
Differential equations

Along this document we will often write the points in Rn,
n ≥ 2, in bold face (as well as the vectors) in order to be
consistent when handling points and vectors together.

1. | Space of continuous and bounded
functions

Definition 1. Let X, Y be topological spaces. We define
the following sets:

C(X, Y ) = {f : X −→ Y : f is continuous}
Cb(X,Rn) = {f ∈ C(X,Rn) : f is bounded}

Theorem 2. Let X be a topological space and f ∈
Cb(X,Rn). We define the norm of f as:

∥f∥ := sup{∥f(x)∥ : x ∈ X}

and a distance d in Cb(X,Rn) as:

d(f, g) := ∥f − g∥ ∀f, g ∈ Cb(X,Rn)

Then, (Cb(X,Rn), d) is a complete metric space.

Theorem 3. Let X be a topological space and C ⊆ Rn be
a closed subset. Then, (C(X, C), d) is a complete metric
space.

Corollary 4. Let K ⊂ Rn be a compact subset and
C ⊆ Rn be a closed subset. Then, (C(K, C), d) is a com-
plete metric space.

Corollary 5. Let D ⊂ Rn be a closed set and X =
C([a, b], D). Then (X, d) is also a complete metric space.

2. | Ordinary differential equations
Definition 6. An ordinary differential equation (ode) of
m unknowns and of order n in implicit form is an expres-
sion of the form:

f
(

t, x(t), x′(t), x′′(t), . . . , x(n)(t)
)

= 0

where x : U ⊆ R → Rm is a vector-valued function of
one variable t ∈ R (which is called independent variable)
and f : Ω ⊆ R × Rm·(n+1) → Rm, where both U and Ω
are open sets. The same ordinary differential equation in
explicit form is an expression of the form:

x(n)(t) = g
(

t, x(t), x′(t), x′′(t), . . . , x(n−1)(t)
)

where g : Ω ⊆ R × Rm·n → Rm1.

Definition 7. Consider the following ODE of m un-
knowns and of order n:

x(n)(t) = f
(

t, x(t), x′(t), . . . , x(n−1)(t)
)

(1)

We say that φ : I ⊆ R → Rm is a solution of the ODE if:

• φ is n times differentiable on I.

•
{(

t,φ(t),φ′(t), . . . ,φ(n−1)(t)
)

: t ∈ I
}

⊆ dom f

• For all t ∈ I we have:

φ(n)(t) = f
(

t,φ(t),φ′(t), . . . ,φ(n−1)(t)
)

The set of all solutions of an ODE is called general solution
of the ODE.

Proposition 8. Consider an ODE of m unknowns and
order n of the form of Eq. (1). Then, we can transform
this ODE to an ODE of m · n unknowns and order 1 in
the following way2. Define yi = x(i−1) for i = 1, . . . , n.
Therefore, the functions yi must satisfy:

y1
′ = y2

y2
′ = y3

...
yn−1

′ = yn−2

yn
′ = f (t, y1(t), y2(t), . . . , yn(t))

This is called a system of ordinary differential equations
(of order 1) or a differential system.

Definition 9. We say that an ODE is autonomous if it
doesn’t depend on the independent variable, that is, if it
is of the form:

x′ = f(x)

Otherwise, we say that an ODE is non-autonomous.

Definition 10. We say that an ODE of order n is linear
if it is of the form:

a0(t)x + a1(t)x′ + · · · + an(t)x(n) = b(t) (2)

where ai ∈ C(I,R) for i = 0, . . . , n and b ∈ C(I,Rm) are
arbitrary functions which do not need to be linear. We say
that the linear ODE of Eq. (2) is homogeneous if b(t) = 0
∀t ∈ I. We say that linear ODE of Eq. (2) is of constant
coefficients if ai(t) := ai0 ∈ R ∀t ∈ I and ∀i = 0, . . . , n.

Definition 11 (Initial value problem). Let U ⊆ R×Rn

be an open set and f : U → Rn be a function. Given
(t0, x0) ∈ U , the initial value problem (ivp) (or Cauchy
problem) consists in finding a solution of the ODE

x′ = f(t, x)

with initial conditions x(t0) = x0.
1Sometimes we will write x(n) = g

(
t, x, x′, . . . , x(n−1)

)
instead of x(n)(t) = g

(
t, x(t), x′(t), . . . , x(n−1)(t)

)
in order to simplify the

notation.
2Therefore, we will mainly study the ODEs of order 1.
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Methods for solving ODEs

Proposition 12 (Separation of variables). Let f :
(a, b) → R, g : (c, d) → R be continuous functions
such that f(x) ̸= 0 ∀x ∈ (a, b). Consider the ODE
x′ = f(x)g(t). To find the solution of this ODE, proceed
as follows:

x′ = f(x)g(t) ⇐⇒
ˆ dx

f(x) = C +
ˆ

g(t) dt

where the constant C is determined with the initial con-
ditions of the ODE.

Proposition 13 (Variation of constants). Let I ⊂ R
be an interval, a, b ∈ C(I,R). Consider the ODE x′ =
a(t)x + b(t). To find the solution of this ODE, proceed as
follows:

1. Find the solution of the associated homogeneous sys-
tem with the separation of variables method. Let’s
say that is φ(t)c, where c ∈ R.

2. Try to find a general solution of the form φ(t)c(t):

(φ(t)c(t))′ = a(t)φ(t)c(t) + b(t) ⇐⇒
φ(t)′c(t) + φ(t)c(t)′ = a(t)φ(t)c(t) + b(t) ⇐⇒

φ(t)c(t)′ = b(t) ⇐⇒ c(t) = d +
ˆ

φ(t)−1b(t) dt

where d ∈ R. Hence, the general solution will be:

φ(t)
(

d +
ˆ

φ(t)−1b(t) dt

)

Proposition 14 (Characteristic equation). Consider
the following ODE of order n of constant coefficients:

x(n) + an−1x(n−1) + · · · + a1x′ + a0x = 0 (3)

We define the characteristic equation of that system as the
equation:

p(r) := rn + an−1rn−1 + · · · + a1r + a0 = 0

In order to find the solution of this ODE, we need to find
the solutions to p(r) = 0. So suppose p has s distinct real
roots and 2(m − s) distinct complex roots.

λ1, . . . , λs, λs+1, λs+1, . . . , λm, λm

Here, λi ∈ R ∀i = 1, . . . , s and λi = αi + iβi ∈ C
∀i = s + 1, . . . , m. Assume, each of these roots have mul-
tiplicity ki ∈ N. Then, the general solution to Eq. (3)
is:

φ(t) =
s∑

i=1

(
ci,0 + ci,1t + · · · + ci,ki−1tki−1)

eλit+

+
m∑

i=s+1

ki−1∑
j=0

tjeαit (ci,j,1 cos(βit) + ci,j,2 sin(βit))

where ci,j,k ∈ R are constants.

Proposition 15. Consider a system of the form Eq. (3)
which is equivalent to:

x′ =



0 1 0 · · · 0

0 0 1 . . . ...
...

... . . . . . . 0
0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−1

 =: Ax

Then, the characteristic equation is precisely the charac-
teristic polynomial of A.
Corollary 16. Consider the following ODE of order n of
constant coefficients:

x′′ + px′ + q = 0 (4)
Let λ1, λ2 be the roots of the polynomial p(r) = r2+pr+q.
Then, the general solution to Eq. (4) is:

• If p2 − 4q > 0:
φ(t) = c1eλ1t + c2eλ2t

• If p2 − 4q = 0, then λ1 = λ2 and the solution is:
φ(t) = c1eλ1t + c2teλ1t

• If p2 −4q < 0, then λ1 = α+iβ ∈ C and the solution
is:

φ(t) = eαt [c1 cos(βt) + c2 sin(βt)]

Proposition 17 (Reducible linear ODE of second
order). Let I ⊂ R be an interval, a, b, c, d ∈ C(I,R).
Consider the system of ODEs:{

x′ = a(t)x − b(t)y + c(t)
y′ = b(t)x + a(t)y + d(t)

(5)

In order to find the solution of this ODE, consider the
change of variable z = x + iy. Then, Eq. (5) becomes:

z′ = [a(t) + ib(t)]z + c(t) + id(t)
which is a linear ODE of order 1 and can be easily solved.
Proposition 18 (Bernoulli differential equation).
Let p, q ∈ C((a, b),R) and α ∈ R. Consider the Bernoulli
differential equation:

x′ + p(t)x = q(t)xα (6)
If α = 0, 1 the ODE is linear. So suppose α ̸= 0, 1. In or-
der to solve it, consider the change of variable y = x1−α.
Then, Eq. (6) becomes:

y′ + (1 − α)p(t)y = (1 − α)q(t)
which is a linear ODE of order 1 and can be easily solved.
Proposition 19 (Riccati differential equation). Let
q0, q1, q2 ∈ C((a, b),R). Consider the Riccati differential
equation:

x′ = q0(t) + q1(t)x + q2(t)x2 (7)
Suppose we have found a particular solution x1(t) of the
ODE of Eq. (7). In order to find the general solution, con-
sider the change of variable x = x1(t) + 1

y . Then, Eq. (7)
becomes:

y′ + [q1(t) + 2q2(t)x1(t)]y = −q2(t)
which is a linear ODE of order 1 and can be easily solved.
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Proposition 20 (Integrating factor). Consider the
ODE:

p(t, x) + q(t, x)x′ = 0 ⇐⇒ p(t, x) dt + q(t, x) dx = 0

where p, q ∈ C1(U,R) and U ⊆ R2 is an open set. An in-
tegrating factor µ(t, x) ∈ C1(U), µ(t, x) ̸= 0, is a function
so that

µ(t, x)p(t, x) dt + µ(t, x)q(t, x) dx

is an exact differential (dΦ(t, x)) of a function Φ(t, x), that
is:

∂Φ
∂t

(t, x) = µ(t, x)p(t, x) (8)

∂Φ
∂x

(t, x) = µ(t, x)q(t, x) (9)

So we need that:

∂

∂x
(µ(t, x)p(t, x)) = ∂

∂t
(µ(t, x)q(t, x))

From here, in certain cases, we will be able to find µ(x, y)
and, therefore, Φ(t, x) by integrating Eqs. (8) and (9).

3. | Existence and uniqueness of solu-
tions

Proposition 21. Let f : (a, b) → R be a continuous func-
tion such that f(x) ̸= 0 ∀x ∈ (a, b). Then, the ivp{

x′ = f(x)
x(t0) = x0

has a unique solution ∀t0 ∈ R and ∀x0 ∈ (a, b).

Proposition 22. Let f : (a, b) → R, g : (c, d) → R be
continuous functions such that f(x) ̸= 0 ∀x ∈ (a, b). Then,
the ivp {

x′ = f(x)g(t)
x(t0) = x0

has a unique solution ∀t0 ∈ (c, d) and ∀x0 ∈ (a, b).

Proposition 23. Let I ⊆ R be an interval and a : I → R
and b : I → R be continuous functions. Then, the ivp{

x′ = a(t)x + b(t)
x(t0) = x0

has a unique solution ∀t0 ∈ I and ∀x0 ∈ R3.

Lipschitz continuity

Definition 24. Let f : U ⊆ R × Rn → Rm be a function.
We say that f is Lipschitz continuous with respect to the
second variable if ∃L ∈ R>0 such that:

∥f(t, x) − f(t, y)∥ ≤ L∥x − y∥ ∀(t, x), (t, y) ∈ U

Definition 25. Let f : U ⊆ R × Rn → Rm be a func-
tion. We say that f is locally Lipschitz continuous with
respect to the second variable if ∀(t0, x0) ∈ U there exists
a neighbourhood V of (t0, x0) such that f |V is Lipschitz
continuous with respect to the second variable.
Proposition 26. Let U ⊆ R × Rn be an open set and
f : U ⊆ R × Rn → Rn be a function. Then:

1. If f is locally Lipschitz continuous with respect to
the second variable, then it is continuous with re-
spect to the second variable.

2. If f is Lipschitz continuous with respect to the sec-
ond variable, then it is uniformly continuous with
respect to the second variable.

3. If f is continuous, U is compact and f is locally Lips-
chitz continuous with respect to the second variable,
then f is Lipschitz continuous with respect to the
second variable.

Proposition 27. Let U ⊆ R×Rn be an open and convex
set and f : U ⊆ R × Rn → Rn be a function of class C1.
Then:

1. f is locally Lipschitz continuous with respect to the
second variable.

2. f is Lipschitz continuous with respect to the second
variable if and only if Df is bounded.

Picard theorem
Proposition 28. Let U ⊆ R × Rn be an open set and
f : U → Rn be a continuous function. Let I ⊆ R be
an open interval, t0 ∈ I and x0 ∈ Rn be such that
(t0, x0) ∈ U . Then, a continuous function φ : I → Rn

is a solution of the ivp{
x′ = f(t, x)
x(t0) = x0

(10)

if and only if

φ(t) = x0 +
tˆ

t0

f(s,φ(s)) ds ∀t ∈ I

Definition 29. An operator is a function whose domain
is a set of functions.
Definition 30. Let U ⊆ R×Rn be an open set, (t0, x0) ∈
U , f : U → Rn be a continuous function and I be a closed
interval. We define the operator

T : C(I,Rn) −→ C(I,Rn)

φ 7−→ Tφ(t) = x0 +
tˆ

t0

f(s,φ(s)) ds 4

Theorem 31 (Banach fixed-point theorem). Let
(X, d) be a complete metric space and f : (X, d) → (X, d)
be a contraction. Then, f has a unique fixed point p ∈ X5.

3See Eq. (12) for the solution.
4Note that the fixed points of this operator are precisely the solutions of the ivp of Eq. (10).
5Furthermore, p can be found as follows: start with an arbitrary element x0 ∈ X and define a sequence (xn) by xn = f(xn−1) for

n ≥ 1. Then, lim
n→∞

xn = p.
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Corollary 32. Let (X, d) be a complete metric space and
f : (X, d) → (X, d) be a function. If there exists m ∈ N
such that fm is a contraction, then f has a unique fixed
point p ∈ X.
Definition 33. Let t0 ∈ R, x0 ∈ Rn and a, b ∈ R>0. We
define the following sets:

Ia(t0) := [t0−a, t0+a] ⊂ R and Bb(x0) := B(x0, b) ⊂ Rn

Theorem 34 (Picard theorem). Let t0 ∈ R, x0 ∈ Rn,
a, b ∈ R>0, f : Ia(t0) × Bb(x0) ⊂ R × Rn → Rn be a con-
tinuous function and Lipschitz continuous with respect to
the second variable, and define:

M := max{∥f(t, x)∥ : (t, x) ∈ Ia(t0) × Bb(x0)}

Then, the ivp of Eq. (10) has a unique solution φ :
Iα(t0) → Bb(x0), where α := min

{
a, b

M

}
.

Corollary 35. Let I ⊂ R be a closed interval, t0 ∈ I,
x0 ∈ Rn and f : I × Rn → Rn be a continuous func-
tion and Lipschitz continuous with respect to the second
variable. Then, the ivp of Eq. (10) has a unique solution
φ : I → Rn.
Corollary 36 (Picard iteration process). Suppose we
want to solve the ivp of Eq. (10). That is, we look for a
solution φ(t). Let φ0 be a fixed function (usually chosen
to be φ0 = x0) and define

φn+1(t) = Tφn(t) = x0 +
tˆ

t0

f(s,φn(s)) ds

for all n ≥ 0. Then, φ(t) = lim
n→∞

φn(t).

Corollary 37. Let U ⊆ R × Rn be an open set and
f : U → Rn be a continuous function and locally Lipschitz
continuous with respect to the second variable. Then,
∀(t0, x0) ∈ U , there exists α(t0, x0) ∈ R>0 and a neigh-
bourhood Vt0,x0 = Ia(t0,x0)(t0)×Bb(t0,x0)(x0) of (t0, x0) in
U such that the ivp of Eq. (10) has a unique solution φt0,x0
defined on Iα(t0,x0) ⊆ Ia(t0,x0) with graph(φt0,x0) ⊂ Vt0,x0 .
Proposition 38. Let I ⊆ R be an interval and f :
I × Rn → Rn be a continuous function and Lipschitz
continuous with respect to the second variable. Then,
∀(t0, x0) ∈ I × Rn there is a unique solution of the ivp
of Eq. (10) defined on I.
Corollary 39. Let I ⊆ R be an interval and A : I →
L(Rn,Rn) and b : I → Rn be continuous functions. Then,
for all (t0, x0) ∈ I × Rn the ivp{

x′ = A(t)x + b(t)
x(t0) = x0

has a unique solution defined on I.
Theorem 40. Let f : [t0, t1] × R → R be a continuous
function and x0 ∈ R. Suppose that f is decreasing with
respect to the second variable. Then, the ivp{

x′ = f(t, x)
x(t0) = x0

has a unique solution defined on [t0, t∗
1], where t∗

1 ≤ t1.

Peano theorem

Definition 41. Let (X, d) be a metric space and F ⊂
C(X,Rn) be a subset. We say that F is pointwise bounded
if:

∀x ∈ X ∃Mx > 0 such that ∥f(x)∥ ≤ Mx ∀f ∈ F

We say that F is uniformly bounded if:

∃M > 0 such that ∥f(x)∥ ≤ M ∀f ∈ F and ∀x ∈ X

Definition 42. Let (X, d) be a metric space and F ⊂
C(X,Rn) be a subset. We say that F is equicontinuous at
a point x0 ∈ X if ∀ε > 0 ∃δ > 0 such that ∀x ∈ X with
d(x, x0) < δ we have:

∥f(x) − f(x0)∥ < ε ∀f ∈ F

We say that F is pointwise equicontinuous if it is equicon-
tinuous at each point of X. Finally, we say that F is uni-
formly equicontinuous if ∀ε > 0 ∃δ > 0 such that ∀x, y ∈ X
with d(x, y) < δ we have:

∥f(x) − f(y)∥ < ε ∀f ∈ F

Proposition 43. Let (X, d) be a metric space and F ⊂
Cb(X,Rn) be a subset. Suppose that f is Lipschitz contin-
uous for all f ∈ F . Then, F is uniformly equicontinuous.

Theorem 44 (Arzelà-Ascoli theorem). Let (X, d)
be a compact metric space and (fm) be a sequence
of functions such that fm ∈ C(X,Rn) ∀m ≥ 1. If
the sequence is pointwise equicontinuous and pointwise
bounded, then there exists a subsequence (fmk

) that con-
verges on C(X,Rn).

Corollary 45. Let (X, d) be a compact metric space,
D ⊂ Rn be a closed set and (fm) be a sequence of functions
such that fm ∈ C(X, D) ∀m ≥ 1. If the sequence is point-
wise equicontinuous and pointwise bounded, then there
exists a subsequence (fmk

) that converges on C(X, D).

Theorem 46 (Peano theorem). Let t0 ∈ R, x0 ∈ Rn,
a, b ∈ R>0, f : Ia(t0) × Bb(x0) ⊂ R × Rn → Rn be a
continuous function, and define:

M := max{∥f(t, x)∥ : (t, x) ∈ Ia(t0) × Bb(x0)}

Then, the ivp of Eq. (10) has at least one solution φ :
Iα(t0) → Rn, where α := min

{
a, b

M

}
.

Corollary 47. Let U ⊆ R × Rn be an open set, K ⊂ U
be a compact set and f : U → Rn be a continuous func-
tion. Then, ∃α ∈ R>0 such that ∀(t0, x0) ∈ K, the ivp of
Eq. (10) has a solution defined in Iα(t0).
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Maximal solutions
Definition 48. Let U ⊆ R×Rn be an open set, (t0, x0) ∈
U and f : U → Rn be a continuous function. We define
the set S(U, f , t0, x0) as:

S(U, f , t0, x0) := {(I,φ) : I ⊆ R is an interval, t0 ∈ I

and φ : I → Rn is a solution of the ivp of Eq. (10)}

Definition 49. We define the relation ≤ defined on
S(U, f , t0, x0) in the following way. For (I,φ), (J,ψ) ∈
S(U, f , t0, x0):

(J,ψ) ≤ (I,φ) ⇐⇒ J ⊂ I and φ|J = ψ6

In this case, we say that (I,φ) is an extension of (J,ψ).

Definition 50. Let (A, ≤) be a poset. Then, m ∈ A is
a maximal element if and only if ∀a ∈ A with m ≤ a we
have m = a.

Definition 51. Consider the poset (S(U, f , t0, x0), ≤).
We say that a solution (I,φ) is maximal if for all exten-
sions (J,ψ) of (I,φ) we have I = J and φ = ψ.

Definition 52. Let (A, ≤) be a poset and C ⊆ A be a
subset of A. We say that C is a chain if it is totally ordered
in the inherited order, that is, if it is partially ordered and
∀x, y ∈ C we have either x ≤ y or y ≤ x.

Definition 53. Let (A, ≤) be a poset, x ∈ A and B ⊆ A
be a subset. x is an upper bound of B if and only if b ≤ x
∀b ∈ B.

Definition 54. Let (A, ≤) be a poset and B ⊆ A be a
subset. Then, g ∈ A is a greatest element of B if g ∈ B
and ∀b ∈ B we have b ≤ g.

Lemma 55 (Zorn’s lemma). Let (A, ≤) be a poset. If
every chain C ⊆ A has an upper bound in A, then A
contains at least one maximal element.

Theorem 56. Let U ⊆ R×Rn be an open set, (t0, x0) ∈
U and f : U → Rn be a continuous function. Consider the
poset (S(U, f , t0, x0), ≤). Then, S(U, f , t0, x0) has maxi-
mal elements. Furthermore, if (I,φ) is a maximal solu-
tion, then I is open.

Proposition 57. Let U ⊆ R × Rn be an open set and
f : U → Rn be such that ∀(t0, x0) ∈ U the ivp of Eq. (10)
has a unique solution defined in a neighbourhood of t0.
Then, ∀(t0, x0) ∈ U the ivp of Eq. (10) has a unique max-
imal solution.

Lemma 58 (Wintner lemma). Let U ⊆ R × Rn be an
open set, f : U → Rn be a continuous function, φ : I → Rn

be a solution of x′ = f(t, x) and (b, y) ∈ U be an accu-
mulation point of φ. Then, lim

t→b
φ(t) = y and the solution

can be extended up to b.

Corollary 59. Let U ⊆ R × Rn be an open set, f : U →
Rn be a continuous function and φ : (a, b) → Rn be a
maximal solution of x′ = f(t, x). If b < ∞, then for all
compact set K ⊂ U , ∃t0 < ∞ such that (t,φ(t)) /∈ K
∀t ∈ [t0, b). In that case, we say that φ tends to the
boundary of U .

4. | Linear differential equations
Definition 60. Let I ⊆ R be an interval. A system of
linear differential equations is an expression of the form:

x′ = A(t)x + b(t) (11)

where A : I → L(Rn,Rn) and b : I → Rn are continuous
functions. We say that linear equation of Eq. (11) is ho-
mogeneous if b(t) = 0 ∀t ∈ I. We say that linear equation
of Eq. (11) is of constant coefficients if A(t) = A ∀t ∈ I,
where A ∈ Mn(R).

Definition 61. Let I ⊆ R be an interval, t0 ∈ I, x0 ∈ Rn

and consider the ODE of Eq. (11). We define the flow of
the linear ODE as the function:

ϕ : I × I × Rn −→ Rn

(t, t0, x0) 7−→ φ(t0,x0)(t)

where φ(t0,x0) is the solution of Eq. (11) with initial con-
ditions (t0, x0).

Proposition 62. Let I ⊆ R be an interval and a, b ∈
C(I,R). Then, the general solution of the ivp{

x′ = a(t)x + b(t)
x(t0) = x0

is given by:

φ(t, t0, x0) = e
´ t

t0
a(s)ds

x0 +
tˆ

t0

b(u)e−
´ u

t0
a(s)ds du


(12)

for all t ∈ I.

Homogeneous systems

Theorem 63. Let I ⊆ R be an interval and A ∈
C(I, L(Rn)). We define An as the set of all solutions of
the linear ODE:

x′ = A(t)x (13)

Then, An is a vector space of dimension n and for each
t0 ∈ I, the function

ξt0 : Rn −→ An

x0 7−→ φ(·, t0, x0)

is an isomorphism.

Corollary 64. Let I ⊆ R be an interval, t0 ∈ I,
(v1, . . . , vn) be a basis of Rn and φ1, . . . ,φn ∈ An be
such that:

φi = ξt0(vi) for i = 1, . . . , n

Then, (φ1, . . . ,φn) is a basis of An.

Corollary 65. Let I ⊆ R be an interval and ψ ∈ An.
Suppose ∃t0 ∈ I such that ψ(t0) = 0. Then, ψ = 0.

6It can be seen that ≤ is a partial (but not total) order relation.
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Corollary 66. Let I ⊆ R be an interval, m, n ∈ N with
m ≤ n, φ1, . . . ,φm ∈ An and t0 ∈ I such that the vec-
tors φ1(t0), . . . ,φm(t0) are linearly independent. Then,
φ1, . . . ,φm are linearly independent.

Corollary 67. Let s, t, w ∈ R. Consider the function

ϕt
s : Rn −→ Rn

x 7−→ (ξs(x))(t)

Then, ϕt
s is an isomorphism and satisfies:

1. ϕs
s = id

2. ϕt
s ◦ ϕs

w = ϕt
w

3.
[
ϕt

s

]−1 = ϕs
t

Definition 68. Let I ⊆ R be an interval, A ∈ C(I, L(Rn))
and M(t) = (mij(t)) ∈ Mn(R). We say that M(t)
is a matrix solution of the ODE of Eq. (13) if φj =
(m1j(t), . . . , mnj(t))T ∈ An for j = 1, . . . , n. We say
that M(t) is a fundamental matrix solution of the ODE
of Eq. (13) if M(t) is a matrix solution and φ1, . . . ,φn

are linearly independent.

Proposition 69. Let I ⊆ R be an interval, A ∈
C(I, L(Rn)) and M(t) ∈ Mn(R). Then:

1. M(t) is a matrix solution of the ODE of Eq. (13)
⇐⇒ M′(t) = A(t)M(t)7.

2. M(t) is a matrix solution of the ODE of Eq. (13)
⇐⇒ ∀c ∈ Rn, M(t)c ∈ An.

3. If M(t) is a matrix solution of the ODE of Eq. (13),
then ∀C ∈ Mn(R), M(t)C is a matrix solution of
the ODE of Eq. (13).

4. If M(t) is a fundamental matrix solution of the ODE
of Eq. (13), then det M(t) ̸= 0 ∀t ∈ I.

5. M(t) is a fundamental matrix solution of the ODE of
Eq. (13) ⇐⇒ M(t) is a matrix solution of the ODE
of Eq. (13) and ∃t0 ∈ I such that det M(t0) ̸= 0.

Proposition 70. Let I ⊆ R be an interval, A ∈
C(I, L(Rn)) and Φ(t),ψ(t) ∈ Mn(R) be matrix solutions
of the ODE of Eq. (13) such that Φ(t) is fundamental.
Then, ∃!C ∈ Mn(R) such that ψ(t) = Φ(t)C. Moreover,
ψ(t) is fundamental if and only if det C ̸= 0.

Non-homogeneous linear systems
Proposition 71. Let I ⊆ R be an interval, A ∈
C(I, L(Rn)) and b ∈ C(I,Rn). Suppose ϕ(t, t0, x0) is the
flow of the ODE of Eq. (11). Then,

ϕ(t, t0, x0) = Φ(t)

Φ(t0)−1x0 +
tˆ

t0

Φ(s)−1b(s) ds


where Φ(t) is a fundamental matrix of the associated ho-
mogeneous system.

Corollary 72. Let I ⊆ R be an interval, A ∈ C(I, L(Rn))
and b ∈ C(I,Rn). Then, the general solution φ(t) of the
ODE of Eq. (13) can be written as:

φ(t) = φh(t) +φp(t)

where φh(t) is the general solution to the associated ho-
mogeneous system and φp(t) is a particular solution of
Eq. (13).

Proposition 73 (Liouville’s formula). Let I ⊆ R be
an interval, A ∈ C(I, L(Rn)), Φ(t) ∈ Mn(R) be a matrix
solution of the ODE of Eq. (13) and t0 ∈ I. Then, for all
t ∈ I we have:

det(Φ(t)) = det(Φ(t0))e
´ t

t0
tr(A(s))ds

Constant coefficients linear systems
Lemma 74. Let I ⊆ R be a compact interval and
f : I × Rn → Rn be a continuous function and Lips-
chitz continuous with respect to the second variable. Let
φ : I → Rn be the solution of the ivp of Eq. (10). Then,
∀ψ ∈ C(I,Rn) the sequence (Tmψ) converges uniformly
to φ on I.

Theorem 75. Let A ∈ Mn(R) and Φ(t) ∈ Mn(R) be a
matrix solution of the ODE

x′ = Ax (14)

such that Φ(0) = In. Then:

1. For all t, s ∈ R, then Φ(t + s) = Φ(t)Φ(s).

2. Φ(t)−1 = Φ(−t).

3. The series
∞∑

k=0

Aktk

k! converges uniformly on compact

sets.

Definition 76. Let A ∈ Mn(R) and t ∈ R. We define
the matrix exponential eAt as:

eAt =
∞∑

k=0

Aktk

k! (15)

Proposition 77. Let A ∈ Mn(R) and t, s ∈ R. Then,
the matrix exponential eAt is a fundamental matrix of the
ODE of Eq. (14) and has the following properties:

1. eA·0 = In

2. eA(t+s) = eAteAs

3.
(
eAt

)−1 = e−At

4.
(
eAt

)′ = AeAt = eAtA

5. If Φ(t) is an arbitrary fundamental matrix of the
ODE of Eq. (14), then:

eAt = Φ(t)Φ(0)−1

Lemma 78. Let A, B, C ∈ Mn(R). Then:
7By definition, if M(t) = (mij(t)), then M′(t) := (mij

′(t)).
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1. If BC = CA, then:

eBtC = CeAt

2. If AB = BA, then:

eAtB = BeAt and e(A+B)t = eAteBt

Corollary 79. Let t ∈ R, A ∈ Mn(R) and J ∈ Mn(R)
be the Jordan form of A such that A = CJC−1 for some
matrix C ∈ GLn(R). Then:

eAt = CeJtC−1

Proposition 80. Let A ∈ Mn(R) and t ∈ R. If λ is an
eigenvalue of A with associated eigenvector v, then eλt is
an eigenvalue of eAt with associated eigenvector v. That
is, eAtv = eλtv. Hence, φ(t) = eλtv is a solution of the
ivp: {

x′ = Ax
x(0) = v

Corollary 81. Let A ∈ Mn(R) and t ∈ R and con-
sider the linear ODE of Eq. (14). If (v1, . . . , vn) is a ba-
sis of eigenvectors with associated eigenvalues λ1, . . . , λn,
respectively, then (φ1, . . . ,φn), where φi = eλitvi for
i = 1, . . . , n, is a basis of An.

Lemma 82. Let A = diag(λ1, . . . , λn) ∈ Mn(R) and
t ∈ R. Then:

eAt = diag(eλ1t, . . . , eλnt)

Proposition 83. Let A ∈ Mn(R) and λ = α + iβ ∈
C \ R be an eigenvalue of A with associated eigenvector
v = u + iw ∈ Cn. Then:

eAtv = eAtu + ieAtw = eαt [cos(βt)u − sin(βt)w] +
+ ieαt [sin(βt)u + cos(βt)w]

and eAtu, eAtw are linearly independent solutions of the
ODE of Eq. (14) with initial conditions x(0) = u and
x(0) = w, respectively.

Definition 84. Let A ∈ Mn(R). A vector w ∈ Rn is a
generalized eigenvector of rank m of A corresponding to
the eigenvalue λ ∈ R if:

(A − λIn)mw = 0 but (A − λIn)m−1w ̸= 0

The set spanned by all generalized eigenvectors of λ is
called generalized eigenspace of λ.

Proposition 85. Let A ∈ Mn(R) and λ ∈ σ(A). Then,
the dimension of the generalized eigenspace is the alge-
braic multiplicity of λ.

Lemma 86. Let A ∈ Mn(R) and v1 ∈ Rn be an eigen-
vector of A with associated eigenvalue λ. We define
v2, . . . , vm ∈ Rn in the following way:

(A − λIn)vk = vk−1 k = 2, . . . , m

That is, vk is a generalized eigenvector of rank k of A with
associated eigenvalue λ. Then,

φ1 = eλtv1

φ2 = eλt (v2 + tv1)

φ3 = eλt

(
v3 + tv2 + t2

2 v1

)
...

φm = eλt

(
vm + tvm−1 + · · · + tm−1

(m − 1)!v1

)
are solutions of the ODE of Eq. (14). Further-
more, if v1, . . . , vk are linearly independent, then so are
φ1, . . . ,φk.

Corollary 87. Let A ∈ Mn(R) and σ(A) = {λ1, . . . , λn}
be the spectrum of A such that:

• λ1, . . . , λ2k ∈ C \ R, λk+i = λi and λi = αi + iβi,
αi, βi ∈ R for i = 1, . . . , k.

• λ2k+1, . . . , λn ∈ R

Then, the general solution of the ODE of Eq. (14) is of
the form:

φ(t) =
k∑

i=1
eαit (Pi(t) cos(βit) + Qi(t) sin(βit)) +

+
n∑

i=2k+1
eλitRi(t)

where Pi, Qi, Ri ∈ Rn[t] and deg Pi, deg Qi, deg Ri < n
∀i.

5. | Dependence on initial conditions
and parameters

Definition 88. Let U ⊆ R×Rn ×Rp be an open set and
f : U → Rn be a continuous function. Suppose that the
ivp: {

x′ = f(t, x,λ)
x(t0) = x0

(16)

has a unique maximal solution φ(t0,x0,λ)(t) defined on
an interval I(t0,x0,λ). We define the flow of the ODE
x′ = f(t, x,λ) as:

ϕ : I(t0,x0,λ) × R × Rn × Rp −→ Rn

(t, t0, x0,λ) 7−→ φ(t0,x0,λ)(t)

Continuous and Lipschitz continuous depen-
dence

Lemma 89. Let X be a compact metric space and (φm)
be a sequence of functions φm : X → Rn such that
they are pointwise equicontinuous and pointwise bounded.
Suppose that all convergent partial subsequences of (φm)
have the same limit φ. Then, (φm) converges uniformly
to φ.
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Proposition 90. Let U ⊆ R × Rn be an open set and
fm : U → Rn be continuous function for m ∈ N and such
that for all compact K ⊂ U , the sequence (fm|K) converge
uniformly to a function f0|K . Let ((tm, xm)) ⊂ U be a se-
quence such that lim

m→∞
(tm, xm) = (t0, x0). Suppose that

for all m ≥ 0 the ivp{
x′ = fm(t, x)
x(tm) = xm

has a unique maximal solution φm defined on Im. Then,
for all [a, b] ⊂ I0 with t0 ∈ (a, b), ∃m0 ∈ N such
that [a, b] ⊂ Im ∀m > m0. Furthermore, the sequence(
φm|[a,b]

)
m>m0

converges uniformly to φ0|[a,b].

Theorem 91. Let U ⊆ R × Rn be an open set and
f : U → Rn be a continuous function. Suppose that each
ivp of the form of Eq. (10) has a unique maximal solution.
Then, the flow ϕ(t, t0, x0) is a continuous function defined
in an open set.

Theorem 92. Let U ⊆ R × Rn × Rp be an open set and
f : U → Rn be a continuous function. Suppose that each
ivp of the form of Eq. (16) has a unique maximal solution.
Then, the flow ϕ(t, t0, x0,λ) is a continuous function de-
fined in an open set V ⊆ I(t0,x0,λ) × R × Rn × Rp.

Lemma 93 (Grönwall’s lemma). Let u, v, w : [a, b) →
R be continuous functions such that v(t) ≥ 0 ∀t ∈ [a, b)
and satisfying:

u(t) ≤ w(t) +
tˆ

a

v(s)u(s) ds ∀t ∈ [a, b)

Then:

u(t) ≤ w(t) +
tˆ

a

w(s)v(s)e
´ t

s
v(r)dr ds ∀t ∈ [a, b)

If, moreover, w ∈ C1((a, b)), then:

u(t) ≤ w(a)e
´ t

a
v(r)dr +

tˆ

a

w′(s)e
´ t

s
v(r)dr ds ∀t ∈ [a, b)

Proposition 94. Let U ⊆ R × Rn be an open set and
f : U → Rn be a continuous function and Lipschitz con-
tinuous with respect to the second variable with Lipschitz
constant L. Let ϕ be the flow of the ODE x′ = f(t, x).
Then, ∀(t0, x1), (t0, x2) ∈ U and ∀t ∈ I(t0,x1) ∩ I(t0,x2), we
have:

∥ϕ(t, t0, x2) − ϕ(t, t0, x1)∥ ≤ eL|t−t0|∥x2 − x1∥

Thus, ϕ is locally Lipschitz continuous with respect to the
third variable.

Differentiable dependence
Theorem 95 (Dependence on x0). Let U ⊆ R×Rn ×
Rp be an open set and f : U → Rn be a continuous func-
tion and of class C1 with respect to the second variable.
Suppose that the flow ϕ(t, t0, x0,λ) of x′ = f(t, x,λ) is
defined on an open set V ⊆ R × R × Rn × Rp. Then,
∀(t, t0, x0,λ) ∈ V , ϕ is differentiable with respect to x0
and D3ϕ(t, t0, x0,λ)8 is continuous on V . Furthermore,
D3ϕ(t, t0, x0,λ) satisfies the following ivp:{

M′ = D2f(t,ϕ(t, t0, x0,λ),λ)M
M(t0) = In

Or, equivalently, ∂ϕ
∂x0i

(t, t0, x0,λ) = D3ϕ(t, t0, x0,λ)ei

satisfies the following ivp:{
y′ = D2f(t,ϕ(t, t0, x0,λ),λ)y
y(t0) = ei

for i = 1, . . . , n

These kinds of equations are called variational equations.

Theorem 96 (Dependence on t0). Let U ⊆ R×Rn×Rp

be an open set and f : U → Rn be a continuous function
and of class C1. Suppose that the flow ϕ(t, t0, x0,λ) of
x′ = f(t, x,λ) is defined on an open set V ⊆ R × R ×
Rn × Rp. Then, ∀(t, t0, x0,λ) ∈ V , ϕ is differentiable
with respect to t0 and D2ϕ(t, t0, x0,λ) is continuous on
V . Furthermore, D2ϕ(t, t0, x0,λ) satisfies the following
ivp: {

y′ = D2f(t,ϕ(t, t0, x0,λ),λ)y
y(t0) = −f(t0, x0,λ)

Theorem 97 (Dependence on λ). Let U ⊆ R×Rn×Rp

be an open set and f : U → Rn be a continuous function
and of class C1 with respect to the second and third vari-
able. Suppose that the flow ϕ(t, t0, x0,λ) of x′ = f(t, x,λ)
is defined on an open set V ⊆ R × R × Rn × Rp. Then,
∀(t, t0, x0,λ) ∈ V , ϕ is differentiable with respect to λ
and D4ϕ(t, t0, x0,λ) is continuous on V . Furthermore,
D4ϕ(t, t0, x0,λ) satisfies the following ivp:{

M′ = D2f(t,ϕ(t, t0, x0,λ),λ)M + B
M(t0) = 0

where B = D3f(t,ϕ(t, t0, x0,λ),λ). Equivalently,
∂ϕ
∂λi

(t, t0, x0,λ) satisfies the ivp:{
y′ = D2f(t,ϕ(t, t0, x0,λ),λ)y + Bei

y(t0) = 0
for i = 1, . . . , n

Higher order dependence
Theorem 98. Let U ⊆ R × Rn be an open set and
f : U → Rn be a continuous function and of class Ck,
k ∈ N. Suppose that the flow ϕ(t, t0, x0) of x′ = f(t, x) is
defined on an open set V ⊆ R×R×Rn. Then, ϕ(t, t0, x0)
is of class Ck on V .

8Here, D3ϕ(t, t0, x0,λ) = ∂ϕ
∂x0

(t, t0, x0,λ) denotes the matrix
(

∂ϕi
∂x0j

(t, t0, x0,λ)
)

∈ Mn(R), where x0j denotes the j-th component of
x0 and ϕi denotes the i-th component of ϕ.
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6. | Qualitative theory of autonomous
systems

Introduction to dynamical systems

Definition 99. A dynamical system is a triplet (X, G, Π),
where G is a topological abelian group9, X is a topological
space and Π : G × X → X is a function such that:

• Π(t, ·) is continuous ∀t ∈ G.

• Π(0, x) = x ∀x ∈ X.

• Π(s, Π(t, x)) = Π(t + s, x) ∀s, t ∈ G and ∀x ∈ X.

We say that a dynamical system (X, G, Π) is discrete if
G = Z and we say that it is continuous if G = R. If we
have defined our system for G≥0, we will say that we have
a semidynamical system.

Definition 100. Let (G, X, Ψ) be a dynamical system
and x ∈ X. The orbit through x is defined as:

γ(x) = γΨ(x) := {Ψ(t, x) : t ∈ G}10

Moreover if G = Z or G = R we define the positive semi-
orbit through x and the negative semi-orbit through x as
the following respective sets:

γ+(x) = γΨ
+(x) := {Ψ(t, x) : t ∈ G≥0}

γ−(x) = γΨ
−(x) := {Ψ(t, x) : t ∈ G≤0}

Definition 101. Let (G, X, Ψ) be a dynamical system.
Then, we have an equivalence relation ∼ on X given by

x ∼ y ⇐⇒ γ(x) = γ(y) ∀x, y ∈ X

which creates a partition of X, called phase portrait.

Definition 102. The phase space of an ODE or system of
ODEs is the space in which all possible states of a system
are represented with each possible state corresponding to
one unique point in the phase space.

(r, 0)
t

x

y

Figure 1: Phase space of
the system {x′ = −y, y′ =
x : (x(0), y(0)) = (r, 0)}.

−3 −2 −1 0 1 2 3

−2

0

2

x

y

Figure 2: Vector field of the
system {x′ = x, y′ = x + y}
together with two orbits.

(0,0) x

y

Figure 3: Phase portrait of the system {x′ = x/2, y′ =
x + y/2}.

Definition 103. Let (G, X, Ψ) be a dynamical system
and x ∈ X. We define the following function:

Ψx : G −→ γ(x)
t 7−→ Ψ(t, x)

Lemma 104. Let f : Rn → Rn be a continuous function
such that the flow ϕ(t, t0, x0) of the ODE x′ = f(x) is
defined for all t ∈ R. Then, (R,Rn, Ψ) is a dynamical sys-
tem, where Ψ(t, x) = ϕ(t, 0, x). Furthermore, note that
γ(x) = im(ϕ(·, 0, x)).

Lemma 105. Let f : Rn → Rn be a continuous function
such that ∃M, N ∈ R≥0 with ∥f(x)∥ ≤ M∥x∥ + N . Then,
the solutions of the ODE x′ = f(x) are defined for all
t ∈ R.

Definition 106. Let f , g : Rn → Rn be continuous func-
tions and x′ = f(x), x′ = g(x) be two ODEs for which we
have existence and uniqueness of solutions. We say that
these two ODEs are equivalent if there exists h : Rn → Rn

such that h(x) ≥ 0 and f(x) = h(x)g(x) ∀x ∈ Rn. There-
fore, f and g have the same orbits oriented in the same
way.

Corollary 107. Let f : Rn → Rn be a continuous func-
tion such that the ODE x′ = f(x) has existence and
uniqueness of solutions for all initial conditions. Then,
there exists a continuous function g : Rn → Rn such that
the autonomous ODEs induced by f and g are equivalent
and the flow of the ODE x′ = g(x) is defined ∀t ∈ R.

Lemma 108. Let H be a proper subgroup of R which is
closed. Then, ∃T ∈ R≥0 such that H = TZ.

Proposition 109. Let (R,Rn, Ψ) be a dynamical system
and γ(x) be an orbit. Then, there are 3 possible cases for
γ(x):

1. γ(x) = {x}.

2. γ(x) ∼= S1.

3. γ(x) is homeomorphic to an injective and continuous
image of R.

9That is, G is an abelian group with an inherited topological structure.
10In general, if the context is clear we will use the notation γ(x) instead of γΨ(x).
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Definition 110. Let (R,Rn, Ψ) be a dynamical system
and p ∈ Rn. We say that p ∈ Rn is a critical point or
singular point if γ(p) = {p}. Otherwise, we say that p is
non-singular or regular.

Definition 111. Let (R,Rn, Ψ) be a dynamical system
and γ(x) be an orbit of (R,Rn, Ψ). We say that γ(x) is
periodic of period T > 0 if γ(x) ∼= S1 and ker Ψx = TZ.

Proposition 112. Let (R,Rn, Ψ) be a dynamical system
such that Ψ(t, x) = ϕ(t, 0, x), where ϕ(t, t0, x0) is the flow
of the ODE x′ = f(x). Let p ∈ Rn. Then, the following
statements are equivalent:

1. {p} is a critical point.

2. ϕ(t, 0, p) = p.

3. f(p) = 0.

Definition 113. Let (R,Rn, Ψ) be a dynamical system
and x ∈ Rn. We say that y ∈ Rn is an α-limit point of x if
there exists a sequence (tn) ⊂ R such that lim

n→∞
tn = −∞

and lim
n→∞

Ψ(tn, x) = y. The set of all α-limit points of
x is called α-limit set, and it is denoted by α(x). For an
orbit γ of (R,Rn, Ψ), we say that y is an ω-limit point of
γ, it is a ω-limit point of some point on the orbit γ. The
set of such α-limit points will be denoted as α(γ).

Definition 114. Let (R,Rn, Ψ) be a dynamical system
and x ∈ Rn. We say that y ∈ Rn is an ω-limit point of x if
there exists a sequence (tn) ⊂ R such that lim

n→∞
tn = +∞

and lim
n→∞

Ψ(tn, x) = y. The set of all ω-limit points of
x is called ω-limit set, and it is denoted by ω(x). For an
orbit γ of (R,Rn, Ψ), we say that y is an ω-limit point of
γ, it is a ω-limit point of some point on the orbit γ. The
set of such ω-limit points will be denoted as ω(γ).

Proposition 115. Let (R,Rn, Ψ) be a dynamical system
and x ∈ Rn. Then:

Cl(γ(x)) = α(x) ∪ γ(x) ∪ ω(x)

Definition 116. Let (R,Rn, Ψ) be a dynamical system
and A ⊆ Rn be a subset. We say that A is invariant if
γ(x) ⊆ A ∀x ∈ A. We say that A is positively invariant
if γ+(x) ⊆ A ∀x ∈ A. Analogously, we say that A is
negatively invariant if γ−(x) ⊆ A ∀x ∈ A.

Proposition 117. Let (R,Rn, Ψ) be a dynamical system,
p ∈ Rn and γ be an orbit of the system such that γ+ is
contained in a compact set. Then:

• ω(p) ̸= ∅.

• ω(p) is compact.

• ω(p) is invariant.

• ω(p) is connected.

• If ω(γ) ⊆ γ =⇒ ω(γ) = γ, then γ is either a
critical point or a period orbit.

Proposition 118. Let (R,Rn, Ψ) be a dynamical system,
p ∈ Rn and γ be an orbit of the system such that γ− is
contained in a compact set. Then:

• α(p) ̸= ∅.

• α(p) is compact.

• α(p) is invariant.

• α(p) is connected.

• If α(γ) ⊆ γ =⇒ α(γ) = γ, then γ is either a
critical point or a period orbit.

Definition 119. Let (R,Rn, Ψ) be a dynamical system
and K ⊂ Rn be a compact set. We say that K is posi-
tively stable if for all neighbourhood U of K, there exists a
neighbourhood V of K with V ⊆ U and such that ∀x ∈ V ,
γ+(x) ⊂ U . Analogously, we say that K is negatively sta-
ble if for all neighbourhood U of K, there exists a neigh-
bourhood V of K with V ⊆ U and such that ∀x ∈ V ,
γ−(x) ⊂ U .

Definition 120. Let (R,Rn, Ψ) be a dynamical system
and K ⊂ Rn be a compact set. We say that K is attracting
if there exists a neighbourhood U of K such that ∀x ∈ U ,
ω(x) ⊂ K. We say that K is repelling if there exists a
neighbourhood U of K such that ∀x ∈ U , α(x) ⊂ K. We
say that K is asymptotically stable if it is both attracting
and positively stable.

Proposition 121. Let (R,Rn, Ψ) be a dynamical system
and K ⊂ Rn be a compact set. Suppose that K is posi-
tively stable. Then, K is positively invariant.

Definition 122. Let (R,Rn, Ψ) be a dynamical system
and p ∈ Rn. We say that p is a center if there exists a
neighbourhood U of p such that if γ(x) ⊂ U , then γ(x)
is periodic. The largest neighbourhood with this property
is called basin of the center.

Proposition 123. Let (R,Rn, Ψ) be a dynamical system
and p ∈ Rn be a center. Then:

1. p is positively and negatively stable.

2. p is not attracting.

Equivalence and conjugacy of dynamical sys-
tems
Definition 124. Let (G, X, Ψ1) and (G, X, Ψ2) be dy-
namical systems and r ∈ N ∪ {0, ∞}. We say that
(G, X, Ψ1) and (G, X, Ψ2) are equivalent dynamical sys-
tems of class Cr if there exists a diffeomorphism h : X → Y
of class Cr such that ∀x ∈ X, h(γΨ1(x)) = γΨ2(h(x)) and
preserving the orientation of the orbits. In particular, if
r = 0 we say that (G, X, Ψ1) and (G, X, Ψ2) are topologi-
cally equivalent. That diffeomorphism h is called an equiv-
alence (of class Cr) between (G, X, Ψ1) and (G, X, Ψ2).

Definition 125. Let (G, X, Ψ1) and (G, X, Ψ2) be dy-
namical systems and r ∈ N ∪ {0, ∞}. We say that
(G, X, Ψ1) and (G, X, Ψ2) are conjugate dynamical sys-
tems of class Cr if there exists a diffeomorphism h : X → Y
of class Cr such that ∀(t, x) ∈ G × X, h(Ψ1(t, x)) =
Ψ2(t, h(x)). In particular, if r = 0 we say that (G, X, Ψ1)
and (G, X, Ψ2) are topologically conjugate. That diffeo-
morphism h is called a conjugacy (of class Cr) between
(G, X, Ψ1) and (G, X, Ψ2).
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Proposition 126. Let (G, X, Ψ1) and (G, X, Ψ2) be dy-
namical systems and h be a conjugacy of class Cr be-
tween them. Then, h is an equivalence of class Cr between
(G, X, Ψ1) and (G, X, Ψ2).

Proposition 127. Two dynamical systems induced by
two equivalent ODEs are equivalent (as a dynamical sys-
tems).

Proposition 128. Let (G, X, Ψ1) and (G, X, Ψ2) be dy-
namical systems and h : X → Y be an equivalence of class
Cr between them. Then:

1. h preserves the type of orbit. More precisely if
p ∈ X, we have:

i) If p is a critical point, then so it is h(p).
ii) If γ(p) is a periodic orbit, then so it is h(γ(p))11.
iii) If γ(p) is the injective and continuous image of

R, then so it is h(γ(p)).

2. If p ∈ X is a critical point of Ψ1, we have:

i) If p is attracting for (G, X, Ψ1), then so it is
h(p) for (G, X, Ψ2).

ii) If p is repelling for (G, X, Ψ1), then so it is h(p)
for (G, X, Ψ2).

iii) If p is positively stable for (G, X, Ψ1), then so
it is h(p) for (G, X, Ψ2).

iv) If p is asymptotically stable for (G, X, Ψ1), then
so it is h(p) for (G, X, Ψ2).

Proposition 129. A conjugacy between two dynamical
systems preserves the period of periodic orbits.

Proposition 130. Let α, β ∈ R such that αβ > 0. Con-
sider the function h : R → R defined by:

h(x) =
{

xβ/α if x ≥ 0
−|x|β/α if x < 0

Then, h is a topological conjugation between the systems
induced by the ODEs x′ = αx and y′ = βy.

Proposition 131. Let A, B ∈ Mn(R) be similar matri-
ces, that is, ∃P ∈ Mn(R) such that B = PAP−1. Then,
the function

h : Rn −→ Rn

x 7−→ Px
is a conjugation between the systems induced by the ODEs
x′ = Ax and y′ = By.

Local equivalence and conjugacy of dynamical
systems
Definition 132. Let U ⊆ Rn be an open set and f : U →
Rn be a vector field of class C1. For all x0 ∈ U , let φx0(t)
be the maximal solution to the ivp{

x′ = f(t, x)
x(0) = x0

We define the flow of the vector field f as ϕ(t, x) := φx(t).

Proposition 133. Let U ⊆ Rn be an open set and
f : U → Rn be a vector field of class C1. Then, the flow
ϕ(t, x) of f defines locally a dynamical system.

Definition 134. Let U, V ⊆ Rn be open sets and f :
U → Rn, g : V → Rn be vector fields of class C1, and
r ∈ N∪{0, ∞}. We say that f and g are equivalent of class
Cr if there exists a diffeomorphism h : U → V of class Cr

such that ∀x ∈ U , h(γf (x)) = γg(h(x)) and preserving
the orientation of the orbits. In particular, if r = 0 we
say that f and g are locally topologically equivalent. That
diffeomorphism h is called a local equivalence (of class Cr)
between f and g.

Definition 135. Let U, V ⊆ Rn be open sets and f : U →
Rn, g : V → Rn be vector fields of class C1 with flows ϕ
and ψ, respectively, and r ∈ N∪{0, ∞}. We say that f and
g are conjugate of class Cr if there exists a diffeomorphism
h : U → V of class Cr such that h(ϕ(t, x)) = ψ(t, h(x))
∀(t, x) ∈ dom(ϕ) when the equation is well-defined12. In
particular, if r = 0 we say that f and g are locally topolog-
ically conjugate. That diffeomorphism h is called a local
conjugacy (of class Cr) between f and g.

Lemma 136. Let U, V ⊆ Rn be open sets and f :
U → Rn, g : V → Rn be vector fields of class C1 and
h : U → V be a diffeomorphism of class C1. Then, h
is a conjugacy of class C1 between them if and only if
Dh(x)(f(x)) = g(h(x)) ∀x ∈ U .

Proposition 137. Let U, V ⊆ Rn be open sets and
f : U → Rn, g : V → Rn be vector fields. Suppose
that h is a conjugacy between x′ = f(x) and y′ = g(y).
Then, x′ = −f(x) and y′ = −g(y) are conjugate by h.

Definition 138. Let U ⊆ Rn be an open set and f : U →
Rn be a vector field of class Cr, r ≥ 1, and A ⊆ Rn−1

be an open set. We say that function s : A → U of class
Cr is a local transversal section of f of class Cr if ∀a ∈ A,
⟨im Dh(a), f(s(a))⟩ = Rn13. Take Σ := s(A). If s : A → Σ
is a homeomorphism, we say that Σ is a transversal section
of f of class Cr.

Theorem 139 (Flow box theorem). Let U ⊆ Rn be an
open set, f : U → Rn be a vector field of class Cr, r ≥ 1,
p ∈ U be a non-singular point of f and s : A → Σ be a
transversal section of f of class Cr with s(0) = p. Then,
there exists a neighbourhood V ⊆ U of p and a diffeomor-
phism h : V → (−ε, ε) × B of class Cr, where ε > 0 and
B ⊆ Rn−1 is an open ball centered at 0 = s−1(p), such
that:

• h(Σ ∩ V ) = {0} × B.

• h is a conjugacy of class Cr between f |V and g :
(−ε, ε) × B → Rn defined as g(x) = (1, 0 . . . , 0)
∀x ∈ dom g.

11Note that the period of γ(p) and h(γ(p)) may be different.
12That is, ∀(t, x) ∈ dom(ϕ) such that (t, h(x)) ∈ dom(ψ).
13A plane version would be that s : A ⊆ R → U ⊆ R2 is a local transversal section of f if ∀a ∈ A, s′(a) and f(s(a)) are linearly

independent.
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Lemma 140. Let U, V ⊆ Rn be open sets and f : U →
Rn, g : V → Rn be vector fields of class C1 and p ∈ U
be a critical point of f . Suppose that h is a conjugacy of
class C1 between f and g. Then, the vector fields Df(p)
and Dg(h(p)) are conjugate by Dh(p). In particular,
σ(Df(p)) = σ(Dg(h(p))).

Definition 141. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1 and p ∈ U be a critical point
of f . Suppose σ(Df(p)) = {λ1, λ2}. We say that p is a

• stable node if λ1, λ2 ∈ R<0 and λ1 ̸= λ2 (see
Fig. 10a).

• stable degenerated node if λ1, λ2 ∈ R<0, λ1 = λ2 and
Df(p) ∼

(
λ1 0
1 λ1

)
(see Fig. 10b).

• stable star if λ1, λ2 ∈ R<0, λ1 = λ2 and Df(p) ∼(
λ1 0
0 λ1

)
(see Fig. 10c).

• unstable node if λ1, λ2 ∈ R>0 and λ1 ̸= λ2 (see
Fig. 10d).

• unstable degenerated node if λ1, λ2 ∈ R>0, λ1 = λ2

and Df(p) ∼
(

λ1 0
1 λ1

)
(see Fig. 10e).

• unstable star if λ1, λ2 ∈ R>0, λ1 = λ2 and Df(p) ∼(
λ1 0
0 λ1

)
(see Fig. 10f).

• saddle point if λ1, λ2 ∈ R and λ1λ2 < 0 (see Fig. 10j).

• stable focus (or sink) if λ1, λ2 ∈ C and Re(λ1) < 0
(see Fig. 10h).

• unstable focus (or source) if λ1, λ2 ∈ C and Re(λ1) >
0 (see Fig. 10i).

• center if λ1, λ2 ∈ C, Re(λ1) = 0 and p is surrounded
by periodic orbits (see Fig. 10g).

Definition 142. Let A ∈ M2(R) and consider the lin-
ear system induced by A such that the origin is a saddle
point, and E1, E2 be the eigenspaces of A. We say that
the four orbits contained in E1 ∪ E2 (without taking into
account the singular point 0) are the saddle separatrices
of the linear system.

T
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or
stable

degenerated node* Unsta
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r o
r u

ns
ta
bl
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de
ge
ne
ra
te
d
no
de
*

C
en
te
r

Line of stable fixed points Line of unstable fixed points

Saddle point

Stable node Unstable node

Stable focus Unstable focus

Plane of fixed points

*A star if A is diagonalizable and a degenerated node if not.

T

D

Figure 4: Classification of singular points of a linear dy-
namical system of dimension 2, induced by the equation
x′ = Ax, A ∈ M2(R) in terms of D = det A and
T = tr A.

Definition 143. Let U ⊆ Rn be an open set, f : U → Rn

be a vector field and consider the differential system in-
duced by f . Let γ be an orbit of that system. We say that
γ is a homoclinic orbit if it joins a saddle point to itself.
We say that γ is a heteroclinic orbit if it joins joins two
different singular points.

−6 −4 −2 0 2 4 6

−2

0

2

4

Figure 5: A homoclinic orbit (blue) and a heteroclinic or-
bit (green) of the differential system x′′ = sin(x)+x cos(x).

Definition 144. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1 and p ∈ U be a critical point
of f . We say that p has

• an elliptic sector if a side of p is locally as Fig. 6.

• a hyperbolic sector if a side of p is locally as Fig. 7.

• an attracting parabolic sector if a side of p is locally
as Fig. 8.

• a repelling parabolic sector if a side of p is locally as
Fig. 9.

The union of all sectors that form a neighbourhood of p
is called sectorial decomposition.
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Figure 6: Elliptic sector Figure 7: Hyperbolic sector

Figure 8: Attracting
parabolic sector

Figure 9: Repelling
parabolic sector

Proposition 145. Any critical point of an analytic dif-
ferential system in the plane can either be:

• A focus.

• A center.

• A finite collection of elliptic sectors, hyperbolic sec-
tors and/or parabolic sectors.

Hamiltonian systems
Definition 146. Let U ⊆ Rn be an open set, f : U → Rn

be a vector field and H : U → R be a non-constant func-
tion. We say that H is a first integral for the differential
system x′ = f(x) if for each solution φ(t) of that system,
we have H(φ(t)) = const. Thus, the phase trajectory of a
solution φ(t) to x′ = f(x) lies on a level surface of H. In
particular, if n = 2, φ(t) will be a level curve of H.

Proposition 147. Let U ⊆ Rn be an open set, f :
U → Rn be a vector field such that f = (f1, . . . , fn) and
H : U → R be a non-constant function. Then, H is a first
integral for the differential system x′ = f(x) if and only if:

∂H

∂x1
(x)f1(x) + · · · + ∂H

∂xn
(x)fn(x) = 0 ∀x ∈ U

Definition 148. Let U ⊆ Rn be an open set, f : U → Rn

be a vector field and H1, . . . , Hk : U → R be k ≤ n − 1
first integrals for the differential system x′ = f(x). We
say that H1, . . . , Hk are functionally independent (or sim-
ply independent) if for all x ∈ U (except for maybe a set
of zero area), we have:

rank


∂U1
∂x1

(x) · · · ∂U1
∂xn

(x)
... . . . ...

∂Uk

∂x1
(x) · · · ∂Uk

∂xn
(x)

 = k

Proposition 149. Let U ⊆ Rn be an open set, f : U →
Rn be a vector field and H1, . . . , Hk be k ≤ n−1 function-
ally independent first integrals for the differential system
x′ = f(x). Then, the number of unknowns of the system
can be reduced to n − k.

Definition 150. Let U ⊆ R2n be an open set, H : U → R
be a function and (x, y) := (x1, . . . , xn, y1, . . . , yn). The
differential system 

x1
′ = −∂H

∂y1
(x)

...

xn
′ = − ∂H

∂yn
(x)

y1
′ = ∂H

∂x1
(x)

...

yn
′ = ∂H

∂x1
(x)

is called Hamiltonian system in 2n unknowns and H is
called Hamiltonian of the system.
Proposition 151. Let U ⊆ R2n be an open set and
H : U → R be the Hamiltonian of its Hamiltonian associ-
ated system. Then, H is a first integral of that differential
system.
Theorem 152. Let U ⊆ R2 be an open set, H : U → R
be the Hamiltonian of its Hamiltonian associated system
and p ∈ U be a singular point. Then, p is either a saddle
point or a center.

Local structure of hyperbolic critical points
Definition 153. Let U ⊆ Rn be an open set, f : U → Rn

be a vector field of class Cr with r ≥ 1 and p ∈ U be
a critical point of f . We say that p is hyperbolic critical
point if Re(λ) ̸= 0 ∀λ ∈ σ(Df(p)).
Theorem 154 (Hartman-Grobman theorem). Let
U ⊆ Rn be an open set, f : U → Rn be a vector field
of class C1 and p ∈ U be a hyperbolic critical point
of f . Let g : Rn → Rn be the vector field defined
as g(x) = Df(p)(x). Then, there exist neighbourhoods
V ⊆ U of p and W ⊆ Rn of f(p) = 0 such that f |V and
g|W topologically conjugate.
Corollary 155. Let U, V ⊆ Rn be open sets and f : U →
Rn, g : V → Rn be vector fields of class C1 and p ∈ U
be a hyperbolic critical point of f . Suppose that h is a
conjugacy of class C1 between f and g. Then, h(p) is a
hyperbolic critical point of g.
Definition 156. Let A ∈ Mn(R). We say that A is
hyperbolic matrix if Re(λ) ̸= 0 ∀λ ∈ σ(A).
Proposition 157. Let A ∈ Mn(R) be a hyperbolic ma-
trix. Then, 0 ∈ Rn is the unique critical point of x′ = Ax
and it is hyperbolic.
Definition 158. Let A ∈ Mn(R). We define the stability
number of A as:

ι(A) := |{λ ∈ σ(A) : Re(λ) < 0}|

Theorem 159. Let A ∈ Mn(R) be a hyperbolic matrix
such that ι(A) = n. Then, x′ = Ax and y′ = −y, y ∈ Rn,
are topologically conjugate. In particular, the origin is at-
tracting.
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Corollary 160. Let A ∈ Mn(R) be a hyperbolic matrix
such that ι(A) = 0. Then, x′ = Ax and y′ = y, y ∈ Rn,
are topologically conjugate. In particular, the origin is
repelling.

Corollary 161. Let A ∈ Mn(R) be a hyperbolic matrix
such that ι(A) = k. Then, x′ = Ax and

{y′ = −y, z′ = z : y ∈ Rk, z ∈ Rn−k}

are topologically conjugate. In particular, the origin is
neither attracting nor repelling.

Theorem 162. Let A, B ∈ Mn(R) be hyperbolic ma-
trices. Then, x′ = Ax and y′ = By are topologically
conjugate if and only if ι(A) = ι(B).

Corollary 163. Let A ∈ Mn(R) be a hyperbolic matrix.
Then:

• 0 is attracting for x′ = Ax ⇐⇒ ι(A) = n.

• 0 is repelling for x′ = Ax ⇐⇒ ι(A) = 0.

Theorem 164. Let U ⊆ Rn be an open set, f : U → Rn

be a vector field of class C1 and p ∈ U be a critical point
of f . Then:

1. If ι(Df(p)) = n, then p is asymptotically stable for
the dynamical system induced by x′ = f(x).

2. If ι(Df(p)) = 0, then p is repelling and nega-
tively stable for the dynamical system induced by
x′ = f(x).

3. If p is positively stable, then Re(λ) ≤ 0 ∀λ ∈
σ(Df(p)).

4. If p is negatively stable, then Re(λ) ≥ 0 ∀λ ∈
σ(Df(p)).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 10: Phase portraits of hyperbolic singular points

7. | Qualitative theory of planar differ-
ential systems

Polynomial vectors fields

Definition 165. Let p, q ∈ R[x, y]. The system of ODEs{
x′ = p(x, y)
y′ = q(x, y)

(17)

is called a polynomial system. The field f = (p, q) is called
polynomial vector field. We define the degree of that sys-
tem as n := max{deg p, deg q}. Another commonly used
notation for expressing the vector field is through the op-
erator

X := p(x, y) ∂

∂x
+ q(x, y) ∂

∂y
(18)

Definition 166. Let f ∈ R[x, y] be a polynomial. An
algebraic curve is the set of points satisfying the equation
f(x, y) = 0.

Definition 167. Let f(x, y) = 0 be an algebraic curve,
p, q ∈ R[x, y] and consider the polynomial system of de-
gree n of Eq. (17). We say that f(x, y) = 0 is an invariant
algebraic curve under the system of Eq. (17) if

∂f

∂x
(x, y)p(x, y) + ∂f

∂y
q(x, y) = k(x, y)f(x, y) (19)

14Note that deg k ≤ n − 1.
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where k ∈ R[x, y] is called cofactor of the invariant curve
f(x, y) = 014. The Eq. (19) can be written as:

Xf = kf

where X is the operator defined in Eq. (18).

Proposition 168. Let f(x, y) = 0 be an algebraic curve,
p, q ∈ R[x, y] and consider the polynomial system of de-
gree n of Eq. (17). Then, the invariant curve f(x, y) = 0
is a set of orbits of the differential system of Eq. (17).

Local structure of periodic orbits
Definition 169 (Poincaré map). Let U ⊆ Rn be an
open set, f : U → Rn be a vector field of class C1 with
flow ϕ(t, x), p ∈ U and γ(p) be a periodic orbit of period
T that passes through p. Let Σ be a transversal section at
p. For each q ∈ Σ (close enough to p) such that the tra-
jectory ϕ(t, q) intersects Σ in a distinct point from q, we
define the Poincaré map as the function π : Σ0 ⊂ Σ → Σ
sending q to the first point where ϕ(t, q) intersects Σ (dif-
ferent from q).

Definition 170. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1 and γ be a periodic orbit. We
say that γ is a limit cycle if there exists a neighbourhood
V of γ such that γ is the only periodic orbit in V .

Definition 171. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1 and γ be a periodic orbit. We
denote by Ext(γ) the set of points which belong to the
unbounded component of R2 \ γ, and by Int(γ) the set of
points which belong to the bounded component of R2 \γ.

Proposition 172. Let U ⊆ R2 be an open set, f : U →
R2 be a vector field of class C1, γ be a limit cycle and V
be a neighbourhood of γ. Then, γ is exactly one of the
following three types of limit cycles:

• γ is stable if ω(q) = γ ∀q ∈ V (Fig. 11a).

• γ is unstable if α(q) = γ ∀q ∈ V (Fig. 11b).

• γ is semi-stable if either

{ω(q) = γ ∀q ∈ V ∩ Ext(γ)}∧
∧ {α(q) = γ ∀q ∈ V ∩ Int(γ)}

or

{ω(q) = γ ∀q ∈ V ∩ Int(γ)}∧
∧ {α(q) = γ ∀q ∈ V ∩ Ext(γ)}

(Figs. 11c and 11d)

(a) (b) (c) (d)

Figure 11: Stability of limit cycles

Definition 173. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1 and γ be a periodic orbit of
period T . We say that γ is a hyperbolic periodic orbit if

I(γ) :=
T̂

0

div f(γ(t)) dt ̸= 0

Theorem 174. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1 and γ be a periodic orbit of
period T . Then:

• I(γ) > 0 =⇒ γ(t) is an unstable limit cycle.

• I(γ) < 0 =⇒ γ(t) is a stable limit cycle.

Poincaré-Bendixson theorem

Lemma 175. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1, Σ be a transversal section of
f , γ be an orbit of f and p ∈ Σ ∩ ω(γ). Suppose that
φ(t) is the flux of the system. Then, ∃(tn) ∈ R such that
φ(tn) ∈ Σ and lim

n→∞
φ(tn) = p.

Lemma 176. Let U ⊆ R2 be an open set, f : U → R2 be
a vector field of class C1, Σ be a transversal section of f , γ
be an orbit of f and p ∈ Σ ∩ ω(γ). Then, γ+(p) intersect
Σ in a (finite or infinite) monotone sequence of points.

Lemma 177. Let U ⊆ R2 be an open set, f : U → R2 be
a vector field of class C1, Σ be a transversal section of f
and p ∈ U . Then, |Σ ∩ ω(p)| is either 0 or 1.

Lemma 178. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1, p ∈ U be such that γ+(p) is
contained in a compact set, and γ be an orbit such that
γ ⊆ ω(p). If ω(p) contains only non-singular points, then
ω(p) is a periodic orbit and γ = ω(p).

Theorem 179 (Poincaré-Bendixson theorem). Let
U ⊆ R2 be an open set, f : U → R2 be a vector field
of class C1 and p ∈ U be such that γ+(p) is contained
in a compact set. Suppose that f has a finite number of
singular points. Then:

1. If ω(p) contains only non-singular points, then ω(p)
is a periodic orbit.

2. If ω(p) contains only singular points, then ω(p) is a
singular point.

3. If ω(p) contains both singular and non-singular
points, then ω(p) is a collection of singular points
together with homoclinic and heteroclinic orbits con-
necting those points.

Corollary 180 (Poincaré-Bendixson theorem). Let
U ⊆ R2 be an open set, f : U → R2 be a vector field
of class C1 and p ∈ U be such that γ−(p) is contained
in a compact set. Suppose that f has a finite number of
singular points. Then:

1. If α(p) contains only non-singular points, then α(p)
is a periodic orbit.
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2. If α(p) contains only singular points, then α(p) is a
singular point.

3. If α(p) contains both singular and non-singular
points, then α(p) is a collection of singular points
together with homoclinic and heteroclinic orbits con-
necting those points.

Corollary 181. Let U ⊆ R2 be an open set, f : U → R2

be a vector field of class C1 and γ be a periodic orbit of f .
Then, there is at least one singular point in Int(γ).

Lyapunov stability
Definition 182. Let U ⊆ Rn be an open set and f : U →
Rn be a vector field of class C1 and p ∈ U be a critical
point of f . We say that p is Lyapunov stable if the set {p}
is positively stable.

Definition 183. Let U ⊆ Rn be an open set, f : U → Rn

be a vector field of class C1 and p ∈ U be a critical point
of f . We say that a function V : U → R of class C1 is a
Lyapunov function for p if there exists a neighbourhood
Ũ ⊆ U of p such that:

• V (p) = 0 and V (x) > 0 ∀x ∈ Ũ \ {p}

• ∇V (q) · f(q) ≤ 0 ∀q ∈ Ũ

If instead of the second condition we have

• ∇V (q) · f(q) < 0 ∀q ∈ Ũ \ {p}

we say that V is a strict Lyapunov function for p.

Theorem 184 (Lyapunov’s theorem). Let U ⊆ Rn be
an open set and f : U → Rn be a vector field of class C1

and p ∈ U be a critical point of f .

• If there exists a Lyapunov function for p in a neigh-
bourhood of p, then p is Lyapunov stable.

• If there exists a strict Lyapunov function for p in a
neighbourhood of p, then p is asymptotically stable.

Theorem 185 (Bendixson’s theorem). Let U ⊆ R2

be an open set and f : U → R2 be a vector field of class C1

such that div f has constant sign in a simply connected
region R and is not identically zero on any subregion of R
with positive area. Then, the system x′ = f(x) does not
have periodic orbits that lie entirely on R.

Theorem 186 (Bendixson-Dulac theorem). Let U ⊆
R2 be an open set and f : U → R2 be a vector field of
class C1. Suppose that there exists a simply connected
region R and a function h : R → R of class C1 such that
div(hf) has constant sign on R and is not identically zero
on any subregion of R with positive area. Then, the sys-
tem x′ = f(x) doesn’t have periodic orbits that lie entirely
on R.

Theorem 187 (Generalized Bendixson-Dulac the-
orem). Let U ⊆ R2 be an open set, n ∈ N ∪ {0} and
f : U → R2 be a vector field of class C1. Suppose that

there exists a subset R ⊆ U homeomorphic to a disk with
n holes and a function h : R → R of class C1 such that
div(hf) has constant sign on R and is not identically zero
on any subregion of R with positive area. Then, the sys-
tem x′ = f(x) has at most n periodic orbits that lie en-
tirely on R.

Poincaré compactification

Definition 188. Let f : R2 → R2 be a vector field of
class C1. Consider the sphere S2 and the plane Π =
{(x1, x2, x3) ∈ R3 : x3 = 1} ∼= R2. Let

H+ := S2 ∩ {(x1, x2, x3) ∈ R3 : x3 > 0}
H− := S2 ∩ {(x1, x2, x3) ∈ R3 : x3 < 0}

For each point p ∈ Π, the line joining p and (0, 0, 0) inter-
sects S2 in two points. We define the following functions
g+ : Π −→ H+

(x1, x2, 1) 7−→
(

x1√
1+x2

1+x2
2
, x2√

1+x2
1+x2

2
, 1√

1+x2
1+x2

2

)
g− : Π −→ H−

(x1, x2, 1) 7−→
(

−x1√
1+x2

1+x2
2
, −x2√

1+x2
1+x2

2
, −1√

1+x2
1+x2

2

)
which are diffeomorphisms. The induced vector field f̃
defined in S2 \ S1 := H+ ∪ H− is15:

f̃(y) =
{

Dg+(x)f(x) if y = g+(x) ∈ H+

Dg−(x)f(x) if y = g−(x) ∈ H−

Proposition 189. Let f = (p, q) : R2 → R2 be a poly-
nomial vector field of degree d, f̃ be the induced vector
field on S2 \ S1 and ρ : S2 → R be the function defined as
ρ(y1, y2, y3) = y3

d−1. Then, the field ρf̃ can be extended
analytically to S2 with the equator of S2 remaining invari-
ant.
Corollary 190. Let f = (p, q) : R2 → R2 be a polyno-
mial vector field of degree d and consider the local charts
(Ui,ϕi), (Vi,ψi) for i = 1, 2, 3 defined as:

Ui = {(x1, x2, x3) ∈ S2 : xi > 0}
Vi = {(x1, x2, x3) ∈ S2 : xi < 0}

and
ϕi : Ui −→ R2

(y1, y2, y3) 7−→
(

yj

yi
, yk

yi

)
ψi : Vi −→ R2

(y1, y2, y3) 7−→
(

yj

yi
, yk

yi

)
with j, k ̸= i, j < k and i = 1, 2, 3. Then, the extended
vector field defined on each (Ui,ϕi) is:

• On (U1,ϕ1), if (u, v) =
(

x2
x1

, 1
x1

)
, then:

u′ = vd

[
−up

(
1
v

,
u

v

)
+ q

(
1
v

,
u

v

)]
v′ = −vd+1p

(
1
v

,
u

v

)
15The idea behind this concept is to study the asymptotic behaviour of the orbits of the system x′ = f(x). In order to do so, we would

like to extend the field f̃ to the equator of S2 ({(x1, x2, x3) ∈ S2 : x3 = 0}). And that set would correspond to the infinity in R2.
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• On (U2,ϕ2), if (u, v) =
(

x3
x2

, 1
x2

)
, then:


u′ = vd

[
p

(
u

v
,

1
v

)
− uq

(
u

v
,

1
v

)]
v′ = −vd+1q

(
u

v
,

1
v

)

• On (U3,ϕ3), if (u, v) =
(

x1
x3

, 1
x3

)
, then:

{
u′ = p(u, v)
v′ = q(u, v)

The extended vector field defined on each (Vi,ψi) is the
one defined on each (Ui,ϕi) multiplied by (−1)d−1. This
extension is called Poincaré compactification of f .

Definition 191. We define the Poincaré disk as the or-
thogonal projection π : H+ → D(0, 1).

Integrability theory of polynomial systems

Definition 192. Let U ⊆ R2 be an open set, p, q ∈ R[x, y]
and consider the polynomial system of Eq. (17). We say
that a function R : U → R is an integrating factor if

div(Rp, Rq) = ∂(Rp)
∂x

+ ∂(Rq)
∂y

= 0

Lemma 193. Let U ⊆ R2 be an open set, R : U → R
be a differentiable function, p, q ∈ R[x, y] and consider the
polynomial system of Eq. (17). Then, R is an integrating
factor if and only if:

XR = p
∂R

∂x
+ q

∂R

∂y
= −R div(p, q)

where X is the operator defined in Eq. (18).

Proposition 194. Let U ⊆ R2 be an open set, p, q ∈
R[x, y] and consider the polynomial system of Eq. (17).
Suppose that system admits an integrating factor R : U →
R. Then, the system admits a first integral H : U → R
given by:

H(x, y) = −
ˆ

R(x, y)p(x, y) dy + h(x)

where h(x) satisfy:

h′(x) = R(x, y)q(x, y) + ∂

∂x

(ˆ
R(x, y)p(x, y) dy

)
Definition 195. Let p, q, g, h ∈ R[x, y] and consider the
polynomial system of Eq. (17) of degree d and let X be the
vector field operator of that system (defined by Eq. (18)).
We say that e

g(x,y)
h(x,y) is an exponential factor with cofactor

k(x, y) ∈ R[x, y] if deg k ≤ d − 1 and:

Xe
g(x,y)
h(x,y) = k(x, y)e

g(x,y)
h(x,y)

Theorem 196 (Darboux theorem). Let p, q ∈ R[x, y]
and consider the polynomial system of Eq. (17) of degree
d, fi(x, y) = 0 be invariant algebraic curves with cofactors

ki(x, y) for i = 1, . . . , r and e
gj (x,y)
hj (x,y) be exponential factors

with cofactors ℓj(x, y) for j = 1, . . . , s. Then:
1. If ∃λi, µj ∈ R, i = 1, . . . , r and j = 1, . . . , s, not all

zero such that
∑r

i=1 λiki +
∑s

j=1 µjℓj = 0, then

H = f1
λ1 · · · fr

λr eµ1
g1(x,y)
h1(x,y) · · · eµs

gs(x,y)
hs(x,y) (20)

is a first integral for the system.

2. If r + s ≥ d(d+1)
2 + 1, then ∃λi, µj ∈ R, i =

1, . . . , r and j = 1, . . . , s, not all zero such that∑p
i=1 λiki +

∑q
j=1 µjℓj = 0. And so, the system

has the first integral defined in Eq. (20).

3. If r + s ≥ d(d+1)
2 + 2, then the system has a ratio-

nal first integral. Consequently all trajectories of the
system are contained in invariant algebraic curves.

4. If ∃λi, µj ∈ R, i = 1, . . . , r and j = 1, . . . , s, not all
zero such that

∑p
i=1 λiki +

∑q
j=1 µjℓj = − div(p, q),

then

R = f1
λ1 · · · fr

λr eµ1
g1(x,y)
h1(x,y) · · · eµs

gs(x,y)
hs(x,y)

is an integrating factor for the system. And so the
system also admits a first integral by Theorem 194.

Index of paths and homotopy

Definition 197. Let γ : [a, b] → R2 be a closed path,
q ∈ R \ γ∗ and L be a ray with vertex at q. Consider a
continuous determination φ : [a, b] → R of the angle (mea-
sured counterclockwisely) between γ(t) and L. Then, we
define the index of q with respect to γ as:

Ind(γ, q) := φ(b) − φ(a)
2π

Proposition 198. Let q1, q2 ∈ R2 and γ : I → R2 be a
closed path such that the segment q1q2 does not intersect
γ∗. Then, Ind(γ, q1) = Ind(γ, q2).
Corollary 199. Let γ : I → R2 be a closed path. Then,
all points in the same conencted component of R2 \ γ∗

have the same index.
Proposition 200. Let γ1,γ2 : I → R2 be two closed
paths and q ∈ R2 be such that q /∈ γ1(t)γ2(t) ∀t ∈ I.
Then, Ind(γ1, q) = Ind(γ2, q).
Proposition 201. Let γ1,γ2 : I → R2 be two closed
paths and q ∈ R2 be such that q /∈ γ1

∗ ∪ γ2
∗ and

∥γ1(t) − γ2(t)∥ < ∥q − γ2(t)∥ ∀t ∈ I. Then, Ind(γ1, q) =
Ind(γ2, q).
Definition 202. Let γ1,γ2 : I → R2 be two closed
paths. We say that the are homotopic, and we de-
note it by γ1 ∼ γ2, if there exists a continuous function
h : I × [0, 1] → R2 such that:

1. γ1(t) = h(t, 0) ∀t ∈ I

2. γ2(t) = h(t, 1) ∀t ∈ I

3. h(0, s) = h(1, s) ∀s ∈ [0, 1]
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Such function h is called the homotopy between γ1 and
γ2.

Lemma 203. Being homotopic is an equivalence relation.

Proposition 204. Let γ1,γ2 : I → R2 be two closed
homotopic paths, h : I × [0, 1] → R2 be the respective
homotopy and q ∈ R2 be such that q /∈ im(h)16. Then,
Ind(γ1, q) = Ind(γ2, q).

Definition 205. Let γ : I → R2 be a closed path. We
say that γ is contractible if it is homotopic to the constant
path α(t) = a ∈ R2.

Proposition 206. Let γ : I → R2 be a closed con-
tractible path and q ∈ R2 \ D(γ), where D(γ) is the do-
main enclosed by γ. Then, Ind(γ, q) = 0.

Proposition 207. Let γ : I → R2 be a closed path which
is homotopic to the path αn := q +e2πint (thought in R2),
n ∈ Z and q ∈ R2 \ D(γ −αn). Then, Ind(γ, q) = n.

Proposition 208. Let γ : I → R2 be a closed path and
q ∈ R2 \ γ∗ be such that Ind(γ, q) = n. Then, γ ∼αn.

Theorem 209. Let γ1,γ2 : I → R2 be two closed
paths and q ∈ R2 \ D(γ1 − γ2). Then, γ1 ∼ γ2 ⇐⇒
Ind(γ1, q) = Ind(γ2, q)

Theorem 210. Let f : D(0, 1) = [0, 1] × [0, 2π] → R2 be
a continuous function, γ(t) = f(1, 2πt) with t ∈ [0, 1] and
q ∈ R2 \ f(S1) be such that Ind(γ, q) ̸= 0. Then, q ∈ im f .

Poincaré-Hopf theorem

Definition 211. Let U ⊆ R2 be an open set, X : U → R2

be a differentible vector field and α be the path de-
fined on the boundary of a closed disk D ⊆ U . Let
γ(t) := (X ◦α)(t) and q ∈ Int(γ). We define the index of
X on ∂ D as:

Ind∂ D(X) := Ind(γ, q)17

Definition 212. Let U ⊆ R2 be an open set, X : U → R2

be a differentible vector field and p ∈ U be an isolated sin-
gular point (on the set of all singular points). Let D be a
disk that surrounds only that singular point p. We define
the index of p as:

Indp(X) := Ind∂ D(X)18

Proposition 213. Let D ⊆ R2 be a closed disk and
X : D → R2 be a continuous vector field such that
X(q) ̸= 0 ∀q ∈ ∂ D. Suppose that X has a finite num-
ber of singular points p1, . . . , pn. Then:

n∑
i=1

Indpi
(X) = Ind∂ D(X)

Definition 214. Let U ⊆ S2 be an open set. A tangent
vector field defined on S2 is a vector field X such that
X(q) ∈ TpS2 ∀q ∈ U19.

Definition 215. Let U ⊆ S2 be an open set and X : U →
R3 be a tangent vector field and p be a singular point of
X. Suppose (rotating the sphere if necessary) that p is in
one of its poles. Let X̃ be the field created from the stere-
ographic projection from −p to the equator plane. We
define the index of p with respect to the field X as:

Indp(X) = Ind0(X̃)

Theorem 216 (Poincaré-Hopf theorem). Consider a
continuous vector field X on a compact manifold M with
a finite number of singular points. Then, the sum of their
indices is χ(M).
Corollary 217 (Poincaré-Hopf theorem on S2).
Consider a continuous vector field X on S2 with a finite
number of singular points. Then, the sum of their indices
is 2.
Proposition 218 (Poincaré index formula). Let U ⊆
R2 be an open set, X : U → R2 be a differentible vector
field and p be a singular point with a finite finite sectorial
decomposition. Denote by e the number of elliptic sec-
tors; by h, the number of hyperbolic sectors, and by p, the
number of parabolic sectors. Then:

Indp(X) = e − h

2 + 1

Corollary 219. Every tangent vector field X defined on
S2 has singular points.

8. | Introduction to partial differential
equations

Definition 220. Let U ⊆ Rn be an open set. A partial
differential equation (PDE) of order k is an expression of
the form

F

(
x, u(x), ∂u

∂x , . . . ,
∂ku

∂xk

)
= 0

where x = (x1, . . . , xn), F : U ×R×Rn1 × · · · ×Rnk → R
is a given function and u : U → R is an unknown function.
The function u is called solution of the PDE defined by F .

Quasilinear partial differential equations
Definition 221. Let U ⊆ Rn be an open set and u : U →
R be a function. A quasilinear PDE is an expression of
the form:

p1(x, u) ∂u

∂x1
+ · · · + pn(x, u) ∂u

∂xn
= q(x, u) (21)

Theorem 222. Let U ⊆ Rn be an open set and u : U → R
be a function and consider the PDE of Eq. (21). Let
H1, . . . , Hn be the n independent first integrals of the sys-
tem: 

x1
′ = p1(x1, . . . , xn, u)

...
xn

′ = pn(x1, . . . , xn, u)
u′ = q(x1, . . . , xn, u)

16From now on we will denote q /∈ im(h) as q ∈ R2 \ D(γ1 − γ2), where D(γ1 − γ2) is the domain enclosed between γ1 and γ2.
17It can be seen that this definition doesn’t depend on the point q inside γ chosen.
18It can be seen that this definition doesn’t depend on the disk D chosen.
19Recall ??.
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Then, for any function F : Rn → R of class C1, the implicit
equation

F (H1(x, u), . . . , Hn(x, u)) = 0
is a solution to Eq. (21).

Heat, wave and Laplace equations
Definition 223 (Heat equation). Let u : R × R → R
be an unknown function. The heat equation is the PDE
defined by

∂u

∂t
= k

∂2u

∂x2

where k ∈ R.

Proposition 224. Consider a bar of line L ∈ R>0 whose
temperature can be modeled by a function u : R×R → R,
and f : [0, L] → R be a function. Then, the solution
u(x, t) to the heat equation with boundary conditions
u(x, 0) = f(x) and u(0, t) = u(L, t) = 0 is:

u(x, t) =
∞∑

n=1
bn sin

(πnx

L

)
e− n2π2k

L2 t

where bn = 1
L

L̂

−L

f(x) sin
(πnx

L

)
dx.

Definition 225 (Wave equation). Let u : R × R → R
be an unknown function. The wave equation is the PDE
defined by

∂2u

∂t2 = c2 ∂2u

∂x2

where c ∈ R.

Proposition 226. Consider a string of line L ∈ R>0
whose position can be modeled by a function u : R×R →
R, and f, g : [0, L] → R be functions. Then, the solu-
tion u(x, t) to the wave equation with boundary conditions
u(x, 0) = f(x), ut(x, 0) = g(x) and u(0, t) = u(L, t) = 0
is:

u(x, t) =
∞∑

n=0
sin

(πnx

L

) [
an cos

(πnc

L
t
)

+ bn sin
(πnc

L
t
)]

where:

an = 1
L

L̂

−L

f(x) cos
(πnx

L

)
dx

bn = 1
πnc

L̂

−L

g(x) sin
(πnx

L

)
dx

Proposition 227. Let u(x, t) be a solution to the wave
equation. Then, ∃F, G : R → R such that:

u(x, t) = F (x + ct) + G(x − ct)

Proposition 228 (D’Alembert formula). Let f, g :
R → R be functions. The solution u(x, t) to the wave
equation with boundary conditions u(x, 0) = f(x) and
ut(x, 0) = g(x) is:

u(x, t) = f(x − ct) + f(x + ct)
2 + 1

2c

x+ctˆ

x−ct

g(s) ds

Definition 229 (Laplace equation). Let u : R×R → R
be an unknown function. The Laplace equation is the PDE
defined by:

∂2u

∂x2 + ∂2u

∂y2 = ∆u = 0

Proposition 230. The Laplacian of a function u :
(0, ∞) × [0, 2π] → R in polar coordinates (r, θ) is:

∆u = urr + ur

r
+ uθθ

r2

Proposition 231 (Dirichlet problem). Let f :
[0, 2π] → R be a continuous function such that f(0) =
f(2π). Then, there exists a continuous function v :
D(0, ρ) → R such that:

1. v(r, 0) = v(r, 2π) ∀r ∈ [0, ρ]

2. v ∈ C2(D(0, ρ) \ {0}) and ∆v = 0.

3. v(ρ, θ) = f(θ) ∀θ ∈ [0, 2π]

An example of such function is:

v(r, θ) =
∞∑

n=0

rn

ρn
[an cos (nθ) + bn sin (nθ)]

where:

an = 1
π

2πˆ

0

f(θ) cos (nθ) dθ

bn = 1
π

2πˆ

0

f(θ) sin (nθ) dθ
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