ Rn be a curve and α : I → Rn be a parametriza-
tion C of class C1. Then, C is rectifiable and:

La,b(α) =
bˆ

a

∥α′(t)∥ dt

Proposition 12. Let I, J ⊆ R be open intervals, [a, b] ⊂
I, C ⊂ Rn be a curve, α : I → Rn be a parametrization
C of class C1, h : J → I be a diffeomorphism, β = α ◦ h
be a reparametrization of α. Suppose [c, d] = h−1([a, b]).
Then:

dˆ

c

∥β′(u)∥ du =
bˆ

a

∥α′(t)∥ dt

That is, the length of a curve does not depend on its
parametrization.

Definition 13. Let I ⊆ R be an open interval, C ⊂ Rn

be a curve and α : I → Rn be a parametrization C of class
C1. We say that α is a unit-speed parametrization (or that
it is parametrized by arc-length parameter) if ∥α′(t)∥ = 1
∀t ∈ I.

1Sometimes α is referred to the curve as well as to the parametrization of it.
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Definition 14. Let I ⊆ R be an open interval, C ⊂ Rn

be a curve, α : I → Rn be a parametrization C of class C1

and t0 ∈ I. We define the arc-length function of α with
origin t0, the function st0 : I → R defined as:

st0(t) =
tˆ

t0

∥α′(u)∥ du

Proposition 15. Let I ⊆ R be an open interval, C ⊂ Rn

be a curve and α : I → Rn be a parametrization C of
class C1 and t0 ∈ I. Then:

1. st0 is of class C1 and dst0
dt (t0) = ∥α′(t0)∥ ≥ 0.

2. If α is regular, then J := st0(I) ⊆ R is an open
interval and st0 : I → J is a diffeomorphism.

3. If α is regular, then β(st0) := α(t(st0))2 is an arc-
length reparametrization of α.

Proposition 16. Let I, J ⊆ R be open intervals, C ⊂ Rn

be a curve, α : I → Rn be a regular parametrization of C
of class C1, h : J → I be a diffeomorphism and β = α ◦ h
be a reparametrization of α. If α and β are arc-length
parametrizations, then:

β(u) = α(±u + u0)

for some u0 ∈ R.

Proposition 17. All regular parametrization of curves of
class C1 can be arc-length parametrized.

Orientability and cross product
Definition 18. Let V be a vector space and B1 and B2 be
two bases of V . We say that B1 ∼ B2 if det ([id]B1,B2) > 0.
This relation is an equivalence relation on the set of all
bases of V which has exactly two connected components.

Definition 19. Let V be a vector space and B1 and B2
be two bases of V . We say that B1 ∼ B2 have the same
orientation if det ([id]B1,B2) > 0. Otherwise, we say that
they have opposite orientations. Note that the property
of having the same orientation defines an equivalence re-
lation on the set of all bases for V .

Definition 20. An orientation on a vector space is the
choice of one of the two equivalence classes under ∼. A
vector space with an orientation selected is called an ori-
ented vector space, while one not having an orientation
selected, is called an unoriented vector space. A basis of
an oriented vector space which has the orientation chosen
is called positive basis, while one with the other orientation
is called negative basis.

Definition 21. Let V be an oriented vector space, B be a
basis of V and f : V → V be a linear isomorphism. We say
that f is orientation-preserving (or positively oriented) if
det ([f ]B) > 0. Analogously, if det ([f ]B) < 0 we say that
f is negatively-oriented.

Definition 22. Let (v1, . . . , vn) be a basis of Rn. Sup-
pose for each i ∈ {1, . . . , n} we have

vi =
n∑

j=1
λije1

where λij ∈ R and (e1, . . . , en) is the standard basis of
Rn. We define the determinant of (v1, . . . , vn) as:

det(v1, . . . , vn) :=

∣∣∣∣∣∣∣
λ11 · · · λ1n

... . . . ...
λn1 · · · λnn

∣∣∣∣∣∣∣ 3

Proposition 23. Let B = (v1, . . . , vn) be a basis of Rn

and A ∈ Mn(R). Then:

det(Av1, . . . , Avn) = det A det(v1, . . . , vn)

Proposition 24. Let v1, . . . , vn be vectors of Rn and P
be the parallelepiped they generate. Then:

vol P = |det(v1, . . . , vn)|

Definition 25. Let u, v be vectors of R3. We define the
cross product of u and v, denoted by u×v4, as the unique
vector w satisfying:

⟨u × v, w⟩ = det(u, v, w)

Proposition 26. Let u, v be vectors of R3 such that
u =

∑3
i=1 uiei and v =

∑3
i=1 viei. Then:

u × v =

∣∣∣∣∣∣
e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
Proposition 27. Let u, v, w be vectors of R3. Then:

1. u × v = −v × u

2. u × v = 0 ⇐⇒ u = λv, for some λ ∈ R.

3. u × v ∈ ⟨u, v⟩⊥

4. If u and v are linearly independent, (u, v, u × v) is
a positive basis of Rn.

5. If x, y are vectors of R3, then:

⟨u × v, x × y⟩ =
∣∣∣∣u × x v × x
u × y v × y

∣∣∣∣
6. Let θ ∈ [0, π] be the angle between u and v. Then:

∥u × v∥ = ∥u∥∥v∥ sin θ

7. (u × v) × w = ⟨u, w⟩v − ⟨v, w⟩u

8. Jacobi identity:

(u × v) × w + (v × w) × u + (w × u) × v = 0

Proposition 28. Let α,β : I → R3 be parametrized
curves of class C∞. Then:

(α(t) × β(t))′ = α′(t) × β(t) +α(t) × β′(t)
2Here, t(st0 ) represent the inverse function of st0 (t).
3From now on, if we do not explicitly fix a basis it will mean that the standard basis of Rn is the chosen one.
4Another commonly used notation for the cross product is u ∧ v.
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Frenet-Serret formulas

Definition 29. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve and α : I → R3 be an arc-length parametrization
of C of class C2. We define the unit tangent vector of α
at s0 ∈ I as:

Tα(s0) := α′(s0)
Note that ∥Tα∥ = 1 and Tα ⊥ Tα′.

Definition 30. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve and α : I → R3 be an arc-length parametrization
of C of class C2. We define the curvature of α at s0 ∈ I
as:

kα(s0) := ∥α′′(s0)∥ = ∥Tα′(s0)∥

Definition 31. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve and α : I → R3 be an arc-length parametrization
of C of class C2, s0 ∈ I and suppose that kα(s0) ̸= 0. We
define the unit normal vector of α at s0 as:

Nα(s0) := Tα′(s0)
kα(s0) = α′′(s0)

∥α′′(s0)∥

Note that ∥Nα∥ = 1, Nα ⊥ Tα and Tα′(s) =
kα(s)Nα(s) ∀s ∈ I.

Definition 32. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R3 be a regular arc-length
parametrization of C of class C2 such that α′′(s) ̸= 0
∀s ∈ I. We define the binormal vector of α at s0 ∈ I
as:

Bα(s0) = Tα(s0) × Nα(s0)
Then, the triplet (Tα(s0), Nα(s0), Bα(s0)) is an
orthonormal positive basis5, and the affine frame
{α(s0); (Tα(s0), Nα(s0), Bα(s0))} is called Frenet-Serret
frame (or TNB frame).

Proposition 33. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R3 be a regular arc-length
parametrization of C of class C3 such that α′′(s) ̸= 0
∀s ∈ I. Then:

Bα′(s) = τα(s)Nα(s) ∀s ∈ I

This coefficient τα(s) is called torsion of α at s ∈ I.

Proposition 34. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R3 be a regular arc-length
parametrization of C of class C3 such that α′′(s) ̸= 0
∀s ∈ I. The following statements are equivalent:

1. α is a plane curve.

2. Bα = const.

3. τα = 0.

Theorem 35 (Frenet-Serret formulas). Let I ⊆ R be
an open interval, C ⊂ R3 be a curve and α : I → R3 be
a regular arc-length parametrization of C of class C3 such
that α′′(s) ̸= 0 ∀s ∈ I. Then6:Tα

Nα

Bα

′

=

 0 kα 0
−kα 0 −τα

0 τα 0

Tα
Nα

Bα



Definition 36. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R3 be a regular arc-length
parametrization of C of class C3 such that α′′(s) ̸= 0
∀s ∈ I and s0 ∈ I. We define the following planes of
R3:

• Osculating plane: plane generated by Tα(s0) and
Nα(s0) that contains α(s0).

• Normal plane: plane generated by Nα(s0) and
Bα(s0) that contains α(s0).

• Rectifying plane: plane generated by Tα(s0) and
Bα(s0) that contains α(s0).

Proposition 37. Let I ⊆ R be an open interval, C ⊂ R3

be a curve, α : I → R3 be a regular parametrization of C
of class C3 and h(t) = s(t) be the arc-length parameter.
Let β = (α ◦ h−1)(s), which is an arc-length parametriza-
tion of C. Then, assuming β′′ ̸= 0, we can define the TNB
frame of α as:

Tα := Tβ ◦ h Nα := Nβ ◦ h Bα := Bβ ◦ h

And the curvature and torsion of α as:

kα := kβ ◦ h τα := τβ ◦ h

Lemma 38. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve, α : I → R3 be a regular parametrization of C of
class C3 and h(t) = s(t) be the arc-length parameter. Let
β = (α ◦ h−1)(s). Then, β′′ = 0 ⇐⇒ α′ ×α′′ = 0.

Lemma 39. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve, α : I → R3 be a regular parametrization of C of
class C3 such that α′ ×α′′ ̸= 0 and v(t) := ∥α′(t)∥. Then:

• α′ = vTα

• α′′ = v′Tα + kαv2Nα

Theorem 40 (General Frenet-Serret formulas). Let
I ⊆ R be an open interval, C ⊂ R3 be a curve, α : I → R3

be a regular parametrization of C of class C3 such that
α′ ×α′′ ̸= 0 and v(t) := ∥α′(t)∥. Then:Tα

Nα

Bα

′

=

 0 kαv 0
−kαv 0 −ταv

0 ταv 0

Tα
Nα

Bα


Corollary 41. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R3 be a regular parametrization
of C of class C3 such that α′ ×α′′ ̸= 0. Then:

Tα = α′

∥α′∥
Nα = Bα × Tα Bα = α′ ×α′′

∥α′ ×α′′∥

Moreover:

kα = ∥α′ ×α′′∥
∥α′∥3 τα = −⟨α′ ×α′′,α′′′⟩

∥α′ ×α′′∥2

5Observe that the binormal vector (together with the tangent and normal vectors) is the unique vector that satisfies this property.
6Note that an inversion of the orientation of α would change the sign of Tα and Bα, but it would preserve the sign of Nα, kα and τα.
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Contact between curves and surfaces

Definition 42. Let I ⊆ R be an open interval, α,β : I →
Rn be arc-length parametrizations of two curves of class
C∞ and s0 ∈ I. We say that α and β have contact of
order ≥ r at s0 if

lim
s→s0

α(s) − β(s)
(s − s0)r = 0

We say that α and β have contact of order r at s0 if they
have contact of order ≥ r but not contact of order ≥ r+1.

Proposition 43. Let I ⊆ R be an open interval, α,β :
I → Rn be arc-length parametrizations of two curves of
class C∞ and s0 ∈ I. Then, α and β have contact of order
≥ r at s0 if and only if:

α(k)(s0) = β(k)(s0) for k = 0, . . . , r

Proposition 44. Let I ⊆ R be an open interval, C ⊂ R3

be a curve, α : I → R3 be an arc-length parametriza-
tion of C of class C2 and s0 ∈ I. Then, the tangent line
at α(s0) is the unique line that has contact of order ≥ 1
with α at this point. An arc-length parametrization of the
tangent line is:

u 7−→ α(s0) + uTα(s0)

Proposition 45. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R3 be an arc-length parametriza-
tion of C of class C2, s0 ∈ I and suppose that kα(s0) ̸= 0.
Then, there exists a unique circle of R3 that has contact
of order ≥ 2 at α(s0). This circle is called osculating cir-
cle and its radius (called radius of curvature) is ρα(s0) :=

1
kα(s0) . Its center is c(s0) = α(s0) + ρα(s0)Nα(s0)7.

Proposition 46. Let α : I → R2 be a regular
parametrization of C of class C3, s0 ∈ I and suppose that
kα(s0) ̸= 0. If α(t) = (x(t), y(t)), then the center of the
osculating circle at α(s0) has coordinates (X, Y ) given by:

X = x + y′ x′2 + y′2

x′′y′ − x′y′′ Y = y − x′ x′2 + y′2

x′′y′ − x′y′′

α(s0)

C(s0)

ρα(s0)

Figure 1: Osculating circle of a cycloid at a certain point

Definition 47. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R3 be an arc-length parametriza-
tion of C of class C3, s0 ∈ I and suppose that kα(s0) ̸= 0.
Then, there exists a unique sphere of R3 that has contact
of order ≥ 3 at α(s0). This sphere is called osculating
sphere of α at α(s0) and its center c(s0) and radius r(s0)
are given by:

c(s0) = α(s0) + ρα(s0)Nα(s0) − ρα
′(s0)

τα′(s0) Bα(s0)

r(s0)2 = ρα(s0)2 +
(

ρα
′(s0)

τα(s0)

)2

Envelopes: evolute and involute

Definition 48. An envelope of a family of plane curves
is a curve that is tangent to each of the members of the
family at some point.

Definition 49. Let I ⊆ R be an open interval and
α,β : I → R2 be regular parametrizations of two curves
of class C3 such that kα(s), τα(s) ̸= 0 ∀s ∈ I. We say that
β is the evolute of α if β is the envelope of all the normal
lines to α.

Proposition 50. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R2 be regular parametrization
of C of class C3 such that kα(s) ̸= 0 ∀s ∈ I. Then, a
parametrization of the evolute of α is:

t 7−→ α(t) + ρα(t)Nα(t)

Definition 51. Let I ⊆ R be an open interval and
α,β : I → R2 be regular parametrizations of two curves of
class C3. We say that β is the involute of α if β intersects
orthogonally all the tangent lines to α.

Proposition 52. Let I ⊆ R be an open interval, C ⊂ R3

be a curve, α : I → R2 be regular parametrization of C of
class C3 such that kα(s) ̸= 0 ∀t0 ∈ I and s0 ∈ I. Then, a
parametrization of the involute of α is:

t 7−→ α(t) − Tα(t)
tˆ

t0

∥α′(u)∥ du

Proposition 53. The evolute of the involute of a curve
C ⊂ R3 is the curve C itself.

7An arc-length parametrization of the osculating circle is, for example:

u 7−→ c(s0) + ρα(s0)
(

− cos
(

u

ρα(s0)

)
Nα(s0) + sin

(
u

ρα(s0)

)
Tα(s0)

)
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Tractrix as involute of the catenary
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Catenary Tractrix

Catenary as evolute of the tractrix

Figure 2: Construction of the evolute and involute of a
curve

Curvature of plane curves

Lemma 54. Let I ⊆ R be an open interval, a, b : I → R
be differentiable functions such that a2 + b2 = 1, t0 ∈ I
and θ0 ∈ R be such that a(t0) = cos θ0 and b(t0) = sin θ0.
Then, the differentiable function θ(t) defined as:

θ(t) = θ0 +
tˆ

t0

(a(u)b′(u) − a′(u)b(u)) du

satisfies a(t) = cos θ(t), b(t) = sin θ(t) and θ(t0) = θ0
∀t ∈ I.

Proposition 55. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R2 be a regular arc-length
parametrization of C of class C3. Then, there is a unique
vector N̂α such that (Tα, N̂α) is a positive orthonormal
basis of R2. Thus, Tα′ ∥ N̂α.

Definition 56. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve, α : I → R2 be a regular arc-length parametriza-
tion of C of class C3 and s0 ∈ I. We define the signed
curvature of α at α(s0) as the value κα(s0) satisfying
Tα′(s0) = κα(s0)N̂α(s0)8. Moreover:

κα = det
(
Tα, Tα′)

Proposition 57. Let I ⊆ R be an open interval, C ⊂ R3

be a curve and α : I → R2 be a regular parametrization
of C of class C3. Then, the signed curvature of α is:

κα = det(α′,α′′)
∥α′∥3

Local form of a curve

Definition 58. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve, α : I → R2 be a regular arc-length parametriza-
tion of C of class C3 and s0 ∈ I. Consider the affine
frame of reference R = {α(s0); (Tα, Nα, Bα)} and sup-

pose α(s)R = (x(s), y(s), z(s)). Then:
x(s) ≃ s − kα(0)2

6 s3

y(s) ≃ kα(0)2

2 s2 − k′
α(0)
6 s3

z(s) ≃ −kα(0)τα(0)
6 s3

This expression of α(s)R is called local canonical form of
α in a neighbourhood of s0.

Corollary 59. Let I ⊆ R be an open interval, C ⊂ R3 be
a curve, α : I → R2 be a regular arc-length parametriza-
tion of C of class C3 and s0 ∈ I. Then, in the reference
R = {α(s0); (Tα, Nα, Bα)} we have:

• If τ < 0, at s = 0 the curve cross the osculating
plane towards the direction that points Bα (dextro-
rotation).

• If τ > 0, at s = 0 the curve cross the osculating
plane towards the opposite direction that points Bα
(levorotation).

Orthogonal group
Definition 60. We define that orthogonal group as the
group of all linear transformations that preserve the inner
product. That is:

O(n) := {A ∈ Mn(R) : ⟨Au, Av⟩ = ⟨u, v⟩ ∀u, v ∈ Rn}

Proposition 61. Let A ∈ O(n). Then, AAT = In and
det A = ±1.

Definition 62. We define that special orthogonal group
as:

SO(n) := {A ∈ O(n) : det A = 1}

Lemma 63. Let A ∈ O(n) and λ ∈ σ(A). Then,
λ ∈ R =⇒ λ = ±1.

Proposition 64. Let A ∈ O(2). Then:

A =



(
cos ω − sin ω

sin ω cos ω

)
if det A = 1(

cos ω sin ω

sin ω − cos ω

)
if det A = −1

for some ω ∈ R.

Proposition 65. Let A ∈ O(3). Then, there exists an
orthonormal basis B of R3 such that

[id]B,Can(R3)
−1A[id]B,Can(R3) =

±1 0 0
0 A′
0


where A′ ∈ O(2).

Proposition 66. Let f : Rn → Rn be an Euclidean mo-
tion9. Then, ∃A ∈ O(n) and u ∈ Rn such that:

f(v) = Av + u
8Using the notation of the last proposition, note that N̂α = ±Nα and therefore κα = ±kα.
9Recall that an Euclidean motion is a function that preserves the distance, that is, if f : Rn → Rn is an Euclidean motion, then

∥f(u) − f(v)∥ = ∥u − v∥ ∀u, v ∈ Rn.
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Proposition 67. Let I ⊆ R be an open interval, C ⊂ R3

be a curve, α : I → Rn be a parametrization of C of class
C3 and A ∈ Mn(R). Then:

(Aα)′(t) = Aα′(t)

Proposition 68. Let A ∈ SO(3). Then, ∀u, v ∈ R3 we
have:

A(u × v) = (Au) × (Av)

Corollary 69. Let I ⊆ R be an open interval, C ⊂ R3

be a curve, α : I → R3 be an arc-length parametrization
of C of class C3 and β := Aα+ u, where A ∈ SO(3) and
u ∈ R3. Then, β is arc-length parametrized and the TNB
frame of β is:

Tβ = ATα Nβ = ANβ Bβ = ABα

And the curvature and torsion of β are:

kβ = kα τβ = τα

Fundamental theorem of curves

Theorem 70 (Fundamental theorem of curves). Let
I ⊆ R be an open interval and k, τ : I → R be func-
tions of class C3 with k(s) > 0 ∀s ∈ I. Then, there is a
curve C, arc-length parametrized by α : I → R3 of class
C3, whose curvature and torsion are k and τ , respectively.
Moreover, if C̃ is another curve arc-length parametrized
by α̃ : I → R3 satisfying these restrictions, then there
exists an Euclidean motion that carries C̃ into C.

2. | Submanifolds of Rn

Planar functions

Definition 71. Let U ⊆ Rn be an open set and f : U → R
be a function. We define the support of f as:

supp(f) := {x ∈ U : f(x) ̸= 0}

Lemma 72. Let x0 ∈ Rn and a, b ∈ R>0 with a < b.
Then, there exists a function ρ : Rn → [0, 1] of class C∞

such that supp(ρ) ⊆ B(x0, b) and ρ|B(x0,a) = 1.

Proposition 73. Let U ⊆ Rn be an open set and
K ⊂ U be a compact set. Then, there exists a function
ρ : Rn → [0, 1] of class C∞ such that supp(ρ) ⊆ U and
ρ|K = 1.

Corollary 74. Let U ⊆ Rn be an open set, K ⊂ U
be a compact set and f : U → R be a function of class
C∞. Then, there exists a function f̃ : U → R such that
f̃ |K = f |K and f̃ |Rn\U = 0.

Immersions and submersion

Definition 75 (Immersion). Let n, m ∈ N with n ≤ m,
U ⊆ Rn be an open set and f : U → Rm be a function
of class C∞. We say that f is an immersion at x0 ∈ U if
dfx0 is injective. We say that f is an immersion (on U) if
it is an immersion at each point x ∈ U .

Definition 76 (Submersion). Let n, m ∈ N with n ≥
m, U ⊆ Rn be an open set and f : U → Rm be a function
of class C∞. We say that f is a submersion at x0 ∈ U if
dfx0 is surjective. We say that f is a submersion (on U)
if it is a submersion at each point x ∈ U .

Proposition 77. Let n, m ∈ N, U ⊆ Rn be an open set
and f : U → Rm be a function of class C∞. Then:

• If n ≤ m, then:

f is immersion ⇐⇒ rank dfp = n ∀p ∈ U

• If n ≥ m, then:

f is submersion ⇐⇒ rank dfp = m ∀p ∈ U

Theorem 78 (Local structure of immersions). Let
n, m ∈ N with n ≤ m, U ⊆ Rn be an open set, f : U → Rm

be an immersion at x0 ∈ U and ι : Rn → Rm be
the inclusion map. Then, there exist neighbourhoods
V ⊆ U of x0 and W ⊆ Rm of ι(x0) and a diffeomor-
phism g : W → g(W ) such that the following diagram is
commutative, that is, f = g ◦ ι.

V g(W )

W

f

gι

Figure 3

Theorem 79 (Local structure of submersions). Let
n, m ∈ N with n ≥ m, U ⊆ Rn be an open set, f : U → Rm

be a submersion at x0 ∈ U and π1 : Rm × Rn−m → Rm

be the projection map into the first coordinate. Then,
there exists a neighbourhood V ⊆ U of x0 and a diffeo-
morphism g : V → g(V ) such that the following diagram
is commutative, that is, f = π1 ◦ g.

V Rm

g(V )

f

π1
g

Figure 4

Submanifolds of Rn

Definition 80. Let M ⊆ Rn be a set. We say that M
is a submanifold of Rn of dimension p (and codimension
q := n−p) if ∀z ∈ M there exists a neighbourhood U ⊆ Rn

of z and a diffeomorphism g : U → g(U) such that:

g(U ∩ M) = g(U) ∩ (Rp × {0})
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Theorem 81. Let M ⊆ Rn be a set. The following state-
ments are equivalent:

1. M is a submanifold of Rn of dimension p and codi-
mension q.

2. ∀z ∈ M there exists a neighbourhood U ⊆ Rn

of z and a submersion ϕ : U → Rq such that
U ∩ M = ϕ−1(0).

3. ∀z ∈ M there exists a neighbourhood V ⊆ Rp

of z and an immersion φ : V → Rn such that
z ∈ φ(V ) ⊆ M and φ : V → φ(V ) is a homeo-
morphism.

Definition 82. Let M ⊆ Rn be a submanifold, V ⊆ Rp

and φ : V → φ(V ) ⊆ M be an immersion and a homeo-
morphism. We say that the pair (V,φ) is a parametriza-
tion of M and the pair (φ(V ),φ−1), a coordinate chart of
M .

Proposition 83. Let (V1,φ1), (V2,φ2) be two parame-
trizations of a submanifold M ⊆ Rn. Then, the composi-
tion φ2

−1 ◦φ1 is differentiable on its domain.

Proposition 84. Let M ⊆ Rn be a submanifold of Rn of
dimension p, V ⊆ Rp be an open set and φ : V → M be a
differentiable injective immersion. Then, φ(V ) ⊆ M is an
open set and φ : V → φ(V ) is a homeomorphism. Hence,
(V,φ) is a parametrization of M .

Surfaces of R3

Definition 85. A submanifold of R3 of dimension 2 is
called a regular surface (or simply surface) of R3.

Proposition 86. Let U ⊆ R2 be an open set an h : U →
R be a function of class C1. Then, graph(h) is a surface.

Proposition 87. Let S ⊆ R3 be a set. Then, S is a
surface if and only if ∀z ∈ S there exists an open neigh-
bourhood U ⊆ R3 of z, a change of the order of the vari-
ables σ, a neighbourhood V ⊆ R2 of π1(σ(z)) (where
π1 : R2 × R → R2 is the projection map) and a differen-
tiable function h : V → R such that:

σ(S ∩ U) = graph(h)

Proposition 88. Let U ⊆ R3, f : U → R be a function
of class C1 and a ∈ R such that dfp ̸= 0 ∀p ∈ f−1(a).
Then, f−1(a) is a surface.

Definition 89. Let (a(u), v(u)), u ∈ I, be a parametriza-
tion of class C1 of a planar curve C. We define the surface
of revolution created by rotating C around an axis of ro-
tation. The curve C is called generatrix. In particular, if
we choose the y-axis as the axis of rotation,

φ(u, v) = (a(u) cos v, a(u) sin v, b(u)) (u, v) ∈ I × (0, 2π)

is a parametrization of the induced surface of revolution.

Differentiable functions

Definition 90. Let S ⊆ R3 be a surface. We say that a
function f : S → Rn is differentiable at a point p ∈ S if
there is a local parametrization (V,φ) of S with p ∈ φ(V )
such that f ◦ φ is differentiable at φ−1(p). We say that
f is differentiable on S if it is differentiable at each point
p ∈ S.
Proposition 91. Let S ⊆ R3 be a surface, f : S → Rn

be a differentiable function and p ∈ S. Then, there ex-
ists an open neighbourhood U ⊆ R3 of p and a function
f̃ : S → Rn such that f̃ |U∩S = f |U∩S .
Corollary 92. Let S ⊆ R3 be a surface, U ⊆ Rn

and f : U → R3 be a differentiable function such that
f(U) ⊆ S. If (V,φ) is a local parametrization of S, then
φ−1 ◦ f is also a differentiable function on its domain.
Corollary 93. Let S ⊆ R3 be a surface, (V,φ(u, v)) be a
local parametrization of S and α : I → R3 be a curve of
class C∞ such that α(I) ⊂ φ(V ). Then, α can be written
as α(t) = φ(u(t), v(t)), where u(t), v(t) are differentiable
functions.
Definition 94. Let S1, S2 ⊆ R3 be surfaces. We say that
a function f : S1 → S2 is differentiable if ∀p ∈ S1, there
exist parametrizations (V1,φ1) and (V2,φ2) of S1 and S2
respectively with p ∈ φ1 and f(p) ∈ φ2 and such that
φ2

−1 ◦ f ◦φ1 is differentiable on its domain10.
Proposition 95. Let S1, S2 ⊆ R3 be surfaces and f :
S1 → S2 be a function. Then, f is differentiable if
f ◦ ι : S1 ↪→ R3 is differentiable.

Tangent space

Definition 96. Let S ⊆ R3 be a surface and p ∈ S. If
α : (−ε, ε) → R3 is a parametrization of a curve of class
C∞ such that α(0) = p, we say that α′(0) is a tangent vec-
tor to S at p. The set of all such vectors is called tangent
space (or tangent plane) and it is denoted as TpS.
Proposition 97. Let S ⊆ R3 be a surface, p ∈ S,
(V,φ) be a local parametrization of S with p ∈ φ(V ) and
f : U → R be a submersion with S ∩ U = f−1(0). Then:

im dφφ−1(p) = TpS = ker dfp

Therefore, TpS is a vector space and dim TpS = 2.
Proposition 98. Let S ⊆ R3 be a surface, (V,φ(u, v))
be a local parametrization of S and p = φ(u0, v0) ∈ S.
Then, the tangent vectors(

∂φ

∂u
(u0, v0), ∂φ

∂v
(u0, v0)

)
11

form a basis of the tangent plane TpS.
Lemma 99. Let U ⊆ Rn be an open set, f : U → Rm

be a differentiable function and α : (−ε, ε) → U be a
parametrization of a curve of class C∞ such that α(0) = p
and α′(0) = v. Then:

dfp(v) = (f ◦α)′(0)
10In particular, note that if S1 = S2 and f = id, then φ2

−1 ◦ id ◦ φ1 = φ2
−1 ◦ φ1 is a change of coordinates on the surface.

11Usually we will denote these partial derivatives by φu = ∂φ
∂u

(u0, v0) and φv = ∂φ
∂v

(u0, v0), respectively.
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Definition 100. Let S1, S2 ⊆ R3 be surfaces, p ∈ S1 and
f : S1 → S2 be a differentiable function. We define the
tangent function (or differential) of f at p as the function:

dfp : TpS1 −→ Tf(p)S2
v 7−→ (f ◦α)′(0)

where α : (−ε, ε) → S1 is a parametrization of a curve of
class C∞ such that α(0) = p and α′(0) = v.

Proposition 101. Let S1, S2 ⊆ R3 be surfaces, p ∈ S1
and f : S1 → S2 be a differentiable function. Then, dfp

is linear. Moreover, if (V1,φ1(u, v)) and (V2,φ2(ũ, ṽ)) are
parametrizations of S1 and S2 respectively, ũ = f1(u, v),
ṽ = f2(u, v)12 and B1 =

(
∂φ1
∂u , ∂φ1

∂v

)
, B2 =

(
∂φ2
∂ũ , ∂φ2

∂ṽ

)
,

we have that:

[dfp]B1,B2 =


∂f1

∂u
(φ−1(p)) ∂f1

∂v
(φ−1(p))

∂f2

∂u
(φ−1(p)) ∂f2

∂v
(φ−1(p))


Theorem 102 (Inverse function theorem for sur-
faces). Let S1, S2 ⊆ R3 be surfaces, p ∈ S1 and f : S1 →
S2 be a differentiable function. Suppose dfp is an iso-
morphism. Then, f is a diffeomorphism between a neigh-
bourhood U1 ⊆ S1 of p and a neighbourhood U2 ⊆ S2 of
f(p).

3. | First fundamental form
First fundamental form

Definition 103. Let S ⊆ R3 be a surface and p ∈ S. We
define the first fundamental form of S at p as the quadratic
form Ip : TpS × TpS → R defined by:

Ip(v) := ⟨v, v⟩p := ∥v∥213

Proposition 104. Let S ⊆ R3 be a surface, (V,φ(u, v))
be a local parametrization of S and p ∈ S. Then, in the
basis (φu,φv) we have:

Ip =
(

Eφ Fφ
Fφ Gφ

)
:=
(

⟨φu,φu⟩p ⟨φu,φv⟩p

⟨φv,φu⟩p ⟨φv,φv⟩p

)
14

That is, if u = aφu + bφv and v = cφu + dφv, then

⟨u, v⟩p =
(
a b

)(Eφ Fφ
Fφ Gφ

)(
c
d

)
and

Ip(u) = a2Eφ + 2abFφ + b2Gφ

Definition 105. Let S ⊆ R3 be a surface, (V,φ(u, v)) be
a local parametrization of S and p ∈ S. We say that the
parametrization (V,φ(u, v)) is orthogonal (or that u and
v are orthogonal coordinates) if Fφ = 0.

Proposition 106. Let S ⊆ R3 be a surface, (V,φ(u, v))
be a local parametrization of S and α : I → φ(V ) be a
parametrization of a curve of class C∞. We can write α
as α(t) = φ(u(t), v(t)). Then:

∥α′(t)∥ =
√

u′(t)2
Eφ + 2u′(t)v′(t)Fφ + v′(t)2

Gφ

where Eφ = Eφ(u(t), v(t)), Fφ = Fφ(u(t), v(t)), Gφ =
Gφ(u(t), v(t)). The arc-length parameter is thus:

s(t) =
tˆ

t0

√
u′2Eφ + 2u′v′Fφ + v′2Gφ dξ

Proposition 107. Let S ⊆ R3 be a surface, (V,φ(u, v))
be a local parametrization of S and p ∈ S. Then, the an-
gle β between the coordinates lines of the parametrization
(V,φ(u, v)) is:

cos β = ⟨φu,φv⟩
∥φu∥∥φv∥

= Fφ√
EφGφ

Area

Definition 108. Let S ⊆ R3 be a surface and D ⊆ S be
a subset. We say that D is a regular domain (or simply
domain) if D is open, connected and ∂ D ⊂ S is the image
of a piecewise curve of class C1. A region R ⊆ S is the
union of a domain D with its boundary, R = D ∪ ∂ D.
Definition 109. Let S ⊆ R3 be a surface, (V,φ(u, v)) be
a local parametrization of S and R ⊂ φ(V ) be a compact
region. Let Q = φ−1(R) ⊆ R2. We define the area of R
as:

area(R) =
ˆ

Q

∥φu ×φv∥ du dv

=
ˆ

Q

√
EφGφ − Fφ

2 du dv 15

Definition 110. Let S ⊆ R3 be a surface, (V,φ(u, v)) be
a local parametrization of S, R ⊂ φ(V ) be a compact re-
gion and f : S → R be a function. Let Q = φ−1(R) ⊆ R2.
We define the integral of f over the region R as:ˆ

R

f dS :=
ˆ

Q

(f ◦φ)
√

EφGφ − Fφ
2 du dv 16

Isometries

Definition 111. Let S1, S2 ⊆ R3 be surfaces and f :
S1 → S2 be a differentiable function. We say that f is a
local isometry if the differential function dfp is an isometry
∀p ∈ S1. That is, for each p ∈ S1 we have:

⟨v, w⟩1 = ⟨dfp(v), dfp(w)⟩2 ∀v, w ∈ TpS1
17

We say that f is an isometry if it is a local isometry, and
it is invertible.

12That is, f1 and f2 are the component functions of φ2
−1 ◦ f ◦ φ1.

13Abusing notation, we will denote the bilinear associated function to Ip also as Ip. That is, Ip(u, v) = ⟨u, v⟩p.
14Sometimes we will omit writing the subindex of Eφ, Fφ and Gφ.
16One can check that this definition does not depend on the parametrization (V,φ(u, v)) of S.
17Here, ⟨·, ·⟩i represents the first fundamental form of Si, i = 1, 2.
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Proposition 112. Let S1, S2 ⊆ R3 be surfaces and
f : S1 → S2 be a local isometry. Then, dfp is an iso-
morphism.

Proposition 113. Let S1, S2 ⊆ R3 be surfaces and
f : S1 → S2 be a function of class C1. Then, f is a lo-
cal isometry if and only if f preserves lengths, that is, for
any curve α : I → S1, we have L(α) = L(f ◦α).

Proposition 114. Let S1, S2 ⊆ R3 be surfaces, (V,φ) be
a local parametrization of S1, f : S1 → S2 be a function of
class C1. Then, (V,ψ = f ◦ φ) is a local parametrization
of S2 and moreover:

f is an isometry ⇐⇒ Eφ = Eψ, Fφ = Fψ, Gφ = Gψ

Corollary 115. Let S1, S2 ⊆ R3 be surfaces and f : S1 →
S2 be an isometry. Then, f preserves areas.

Conformal maps
Definition 116. Let U, V ⊆ Rn be open sets, f : U → V
be a function and p ∈ U . We say that f is conformal (or
angle-preserving) at p it preserves angles between directed
curves through p, as well as preserving orientation. We
say that f is conformal (on U) if it is conformal at each
p ∈ U .

Theorem 117. Let S1, S2 ⊆ R3 be surfaces, (V,φ) be
a parametrization of S1 and f : S1 → S2 be a confor-
mal map. Consider the parametrization (V,ψ = f ◦ φ)
be a parametrization of S2. Then, there exists a function
ρ : U → R such that:

Eφ = ρ2Eψ Fφ = ρ2Fψ Gφ = ρ2Gψ

4. | Second fundamental form
Orientation of surfaces and Gauß map

Definition 118. Let S ⊆ R3 be a surface. We say that
S is orientable if it admits a normal unit field, that is,
a differentiable function νS : S → S2 ⊆ R3 such that
νS(p) ∈ TpS⊥ ∀p ∈ S. This function νS

18 is known as
Gauß map.

Definition 119. Let S ⊆ R3 be an orientable and con-
nected surface. An orientation of S is the choice of one of
the two (νS or −νS) unit normal fields.

Definition 120. Let S ⊆ R3 be an orientable surface and
(V,φ(u, v)) be a local parametrization of S. We say that
(V,φ(u, v)) is compatible with the orientation of S if

νS = φu ×φv

∥φu ×φv∥

Proposition 121. Let S ⊆ R3 be a surface. S is ori-
entable if and only if S can be covered by the images φi(Vi)
of a collection of parametrizations {(Vi,φi) : i ∈ I} of S
such that

det d(φj
−1 ◦φi) > 0 ∀i, j ∈ I

Weingarten endomorphism

Definition 122. Let S ⊆ R3 be a surface oriented with
a normal unit field ν. We define the Weingarten endo-
morphsim of S at the point p ∈ S as the endomorphism:

Wp : TpS −→ TpS
v 7−→ −dνp(v)

Lemma 123. Let S ⊆ R3 be a surface, (V,φ(u, v)) be
a local parametrization of S, α(t) = φ(u(t), v(t)) be a
curve on S and p = α(0). We denote ν(t) = (ν ◦α)(t) =
ν(u(t), v(t)). Then:

dνp(α′(0)) = dνp(u′(0)φu + v′(0)φv)
= u′(0)νu + v′(0)νv

In particular, dνp(φu) = νu and dνp(φv) = νv.

Proposition 124. Let S ⊆ R3 be a surface oriented with
a normal unit field ν and p ∈ S. Then, the Weingarten
endomorphism is auto-adjoint with respect to the first fun-
damental form. That is:

⟨Wp(u), v⟩p = ⟨u, Wp(v)⟩p ∀u, v ∈ TpS

Proposition 125. Let S ⊆ R3 be an orientable surface
and p ∈ S. Then, the Weingarten endomorphism has real
eigenvalues, and it diagonalizes in an orthonormal basis of
TpS.

Definition 126. Let S ⊆ R3 be an orientable surface and
p ∈ S. We define the principal directons of S at p as the
eigenspaces of Wp. We define the principal curvatures of
S at p as the eigenvalues of Wp.

Definition 127. Let S ⊆ R3 be an orientable surface
and p ∈ S. We say that the point p is an umbilic point if
Wp = λid, for some λ ∈ R.

Definition 128. Let S ⊆ R3 be an orientable surface,
p ∈ S and k1, k2 be the principal curvatures of S at p. We
define the Gauß curvature of S at p as:

K(p) := det Wp = k1k2

We define the mean curvature of S at p as:

H(p) := tr Wp

2 = k1 + k2

2

Definition 129. Let S ⊆ R3 be an orientable surface.
We say that S is a minimal surface if H = 0.

18Unless necessary, we will omit writing the subindex S.

9



Second fundamental form

Definition 130. Let S ⊆ R3 be a surface oriented with
a normal unit field ν and p ∈ S. We define the sec-
ond fundamental form of S at p as the quadratic form
IIp : TpS × TpS → R defined by:

IIp(v) = Ip(Wp(v), v) = ⟨Wp(v), v⟩p
19

Definition 131. Let S ⊆ R3 be a surface oriented with
a normal unit field ν, p ∈ S and α : I → S be a regu-
lar curve. Suppose cos θ = ⟨Nα(p),ν(p)⟩. We define the
normal curvature of α at p as:

kn(p) := kα cos θ

Proposition 132 (Meusnier’s theorem). Let S ⊆ R3

be an orientable surface, p ∈ S and α : I → S be an arc-
length parametrization of a curve C of class C∞ such that
α(0) = p. Then:

kn(p) = IIp(α′(0))

In particular, kn(p) depends only on the tangent line to α
at p.

Definition 133. Let S ⊆ R3 be an orientable surface,
p ∈ S and v ∈ TpS with ∥v∥ = 1. We define the normal
curvature at p in the direction of v as:

kn(v) := IIp(v)

Proposition 134. Let S ⊆ R3 be an orientable surface,
p ∈ S and (v1, v2) be an orthonormal basis of TpS, where
vi is an eigenvector of eigenvalue ki of Wp for i = 1, 2.
Then, for i = 1, 2 we have:

ki = kn(vi)

Definition 135. Let S ⊆ R3 be an orientable surface,
p ∈ S and v ∈ TpS with ∥v∥ = 1. We say that
the direction of v in TpS is an asymptotic direction if
kn(v) = IIp(v) = 0.

Definition 136. Let S ⊆ R3 be an orientable surface and
C ⊂ S be a curve. We say that C is a line of curvature of
S if the tangent line at C is a principal direction at each
point p ∈ C. We say that C is an asymptotic line of S if
the tangent line at C is an asymptotic direction at each
point p ∈ C.

Proposition 137 (Olinde Rodrigues’ theorem). Let
S ⊆ R3 be an orientable surface and α : I → S be a
regular parametrization of a curve C of class C∞. Let
ν(t) := (ν ◦ α)(t). Then, C is a line of curvature of S if
and only if

ν′(t) = λ(t)α′(t)

where λ(t) is a differentiable function. In this case, −λ(t)
is the principal curvature of S in the direction of α′(t).

Proposition 138 (Euler’s formula). Let S ⊆ R3 be an
orientable surface, p ∈ S and (v1, v2) be an orthonormal
basis of TpS, where vi is an eigenvector of eigenvalue ki of
Wp for i = 1, 2. Then:

kn(cos θv1 + sin θv2) = k1(cos θ)2 + k2(sin θ)2

Hence, we will denote kn(θ) := k1(cos θ)2 + k2(sin θ)2.

Corollary 139. Let S ⊆ R3 be an orientable surface,
p ∈ S. Then, the extrema of kn(p) are precisely the prin-
cipal curvatures k1 and k2 at p.

Proposition 140. Let S ⊆ R3 be a surface oriented with
a normal unit field ν and p ∈ S. Then, if we invert the
orientation of ν, the curvatures k1, k2, H and kn change
their sign but K remains invariant.

Proposition 141. Let S ⊆ R3 be an orientable surface.
Then:

H = k1 + k2

2 = 1
2π

2πˆ

0

kn(θ)dθ

Proposition 142. Let S ⊆ R3 be a surface oriented with
a normal unit field ν and α : I → S be a regular curve of
class C∞. Then:

kn = ⟨α′′,ν ◦α⟩
∥α′∥2

Definition 143. Let S ⊆ R3 be an orientable surface and
p ∈ S. We say that p is

• an elliptic point if K(p) > 0.

• a hyperbolic point if K(p) < 0.

• a parabolic point if K(p) = 0 but Wp ̸= 0.

• a plane point if K(p) = 0 and Wp = 0.

Proposition 144. Let S ⊆ R3 be an orientable and con-
nected surface such that all of its points are umbilic. Then,
S is contained in a sphere or in a plane.

Gauß map in coordinates
Proposition 145. Let (V,φ(u, v)) be a local parame-
trization of a surface S ⊆ R3 oriented with a normal unit
field ν and p ∈ S. Suppose

νu = a11φu + a21φv

νv = a12φu + a22φv

Then:
dνp = −Wp = −

(
a11 a12
a21 a22

)
Proposition 146. Let (V,φ(u, v)) be a local parame-
trization of a surface S ⊆ R3 oriented with a normal unit
field ν and p ∈ S. Then, we have:

eφ := −⟨νu,φu⟩ = ⟨ν,φuu⟩
19Abusing notation, we will denote the bilinear associated function to IIp also as IIp. That is, IIp(u, v) = ⟨Wp(u), v⟩p.
20Sometimes we will omit writing the subindex of eφ, fφ and gφ.
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fφ := −⟨νv,φu⟩ = ⟨ν,φuv⟩ = ⟨ν,φvu⟩ = −⟨νu,φv⟩
gφ := −⟨νv,φv⟩ = ⟨ν,φvv⟩

Moreover, in the basis (φu,φv) we have:

IIp =
(

eφ fφ
fφ gφ

)
20

Proposition 147. Let (V,φ(u, v)) be a local parame-
trization of a surface S ⊆ R3 oriented with a normal unit
field ν and p ∈ S. Then:

Wp = Ip
−1IIp

Hence:

Wp = 1
EφGφ − Fφ

2

(
eφGφ − fφFφ fφGφ − gφFφ

−eφFφ + fφEφ −fφFφ + gφEφ

)
Corollary 148. Let (V,φ(u, v)) be a local parametriza-
tion of a surface S ⊆ R3 oriented with a normal unit field
ν and p ∈ S. Then:

K = eφgφ − fφ
2

EφGφ − Fφ
2

H = 1
2

eφGφ − 2fφFφ + gφEφ

EφGφ − Fφ
2

Moreover the principal curvatures are given by:

k1, k2 = H ±
√

H2 − K

Proposition 149. Let S ⊆ R3 be an orientable surface,
(V,φ(u, v)) be a parametrization of S and α : I → S be
a regular parametrization of a curve C of class C∞ such
that α(t) = φ(u(t), v(t)). Then:

1. C is an asymptotic line if and only if:

eφu′2 + 2fφu′v′ + gφv′2 = 0

2. C is a line of curvature if and only if:∣∣∣∣∣∣
v′2 −u′v′ u′2

Eφ Fφ Gφ
eφ fφ gφ

∣∣∣∣∣∣ = 0

Geometric interpretation of the Gauß curva-
ture

Lemma 150. Let S ⊆ R3 be an orientable surface, p ∈ S,
(v1, v2) be a basis of TpS and A : TpS → TpS be a linear
isomorphism. Then:

Av1 × Av2 = det A (v1 × v2)

In particular, if ν is a normal unit field of S and w1, w2 ∈
TpS, then:

dνp(w1) × dνp(w2) = K(p) (w1 × w1)

If w1 = φu and w2 = φv we have:

νu × νv = K (φu ×φv)

Definition 151. Let S ⊆ R3 be a surface oriented with a
normal unit field ν and R ⊆ S be a region on S where the
curvature K doesn’t vanish. We define the signed area of
ν(R) as:

areas(ν(R)) = sgn(K) area(ν(R))

Proposition 152. Let S ⊆ R3 be an orientable sur-
face, p ∈ S such that K(p) ̸= 0 and V ⊆ S be a con-
nected neighbourhood of p where K has constant sign.
Let (Bn) ⊆ V be a sequence of regions that converge to p.
Then:

K(p) = lim
n→∞

areas(ν(Bn))
area(Bn)

Ruled surfaces

Definition 153. Let S ⊆ R3 be a surface is called ruled
surface if it has a parametrization of the form

φ(u, v) = α(u) + vβ(u)

where α and β are curves of R3 such that |β| = 1.

Proposition 154. Let S ⊆ R3 be a ruled surface. Then,
K ≤ 0.

Definition 155. Let S ⊆ R3 be a surface. We say that
S is developable if it is ruled and K = 0.

Proposition 156. Let S ⊆ R3 be a developable surface
and (V,φ(u, v)) be a parametrization of S. Then, there
exists a curve v = h(u) where φ stops being regular. This
curve is called regression axis.

5. | Intrinsic geometry of surfaces
Gauß’ Theorema Egregium

Definition 157. Let S ⊆ R3 be an orientable surface and
(V,φ(u, v)) be a parametrization of S. Then

φuu = Γ1
11φu + Γ2

11φv + eν

φuv = Γ1
12φu + Γ2

12φv + fν

φvu = Γ1
21φu + Γ2

21φv + fν

φvv = Γ1
22φu + Γ2

22φv + gν

for some coefficients Γk
ij , i, j, k ∈ {1, 2}. These coefficients

are called Christoffel symbols21.

Proposition 158. Let S ⊆ R3 be an orientable surface
and (V,φ(u, v)) be a parametrization of S. Then:(

E F
F G

)(
Γ1

11
Γ2

11

)
=
( 1

2 Eu

Fu − 1
2 Ev

)
(

E F
F G

)(
Γ1

12
Γ2

12

)
=
( 1

2 Ev
1
2 Gu

)
(

E F
F G

)(
Γ1

22
Γ2

22

)
=
(

Fv − 1
2 Gu

1
2 Gv

)
That is, the Christoffel symbols only depend on the coef-
ficients of the first fundamental form.

21Observe that Γk
ij = Γk

ji ∀i, j, k ∈ {1, 2}.
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Proposition 159. Let S ⊆ R3 be an orientable surface
and (V,φ(u, v)) be a parametrization of S. Then:

1.
(
Γ2

12
)

u
−
(
Γ2

11
)

v
+Γ1

12Γ2
11−Γ1

11Γ2
12+Γ2

12Γ2
12−Γ2

11Γ2
22 =

−EK

2.
(
Γ1

12
)

u
−
(
Γ1

11
)

v
+ Γ1

12Γ2
12 − Γ2

11Γ1
22 = FK

3.
(
Γ2

22
)

u
−
(
Γ2

12
)

v
+ Γ1

22Γ2
11 − Γ1

12Γ2
12 = −FK

4.
(
Γ1

22
)

u
−
(
Γ1

12
)

v
+Γ1

22Γ1
11+Γ2

22Γ1
12−Γ1

12Γ1
12−Γ2

12Γ1
22 =

GK

These equations are called Gauß equations. Moreover, we
have:

5. ev − fu = eΓ1
12 + f

(
Γ2

12 − Γ1
11
)

− gΓ2
11

6. fv − gu = eΓ1
22 + f

(
Γ2

22 − Γ1
12
)

− gΓ2
12

These equations are called Codazzi-Mainardi equations.

Corollary 160. Let S ⊆ R3 be an orientable surface.
Then, its Gauß curvature depends only on the coefficients
of the first fundamental form.

Theorem 161 (Gauß’ Theorema Egregium). The
Gauß curvature is invariant under local isometries between
surfaces.

Theorem 162 (Bonnet’s theorem). Let V ⊆ R2 be an
open set and E, F, G, e, f, g : V → R be functions of class
C∞ such that E, G, EG − F 2 > 0 and such that they sat-
isfy Gauß and Codazzi-Mainardi equations. Then ∀p ∈ V ,
there exists a neighbourhood U ⊆ V of p and an immer-
sion φ : U → R3 such that S := φ(U) is a regular surface
whose first and second fundamental forms coefficients are
E, F , G and e, f , g, respectively. Moreover, if ψ : U → R3

satisfy the same conditions, then there exist A ∈ O(3) and
c ∈ R3 such that ψ = Aφ+ c.

Proposition 163. Let S ⊆ R3 be an orientable surface
and (V,φ(u, v)) be an orthogonal parametrization of S.
Then:

K = − 1
2
√

EG

[(
Ev√
EG

)
v

+
(

Gu√
EG

)
u

]

Parallel transport

Definition 164. Let S ⊆ R3 be a surface and U ⊆ S be
an open set. A vector field tangent to S defined on U is
a correspondence X that at each point p ∈ U it assigns
a tangent vector X(p) =: Xp ∈ TpS. We say that X is
differentiable at p ∈ U if there is a parametrization φ(u, v)
of S whose image contains p such that

X = aφu + bφv

for some differentiable functions a(u, v), b(u, v) at p. We
say that X is differentiable if it is differentiable at each
point p ∈ U22.

Definition 165. Let S ⊆ R3 be a surface, X be a dif-
ferentiable vector field tangent to S, p ∈ S and w ∈ TpS.
Let α : (−ε, ε) → S a parametrized curve of class C∞ with
α(0) = p and α′(0) = w. We denote X(t) := (X ◦ α)(t).
We define the covariant derivative of X at the point p in
the direction of w, denoted as DX

dt (0), as the orthogonal
projection π⊥ of X′(0) over the vector field TpS. That is:

DX
dt

(0) = π⊥ (X′(0)
)

Proposition 166. Let S ⊆ R3 be a surface, X be a dif-
ferentiable vector field tangent to S, p ∈ S and w ∈ TpS.
Let α : (−ε, ε) → S a parametrized curve of class C∞

with α(0) = p and α′(0) = w. Suppose (V,φ(u, v)) is
a parametrization of S whose image contains p. Suppose
X(t) = a(u(t), v(t))φu +b(u(t), v(t))φv = a(t)φu +b(t)φv

Then:

DX
dt

=
(
a′ + Γ1

11au′ + Γ1
12av′ + Γ1

21bu′ + Γ1
22bv′)φu

+
(
b′ + Γ2

11au′ + Γ2
12av′ + Γ2

21bu′ + Γ2
22bv′)φv (1)

Definition 167. Let S ⊆ R3 be a surface and α : I → S
be a curve of class C∞. A vector field tangent to S along
α is a correspondence X that at each t ∈ U it assigns a
tangent vector X(t) =: Xα(t) ∈ Tα(t)S. We say that X is
differentiable if at each local chart (V,φ(u, v)) we have:

X(t) = a(t)φu + b(t)φv

for some differentiable functions a(t), b(t). We define its
covariant derivative (along α) as the vector field DX

dt de-
fined by Eq. (1), which is differentiable along α.

Definition 168. Let S ⊆ R3 be a surface and X be a
vector field tangent to S along a curve α : I → S of class
C∞. We say that X is parallel if:

DX
dt

= 0

Proposition 169. Let S ⊆ R3 be a surface and X, Y be
vector fields tangent to S along a curve α : I → S of class
C∞ such that they are parallel. Then, t 7→ ⟨X(t), Y(t)⟩ is
constant. In particular, the norms ∥X(t)∥, ∥Y(t)∥ as well
as the angle between X(t) and Y(t) are constant.

Proposition 170. Let S ⊆ R3 be a surface, (V,φ(u, v))
is a parametrization of S and α : I → S be a parametrized
curve of class C∞ such that α = φ(u(t), v(t)). Then, given
t0 ∈ I and w ∈ Tα(t0)S there exists a unique parallel vec-
tor field X = aφu + bφv along α such that X(t0) = w.
This vector field is called parallel transport of the vector
w along α, and it is defined on the entire interval I. It
can be found by solving this system of ODEs:{

a′ + Γ1
11au′ + Γ1

12av′ + Γ1
21bu′ + Γ1

22bv′ = 0
b′ + Γ2

11au′ + Γ2
12av′ + Γ2

21bu′ + Γ2
22bv′ = 0

with initial conditions a(t0) = a0, b(t0) = b0 and w =
a0φu + b0φv.

22From now on, all the vector fields considered will be differentiable, so sometimes we will omit to say it explicitly.
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Geodesics

Definition 171. Let S ⊆ R3 be a surface and αI → S
be a parametrized curve of class C∞. We say that α is a
geodesic of S if the tangent vector α′ is parallel along α.
That is, if it satisfies:

Dα′

dt
= 0

Proposition 172. Let α be a geodesic of a surface
S ⊆ R3 be a surface. Then, ∥α′∥ is constant.

Proposition 173. Let S ⊆ R3 be an orientable surface,
(V,φ(u, v)) be a local parametrization of S and αI → S
be a parametrized curve of class C∞ with α∗ ⊂ φ(V ).
Suppose α(t) = φ(u(t), v(t)), for some differentiable func-
tions u, v : I → R. Then, α is a geodesic of S if and only
if: {

u′′ + Γ1
11(u′)2 + 2Γ1

12u′v′ + Γ1
22(v′)2 = 0

v′′ + Γ2
11(u′)2 + 2Γ2

12u′v′ + Γ2
22(v′)2 = 0

Proposition 174. Let S ⊆ R3 be a surface, p ∈ S
and v ∈ TpS. Then, there exists ε > 0 and a curve
α : (−ε, ε) → S of class C∞ such that it is a geodesic,
α(0) = p and α′(0) = v.

Geodesic curvature

Definition 175. Let S ⊆ R3 be a surface oriented with a
normal unit field ν and X be a unit vector field tangent to
S along a curve α : I → S of class C∞. We define the by
X the unique unit vector field along α such that (X, X,ν)
is a positive orthonormal basis of R323.

Definition 176. Let S ⊆ R3 be a surface oriented with
a normal unit field ν and X be a unit vector field tangent
to S along a curve α : I → S of class C∞. Since X is a
unit field, we have:

DX
dt

= λX = λν × X

We define the algebraic value of the covariant derivative
of X at time t as: [

DX
dt

(t)
]

:= λ(t)24

Definition 177. Let S ⊆ R3 be an orientable surface
and α : I → S be a regular arc-length parametrization of
a curve C of class C∞. The algebraic value of the covariant
derivative of α′ at α(s) is:

kg(s) :=
[

Dα′

ds
(s)
]

This value kg is called geodesic curvature of C at α(s).

Proposition 178. Let S ⊆ R3 be an orientable surface
and α : I → S be a regular arc-length parametrization of
a curve C of class C∞. Then:

C is a geodesic ⇐⇒ kg = 0

Proposition 179. Let S ⊆ R3 be a surface oriented with
a normal unit field ν and X be a unit vector field tangent
to S along a curve α : I → S of class C∞. Then:[

DX
dt

(t)
]

=
〈

dX
dt

, X
〉

=
〈

dX
dt

,ν × X
〉

In particular if α is arc-length parametrized, then:

kg = ⟨α′′,ν ×α′⟩

Or more generally:

kg = ⟨α′′,ν ×α′⟩
∥α′∥3

Proposition 180. Let S ⊆ R3 be an orientable surface
and α : I → S be a regular arc-length parametrization of
a curve C of class C∞. Then:

k2 = kg
2 + kn

2

Proposition 181. Let S ⊆ R3 be an orientable surface
and X, Y be two unit vector fields tangent to S along a
curve α : I → S of class C∞. Then:[

DY
dt

]
−
[

DX
dt

]
= dθ

dt

where θ is a differentiable determination of the angle be-
tween X and Y.

Corollary 182. Let S ⊆ R3 be an orientable surface,
X be a parallel unit vector field along an arc-length
parametrized curve α : I → S of class C∞ and θ is a
differentiable determination of the angle between X and
α′. Then:

kg(s) =
[

DX
ds

(s)
]

Proposition 183. Let S ⊆ R3 be an orientable surface
and (V,φ(u, v)) be an orthogonal parametrization of S
compatible with the orientation. Let X be a unit vector
field tangent to S along a curve α : I → S of class C∞.
Suppose α(t) = φ(u(t), v(t)). Then:[

DX
dt

]
= 1

2
√

EG
(Guv′ − Evu′) + dθ

dt

where θ is the angle from φu to X. In particular if the
curve α is arc-length parametrized, then:

kg = 1
2
√

EG
(Guv′ − Evu′) + dθ

dt

Theorem 184 (Liouville’s formula). Let S ⊆ R3 be
an orientable surface and (V,φ(u, v)) be an orthogonal
parametrization of S compatible with the orientation. Let
α : I → S be an arc-length parametrized curve of class
C∞ such that α(t) = φ(u(t), v(t)) and let θ = θ(s) be the
angle between φu and α′(s). Then:

kg = (kg)1 cos θ + (kg)2 sin θ + dθ

ds

where (kg)1 and (kg)2 denote the geodesic curvature of the
coordinate lines v = const. and u = const., respectively.

23Or equivalently such that (X, X) is a positive orthonormal basis of Tα(t)S.
24Note that the sign of

[
DX
dt

(t)
]

does depend on the orientation of ν.
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Proposition 185. Let S ⊆ R3 be an orientable surface
and α : I → S be a parametrized curve of class C∞. Then,
α is a geodesic in a convenient parametrization if and only
if:

Dα′

dt
= λ(t)α′(t)

6. | Differential forms
Vector fields of Rn

Definition 186. Let p ∈ Rn. We denote by TpRn the
vector space defined by:

TpRn := {(p, v) : v ∈ Rn}

Definition 187. Let U ⊆ Rn be an open set. A vector
field defined on U is a correspondence X that at each point
p ∈ U it assigns a vector X(p) =: Xp ∈ TpRn.

Definition 188. Let (e1, . . . , en) be the standard basis of
Rn. For i = 1, . . . , n, we define the following vector fields:

Ei := ∂
∂xi : Rn −→ TpRn

p 7−→ (p, ei)

Proposition 189. Let U ⊆ Rn be an open set. Then,
for each p ∈ Rn, (E1, . . . , En) is a basis of TpRn. Con-
sequently, given a vector field X defined on U , it can be
uniquely written as:

X =
n∑

i=1
XiEi =

n∑
i=1

Xi ∂

∂xi
25

Definition 190. Let U ⊆ Rn be an open set and X =∑
Xi ∂

∂xi be a vector field defined on U . We say that X
is differentiable at p ∈ U if the components Xi are differ-
entiable at p. We say that X is differentiable on U if it
is differentiable at each point p ∈ U . We denote by X (U)
the set of all differentiable vector fields defined on U26.

Definition 191. Let U ⊆ Rn be an open set and X, Y ∈
X (U). We define the inner product of X and Y as:

⟨X, Y⟩ : U −→ R
p 7−→ ⟨Xp, Yp⟩

Definition 192. Let U ⊆ Rn be an open set, f ∈ C∞(U)
and X =

∑
Xi ∂

∂xi ∈ X (U). We denote by Xf the differ-
entiable function defined as:

Xf(p) := Xpf :=
n∑

i=1
Xi(p) ∂f

∂xi
27

Lemma 193. Let U ⊆ Rn be an open set and X ∈ X (U).
Then, the function

X : C∞(U) −→ C∞(U)
f 7−→ Xf

satisfies the following properties:

1. It is R-linear.

2. X(fg) = (Xf)g + f(Xg) for all f, g ∈ C∞(U).
Lemma 194. Let U ⊆ Rn be an open set, f ∈ C∞(U)
and X ∈ X (U). Then:

Xf = ⟨X, ∇f⟩

Definition 195. Let U ⊆ Rn be an open set and X =∑
Xi ∂

∂xi ∈ X (U). We say that a parametrized curve
γ : I → Rn is an integral curve of X if:

γ′(t) = X(γ(t)) ∀t ∈ I

That is, the integral curve γ(t) = (x1(t), . . . , xn(t)) of X
satisfies the following system of ODEs:

(x1)′ = X1(γ(t))
...

(xn)′ = Xn(γ(t))

Proposition 196. Let U ⊆ Rn be an open set, F ∈
C∞(U) and X ∈ X (U). We say that F if a first integral of
X if:

1. dFp ̸= 0 ∀p ∈ U .

2. F is constant over the integral curves of X. That is,
XF = 0.

Proposition 197. Let n ≥ 2, U ⊆ Rn be an open set,
p ∈ U and X ∈ X (U). Suppose that Xp ̸= 0. Then,
there exists a neighbourhood V ⊆ U of p and a differen-
tial function F : V → R such that F is a first integral of
X.
Definition 198. Let S ⊆ R3 be a regular surface. A vec-
tor field defined on S is a correspondence X that at each
point p ∈ S it assigns a vector X(p) =: Xp ∈ TpR3. If
there is a parametrization φ(u, v) of S, we can write

X = X(u, v) =
3∑

i=1
Xi(u, v) ∂

∂xi

where Xi(u, v) := (Xi ◦ φ)(u, v). We say that X is dif-
ferentiable if the functions Xi(u, v) are differentiable. We
say that X is tangent to S if Xp ∈ TpS ∀p ∈ S. In this
case we can write:

X = X̃1φu + X̃2φv

Proposition 199. Let S ⊆ R3 be a regular surface and
X, Y be tangent differential vector fields to S such that
at some point p ∈ S, the vectors Xp, Yp are linearly
independent. Then, there exists a local parametrization
(V,φ(u, v)) of S such that p ∈ φ(V ) and

X = λφu Y = µφv

for some differentiable functions λ, µ.
Corollary 200. Let S ⊆ R3 be a regular surface and
p ∈ S. Then, there exists a local orthogonal parametriza-
tion (V,φ(u, v)) of S such that p ∈ φ(V ).

25The superscript notation is used due to historical resons (Einstein notation). See https://en.wikipedia.org/wiki/Einstein_notation
for further information.

26Note that X (U) is a R-vector space.
27Observe that Xpf is the partial derivative of f at p in the direction of Xp.
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Multilinear algebra
Definition 201. Let V1, . . . , Vk, W be a vector spaces over
a field K. A multilinear map (or k-linear map) is a func-
tion

f : V1 × · · · × Vk −→ W

that is linear separately in each variable. The value k is
called degree of the multilinear map.

Definition 202. Let V be a vector space of dimension n

and ω : V ×
(k)
· · · × V −→ R be a k-linear map. We say that

ω is alternating if

ω(uσ(1), . . . , uσ(k)) = sgn(σ)ω(u1, . . . , uk) ∀σ ∈ Sk

We denote by ΛkV ∗ the vector space of the alternating k-
linear maps. The elements of ΛkV ∗ are called multilinear
forms28. By agreement, we denote Λ0V ∗ := R and:

Λ∗V ∗ :=
n⊕

k=0
ΛkV ∗

Definition 203. Let V be a vector space, α ∈ ΛpV ∗ and
β ∈ ΛqV ∗. We define its exterior product as the multilin-
ear map α ∧ β defined as:

α ∧ β(u1, . . . up+q) = 1
p!q!

∑
σ∈Sp+q

sgn(σ)·

· α(uσ(1), . . . , uσ(p))β(uσ(p+1), . . . , uσ(p+q))

Proposition 204. Let V be a vector space and α ∈ ΛpV ∗,
β ∈ ΛqV ∗ and γ ∈ ΛrV ∗. Then:

1. α ∧ β ∈ Λp+qV ∗ (that is, α ∧ β is alternating)

2. α ∧ (β ∧ γ) = (α ∧ β) ∧ γ

3. α ∧ β = (−1)pq
β ∧ α

Proposition 205. Let V be a vector space and
ω1, . . . , ωk ∈ V ∗ = Λ1V ∗. Then:

ω1 ∧ · · · ∧ ωk(u1, . . . , uk) =

∣∣∣∣∣∣∣
ω1(u1) · · · ω1(uk)

... . . . ...
ωk(u1) · · · ωk(uk)

∣∣∣∣∣∣∣
Corollary 206. Let (e1, . . . , en) be the standard basis of
Rn and (e1

∗, . . . , en
∗) be its associated dual basis. Then:

e1
∗ ∧ · · · ∧ en

∗(u1, . . . , un) = det(u1, . . . , un)

Proposition 207. Let (e1, . . . , en) be the standard basis
of E := Rn and (e1

∗, . . . , en
∗) be its associated dual basis.

Then, given ω ∈ ΛkE∗ we have that:

ω(u1, . . . , uk) =
∑

j1<···<jk

Aj1,...,jk
ω(ej1 , . . . , ejk

)

where Aj1,...,jk
:= ej1

∗ ∧ · · · ∧ ejk
∗(u1, . . . , uk). Thus:

ω =
∑

j1<···<jk

ω(ej1 , . . . , ejk
)ej1

∗ ∧ · · · ∧ ejk

∗

Corollary 208. Let (e1, . . . , en) be the standard basis of
E := Rn and (e1

∗, . . . , en
∗) be its associated dual basis.

Then, the set

{ej1
∗ ∧ · · · ∧ ejk

∗ : j1 < · · · < jk, ji ∈ N ∀i = 1, . . . , k}

is a basis of ΛkE∗. In particular, dim ΛkE∗ =
(

n
k

)
.

Corollary 209. Let (e1, . . . , en) and (v1, . . . , vn) be the
standard basis and an arbitrary basis of E := Rn with as-
sociated dual basis (e1

∗, . . . , en
∗) and (v1

∗, . . . , vn
∗), re-

spectively. Suppose vi =
∑n

j=1 aijei for i = 1, . . . , n and
define A := (aij) ∈ Mn(R). Then:

v1
∗ ∧ · · · ∧ vn

∗ = 1
det Ae1

∗ ∧ · · · ∧ en
∗

Proposition 210. Let v1, . . . , vn ∈ Rn and P be the
parallelepiped they generate. Then:

vol P = |det(v1, . . . , vn)|

Differential forms

Definition 211. Let U ⊆ Rn be an open set. A differ-
ential k-form on U is a differentiable function ω : U →
Λk(Rn)∗ ∼= R(n

k)29. We will denote the dual basis of(
∂

∂x1 , . . . , ∂
∂xn

)
by (dx1 , . . . , dxn). Thus, a differential k-

form can be written as:

ω =
∑

j1<···<jk

ωj1,...,jk
dxj1 ∧ · · · ∧ dxjk

We denote by Ωk(U) the set of all differential k-forms de-
fined on U with the agreement that Ω0(U) := C∞(U).

Proposition 212. Let U ⊆ Rn be an open set. Then,
Ωk(U) is a R-vector space.

Definition 213. Let U ⊆ Rn be an open set and ω ∈
Ωk(U). This form ω defines a C∞(U)-multilinear alter-
nating function, which we’ll denote also by ω, given by:

ω : X (U) ×
(k)
· · · × X (U) −→ C∞(U)

(X1, . . . , Xk) 7−→ ω(X1, . . . , Xk)

where ω(X1, . . . , Xk) is the function defined by:

ω(X1, . . . , Xk)(p) = ωp((X1)p, . . . , (Xk)p)

Definition 214. Let U ⊆ Rn be an open set and h ∈ C∞.
We define its differential as the differential 1-form dh given
by:

dh =
n∑

i=1

∂h

∂xi
dxi

Proposition 215. Let U ⊆ Rn be an open set, h ∈
C∞(U) and X ∈ X (U). Then:

dh (X) = Xh30

28Here V ∗ denotes the dual space of V (see ??).
29An element ω(p) =: ωp can be though as an element of Λk(TpRn)∗.
30In particular, note that dxi

(
∂

∂xj

)
= δij .
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Definition 216. Let U ⊆ Rn, V ⊆ Rm be open sets,
f : U → V be a differentiable function and k ≥ 1. We
define the pull-back by f as the linear function

f∗ : Ωk(V ) → Ωk(U)

defined by:

(f∗ω)(X1, . . . , Xk)(p) = ωf(p)(dfp(X1), . . . , dfp(Xk))

If k = 0, we define pull-back by f as f∗h = h ◦ f .

Proposition 217. Let U ⊆ Rn, V ⊆ Rm, W ⊆ Rr be
open sets, f : U → V , g : V → W be differentiable func-
tions, ω, η ∈ Ωk(V ), h ∈ Ω0(V ) and a, b ∈ R. Then:

1. f∗(aω + bη) = af∗ω + bf∗η

2. f∗(ω ∧ η) = f∗ω ∧ f∗η

3. (g ◦ f)∗ = f∗ ◦ g∗

4. f∗ dh = d(h ◦ f∗) = d(f∗h)

Corollary 218. Let U ⊆ Rn, V ⊆ Rm be open sets,
f = (f1, . . . , fm) : U → V be a differentiable function,
ω ∈ Ωk(V ) and h ∈ Ω0(V ). Then:

1. f∗(hω) = (h ◦ f)f∗ω

2. f∗ dxj = d(xj ◦ f) = df j ∀j ∈ {1, . . . , m}

3. If ω =
∑

j1<···<jk
ωj1,...,jk

dxj1 ∧ · · · ∧ dxjk , then:

f∗ω =
∑

j1<···<jk

(ωj1,...,jk
◦ f) df j1 ∧ · · · ∧ df jk

Definition 219. Let U ⊆ Rn be an open set, X ∈ X (U)
and ω ∈ Ωk(U), where k ≥ 1. We define the inte-
rior product of ω by X as the differential (k − 1)-form
ιXω ∈ Ωk−1(U) defined by:

ιXω(Y2, . . . , Yk) = ω(X, Y2, . . . , Yk)

By agreement, we define ιXh = 0 if h ∈ Ω0(U).

Proposition 220. Let U ⊆ Rn be an open set, X ∈
X (U), α ∈ Ωk(U), and β ∈ Ωm(U). Then:

ιX(α ∧ β) = (ιXα) ∧ β + (−1)k
α ∧ (ιXβ)

Definition 221. The differential n-form η ∈ Ωn(Rn) de-
fined by

η = dx1 ∧ · · · ∧ dxn

is called volume element of Rn.

Lemma 222. Let (u1, . . . , un) be an orthonormal posi-
tive basis of TpRn, p ∈ Rn, and let η be the volume ele-
ment. Then:

ηp(u1, . . . , un) = 1

Proposition 223. Let U, V ⊆ Rn be open sets and
f : U → V be a differentiable function. Then:

f∗η = Jf · η

where Jf is the Jacobian of f .

Definition 224. Let U ⊆ Rn be an open set and k ≥ 0.
We define the exterior differential as the linear function
d : Ωk(U) → Ωk+1(U) defined as follows: If

ω =
∑

j1<···<jk

ωj1,...,jk
dxj1 ∧ · · · ∧ dxjk

then:

dω :=
∑

m,j1<···<jk

∂ωj1,...,jk

∂xm
dxm ∧ dxj1 ∧ · · · ∧ dxjk

Proposition 225. Let U, V ⊆ Rn be open sets, f : U →
V be a differentiable function and α ∈ Ωk(U), β ∈ Ωm(U).
Then:

1. d(α ∧ β) = dα ∧ β + (−1)k
α ∧ dβ

2. d2 = 0

3. f∗ ◦ d = d ◦ f∗

Definition 226. Let U ⊆ Rn be an open set and ω ∈
Ωk(U). We say that ω is closed if dω = 0.
Definition 227. Let U ⊆ Rn be an open set and ω ∈
Ωk(U). We say that ω is exact if ∃η ∈ Ωk−1(U) such that
dη = ω.

7. | Integration
Submanifolds of Rn

Definition 228. Let M ⊆ Rn be a submanifold and
p ∈ M . If α : (−ε, ε) → R3 is a parametrization of a
curve of class C∞ such that α(0) = p, we say that α′(0) is
a tangent vector to M at p. The set of all such vectors is
called tangent space to M at p, and it is denoted as TpM .
Moreover, TpM is a vector space of dimension dim M .
Definition 229. Let M ⊆ Rn be a submanifold of dimen-
sion k and U ⊆ S be an open set. A vector field defined
on U is a correspondence X that at each point p ∈ U it
assigns a tangent vector X(p) =: Xp ∈ TpRn. We say that
X is differentiable at p ∈ U if there is a parametrization
φ(u1, . . . , uk) of M whose image contains p such that

X =
∑

Xiφui

for some functions X1, . . . , Xk differentiable at p. We say
that X is differentiable if it is differentiable at each point
p ∈ U . We say that X is tangent to M if Xp ∈ TpM
∀p ∈ U . We denote by X (U) the set of all differentiable
vector fields on U that are tangent to M .
Definition 230. Let M ⊆ Rn be a submanifold of dimen-
sion k and U ⊆ M be an open set and (V,φ(u1, . . . , uk))
be a local parametrization of M with φ(V ) = U . A
differential ℓ-form on U is a differentiable function ω :
U → Λℓ(TpM)∗ ∼= R(k

ℓ). We denote by Ωℓ(U) the set of
all differential ℓ-forms defined on U with the agreement
that Ω0(U) := C∞(U)31. We will denote the dual basis
of
(

∂
∂u1 , . . . , ∂

∂uk

)
:=

(
∂φ
∂u1 , . . . , ∂φ

∂uk

)
by (du1 , . . . , duk).

Thus, a differential ℓ-form can be written uniquely as:

ω =
∑

j1<···<jℓ

ωj1,...,jℓ
duj1 ∧ · · · ∧ dujℓ

31All the definitions made in the previous section about differential forms can be applied, conveniently modifed, to submanifolds.
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Definition 231. Let M ⊆ Rn be a submanifold of di-
mension k and U ⊆ M be an open set, (V,φ(u1, . . . , uk))
be a local parametrization of M with φ(V ) = U and
ω ∈ Ωℓ(U). We define the exterior differential as the linear
function d : Ωℓ(U) → Ωℓ+1(U) defined as follows: if

ω =
∑

j1<···<jℓ

ωj1,...,jℓ
dxj1 ∧ · · · ∧ dxjℓ

then:

dω =
∑

m,j1<···<jℓ

∂ωj1,...,jℓ

∂xm
dxm ∧ dxj1 ∧ · · · ∧ dxjℓ

Proposition 232. Let M ⊆ Rn be a submanifold of di-
mension k and U ⊆ Rn be an open set and ω ∈ Ωℓ(U).
Then, ω induces a differential form ωM ∈ Ωℓ(V ), where
V = U ∩ M , defined by:

ωM (X1, . . . , Xℓ)(p) = ωp((X1)p, . . . , (Xℓ)p)

for all p ∈ V and all Xi ∈ X (V ). The expression in
the coordinates u1, . . . , uk from a parametrization φ is:
ωM = φ∗ω.

Manifolds with boundary

Definition 233. Let k ∈ N. We define the set Hk as:

Hk := {(x1, . . . , xk) ∈ Rk : xk ≥ 0}

Note that ∂ Hk = {(x1, . . . , xk) ∈ Rk : xk = 0}.

Definition 234. Let U ⊆ Hk be an open set and f : U →
Rm be a function. We say that f is differentiable if ∀p ∈ U
there exists a neighbourhood W ⊆ Rk of p and a differ-
entiable function f̃ : W → Rm such that f̃ |V ∩W = f |V ∩W .
In this case, we define the differential of f at a point p ∈ U
as dfp = df̃p.

Definition 235. Let M ⊆ Rn be a set. We say that M
is a submanifold with boundary of dimension k if ∀p ∈ M
there is an open neighbourhood U ⊆ Rn of p, an open set
V ⊂ Hk and a differentiable function φ : V → Rn such
that:

1. φ(V ) = U ∩ M and φ : V → U ∩ M is a homeomor-
phism.

2. φ is an immersion.

In these conditions, the pair (V,φ) is called local
parametrization of M .

Proposition 236. Let M ⊆ Rn be a submanifold with
boundary of dimension k, (V,φ) be a local parametriza-
tion of it, W ⊆ Rm be an open set and f : W → Rn

be a differentiable function such that f(W ) ⊆ M . Then,
φ−1 ◦ f is differentiable.

Lemma 237. Let M ⊆ Rn be a submanifold with bound-
ary of dimension k, (V,φ) be a local parametrization of
it, x ∈ V ∩ ∂ Hk and p := φ(x). Then the set

{α′(0) : α : [0, ε) → M is differentiable with α(0) = p}

is equal to the image dφx(Hk) ⊆ TpRn.

Definition 238. Let M ⊆ Rn be a submanifold with
boundary of dimension k. We say that p ∈ M is an in-
terior point of M is there exists a local parametrization
(V,φ) of M such that p ∈ φ(V \ ∂ Hk). We call boundary
of M the set:

∂ M = M \ {p ∈ M : p is interior}

Proposition 239. Let M ⊆ Rn be a submanifold with
boundary of dimension k. Then, ∂ M is a manifold (with-
out boundary) of dimension k − 1.

Proposition 240. Let M ⊆ Rn be a set. M is a subman-
ifold with boundary of dimension n if and only if ∀p ∈ M
there exists an open neighbourhood U ⊆ Rn of p and a
function F : U → R such that:

1. U ∩ M = {x ∈ U : F (x) ≤ 0}

2. F is a submersion on the points of F −1(0).

Definition 241. Let M ⊆ Rn be a submanifold with
boundary of dimension k, p ∈ M and (V,φ(u1, . . . , uk))
be a local parametrization of M such that p ∈ φ(V ). We
define the tangent space of M at p as the following vector
subspace of TpRn:

TpM :=
〈

(φu1)p, . . . , (φuk )p

〉
Definition 242. Let M ⊆ Rn be a submanifold with
boundary of dimension k, p ∈ ∂ M . We define the set of
interior vectors T i

pM of TpM as the set:

{α′(0) : α : [0, ε) → M is differentiable with α(0) = p}

Note that T i
pM is a closed subspace of TpM and its bound-

ary is Tp ∂ M ∼= Rk−1. The elements of TpM \ T i
pM are

called exterior vectors.

Lemma 243. Let M ⊆ Rn be a submanifold with bound-
ary of dimension k, p ∈ M and (V,φ(u1, . . . , uk)) be a
local parametrization of M such that p ∈ φ(V ). A vector
w ∈ TpM can be written as:

w = a1
(

∂φ

∂u1

)
p

+ · · · + ak

(
∂φ

∂uk

)
p

Then: {
w is interior ⇐⇒ ak ≥ 0
w is exterior ⇐⇒ ak < 0

Oritentability

Definition 244. Let M ⊆ Rn be a submanifold32 of di-
mension k. We say that M is orientable if we can assign an
orientation to each tangent space TpM of M in a way that
∀p ∈ M , there is a local parametrization (V,φ) of M such
that p ∈ φ(V ) and dφx : TxRk → Tφ(x)M is positively-
oriented (or negatively-oriented). In these conditions, we
say that (V,φ) is compatible with the orientation of M .

32From now on the submanifolds may be with boundary or not.
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Proposition 245. Let M ⊆ Rn be a submanifold of di-
mension k. M is orientable if and only if there exists an
atlas {(Vα,φα) : α ∈ A} such that ∀α, β ∈ A we have:

J(φβ
−1 ◦φα) > 0

Proposition 246. Let M ⊆ Rn be an orientated subman-
ifold of dimension k. Then, there exists a unique differen-
tial k-form ηM ∈ Ωk(M) such that if (e1, . . . , ek) is an or-
thonormal positive basis of TpM , then ηM (e1, . . . , ek) = 1.
This form ηM is called volume element of M .

Proposition 247. Let M ⊆ Rn be a submanifold of di-
mension k. M is orientable if and only if there exists
a differential k-form η ∈ Ωk(M) that isn’t zero at each
point of M

Lemma 248. Let M ⊆ Rn be a submanifold of dimen-
sion k with ∂ M ̸= ∅. Then, there is a global exterior
vector filed ν defined on ∂ M , that is, a vector field such
that ∀p ∈ ∂ M , νp /∈ T i

pM (in particular νp ̸= 0).

Definition 249. Let M ⊆ Rn be a submanifold of di-
mension k with ∂ M ̸= ∅. We call unit normal exterior
vector field the field ν∂ M univocally determined by being
unit, exterior and perpendicular to Tp ∂ M at each point
p ∈ M .

Proposition 250. Let M ⊆ Rn be a submanifold with
boundary of dimension k. If M is orientable, so it is ∂ M .

Definition 251. Let M ⊆ Rn be an orientated subman-
ifold of dimension k with ∂ M ̸= ∅. We say that a basis
(e1, . . . , ek−1) of Tp ∂ M is positive if (ν∂ M , e1, . . . , ek−1)
is a positive basis of TpM . This choice determines an ori-
entation on ∂ M , which is called orientation induced by
M .

Proposition 252. Let M ⊆ Rn be an orientated sub-
manifold of dimension k with ∂ M ̸= ∅, ηM be the volume
element of M and ν∂ M be the unit normal exterior vector
field. Then, the volume element of ∂ M associated with
the orientation of ∂ M induced by the one of M is:

η∂ M = ιν∂ M
ηM

Proposition 253. Let S ⊆ R3 be a regular surface ori-
ented with a vector field νS . Then, the area element of S
is given by ηS = ινη, where η = dx ∧ dy ∧ dz. Moreover,
if φ(u, v) is a local parametrization of S compatible with
the orientation, then:

ηS = φ∗ηS =
√

EφGφ − Fφ
2 du ∧ dv

Integration of differential forms

Definition 254. Let M ⊆ Rn be an orientated submani-
fold of dimension k and ω ∈ Ωℓ(M) We define the support
of ω as:

supp(ω) := {p ∈ M : ωp ̸= 0}

Definition 255. Let U ⊆ Rk be an open set and ω =
h du1 ∧ · · · ∧ duk ∈ Ωk(Rk) where h = h(u1, . . . , uk) and
such that supp(ω) ⊂ U is compact. We define the integral
of ω on U as:ˆ

U

ω =
ˆ

U

h du1 ∧ · · · ∧ duk :=
ˆ

U

h du1 · · · duk

Definition 256. Let M ⊆ Rn be an orientated sub-
manifold of dimension k, (U,φ(u1, . . . , uk)) be a local
parametrization of M compatible with the orientation and
ω ∈ Ωk(M) be such that supp(ω) ⊂ φ(U) is compact. We
define the integral of ω on M as:
ˆ

M

ω :=
ˆ

U

φ∗ω =
ˆ

U

ω

(
∂φ

∂u1 , . . . ,
∂φ

∂uk

)
du1 · · · duk 33

If h : U → M is a differentiable function and supp(h) ⊂
φ(U), then we define the integral of h on M as:

ˆ

M

h :=
ˆ

M

hηM =
ˆ

U

(h ◦ ω)φ∗ηM

where ηM is the volume element of M .

Definition 257. Let M ⊆ Rn be an orientated sub-
manifold of dimension k, (U,φ(u1, . . . , uk)) be a local
parametrization of M compatible with the orientation and
R ⊂ M be a compact region contained in φ(U). Let
Q := φ−1(R) ⊂ U . We define the volume of R as:

vol(R) =
ˆ

R

ηM :=
ˆ

Q

φ∗ηM

Proposition 258. Let K ⊆ Rn be a compact set, {Vα :
α ∈ A} be an open cover of K. Then, there exist differ-
entiable and non-negative functions ρ1, . . . , ρm ∈ C∞(Rn)
such that:

1.
∑m

i=1 ρi(x) = 1 ∀x ∈ K

2. For all i ∈ {1, . . . , m}, ∃α ∈ A such that supp(ρi) ⊂
Vα

In these conditions the set {ρi : i = 1, . . . , m} is called a
partition of unity of K subordinated to {Vα : α ∈ A}.

Definition 259. Let k ≥ 1 and M ⊆ Rn be an orientated
submanifold. We define the set Ωk

c (M) as the vector space
of all differential k-forms of M with compact support.

Definition 260. Let M ⊆ Rn be an orientated submani-
fold of dimension k, {(Vα,φα) : α ∈ A} and an atlas of M
compatible with the orientation. Given ω ∈ Ωk

c (M), let
{ρ1, . . . , ρm} be a partition of unity of K subordinated to
{φ(Vα)}. We define the integral of ω on M as:

ˆ

M

ω =
m∑

i=1

ˆ

M

ρiω =
m∑

i=1

ˆ

Uα

φα
∗(ρiω)

where α ∈ A is such that supp(ρi) ⊂ φ(Vα)34.
33It can be seen that this definition does not depend on the parametrization (U,φ(u1, . . . , uk)).
34It can be seen that this definition doesn’t depend on either the atlas or the partition of unity chosen.
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Proposition 261. Let M ⊆ Rn be an orientated sub-
manifold of dimension k, {(Vi,φi) : i = 1, . . . , m} be a
finite set of parametrizations of M compatibles with the
orientation and such that:

1. M \
⋃m

i=1φi(Ui) is union of submanifolds of dimen-
sion less than < k.

2. φi(Ui) ∩φj(Uj) = ∅ ∀i ̸= j.

Then, given ω ∈ Ωk
c (M), we have:
ˆ

M

ω =
m∑

i=1

ˆ

Ui

φi
∗ω

Theorem 262 (Change of variables). Let M ⊆ Rn,
M ′ ⊆ Rm be two orientated submanifolds of dimension k,
F : M → M ′ be an orientation-preserving diffeomorphism
and ω ∈ Ωk

c (M ′). Then:
ˆ

M ′

ω =
ˆ

M

F∗ω

Stokes theorem

Proposition 263. Let ω ∈ Ωk−1
c (Hk) and consider ∂ Hk

with the orientation induced by the one of Hk. Then:

1. If supp ω ∩ ∂ Hk = ∅, then
ˆ

Hk

dω = 0.

2. If supp ω ∩ ∂ Hk ̸= ∅, then
ˆ

Hk

dω =
ˆ

∂ Hk

ω.

Theorem 264 (Stokes theorem). Let M ⊆ Rn be an
orientated submanifold of dimension k and ω ∈ Ωk−1

c (M).
Then: ˆ

M

dω =
ˆ

∂ M

ω

Corollary 265. Let M ⊆ Rn be an orientated subman-
ifold of dimension k with ∂ M = ∅ and ω ∈ Ωk−1

c (M).
Then: ˆ

M

dω = 0

Corollary 266 (Green’s formula). Let D ⊆ R2 be a
regular domain (manifold of dimension 2 with boundary)
and P, Q : D → R be differentiable functions. Then:

ˆ

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

ˆ

∂ D

P dx + Q dy

Vector calculus

Definition 267. Let U ⊆ R3, f ∈ C∞(U) and X ∈ X (U).
We define the following differential forms on U :

ω1
X = X1 dx + X2 dy + X3 dz

ω2
X = X1 dy ∧ dz + X2 dz ∧ dx + X3 dx ∧ dy

ω3
f = f dx ∧ dy ∧ dz

Lemma 268. Let U ⊆ R3, f ∈ C∞(U) and X, Y, Z ∈
X (U). Then:

1. ω1
X(Y) = ⟨X, Y⟩

2. ω2
X(Y, Z) = ⟨X, Y × Z⟩ = det(X, Y, Z)

3. ω3
f (X, Y, Z) = f det(X, Y, Z)

Proposition 269. Let U ⊆ R3, f ∈ C∞(U) and X ∈
X (U). Then:

df = ω1
∇f dω1

X = ω2
rot X dω2

X = ω3
div X

Corollary 270. Let U ⊆ R3, f ∈ C∞(U) and X ∈ X (U).
Then:

1. rot(∇f) = 0

2. div(rot X) = 0

Definition 271. Let C ⊂ R3 be a compact regular curve,
U be an open neighbourhood of C and X ∈ X (U). We
define the line intergal (or circulation) of X along C as the
integral: ˆ

C

X :=
ˆ

C

X · dℓ :=
ˆ

C

ω1
X

where dℓ = ηC is the length element of C.

Definition 272. Let S ⊂ R3 be a compact oriented sur-
face, U be an open neighbourhood of S and X ∈ X (U).
We define the surface intergal (or flux) of X through S as
the integral:

ˆ

S

X :=
ˆ

S

X · dS :=
ˆ

S

ω2
X

where dS = ηS is the area element of S.

Theorem 273 (Curl theorem). Let S ⊂ R3 be a com-
pact oriented surface with boundary, U be an open neigh-
bourhood of S and X ∈ X (U). Then:

ˆ

S

rot X · dS =
ˆ

∂ S

X · dℓ

Theorem 274 (Divergence theorem on R3). Let D ⊂
R3 be a compact submanifold with boundary of dimen-
sion 3, U be an open neighbourhood of D and X ∈ X (U).
Then: ˆ

D

div X · dV =
ˆ

∂ D

X · dS

where dV = η is the volume element of D.

Theorem 275 (Divergence theorem). Let M ⊆ Rn be
a submanifold of dimension k, ν be a unit normal exterior
vector field of M , U be an open neighbourhood of M and
X ∈ X (U). Then:

ˆ

M

div X · η =
ˆ

∂ M

⟨X,ν⟩η∂ M
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8. | Gauß-Bonnet theorem

Local Gauß-Bonnet theorem

Definition 276. Let S ⊂ R3 be an oriented surface and
R ⊆ S be a subset. We say that R is a simple region if it
is homeomorphic to a closed disk and ∂ R is a piecewise
curve of class C1 which is closed and simple.

Definition 277. Let S ⊂ R3 be an oriented surface,
(V,φ(u, v)) be a parametrization of S compatible with
the orientation and R ⊆ S be a simple region such
that R ⊆ φ(V ) and that ∂ R is positively-oriented. Let
α : [0, ℓ] → ∂ R be a parametrization of ∂ R which is
differentiable on the intervals [ti, ti+1], i = 0, . . . , n. For
i = 0, . . . , n, let α′(ti

−) and α′(ti
+) denote the respec-

tive lateral derivatives of α at the point ti. The arches
α([ti, ti+1]) are called edges of R; the points α(ti), ver-
tices of R, and the angle θi ∈ [−π, π] between α′(ti

−) and
α′(ti

+), exterior angle.

Theorem 278. Let S ⊂ R3 be an oriented surface,
(V,φ(u, v)) be a parametrization of S compatible with
the orientation and R ⊆ S be a simple region such
that R ⊆ φ(V ) and that ∂ R is positively-oriented. Let
α : [0, ℓ] → ∂ R be a parametrization of ∂ R which is dif-
ferentiable on the intervals [ti, ti+1], i = 0, . . . , n. Suppose
τi[ti, ti+1] is a differentiable determination of the angle be-
tween φu and α(t)|, t ∈ [ti, ti+1]. Then:

n∑
i=0

[τi(ti+1) − τi(ti)] +
n∑

i=0
θi = ±2π

And the sign in the right-hand side of the equation is posi-
tive if and only if the parametrization α of ∂ R is positive.

Theorem 279 (Local Gauß-Bonnet theorem). Let
S ⊂ R3 be an oriented surface, (V,φ(u, v)) be an orthogo-
nal parametrization of S compatible with the orientation
and R ⊆ S be a simple region such that R ⊆ φ(V ) and
that ∂ R is positively-oriented. Let α : [0, ℓ] → ∂ R be an
arclength parametrization of ∂ R which is differentiable on
the intervals [ti, ti+1], i = 0, . . . , n. Then:

n∑
i=0

ti+1ˆ

ti

kg(s) ds +
ˆ

R

K dS +
n∑

i=0
θi = 2πχ(R) = 2π

Definition 280. Let S ⊂ R3 be an oriented surface and
T ⊆ S be simple region. We say that T is a triangle if it
has 3 edges.

Corollary 281. Let S ⊂ R3 be an oriented surface, T ⊆ S
be a triangle such that their edges are geodesics. Then, in
the notation of Theorem 279 we have:

ˆ

T

K dS =
n∑

i=0
ϕi − π

where ϕi = π − θi are the interior angles of the triangle.

Global Gauß-Bonnet theorem

Definition 282. Let S ⊂ R3 be an oriented surface and
R ⊆ S be a compact subset. We say that R is a regu-
lar region if ∂ R is a finite uniron of regular curves which
are closed and simple and such that they don’t intersect
themselves.

Theorem 283 (Global Gauß-Bonnet theorem). Let
S ⊂ R3 be an oriented surface and R ⊆ S be a regular
region. Suppose that C1, . . . , Cn are the connected com-
ponents of ∂ R and let θ1, . . . , θm be the exterior angles of
the curves Ci. Then:

n∑
i=0

ˆ

Ci

kg(s) ds +
ˆ

R

K dS +
m∑

i=0
θi = 2πχ(R)

Corollary 284. Let S ⊂ R3 be a compact oriented sur-
face without boundary. Then:

ˆ

R

K dS = 2πχ(S)

Poincaré-Hopf theorem

Definition 285. Let S ⊂ R3 be an oriented surface and
X be a vector field tangent to S. We say that p ∈ S is a
singular point of X if Xp = 0. We say that p is an iso-
lated singular point (or and isolated singularity) if there is
a neighbourhood V of p such that Xq ̸= 0 ∀q ∈ V \ {p}.

Proposition 286. Let S ⊂ R3 be an oriented surface,
(V,φ(u, v)) be a parametrization of S compatible with
the orientation, X be a vector field tangent to S, p be
an isolated singular point and R ⊆ φ(V ) be a simple re-
gion that contains p in its interior (and no other singular
point). Let α : [0, ℓ] → ∂ R be a positive parametrization
of ∂ R and τ : [0, ℓ] be a differentiable determination of
the angle between φu and Xα(t). Then, ∃n ∈ Z such that:

ℓˆ

0

dτ

dt
dt = τ(ℓ) − τ(0) = 2πn

This value of n is called index of p.

Theorem 287 (Poincaré-Hopf theorem). Let S ⊂ R3

be a compact oriented surface without boundary and X
be a vector field tangent to S with isolated singularities
whose indexes are ni, i ∈ I. Then:∑

i∈I

ni = 1
2π

ˆ

S

K dS = χ(S)

Corollary 288. Let S ⊂ R3 be a compact oriented sur-
face without boundary and X be a vector field tangent to
S. Then:

• If S ∼= S2 or S ∼= Sg with g ≥ 2, then X has singu-
larities35.

• If X doesn’t have singularities, then S ∼= T 2.
35Recall ??
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