Differential equations

Along this document we will often write the points in R"”,
n > 2, in bold face (as well as the vectors) in order to be
consistent when handling points and vectors together.

1. | Space of continuous and bounded
functions

Definition 1. Let X, Y be topological spaces. We define
the following sets:

C(X,Y)={f:X — Y : fis continuous}
Co(X,R") ={f € C(X,R") : f is bounded}

Theorem 2. Let X be a topological space and f €
Cp(X,R™). We define the norm of f as:

1F1 = sup{[lf(2)]| - = € X}
and a distance d in Cp,(X,R"™) as:

d(fag) = ”f*g” Vf,gECb(X,R”)

Then, (C,(X,R™),d) is a complete metric space.

Theorem 3. Let X be a topological space and C' C R™ be
a closed subset. Then, (C(X,C),d) is a complete metric
space.

Corollary 4. Let K C R™ be a compact subset and
C C R"™ be a closed subset. Then, (C(K,C),d) is a com-
plete metric space.

Corollary 5. Let D C R™ be a closed set and X =
C([a,b], D). Then (X,d) is also a complete metric space.

2. | Ordinary differential equations

Definition 6. An ordinary differential equation (ode) of
m unknowns and of order n in implicit form is an expres-
sion of the form:

f (t,x(t),x’(t),x"(t), . ,x(")(t)) —0

where x : U C R — R™ is a vector-valued function of
one variable ¢t € R (which is called independent variable)
and £ : Q@ C R x R™ D) R™ where both U and
are open sets. The same ordinary differential equation in
explicit form is an expression of the form:

x((1) = g (£.x(0), %/ (1), %" (1), ,x" D (1))

where g : Q C R x R™" — R™!,

Definition 7. Consider the following ODE of m un-

knowns and of order n:
xM @) =f (t,x(t),x'(t),...,x" Dt 1
(t) yx(t),x'(t), ..., (t) (1)

We say that ¢ : I C R — R™ is a solution of the ODE if:

1Sometimes we will write x(") = g (t,x7 x' .. .,x<”’1>) instead of x(™(t) = g (t,x(t),x’(t), .

notation.
2Therefore, we will mainly study the ODEs of order 1.

e (p is n times differentiable on I.

. {(t,cp(t),cp’(t), .. .,<p<”*1>(t)) e 1} C dom f
e For all t € I we have:

e (t) = £ (t(t), ' (1), .., 0" I(E))

The set of all solutions of an ODE is called general solution
of the ODE.

Proposition 8. Consider an ODE of m unknowns and
order n of the form of Eq. (1). Then, we can transform
this ODE to an ODE of m - n unknowns and order 1 in
the following way®. Define y, = x(t~ for i = 1,...,n.
Therefore, the functions y, must satisfy:

Y1/ =Y2
Yo' =¥s3
/
Yn-1 = Yn-2
yn/ =f (t5Y1(t)7y2(t)a ce 5yn(t))

This is called a system of ordinary differential equations
(of order 1) or a differential system.

Definition 9. We say that an ODE is autonomous if it
doesn’t depend on the independent variable, that is, if it
is of the form:

x' = f(x)
Otherwise, we say that an ODE is non-autonomous.

Definition 10. We say that an ODE of order n is linear
if it is of the form:

ao(t)x + a1 ()X + - - - + an (£)x™ = b(t) (2)
where a; € C(I,R) for i = 0,...,n and b € C(I,R™) are
arbitrary functions which do not need to be linear. We say
that the linear ODE of Eq. (2) is homogeneous if b(t) = 0
vVt € 1. We say that linear ODE of Eq. (2) is of constant
coefficients if a;(t) ;= a;p e RVi € I and Vi =0,...,n.

Definition 11 (Initial value problem). Let U C RxR"
be an open set and f : U — R"™ be a function. Given
(to,x0) € U, the initial value problem (ivp) (or Cauchy
problem) cousists in finding a solution of the ODE

x' = f(t,x)

with initial conditions x(tg) = Xg.

7x(”*“(t)) in order to simplify the



Methods for solving ODEs

Proposition 12 (Separation of variables). Let f :
(a,b) = R, g : (¢,d) — R be continuous functions
such that f(xr) # 0 Vo € (a,b). Consider the ODE
2’ = f(z)g(t). To find the solution of this ODE, proceed
as follows:

2 = f(z)g(t) < _/f(Z) :C+/g(t)dt

where the constant C is determined with the initial con-
ditions of the ODE.

Proposition 13 (Variation of constants). Let I C R
be an interval, a,b € C(I,R). Consider the ODE 2’ =
a(t)x + b(t). To find the solution of this ODE, proceed as
follows:

1. Find the solution of the associated homogeneous sys-
tem with the separation of variables method. Let’s
say that is p(t)c, where ¢ € R.

2. Try to find a general solution of the form ¢(t)c(t):

)
et)e(t) =b(t) < c(t)=d+ /(p(t)_lb(t) dt

where d € R. Hence, the general solution will be:
o0 (a+ [ ot ar)

Proposition 14 (Characteristic equation). Consider
the following ODE of order n of constant coefficients:

™ 4 g, 12D 4 paa 4 apr =0

3)

We define the characteristic equation of that system as the
equation:

p(r)i=r"+a, 1"+ Far+ag=0

In order to find the solution of this ODE, we need to find
the solutions to p(r) = 0. So suppose p has s distinct real
roots and 2(m — s) distinct complex roots.

Ase s Aoy Aty Aoty

s Ams Am
Here, \; € RVi = 1,...,s and \; = o; +i3; € C
Vi=s+1,...,m. Assume, each of these roots have mul-

tiplicity k; € N. Then, the general solution to Eq. (3)
is:

S

p(t) = Z (Ci,o +ciat+---+ ci,ki_ltk"’_l) ety

i=1
m  k;—1

+ Z Z tet (ci i cos(Bit) + ci,j,2 sin(Bit))
i=s+1 j=0

where ¢; ;1 € R are constants.

Proposition 15. Consider a system of the form Eq. (3)
which is equivalent to:

0 1 0 0
0 0 1
x' = : : . . 0 =: Ax
0 0 0 1
—ap —a1 —a2 —Op—1

Then, the characteristic equation is precisely the charac-
teristic polynomial of A.
Corollary 16. Consider the following ODE of order n of
constant coefficients:

2 +pr'+q=0 (4)
Let A1, A2 be the roots of the polynomial p(r) = r2+pr+q.
Then, the general solution to Eq. (4) is:

o If p2 —4q > 0:

p(t) = c1eM 4 cpe!

o If p?> —4¢g =0, then A\; = Ay and the solution is:

o(t) = cre™t + cote?

e Ifp?—4q <0, then \; = a+iB € C and the solution
is:
o(t) = e [c1 cos(Bt) + co sin(Bt)]

Proposition 17 (Reducible linear ODE of second
order). Let I C R be an interval, a,b,c,d € C(I,R).
Consider the system of ODEs:

2’ = a(t)r — b(t)y + c(t) (5)
y' = b(t)x + a(t)y + d(t)

In order to find the solution of this ODE, consider the
change of variable z = = + iy. Then, Eq. (5) becomes:

2" = [a(t) +ib(t)]z + c(t) + id(t)
which is a linear ODE of order 1 and can be easily solved.

Proposition 18 (Bernoulli differential equation).
Let p,q € C((a,b),R) and o € R. Consider the Bernoulli
differential equation:

2 +p(t)r = q(t)® (6)

If a = 0,1 the ODE is linear. So suppose a # 0, 1. In or-
der to solve it, consider the change of variable y = 212,
Then, Eq. (6) becomes:

¥+ (L—a)p(t)y = (1 —a)q(t)
which is a linear ODE of order 1 and can be easily solved.

Proposition 19 (Riccati differential equation). Let
40,q1,q2 € C((a,b),R). Consider the Riccati differential
equation:

z' = qo(t) + ¢ () + go(t)2? (7)
Suppose we have found a particular solution z;(t) of the
ODE of Eq. (7). In order to find the general solution, con-
sider the change of variable & = 1(¢) + ;. Then, Eq. (7)
becomes:

Y+ [qu(t) + 2q2(t) 1 (t)]y = —qa(t)

which is a linear ODE of order 1 and can be easily solved.



Proposition 20 (Integrating factor). Consider the
ODE:

p(t,z) +q(t,z)r' =0 < p(t,z)dt + q(t,x)dz =0

where p,q € C}(U,R) and U C R? is an open set. An in-
tegrating factor u(t,x) € CH(U), u(t,z) # 0, is a function
so that

w(t, z)p(t, ) dt + p(t, x)q(t, ) de

is an exact differential (d®(¢,x)) of a function ®(¢, x), that
is:

%f(t, z) = p(t,0)p(t, ) (8)
%’(t, z) = p(t,w)a(t, ) 9)

So we need that:

o (ult,2)p(t, ) = ot 2)alt, )

From here, in certain cases, we will be able to find u(z,y)
and, therefore, ®(t, x) by integrating Eqs. (8) and (9).

3. | Existence and uniqueness of solu-
tions

Proposition 21. Let f : (a,b) — R be a continuous func-
tion such that f(z) # 0 Vx € (a,b). Then, the ivp

has a unique solution Vo € R and Yz € (a,b).

Proposition 22. Let f : (a,b) > R, g : (¢,d) — R be
continuous functions such that f(z) # 0Va € (a,b). Then,
the ivp

x' = f(x)g(t)
l‘(to) = 2o

has a unique solution Yty € (¢,d) and Vo € (a,b).

Proposition 23. Let I C R be an interval and a : I — R
and b : I — R be continuous functions. Then, the ivp

{x’ = a(t)z + b(t)

z(to) = o

has a unique solution Yty € I and Vzg € R3.

Lipschitz continuity

Definition 24. Let f : U C R x R™ — R™ be a function.
We say that f is Lipschitz continuous with respect to the
second variable if AL € R+ such that:

[£(t,x) — £t y)|| < Llx -yl
3See Eq. (12) for the solution.

v(t,x), (t,y) €U

Definition 25. Let f : U C R x R®™ — R™ be a func-
tion. We say that f is locally Lipschitz continuous with
respect to the second variable if V(ty, %) € U there exists
a neighbourhood V of (tg,x) such that f|y is Lipschitz
continuous with respect to the second variable.

Proposition 26. Let U C R x R™ be an open set and
f:U CRxR" — R"” be a function. Then:

1. If f is locally Lipschitz continuous with respect to
the second variable, then it is continuous with re-
spect to the second variable.

2. If f is Lipschitz continuous with respect to the sec-
ond variable, then it is uniformly continuous with
respect to the second variable.

3. If f is continuous, U is compact and f is locally Lips-
chitz continuous with respect to the second variable,
then f is Lipschitz continuous with respect to the
second variable.

Proposition 27. Let U C R x R™ be an open and convex
set and f: U C R x R® — R”™ be a function of class C!.
Then:

1. f is locally Lipschitz continuous with respect to the
second variable.

2. f is Lipschitz continuous with respect to the second
variable if and only if Df is bounded.

Picard theorem

Proposition 28. Let U C R x R™ be an open set and
f : U — R" be a continuous function. Let I C R be
an open interval, to € I and x3 € R"™ be such that
(to,x0) € U. Then, a continuous function ¢ : I — R"
is a solution of the ivp

x' = f(t,x)
{X(to) = X 10)

if and only if

p(t) = %o —|—/f(s,cp(s)) ds Vtel

Definition 29. An operator is a function whose domain
is a set of functions.

Definition 30. Let U C RxR™ be an open set, (tg,Xg) €
U, f:U — R" be a continuous function and I be a closed
interval. We define the operator

T :C(I,R") — C(I,R")

o Tl =x0+ [ flsip(s))ds”

Theorem 31 (Banach fixed-point theorem). Let
(X,d) be a complete metric space and f : (X,d) — (X,d)
be a contraction. Then, f has a unique fixed point p € X°.

4Note that the fixed points of this operator are precisely the solutions of the ivp of Eq. (10).
5Furthermore, p can be found as follows: start with an arbitrary element zo € X and define a sequence (zn) by zn = f(zn—1) for

lim
n—oo

n > 1. Then, Tp = P.



Corollary 32. Let (X, d) be a complete metric space and
f:(X,d) = (X,d) be a function. If there exists m € N
such that f™ is a contraction, then f has a unique fixed
point p € X.

Definition 33. Let ty) € R, xo € R” and a,b € R+y. We
define the following sets:

I.(to) := [to—a,to+a] CR and By(xo) := B(x0,b) C R"

Theorem 34 (Picard theorem). Let ty € R, x¢ € R,
a,b € Rsg, £:1,(tg) X By(xg) C R x R® — R™ be a con-
tinuous function and Lipschitz continuous with respect to
the second variable, and define:

M = max{||f(t,2)]| : (t,z) € L(to) x Bs(x0)}

Then, the ivp of Eq. (10) has a unique solution ¢ :
I,(to) = By(x0), where a := min {a, & }.

Corollary 35. Let I C R be a closed interval, t, € I,
Xg € R" and f : I x R® — R" be a continuous func-
tion and Lipschitz continuous with respect to the second
variable. Then, the ivp of Eq. (10) has a unique solution
w: I —>R".

Corollary 36 (Picard iteration process). Suppose we
want to solve the ivp of Eq. (10). That is, we look for a
solution ¢(t). Let ¢, be a fixed function (usually chosen
to be ¢, = x¢) and define

Pnsn(t) = Teon(t) = xo + / F(s, 0 (s) ds

for all n > 0. Then, ¢(t) = lim ¢, (¢).

n—oo

Corollary 37. Let U C R x R™ be an open set and
f : U — R"” be a continuous function and locally Lipschitz
continuous with respect to the second variable. Then,
Y(to,%x¢) € U, there exists a(tg,xq) € Rso and a neigh-
bourhood Vi, ,x, = La(ty,x0) (t0) X Ba(te,x) (X0) of (to,Xo) in
U such that the ivp of Eq. (10) has a unique solution ¢, -
defined on Io(1y.x0) € La(to,xo) With graph(e;, ) C Vi xo-

Proposition 38. Let I C R be an interval and f :
I x R® — R™ be a continuous function and Lipschitz
continuous with respect to the second variable. Then,
V(to,x0) € I x R™ there is a unique solution of the ivp
of Eq. (10) defined on I.

Corollary 39. Let I C R be an interval and A : [ —
L(R™ R™) and b : I — R™ be continuous functions. Then,
for all (tg,x0) € I x R™ the ivp

x' = A(t)x + b(t)
x(to) = o
has a unique solution defined on I.

Theorem 40. Let f : [to,t1] X R — R be a continuous
function and zg € R. Suppose that f is decreasing with
respect to the second variable. Then, the ivp

' = f(t,x)
.’E(to) = T

has a unique solution defined on [to, t}], where ] < ¢;.

Peano theorem

Definition 41. Let (X,d) be a metric space and F C
C(X,R™) be a subset. We say that F is pointwise bounded
if:

Ve € X M, > 0 such that |f(z)]| < M, VfeF
We say that F' is uniformly bounded if:

dM > 0 such that ||f(z)]| <M Vfe FandVereX

Definition 42. Let (X,d) be a metric space and F C
C(X,R™) be a subset. We say that F' is equicontinuous at
a point xg € X if Ve > 0 39 > 0 such that Vz € X with
d(z,x0) < ¢ we have:

If(z) — f(zo)|| <e VEeF

We say that F' is pointwise equicontinuous if it is equicon-
tinuous at each point of X. Finally, we say that F' is uni-
formly equicontinuous if Ve > 035 > 0 such that Vz,y € X
with d(z,y) < ¢ we have:

If(z) —f(y)|| <e VEEF

Proposition 43. Let (X,d) be a metric space and F' C
Cp(X,R™) be a subset. Suppose that f is Lipschitz contin-
uous for all f € F. Then, F' is uniformly equicontinuous.

Theorem 44 (Arzela-Ascoli theorem). Let (X,d)
be a compact metric space and (f,,) be a sequence
of functions such that f,, € C(X,R") ¥vm > 1. If
the sequence is pointwise equicontinuous and pointwise

bounded, then there exists a subsequence (f,,, ) that con-
verges on C(X,R"™).

Corollary 45. Let (X,d) be a compact metric space,
D C R” be a closed set and (f,,,) be a sequence of functions
such that f,, € C(X, D) Vm > 1. If the sequence is point-
wise equicontinuous and pointwise bounded, then there
exists a subsequence (f,,, ) that converges on C(X, D).

Theorem 46 (Peano theorem). Let to € R, xo € R,
(L,b € R>0, f: Ia(to) X Bb(Xo) C RxR"® — R" be a
continuous function, and define:

M = max{||f(t,z)|| : (t,z) € L.(to) X Bp(xo)}

Then, the ivp of Eq. (10) has at least one solution ¢ :
Io(to) = R", where a := min {a, & }.

Corollary 47. Let U C R x R™ be an open set, K C U
be a compact set and f : U — R” be a continuous func-
tion. Then, Ja € R+ such that V(tg,x0) € K, the ivp of
Eq. (10) has a solution defined in I, (o).



Maximal solutions

Definition 48. Let U C R x R™ be an open set, (tg,Xg) €
U and f : U — R"™ be a continuous function. We define
the set S(U, £, tg,x0) as:

S(U,f,to,x0) :={(I,¢) : I CRis an interval, ty € I
and ¢ : I — R" is a solution of the ivp of Eq. (10)}

Definition 49. We define the relation < defined on
S(U, £, tg,%0) in the following way. For (I,¢),(J,¥) €
S(Uafvt(]vxo):

(J,) < (I,p) <= J CIand ¢|; ="
In this case, we say that (I, ) is an extension of (J, ).

Definition 50. Let (A4, <) be a poset. Then, m € A is
a maximal element if and only if Ya € A with m < a we
have m = a.

Definition 51. Consider the poset (S(U,f,to,%0), <).

We say that a solution (I, ) is mazimal if for all exten-
sions (J,v) of (I,¢) we have I = J and ¢ = 1.

Definition 52. Let (A, <) be a poset and C C A be a
subset of A. We say that C'is a chain if it is totally ordered
in the inherited order, that is, if it is partially ordered and
Vz,y € C' we have either z <y or y < z.

Definition 53. Let (A, <) be a poset, z € Aand BC A
be a subset. z is an upper bound of B if and only if b < x
Vb € B.

Definition 54. Let (A, <) be a poset and B C A be a
subset. Then, g € A is a greatest element of B if g € B
and Vb € B we have b < g.

Lemma 55 (Zorn’s lemma). Let (A, <) be a poset. If
every chain C' C A has an upper bound in A, then A
contains at least one maximal element.

Theorem 56. Let U C R x R™ be an open set, (tg,Xg) €
U and f : U — R” be a continuous function. Consider the
poset (S(U,f,tp,%q),<). Then, S(U,f,ty,%x¢) has maxi-
mal elements. Furthermore, if (I,¢) is a maximal solu-
tion, then I is open.

Proposition 57. Let U C R x R™ be an open set and
f: U — R"™ be such that ¥(tg,x¢) € U the ivp of Eq. (10)
has a unique solution defined in a neighbourhood of .
Then, V(to,xo) € U the ivp of Eq. (10) has a unique max-
imal solution.

Lemma 58 (Wintner lemma). Let U C R x R™ be an
open set, f : U — R"” be a continuous function, ¢ : I — R”
be a solution of x’ = f(¢,x) and (b,y) € U be an accu-
mulation point of ¢. Then, lgrll) @(t) = y and the solution

can be extended up to b.

Corollary 59. Let U C R x R™ be an open set, f : U —
R™ be a continuous function and ¢ : (a,b) — R™ be a
maximal solution of x" = f(¢,x). If b < oo, then for all
compact set K C U, 3ty < oo such that (¢t,¢(t)) ¢ K
YVt € [to,b). In that case, we say that ¢ tends to the
boundary of U.

61t can be seen that < is a partial (but not total) order relation.

4. | Linear differential equations

Definition 60. Let I C R be an interval. A system of
linear differential equations is an expression of the form:

(11)

where A : I — L(R™,R™) and b : I — R™ are continuous
functions. We say that linear equation of Eq. (11) is ho-
mogeneous if b(t) = 0Vt € I. We say that linear equation
of Eq. (11) is of constant coefficients if A(t) = AVt € I,
where A € M, (R).

x' = A(t)x + b(t)

Definition 61. Let I C R be an interval, tg € I, xg € R"
and consider the ODE of Eq. (11). We define the flow of
the linear ODFE as the function:

¢: I xIxR"— R"
(t,t0,X0) > P(1g,x0)(t)

where @, . is the solution of Eq. (11) with initial con-
ditions (to,Xo).

Proposition 62. Let I C R be an interval and a,b €
C(I,R). Then, the general solution of the ivp

$(t0) = X9

{x' = a(t)x + b(t)

is given by:

t
(p(t, to, xo) — e'{tto a(s)ds To + /b(u)e_ f::) a(s)ds du
to
(12)
forallt € I.

Homogeneous systems

Theorem 63. Let I C R be an interval and A €
C(I,L(R™)). We define A,, as the set of all solutions of
the linear ODE:

x' = A(t)x (13)
Then, A, is a vector space of dimension n and for each
to € I, the function

&, R" — A,
Xo SO('vtOvXO)

is an isomorphism.

Corollary 64. Let I C R be an interval, tg € 1,
(Vi,...,Vn) be a basis of R™ and ¢q,...,¢, € A, be
such that:

p; =&, (vi) fori=1,...,n
Then, (¢4,...,¢,) is a basis of A,,.

Corollary 65. Let I C R be an interval and ¥ € A,.
Suppose Tty € I such that ¥ (t9) = 0. Then, ¥ = 0.



Corollary 66. Let I C R be an interval, m,n € N with
m<n, @,...,0, € Ay and tg € I such that the vec-
tors ¢4 (to), ..., ¢, (to) are linearly independent. Then,
@15---,%,, are linearly independent.

Corollary 67. Let s,t,w € R. Consider the function

¢ R — R
x — (&,(x)(®)

Then, gb’; is an isomorphism and satisfies:

1. ¢ =id

2. ¢i0 b, = @,

—1 s

3. [(1)2] = ¢;
Definition 68. Let I C R be an interval, A € C(I, L(R"))
and M(t) = (my;(t)) € My(R). We say that M(¢)
is a matriz solution of the ODE of Eq. (13) if ¢; =
(ma;(t),...,mn; ()" € A, for j = 1,...,n. We say
that M(t) is a fundamental matriz solution of the ODE

of Eq. (13) if M(¢) is a matrix solution and ¢, ..., ¢,
are linearly independent.

Proposition 69. Let I C R be an interval, A €
C(I,L(R™)) and M(t) € M, (R). Then:

1. M(t) is a matrix solution of the ODE of Eq. (13)
— M'(t) = A(t)M(t)".

2. M(t) is a matrix solution of the ODE of Eq. (13)
<= Vc eR" M(t)c € A,.

3. If M(¢) is a matrix solution of the ODE of Eq. (13),
then VC € M, (R), M(¢)C is a matrix solution of
the ODE of Eq. (13).

4. If M(t) is a fundamental matrix solution of the ODE
of Eq. (13), then det M(¢) #£ 0 Vi € I.

5. M(t) is a fundamental matrix solution of the ODE of
Eq. (13) <= M(¢) is a matrix solution of the ODE
of Eq. (13) and Jto € I such that det M(¢g) # 0.

Proposition 70. Let I C R be an interval, A €
C(I,L(R™)) and ®(t),¢(t) € M,(R) be matrix solutions
of the ODE of Eq. (13) such that ®(¢) is fundamental.
Then, 3!C € M,,(R) such that ¥ (t) = ®(t)C. Moreover,
1(¢) is fundamental if and only if det C # 0.

Non-homogeneous linear systems

Proposition 71. Let I C R be an interval, A €
C(I,L(R™)) and b € C(I,R™). Suppose ¢(t, to,Xo) is the
flow of the ODE of Eq. (11). Then,

t

Blt,to,x0) = 2(0) [(t0)"x0 + [ 2(5)'bls)ds

to

where ®(t) is a fundamental matrix of the associated ho-
mogeneous system.

"By definition, if M(t) = (m;;(t)), then M'(t) := (my;’ ().

Corollary 72. Let I C R be an interval, A € C(I, L(R™))
and b € C(I,R™). Then, the general solution ¢(t) of the
ODE of Eq. (13) can be written as:

P(t) = pn(t) + ¢, (t)

where ¢y, () is the general solution to the associated ho-
mogeneous system and ¢, (t) is a particular solution of
Eq. (13).

Proposition 73 (Liouville’s formula). Let I C R be
an interval, A € C(I, L(R™)), ®(t) € M, (R) be a matrix
solution of the ODE of Eq. (13) and to € I. Then, for all
t € I we have:

det(®(t)) = det(@(to))efjo tr(A(s))ds

Constant coefficients linear systems

Lemma 74. Let I C R be a compact interval and
f: I xR* — R"” be a continuous function and Lips-
chitz continuous with respect to the second variable. Let
@ : I — R™ be the solution of the ivp of Eq. (10). Then,
Vi € C(I,R™) the sequence (T™1)) converges uniformly
to ¢ on I.

Theorem 75. Let A € M, (R) and ®(t) € M,,(R) be a
matrix solution of the ODE

x = Ax (14)
such that ®(0) = I,,. Then:
1. For all t,s € R, then ®(t + s) = ®(¢)D(s).
2. &) = d(—t).
o Akgk

3. The seriesz I
k=0 ’

converges uniformly on compact

sets.

Definition 76. Let A € M, (R) and ¢t € R. We define
the matriz exponential €At as

> ARtk

At _

et = kg o (15)
=0

Proposition 77. Let A € M,(R) and ¢,s € R. Then,
the matrix exponential e®? is a fundamental matrix of the
ODE of Eq. (14) and has the following properties:

1. eA0 =1,

2. eA(t+s) — AtgAs
3. (eAt)_l = e At
4. (eAt), = AeAt = eAtA

5. If ®(t) is an arbitrary fundamental matrix of the
ODE of Eq. (14), then:

A = &()®(0) "

Lemma 78. Let A,B,C € M, (R). Then:



1. If BC = CA, then:

eBIC = CeP!

2. If AB = BA, then:

AR — BeAt (A+B)t _ At Bt

and e
Corollary 79. Let t € R, A € M, (R) and J € M, (R)
be the Jordan form of A such that A = CJC~! for some
matrix C € GL,(R). Then:

At _ cdte!

Proposition 80. Let A € M, (R) and t € R. If A is an
eigenvalue of A with associated eigenvector v, then e is
an eigenvalue of et with associated eigenvector v. That
is, eA? My, Hence, p(t) = e*v is a solution of the

v=e
ivp:

x' = Ax

{X(O) =V

Corollary 81. Let A € M,(R) and ¢ € R and con-
sider the linear ODE of Eq. (14). If (vy,...,v,) is a ba-
sis of eigenvectors with associated eigenvalues Aq,..., Ay,
respectively, then (¢;,...,¢,), where @, = e*tv; for
1=1,...,n,is a basis of A,.

Lemma 82. Let A = diag(Aq,...
t € R. Then:

,An) € My (R) and

At )\nt)

et = diag(eM?, ... e

Proposition 83. Let A € M,(R) and A = a+ i3 €
C\ R be an eigenvalue of A with associated eigenvector
v=u+iw € C". Then:
ety = eAlu + ieAtw = e [cos(ft)u — sin(ft)w] +

+ e [sin(Bt)u + cos(Bt)w]
and e?tu, eAtw are linearly independent solutions of the
ODE of Eq. (14) with initial conditions x(0) = u and
x(0) = w, respectively.

Definition 84. Let A € M, (R). A vector w € R" is a
generalized eigenvector of rank m of A corresponding to
the eigenvalue A € R if:

(A=AL)"w=0 but (A-AL,)" " 'w#0

The set spanned by all generalized eigenvectors of \ is
called generalized eigenspace of .

Proposition 85. Let A € M, (R) and A € o(A4). Then,
the dimension of the generalized eigenspace is the alge-
braic multiplicity of A.

Lemma 86. Let A € M, (R) and v; € R™ be an eigen-

vector of A with associated eigenvalue A. We define
Va,...,Vpy € R” in the following way:
(A= AL, vy = Vi1 k=2,....m

That is, vy, is a generalized eigenvector of rank k of A with
associated eigenvalue A. Then,

¢ =

Py = (Vo +tv1)

tvl

_ o £
Y3 =¢e V3+tV2—‘r2V1

are solutions of the ODE of Eq. (14). Further-
more, if vi,..., v, are linearly independent, then so are

@1y Pp-

Corollary 87. Let A € M, (R) and o(A) = {\,...
be the spectrum of A such that:

P, = (vm+tvm_1+~-~+

s Ant

o Ao Aok € C\R, My = A and X = oy + 16,
a;, B €Rfori=1,... k.

o Xopi1y--, A ER

Then, the general solution of the ODE of Eq. (14) is of
the form:

k
p(t) = Z et (P;(t) cos(Bit) + Q,(t) sin(B;t)) +

+ En: MR (1)

i=2k+1

where P;, Q,,R; € R"[t] and degP;,degQ,,degR; < n
Vi.

5. | Dependence on initial conditions
and parameters

Definition 88. Let U C R x R™ x RP be an open set and
f : U — R" be a continuous function. Suppose that the

ivp:

x(to) = Xo 16)

{x’ =f(t,x,A)

has a unique maximal solution @g, . x (t) defined on
an interval I(;, x, ). We define the flow of the ODE
x' =f(t,x,A) as:

¢:I(t0,x0,)\) X R xR" x RP — R™
(t,to, X0, \) > Pt0x0,0) (1)

Continuous and Lipschitz continuous depen-
dence

Lemma 89. Let X be a compact metric space and (¢,,,)
be a sequence of functions ¢,, : X — R” such that
they are pointwise equicontinuous and pointwise bounded.
Suppose that all convergent partial subsequences of (¢,,)
have the same limit ¢. Then, (¢,,) converges uniformly

to .



Proposition 90. Let U C R x R™ be an open set and
f,. : U — R"™ be continuous function for m € N and such
that for all compact K C U, the sequence (f,,|x) converge
uniformly to a function fo|x. Let ((t;,%Xm)) C U be a se-
quence such that Aiirlm(tm,xm) = (to,Xp). Suppose that

for all m > 0 the ivp

x' = f,,(t, %)

x(tm) =Xm
has a unique maximal solution ¢,, defined on I,,,. Then,
for all [a,b] C Iy with t¢ € (a,b), Ime € N such
that [a,b] C I,, Ym > mg. Furthermore, the sequence
(‘pm‘[avb])m>nzo converges uniformly to ¢g|(q,5-

Theorem 91. Let U C R x R™ be an open set and
f: U — R™ be a continuous function. Suppose that each
ivp of the form of Eq. (10) has a unique maximal solution.
Then, the flow ¢(¢,t0,%0) is a continuous function defined
in an open set.

Theorem 92. Let U C R x R™ x R? be an open set and
f : U — R"™ be a continuous function. Suppose that each
ivp of the form of Eq. (16) has a unique maximal solution.
Then, the flow ¢(t,to,%0,A) is a continuous function de-
fined in an open set V' C (4 x,.a) X R X R™ x RP.

Lemma 93 (Gronwall’s lemma). Let u,v,w : [a,b) —
R be continuous functions such that v(¢t) > 0 Vt € [a,b)
and satisfying:

t

u(t) < w(t) + /v(s)u(s)ds Vt € [a,b)

a

Then:

u(t) <w(t) + /w(s)v(s)efst vMdr sVt e [a,b)

a

If, moreover, w € C!((a, b)), then:

t
u(t) < w(a)ef; v(rydr 4 /w'(s)efst”(r)dr ds Vtea,b)

a

Proposition 94. Let U C R x R™ be an open set and
f: U — R" be a continuous function and Lipschitz con-
tinuous with respect to the second variable with Lipschitz
constant L. Let ¢ be the flow of the ODE x’ = f(¢,x).
Then, V(to,x1), (to,X2) € U and Vt € I x,) N L(14,x5)s We
have:

||¢(t7t07X2) - ¢(t7t07X1)H S eL‘t*to‘ ||X2 - XlH

Thus, ¢ is locally Lipschitz continuous with respect to the
third variable.

Differentiable dependence

Theorem 95 (Dependence on x(). Let U C R x R™ x
RP be an open set and f : U — R™ be a continuous func-
tion and of class C! with respect to the second variable.
Suppose that the flow ¢(t,tg, %0, A) of X' = £(¢,x,A) is
defined on an open set V. C R x R x R™ x RP. Then,
Y(t,to,x0,A) € V, ¢ is differentiable with respect to xq
and D3¢(t,to, %0, A)® is continuous on V. Furthermore,
D3 (t, to, x0, A) satisfies the following ivp:

M, = DQf(tv ¢(ta th X0, A)? A)M
M(ty) =1,

Or, equivalently, ;Ti(t,to,xo,)\) = Dgso(t, to, %0, Ae;

satisfies the following 1vp:

"= Dof(t, p(t, ¢ A

y 2(a¢(705X07 )7)‘)y fOI‘Z':17...7’I'L
y(to) = e;

These kinds of equations are called variational equations.

Theorem 96 (Dependence on tp). Let U C RxR™ xRP
be an open set and f : U — R™ be a continuous function
and of class C'. Suppose that the flow ¢(t,t9, %0, A) of
x' = f(¢,x,\) is defined on an open set VC R x R x
R™ x RP. Then, Y(t,t9,%0,A) € V, ¢ is differentiable
with respect to to and Do (¢, to, X0, A) is continuous on
V. Furthermore, Dogp(t,to, %0, A) satisfies the following
ivp:

y, = D2f(t7 ¢(ta to, Xo, >‘)a A)y

y(tO) = _f(tOvXOa )‘)

Theorem 97 (Dependence on A). Let U C RxR"™ xRP
be an open set and f : U — R”™ be a continuous function
and of class C' with respect to the second and third vari-
able. Suppose that the flow ¢(¢,t9, %0, A) of X’ = f(t,x, A)
is defined on an open set V C R x R x R™ x RP. Then,
Y(t,to,x0,A) € V, ¢ is differentiable with respect to A
and Dy¢(t,tg,%0,A) is continuous on V. Furthermore,
Dyo(t,to, %0, A) satisfies the following ivp:

{M’ = Dof(t, ¢(t, 0, X0, A), )M + B

M(tg) =0
where B = Dsf(t, ¢(t, to, %0, A), A). Equivalently,
th(ty to, X0, A) satisfies the ivp:
fori=1,...,n

y/ = Dgf(t, ¢(t, to, X0, A), /\)y + Bei
y(to) =0

Higher order dependence

Theorem 98. Let U C R x R™ be an open set and
f : U — R be a continuous function and of class C*,
k € N. Suppose that the flow ¢(¢,to,%o) of x' = £(¢,x) is
defined on an open set V.C R x R x R™. Then, ¢(t,t0,X0)
is of class C¥ on V.

8Here, Ds(t, to, X0, A) = %(Lt(h X0, ) denotes the matrix (ﬂ(t,to,xo, )\)) € My (R), where xq; denotes the j-th component of

ox0

xo and ¢; denotes the i-th component of ¢.

J



6. | Qualitative theory of autonomous
systems

Introduction to dynamical systems

Definition 99. A dynamical system is a triplet (X, G, II),
where G is a topological abelian group?, X is a topological
space and II : G x X — X is a function such that:

o II(t,-) is continuous Vt € G.
o II(0,z) =2 Vz € X.
o II(s,II(¢t,2)) = (¢t + s,x) Vs,t € G and Vz € X.

We say that a dynamical system (X,G,1II) is discrete if
G = 7Z and we say that it is continuous if G = R. If we
have defined our system for G'>¢, we will say that we have
a semidynamical system.

Definition 100. Let (G, X,¥) be a dynamical system
and z € X. The orbit through z is defined as:

y(x) = vy (z) = {¥(t,z): t € G}°

Moreover if G = 7Z or G = R we define the positive semi-
orbit through = and the negative semi-orbit through = as
the following respective sets:

Y (@) = yu " (x) = {¥(t,2) : t € G>o}
Y (x) =vo (2) = {¥(t,x) : t € G<o}

Definition 101. Let (G, X, ) be a dynamical system.
Then, we have an equivalence relation ~ on X given by

r~y = v(z) =9y Vr,yeX

which creates a partition of X, called phase portrait.

Definition 102. The phase space of an ODE or system of
ODE:s is the space in which all possible states of a system
are represented with each possible state corresponding to
one unique point in the phase space.

Figure 2: Vector field of the
system {2’ = z,y =z +y}
together with two orbits.

Phase space of

Figure 1:
the system {2’ = —y,y’ =

z: (2(0),y(0)) = (r,0)}-

Figure 3: Phase portrait of the system {2’ = x/2,y’ =

x+y/2}.

Definition 103. Let (G, X, V) be a dynamical system
and x € X. We define the following function:

VU, :G— vz
t — U(t,x)

Lemma 104. Let f : R™ — R” be a continuous function
such that the flow ¢(¢,tp,x0) of the ODE x' = f(x) is
defined for all t € R. Then, (R,R", ®) is a dynamical sys-
tem, where ¥(t,x) = ¢(¢,0,x). Furthermore, note that

’Y(X) = im(¢('v 0, X))

Lemma 105. Let f : R®™ — R" be a continuous function
such that IM, N € R>( with ||[f(x)|| < M|/x||+ N. Then,
the solutions of the ODE x’ = f(x) are defined for all
teR.

Definition 106. Let f,g: R™ — R" be continuous func-
tions and x’ = f(x), x’ = g(x) be two ODEs for which we
have existence and uniqueness of solutions. We say that
these two ODEs are equivalent if there exists h : R™ — R"”
such that h(x) > 0 and f(x) = h(x)g(x) Vx € R™. There-
fore, f and g have the same orbits oriented in the same
way.

Corollary 107. Let f : R® — R"™ be a continuous func-
tion such that the ODE x’ = f(x) has existence and
uniqueness of solutions for all initial conditions. Then,
there exists a continuous function g : R™ — R™ such that
the autonomous ODEs induced by f and g are equivalent
and the flow of the ODE x’ = g(x) is defined V¢ € R.

Lemma 108. Let H be a proper subgroup of R which is
closed. Then, 37" € R>( such that H = TZ.

Proposition 109. Let (R,R™, ®¥) be a dynamical system
and (x) be an orbit. Then, there are 3 possible cases for

y(x):
L ~(x) = {x}.
2. vy(x) = St

3. ~(x) is homeomorphic to an injective and continuous
image of R.

9That is, G is an abelian group with an inherited topological structure.
10Tn general, if the context is clear we will use the notation v(x) instead of vy (x).



Definition 110. Let (R,R™, ¥) be a dynamical system
and p € R”. We say that p € R" is a critical point or
singular point if v(p) = {p}. Otherwise, we say that p is
non-singular or reqular.

Definition 111. Let (R,R™, ¥
and «(x) be an orbit of (R, R™,
periodic of period T > 0 if vy(x)

) be a dynamical system
). We say that v(x) is
~ 6! and ker ¥y = TZ.

Proposition 112. Let (R, R™, ¥) be a dynamical system
such that W(t,x) = ¢(t,0,x), where ¢(t, to,Xq) is the flow
of the ODE x’ = f(x). Let p € R". Then, the following
statements are equivalent:

1. {p} is a critical point.
2. ¢(t,0,p)
3. f(p) =

Definition 113. Let (R,R™, ¥) be a dynamical system

and x € R"”. We say that y € R" is an a-limit point of x if

there exists a sequence (¢,) C R such that lim ¢, = —c0
n—roo

:p,

and lim ¥(t,,x) = y. The set of all a-limit points of
n— 00

x is called a-limit set, and it is denoted by «(x). For an

orbit v of (R, R", ¥), we say that y is an w-limit point of

~, it is a w-limit point of some point on the orbit . The

set of such a-limit points will be denoted as (7).

Definition 114. Let (R,R™, ®¥) be a dynamical system
and x € R"”. We say that y € R” is an w-limit point of x if
there exists a sequence (¢,) C R such that lim ¢, = 400
n—oo
and lim ¥(¢,,x) = y. The set of all w-limit points of
n—oo

x is called w-limit set, and it is denoted by w(x). For an
orbit v of (R,R", W), we say that y is an w-limit point of
~, it is a w-limit point of some point on the orbit . The
set of such w-limit points will be denoted as w(y).

Proposition 115. Let (R, R, ¥
and x € R™. Then:

Cl(v(x)) = a(x) U (%) Uw(x)

Definition 116. Let (R,R™, ¥) be a dynamical system
and A C R" be a subset. We say that A is invariant if
~(x) € A Vx € A. We say that A is positively invariant
if v7(x) € A ¥x € A. Analogously, we say that A is
negatively invariant if vy~ (x) C A Vx € A.

Proposition 117. Let (R,R™, ¥) be a dynamical system,
p € R™ and ~ be an orbit of the system such that ~*
contained in a compact set. Then:

w(p

w(p) is compact.

) #
(p)
(p)
(p)

) be a dynamical system

is invariant.

S

p

w is connected.

p

If w() € v = w(y) = =, then ~ is either a
critical point or a period orbit.

Proposition 118. Let (R, R", ¥) be a dynamical system,
p € R™ and ~ be an orbit of the system such that v~ is
contained in a compact set. Then:

10

[e%

p)#9

(p)
a(p) is compact.
a(p) is invariant.

(p)

p

« is connected.

p

If a(y) € v = a(y) = 7, then « is either a
critical point or a period orbit.

Definition 119. Let (R,R™, ®¥) be a dynamical system
and K C R"™ be a compact set. We say that K is posi-
tively stable if for all neighbourhood U of K, there exists a
neighbourhood V of K with V' C U and such that Vx € V,
~*(x) C U. Analogously, we say that K is negatively sta-
ble if for all neighbourhood U of K, there exists a neigh-
bourhood V' of K with V' C U and such that Vx € V,
vy (x)CU.

Definition 120. Let (R,R", ¥) be a dynamical system
and K C R™ be a compact set. We say that K is attracting
if there exists a neighbourhood U of K such that ¥x € U,
w(x) C K. We say that K is repelling if there exists a
neighbourhood U of K such that Vx € U, a(x) C K. We
say that K is asymptotically stable if it is both attracting
and positively stable.

Proposition 121. Let (R, R™, ¥) be a dynamical system
and K C R™ be a compact set. Suppose that K is posi-
tively stable. Then, K is positively invariant.

Definition 122. Let (R,R™, ¥) be a dynamical system
and p € R”. We say that p is a center if there exists a
neighbourhood U of p such that if v(x) C U, then ~(x)
is periodic. The largest neighbourhood with this property
is called basin of the center.

Proposition 123. Let (R, R™, ¥) be a dynamical system
and p € R" be a center. Then:

1. p is positively and negatively stable.

2. p is not attracting.

Equivalence and conjugacy of dynamical sys-
tems

Definition 124. Let (G, X, ¥;) and (G, X, ¥3) be dy-
namical systems and r € N U {0,00}. We say that
(G, X,T,) and (G, X, V) are equivalent dynamical sys-
tems of class C" if there exists a diffeomorphism h : X — Y
of class C" such that Vo € X, h(yw, (x)) = v, (h(z)) and
preserving the orientation of the orbits. In particular, if
r =0 we say that (G, X, ¥,) and (G, X, ¥3) are topologi-
cally equivalent. That diffeomorphism A is called an equiv-
alence (of class C") between (G, X, ¥y) and (G, X, Us).

Definition 125. Let (G, X, %) and (G, X, ¥5) be dy-
namical systems and r € N U {0,00}. We say that
(G, X,¥,) and (G, X,Vsy) are conjugate dynamical sys-
tems of class C" if there exists a diffeomorphism h : X — Y
of class C" such that V(t,z) € G x X, h(¥1(t,z)) =
Uy (t, h(z)). In particular, if » = 0 we say that (G, X, ¥;)
and (G, X, Us) are topologically conjugate. That diffeo-
morphism A is called a conjugacy (of class C") between
(G, X,\Ill) and (G7X,\:[12).



Proposition 126. Let (G, X, ¥;) and (G, X, Us) be dy-
namical systems and h be a conjugacy of class C" be-
tween them. Then, h is an equivalence of class C" between
(G, X, \Ill) and (G, )(7 \IJQ)

Proposition 127. Two dynamical systems induced by
two equivalent ODEs are equivalent (as a dynamical sys-
tems).

Proposition 128. Let (G, X, ¥;) and (G, X, ¥s) be dy-
namical systems and h : X — Y be an equivalence of class
C" between them. Then:

1. h preserves the type of orbit. More precisely if

p € X, we have:

i) If p is a critical point, then so it is h(p).
ii) If y(p) is a periodic orbit, then so it is h(y(p))*!.

iii) If y(p) is the injective and continuous image of
R, then so it is h(y(p)).

2. If p € X is a critical point of ¥y, we have:

i) If p is attracting for (G, X, ¥y), then so it is
h(p) for (G, X, ¥s).

ii) If p is repelling for (G, X, ¥1), then so it is h(p)
for (G, X, Uy).

iii) If p is positively stable for (G, X, ¥;), then so
it is h(p) for (G, X, ¥3).

iv) If p is asymptotically stable for (G, X, ¥;), then
so it is h(p) for (G, X, U,).

Proposition 129. A conjugacy between two dynamical
systems preserves the period of periodic orbits.

Proposition 130. Let «, 8 € R such that af > 0. Con-
sider the function A : R — R defined by:

zhle if >0
h = -
(@) {—x|ﬂ/a ifz<0

Then, h is a topological conjugation between the systems
induced by the ODEs 2’ = ax and 3’ = Sy.

Proposition 131. Let A,B € M, (R) be similar matri-
ces, that is, IP € M,,(R) such that B = PAP~!. Then,
the function
h:R"” — R"
x — Px
is a conjugation between the systems induced by the ODEs
x’ = Ax and y’ = By.

Local equivalence and conjugacy of dynamical
systems

Definition 132. Let U C R™ be an open set and f : U —
R" be a vector field of class C'. For all xg € U, let ¢, (t)
be the maximal solution to the ivp

x' = f(t,x)
x(0) = xg
HNote that the period of v(p) and h(y(p)) may be different.
12That is, V(t,x) € dom(¢) such that (¢, h(x)) € dom(z)).
13A plane version would be that s :
independent.
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We define the flow of the vector field f as ¢(t, x) := ¢, ().

Proposition 133. Let U C R™ be an open set and
f: U — R” be a vector field of class C'. Then, the flow
¢(t,x) of £ defines locally a dynamical system.

Definition 134. Let U,V C R™ be open sets and f :
U= R" g:V = R” be vector fields of class C!, and
r € NU{0,00}. We say that f and g are equivalent of class
C" if there exists a diffeomorphism h : U — V of class C”
such that Vx € U, h(v¢(x)) = v4(h(x)) and preserving
the orientation of the orbits. In particular, if r = 0 we
say that f and g are locally topologically equivalent. That
diffeomorphism h is called a local equivalence (of class C™)
between f and g.

Definition 135. Let U,V C R" be open sets and f : U —
R", g : V — R™ be vector fields of class C! with flows ¢
and 1, respectively, and r € NU{0, co}. We say that f and
g are conjugate of class C” if there exists a diffeomorphism
h: U — V of class C" such that h(¢(t,x)) = (¢, h(x))
V(t,x) € dom(¢) when the equation is well-defined?. In
particular, if » = 0 we say that f and g are locally topolog-
ically conjugate. That diffeomorphism h is called a local
conjugacy (of class C") between f and g.

Lemma 136. Let U,V C R™ be open sets and f :
U —= R" g:V — R” be vector fields of class C' and
h : U — V be a diffeomorphism of class C'. Then, h
is a conjugacy of class C' between them if and only if
Dh(x)(f(x)) = g(h(x)) Vx € U.

Proposition 137. Let U,V C R™ be open sets and
f:U —- R", g:V — R"™ be vector fields. Suppose
that h is a conjugacy between x’ = f(x) and y' = g(y).
Then, x’ = —f(x) and y’ = —g(y) are conjugate by h.

Definition 138. Let U C R™ be an open set and f : U —
R™ be a vector field of class C", » > 1, and A C R*~!
be an open set. We say that function s : A — U of class
C" is a local transversal section of f of class C" if Va € A,
(imDh(a),f(s(a))) = R"!%. Take ¥ :=s(A). Ifs: A =+ 2
is a homeomorphism, we say that 3 is a transversal section
of f of class C".

Theorem 139 (Flow box theorem). Let U C R" be an
open set, f : U — R™ be a vector field of class C", r > 1,
p € U be a non-singular point of f ands: A — 3 be a
transversal section of f of class C" with s(0) = p. Then,
there exists a neighbourhood V' C U of p and a diffeomor-
phism h : V — (—¢,¢) x B of class C", where ¢ > 0 and
B C R"! is an open ball centered at 0 = s~!(p), such
that:

e h(XnV)={0} xB.
o h is a conjugacy of class C" between f|y and g :

(—g,e) x B — R™ defined as g(x) = (1,0...,0)
Vx € dom g.

A CR — U C R? is a local transversal section of f if Ya € A, s'(a) and f(s(a)) are linearly



Lemma 140. Let U,V C R” be open sets and f : U —
R"”, g : V — R" be vector fields of class C' and p € U
be a critical point of f. Suppose that h is a conjugacy of
class C! between f and g. Then, the vector fields Df(p)
and Dg(h(p)) are conjugate by Dh(p). In particular,

o(Df(p)) = o(Dg(h(p))).

Definition 141. Let U C R? be an open set, f : U — R2
be a vector field of class C! and p € U be a critical point
of f. Suppose o(Df(p)) = {A1,A2}. We say that p is a

o stable node if A\,Aa € Reg and Ay # A2 (see
Fig. 10a).

o stable degenerated node if A1, Ao € R, A1 = A2 and

Df(p) ~ (>\11 )(\)1> (see Fig. 10Db).

o stable star if A1, 2 € Reg, Ay = A2 and Df(p) ~

A1 0 Coan
(O )\1) (see Fig. 10c).

o unstable node if A\j, 2 € Ryg and Ay # Ay (see
Fig. 10d).

o unstable degenerated node if A1, s € Ryg, A1 = As

and Df(p) ~ ()\11 )(\)1) (see Fig. 10e).

o unstable star if A1, A2 € Rsg, A1 = A2 and Df(p) ~

A0 . :
(O )\1) (see Fig. 10f).

o saddle pointif A1, Aa € Rand A\; Ay < 0 (see Fig. 10j).

o stable focus (or sink) if A;, A2 € C and Re(A\1) < 0
(see Fig. 10h).

o unstable focus (or source) if A1, Ao € C and Re(\y) >
0 (see Fig. 10i).

o centerif A1, Ay € C, Re(A\1) = 0 and p is surrounded
by periodic orbits (see Fig. 10g).

Definition 142. Let A € M3(R) and consider the lin-
ear system induced by A such that the origin is a saddle
point, and E7, Es be the eigenspaces of A. We say that
the four orbits contained in E; U Fy (without taking into
account the singular point 0) are the saddle separatrices
of the linear system.

/W
[/
/o
/
/
/
4 Unstable node

s
s

g T

Line of unstable fixed points

Line of stable fixed points /

Plane of fixed|points

Saddle point

*A star if A is diagonalizable and a degenerated node if not.

Figure 4: Classification of singular points of a linear dy-
namical system of dimension 2, induced by the equation
x' = Ax, A € M3R) in terms of D = det A and
T=trA.

Definition 143. Let U C R™ be an open set, f : U — R"
be a vector field and consider the differential system in-
duced by f. Let v be an orbit of that system. We say that
~ is a homoclinic orbit if it joins a saddle point to itself.
We say that « is a heteroclinic orbit if it joins joins two
different singular points.

4

\ | | | |
-2 0 2 4 6

Figure 5: A homoclinic orbit (blue) and a heteroclinic or-
bit (green) of the differential system 2" = sin(z)4x cos(z).

Definition 144. Let U C R? be an open set, f : U — R?
be a vector field of class C! and p € U be a critical point
of f. We say that p has

e an elliptic sector if a side of p is locally as Fig. 6.
e a hyperbolic sector if a side of p is locally as Fig. 7.

e an attracting parabolic sector if a side of p is locally
as Fig. 8.

e a repelling parabolic sector if a side of p is locally as
Fig. 9.

The union of all sectors that form a neighbourhood of p
is called sectorial decomposition.

12
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Figure 6: Elliptic sector

4

Figure
parabolic sector

Figure 7: Hyperbolic sector

/

Repelling

Attracting  Figure
parabolic sector

Proposition 145. Any critical point of an analytic dif-
ferential system in the plane can either be:

e A focus.
e A center.

¢ A finite collection of elliptic sectors, hyperbolic sec-
tors and/or parabolic sectors.

Hamiltonian systems

Definition 146. Let U C R™ be an open set, f : U — R"
be a vector field and H : U — R be a non-constant func-
tion. We say that H is a first integral for the differential
system x’ = f(x) if for each solution ¢(t) of that system,
we have H(p(t)) = const. Thus, the phase trajectory of a
solution ¢(t) to x’ = f(x) lies on a level surface of H. In
particular, if n = 2, ¢(¢) will be a level curve of H.

Proposition 147. Let U C R”™ be an open set, f :
U — R™ be a vector field such that f = (fy,..., f,) and
H : U — R be a non-constant function. Then, H is a first
integral for the differential system x’ = f(x) if and only if:

OH 6H
G (00 + -

Definition 148. Let U C R"™ be an open set, f : U — R"
be a vector field and Hy,...,Hx : U - Rbe k <n-—1
first integrals for the differential system x’ = f(x). We
say that Hy,..., Hy are functionally independent (or sim-
ply independent) if for all x € U (except for maybe a set
of zero area), we have:

(x)fn(x)=0 VxeU

6U1 8Ul

(%) (x)

Ox1 Oxy,

rank =k
o Ie
5= (%) Iuk (x)

Proposition 149. Let U C R” be an open set, f : U —
R"™ be a vector field and Hq, ..., H; be k < n—1 function-
ally independent first integrals for the differential system
x' = f(x). Then, the number of unknowns of the system
can be reduced to n — k.

13

Definition 150. Let U C R2” be an openset, H: U — R
be a function and (x,y) := (z1,...,Zn,Y1,-..,Yn). The
differential system

. _oH
wl o (X)
O0H
[ R
o OYn ()
O0H
/
Y1 6371( )
O0H
!
Un 89:1( X)

is called Hamiltonian system in 2n unknowns and H is
called Hamiltonian of the system.

Proposition 151. Let U C R?" be an open set and
H : U — R be the Hamiltonian of its Hamiltonian associ-
ated system. Then, H is a first integral of that differential
system.

Theorem 152. Let U C R? be an openset, H: U — R
be the Hamiltonian of its Hamiltonian associated system
and p € U be a singular point. Then, p is either a saddle
point or a center.

Local structure of hyperbolic critical points

Definition 153. Let U C R™ be an open set, f : U — R"
be a vector field of class C” with » > 1 and p € U be

a critical point of f. We say that p is hyperbolic critical
point if Re(\) # 0 VA € o(Df(p)).

Theorem 154 (Hartman-Grobman theorem). Let
U C R” be an open set, f : U — R” be a vector field
of class C! and p € U be a hyperbolic critical point
of f. Let g : R® — R" be the vector field defined
as g(x) = Df(p)(x). Then, there exist neighbourhoods
V CU of pand W C R” of f(p) = 0 such that f|y and
glw topologically conjugate.

Corollary 155. Let U,V C R” be open sets and f : U —
R", g : V — R™ be vector fields of class C' and p € U
be a hyperbolic critical point of f. Suppose that h is a
conjugacy of class C! between f and g. Then, h(p) is a
hyperbolic critical point of g.

Definition 156. Let A € M,(R). We say that A is
hyperbolic matriz if Re(\) # 0 VA € o(A).

Proposition 157. Let A € M,,(R) be a hyperbolic ma-
trix. Then, 0 € R™ is the unique critical point of x’ = Ax
and it is hyperbolic.

Definition 158. Let A € M,,(R). We define the stability
number of A as:

L(A) := |{\ € 0(A) : Re(N) < 0}

Theorem 159. Let A € M, (R) be a hyperbolic matrix
such that t(A) = n. Then, x' = Axandy’ = —y,y € R",
are topologically conjugate. In particular, the origin is at-
tracting.



Corollary 160. Let A € M,,(R) be a hyperbolic matrix
such that t(A) = 0. Then, x’ = Axandy’' =y, y € R",
are topologically conjugate. In particular, the origin is
repelling.

Corollary 161. Let A € M,,(R) be a hyperbolic matrix
such that ¢(A) = k. Then, x' = Ax and

{y=-y,2=z:ycRF 2cR"}

are topologically conjugate. In particular, the origin is
neither attracting nor repelling.

Theorem 162. Let A,B € M,(R) be hyperbolic ma-
trices. Then, x’ = Ax and y' = By are topologically
conjugate if and only if t(A) = ¢(B).

Corollary 163. Let A € M,,(R) be a hyperbolic matrix.
Then:

o 0 is attracting for x' = Ax < ((A) =n.

o 0 is repelling for x’ = Ax < 1(A) =0.

Theorem 164. Let U C R™ be an open set, f : U — R"
be a vector field of class C! and p € U be a critical point
of f. Then:

1. If «(Df(p)) = n, then p is asymptotically stable for
the dynamical system induced by x’ = f(x).

2. If (Df(p)) = 0, then p is repelling and nega-
tively stable for the dynamical system induced by
x' = f(x).

3. If p is positively stable, then Re(\) <
o(Df(p)).

0 VA €

4. If p is negatively stable, then Re(A) > 0 VA €

o(Df(p)).
4 Note that degk < n — 1.

V.
N

(h) (i)

AN
A

8

Figure 10: Phase portraits of hyperbolic singular points

7. | Qualitative theory of planar differ-
ential systems

Polynomial vectors fields

Definition 165. Let p,q € R[z,y]. The system of ODEs

{:ﬂ’ = p(z,y) (17)

Y =q(z,y)

is called a polynomial system. The field f = (p, q) is called
polynomial vector field. We define the degree of that sys-
tem as n := max{degp,degq}. Another commonly used
notation for expressing the vector field is through the op-
erator

X = p(:v,y)2 Jrcz(oc,y)2 (18)

ox dy
Definition 166. Let f € R[z,y] be a polynomial. An
algebraic curve is the set of points satisfying the equation

f(x,y) =0.

Definition 167. Let f(z,y) = 0 be an algebraic curve,
p,q € Rlz,y] and consider the polynomial system of de-
gree n of Eq. (17). We say that f(z,y) = 0 is an invariant
algebraic curve under the system of Eq. (17) if

of

@) + Gawn) = e)fy) (09)

14



where k € R[z,y] is called cofactor of the invariant curve
f(x,y) = 0. The Eq. (19) can be written as:

Xf=kf
where X is the operator defined in Eq. (18).

Proposition 168. Let f(z,y) = 0 be an algebraic curve,
p,q € Rlz,y] and consider the polynomial system of de-
gree n of Eq. (17). Then, the invariant curve f(z,y) =0
is a set of orbits of the differential system of Eq. (17).

Local structure of periodic orbits

Definition 169 (Poincaré map). Let U C R"™ be an
open set, f : U — R” be a vector field of class C! with
flow ¢(t,x), p € U and v(p) be a periodic orbit of period
T that passes through p. Let X be a transversal section at
p. For each q € ¥ (close enough to p) such that the tra-
jectory ¢(t,q) intersects ¥ in a distinct point from q, we
define the Poincaré map as the function 7: X9 C ¥ = X
sending q to the first point where ¢ (¢, q) intersects X (dif-
ferent from q).

Definition 170. Let U C R? be an open set, f : U — R?
be a vector field of class C' and ~ be a periodic orbit. We
say that ~ is a limit cycle if there exists a neighbourhood
V of ~ such that - is the only periodic orbit in V.

Definition 171. Let U C R? be an open set, f : U — R?
be a vector field of class C! and ~ be a periodic orbit. We
denote by Ext(5) the set of points which belong to the
unbounded component of R? \ 4, and by Int(v) the set of
points which belong to the bounded component of R? \ 4.

Proposition 172. Let U C R? be an open set, f : U —
R? be a vector field of class C!, ~ be a limit cycle and V'
be a neighbourhood of . Then, ~ is exactly one of the
following three types of limit cycles:

o 7 is stable if w(q) =~ Vq € V (Fig. 11a).
o~ is unstable if a(q) =~ Vq € V (Fig. 11b).
e ~ is semi-stable if either
{w(@) =~ VYaeVNExt(y)}A
ANMala) =~ Vg e Vnint(vy)}
or
{wl@ =~ VqeVnlnt(y)}A
NMa(a) =~ Vq e VNExt(y)}
(Figs. 11c and 11d)

(a) (b) () (d)

Figure 11: Stability of limit cycles

15

Definition 173. Let U C R2 be an open set, f: U — R2
be a vector field of class C' and ~ be a periodic orbit of
period T. We say that ~ is a hyperbolic periodic orbit if

T

I(~) ::/divf('y(t))dt;«éO

0

Theorem 174. Let U C R? be an open set, f : U — R?
be a vector field of class C' and ~ be a periodic orbit of
period T'. Then:

o I(v) >0 = ~(t) is an unstable limit cycle.

o I(v) <0 = ~(t) is a stable limit cycle.

Poincaré-Bendixson theorem

Lemma 175. Let U C R? be an open set, f : U — R?
be a vector field of class C', ¥ be a transversal section of
f, v be an orbit of f and p € ¥ Nw(y). Suppose that
@(t) is the flux of the system. Then, 3(¢,) € R such that

p(t,) € ¥ and li_>m p(t,) = p.

Lemma 176. Let U C R? be an open set, f : U — R? be
a vector field of class C!, ¥ be a transversal section of f, v
be an orbit of f and p € X Nw(v). Then, v+ (p) intersect
Y in a (finite or infinite) monotone sequence of points.

Lemma 177. Let U C R? be an open set, f : U — R? be
a vector field of class C', ¥ be a transversal section of f
and p € U. Then, | Nw(p)| is either 0 or 1.

Lemma 178. Let U C R? be an open set, f : U — R?
be a vector field of class C*, p € U be such that v (p) is
contained in a compact set, and 7 be an orbit such that
v Cw(p). If w(p) contains only non-singular points, then
w(p) is a periodic orbit and v = w(p).

Theorem 179 (Poincaré-Bendixson theorem). Let
U C R? be an open set, f : U — R? be a vector field
of class C* and p € U be such that v (p) is contained
in a compact set. Suppose that f has a finite number of
singular points. Then:

1. If w(p) contains only non-singular points, then w(p)
is a periodic orbit.

If w(p) contains only singular points, then w(p) is a
singular point.

If w(p) contains both singular and non-singular
points, then w(p) is a collection of singular points
together with homoclinic and heteroclinic orbits con-
necting those points.

Corollary 180 (Poincaré-Bendixson theorem). Let
U C R? be an open set, f : U — R? be a vector field
of class C! and p € U be such that v~ (p) is contained
in a compact set. Suppose that f has a finite number of
singular points. Then:

1. If a(p) contains only non-singular points, then «(p)
is a periodic orbit.



2. If a(p) contains only singular points, then «(p) is a
singular point.

3. If a(p) contains both singular and non-singular
points, then a(p) is a collection of singular points
together with homoclinic and heteroclinic orbits con-
necting those points.

Corollary 181. Let U C R? be an open set, f : U — R?
be a vector field of class C' and ~ be a periodic orbit of f.
Then, there is at least one singular point in Int(-y).

Lyapunov stability

Definition 182. Let U C R™ be an open set and f : U —
R™ be a vector field of class C! and p € U be a critical
point of f. We say that p is Lyapunov stable if the set {p}
is positively stable.

Definition 183. Let U C R™ be an open set, f : U — R"
be a vector field of class C! and p € U be a critical point
of f. We say that a function V : U — R of class C! is a
Lyapunov function for p if there exists a neighbourhood
U C U of p such that:

e V(p)=0and V(x)>0¥xec U\ {p}
« VV(q)-f(q) <0VqeU
If instead of the second condition we have
« VV(q) -f(q) <0VqecU\{p}
we say that V is a strict Lyapunov function for p.

Theorem 184 (Lyapunov’s theorem). Let U C R" be
an open set and f : U — R"™ be a vector field of class C!
and p € U be a critical point of f.

o If there exists a Lyapunov function for p in a neigh-
bourhood of p, then p is Lyapunov stable.

o If there exists a strict Lyapunov function for p in a
neighbourhood of p, then p is asymptotically stable.

Theorem 185 (Bendixson’s theorem). Let U C R?
be an open set and f : U — R? be a vector field of class C*
such that divf has constant sign in a simply connected
region R and is not identically zero on any subregion of R
with positive area. Then, the system x’ = f(x) does not
have periodic orbits that lie entirely on R.

Theorem 186 (Bendixson-Dulac theorem). Let U C
R? be an open set and f : U — R2 be a vector field of
class C'. Suppose that there exists a simply connected
region R and a function h : R — R of class C! such that
div(hf) has constant sign on R and is not identically zero
on any subregion of R with positive area. Then, the sys-
tem x’ = f(x) doesn’t have periodic orbits that lie entirely
on R.

Theorem 187 (Generalized Bendixson-Dulac the-
orem). Let U C R? be an open set, n € NU {0} and
f : U — R2 be a vector field of class C!. Suppose that

there exists a subset R C U homeomorphic to a disk with
n holes and a function h : R — R of class C' such that
div(hf) has constant sign on R and is not identically zero
on any subregion of R with positive area. Then, the sys-
tem x’ = f(x) has at most n periodic orbits that lie en-
tirely on R.

Poincaré compactification

Definition 188. Let f : R?2 — R? be a vector field of
class C!. Consider the sphere S? and the plane II =
{(z1,79,23) € R? : 23 = 1} 2 R?. Let

H, :=S5?N{(x1, 22, 23) € R3: 23 > 0}

H_ = 52 n {(xl,l‘g,l‘g) S R3: T3 < O}
For each point p € TI, the line joining p and (0, 0,0) inter-
sects S? in two points. We define the following functions

g+ . II H+

((El,xg,l) — ( T T2 1 )

\/1+m2+zg ’ \/1+12+x2 \/1+m2+:52
H_

—

g II
($1,$2,1) — (

—

—XT] — I —1
Vitai+ad’ 1tz +ad’ \/1+a2+al
The induced vector field f

which are diffeomorphisms.

defined in S%\ S':= H, UH_ is'%:
Dg (x)f(x) ify=g (x)€ H_

Proposition 189. Let f = (p,q) : R?> — R? be a poly-
nomial vector field of degree d, f be the induced vector
field on 52\ S* and p : S? — R be the function defined as
p(y1,y2,y3) = ys®~ 1. Then, the field pf can be extended
analytically to S? with the equator of S? remaining invari-
ant.

Corollary 190. Let f = (p,q) : R? — R? be a polyno-
mial vector field of degree d and consider the local charts
(Ui, ;), (Vi, 1) for i =1,2,3 defined as:

with j,k # 4, j < kand i = 1,2,
vector field defined on each (U;, ¢,

o On (Uy, ¢y), if (u,v) (f %) then:
+

R CRICD)

Then, the extended
is:

Ui = {(z1,22,23) € §% 1 2; > 0}
Vi = {(z1,22,23) € §* 1 ; < 0}
and
P, : U; —
(y1)y27y3 — (zz’ yl)
i Vi — R?
Yi Yk
(ylay2,y3 — (yl )
3.
)

K2

15The idea behind this concept is to study the asymptotic behaviour of the orbits of the system x’ = f(x). In order to do so, we would
like to extend the field f to the equator of S? ({(x1,z2,23) € S? : 3 = 0}). And that set would correspond to the infinity in R2.
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The extended vector field defined on each (V;,);) is the
one defined on each (U;, ¢;) multiplied by (—1)?~". This
extension is called Poincaré compactification of f.

Definition 191. We d@e the Poincaré disk as the or-
thogonal projection 7 : Hy — D(0,1).

Integrability theory of polynomial systems

Definition 192. Let U C R? be an open set, p, ¢ € R[z, y]
and consider the polynomial system of Eq. (17). We say
that a function R : U — R is an integrating factor if

d(Rp)  O(R
div(Rp, Rq) = 7(8; ) 4 (8yq) —0

Lemma 193. Let U C R? be an open set, R : U — R
be a differentiable function, p, ¢ € Rz, y] and consider the
polynomial system of Eq. (17). Then, R is an integrating
factor if and only if:

OR OR )
XR = p% + qafy = —Rdiv(p,q)

where X is the operator defined in Eq. (18).

Proposition 194. Let U C R? be an open set, p,q €
R[z,y] and consider the polynomial system of Eq. (17).
Suppose that system admits an integrating factor R : U —
R. Then, the system admits a first integral H : U — R
given by:

H(zy) = - / Rz, y)p(a,y) dy + hiz)

where h(z) satisfy:

W(x) = R(z,y)q(z,y) + (% </ R(z,y)p(z,y) dy)

Definition 195. Let p,q,g,h € R[z,y] and consider the
polynomial system of Eq. (17) of degree d and let X be the
vector field operator of that system (defined by Eq. (18)).

9(z,y)
We say that er@v) is an exponential factor with cofactor

k(z,y) € R[z,y] if degk < d —1 and:

9(z,y) 9(z,y)

Xeh(zy) = k((p, y)e h(z,y)

Theorem 196 (Darboux theorem). Let p,q € R[z, y]
and consider the polynomial system of Eq. (17) of degree

d, fi(z,y) = 0 be invariant algebraic curves with cofactors
gj(z,y)
ki(z,y) fori=1,...,r and e" ¥ be exponential factors

with cofactors ¢;(z,y) for j =1,...,s. Then:

1 If 3N, pu; €eR,e=1,...,rand j =1,...,s, not all
zero such that >0, \ik; + 327 pjl; = 0, then

91(=,y) 9s(z,y)
fTATeH1 hi(@y) ... oM hs(@y)

H=fiM. .. (20)

is a first integral for the system.

2 Ifr+s > @—4—1, then 3N;,n; € R, i =
1,...,7 and 5 = 1,...,s, not all zero such that
o1 Aiki +229_ ity = 0. And so, the system

has the first integral defined in Eq. (20).

3. Ifr+s> @ + 2, then the system has a ratio-
nal first integral. Consequently all trajectories of the
system are contained in invariant algebraic curves.

4. If I, p; €Ri=1,...,rand j=1,...,s, not all
zero such that 350 Nik; +3°7_, pl; = — div(p, q),
then

91(z,y) 9s(x,y)
fr/\r(j#1 h(@,y) ... ehs hs(m,y)

R=fiM...

is an integrating factor for the system. And so the
system also admits a first integral by Theorem 194.

Index of paths and homotopy

Definition 197. Let v : [a,b] — R? be a closed path,
g € R\ ~* and L be a ray with vertex at ¢q. Consider a
continuous determination ¢ : [a,b] — R of the angle (mea-
sured counterclockwisely) between ~(t) and L. Then, we
define the index of ¢ with respect to ~ as:

p(b) — ¢(a)

27
Proposition 198. Let ¢1,¢q2 € R> and v : I — R? be a
closed path such that the segment g1gz does not intersect
~*. Then, Ind(y, ¢1) = Ind(v, ¢2).
Corollary 199. Let v : I — R? be a closed path. Then,

all points in the same conencted component of R? \ ~*
have the same index.

Ind(v,q) :=

Proposition 200. Let 4,75 : I — R? be two closed
paths and ¢ € R? be such that ¢ ¢ ~,(t)v,(t) Vt € I.
Then, Ind(vy,, q) = Ind(vy,, q).

Proposition 201. Let v,,75 : I — R? be two closed
paths and ¢ € R? be such that ¢ ¢ ~;* U~,* and
[71(8) = v2 ()] < llg = v2(B)[| V¢ € I. Then, Ind(y,,9) =
Ind(v2, 9).

Definition 202. Let v;,7, : I — R? be two closed
paths. We say that the are homotopic, and we de-
note it by ~y; ~ 7,, if there exists a continuous function
h: I x [0,1] — R? such that:

1. v1(#) =h(t,0) Vt € I
2. v,(t) =h(t,1) Vte I
3. h(0,s) =h(1,s) Vs € [0,1]
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Such function h is called the homotopy between -, and
Ya-

Lemma 203. Being homotopic is an equivalence relation.

Proposition 204. Let v,,7v, : I — R? be two closed
homotopic paths, h : I x [0,1] — R? be the respective
homotopy and ¢ € R? be such that ¢ ¢ im(h)'°. Then,
Ind(vy,¢) = Ind(7z,9).

Definition 205. Let v : I — R? be a closed path. We
say that ~ is contractible if it is homotopic to the constant
path a(t) = a € R2.

Proposition 206. Let v : I — R? be a closed con-
tractible path and ¢ € R?\ D(«), where D(v) is the do-
main enclosed by . Then, Ind(«, ¢) = 0.

Proposition 207. Let v : I — R? be a closed path which
is homotopic to the path v, := g+ e?™" (thought in R?),
n € Z and ¢ € R?\ D(vy — ). Then, Ind(v, q) = n.

Proposition 208. Let v : I — R? be a closed path and
q € R?\ v* be such that Ind(«,q) = n. Then, v ~ a,.

: I — R? be two closed
e

Theorem 209. Let ~;,7,
paths and ¢ € R? \ D(v; —~,). Then, v, ~ 7,
Ind(7,,¢) = Ind(7y,9)

Theorem 210. Let f : D(0,1) = [0,1] x [0, 27] — R? be
a continuous function, v(t) = f(1, 2xt) with ¢ € [0, 1] and
q € R%\ £(S!) be such that Ind(«, ¢) # 0. Then, q € imf.

Poincaré-Hopf theorem

Definition 211. Let U C R? be an open set, X : U — R?
be a differentible vector field and « be the path de-
fined on the boundary of a closed disk D C U. Let
~(t) := (X oa)(t) and ¢ € Int(vy). We define the index of
X on 9D as:

Indy p(X) == Ind(y,q)""

Definition 212. Let U C R? be an open set, X : U — R2
be a differentible vector field and p € U be an isolated sin-
gular point (on the set of all singular points). Let D be a
disk that surrounds only that singular point p. We define
the index of p as:

Ind,(X) := Indg p(X)*®

Proposition 213. Let D C R? be a closed disk and
X : D — R? be a continuous vector field such that
X(q) # 0 Vg € 0D. Suppose that X has a finite num-
ber of singular points pi,...,p,. Then:

> Ind,, (X) = Indy p(X)
i=1

Definition 214. Let U C S? be an open set. A tangent
vector field defined on S? is a vector field X such that
X(q) € T,S* Vg e U™.

Definition 215. Let U C S? be an openset and X : U —
R3 be a tangent vector field and p be a singular point of
X. Suppose (rotating the sphere if necessary) that p is in
one of its poles. Let X be the field created from the stere-
ographic projection from —p to the equator plane. We
define the index of p with respect to the field X as:

Ind,(X) = Indo(X)
Theorem 216 (Poincaré-Hopf theorem). Consider a
continuous vector field X on a compact manifold M with
a finite number of singular points. Then, the sum of their
indices is x(M).

Corollary 217 (Poincaré-Hopf theorem on S?).
Consider a continuous vector field X on S? with a finite
number of singular points. Then, the sum of their indices
is 2.

Proposition 218 (Poincaré index formula). Let U C
R? be an open set, X : U — R? be a differentible vector
field and p be a singular point with a finite finite sectorial
decomposition. Denote by e the number of elliptic sec-
tors; by h, the number of hyperbolic sectors, and by p, the
number of parabolic sectors. Then:

—h

2

Corollary 219. Every tangent vector field X defined on
5?2 has singular points.

e

Ind, (X) = +1

8. | Introduction to partial differential
equations

Definition 220. Let U C R"™ be an open set. A partial
differential equation (PDE) of order k is an expression of
ou oFu

the form
7ax7...7axlc)

where x = (z1,...,2n), F: UXRxR" x--- x R" 5 R
is a given function and u : U — R is an unknown function.
The function u is called solution of the PDE defined by F'.

F (x,u(x)

Quasilinear partial differential equations

Definition 221. Let U C R" be an open set and u : U —
R be a function. A quasilinear PDE is an expression of
the form:
Ju
X, U)=— —
i, )8331 Oy,

Theorem 222. Let U C R" beanopensetandu: U — R
be a function and consider the PDE of Eq. (21). Let

+ e +pn(xv u) = Q(X, u) (21)

H,,..., H, be the n independent first integrals of the sys-
tem: ,
1" =pi1(z1,.. 0 Tn,u)
xn/ = pn(xlv C) CEn,U)
u = q(xy,..., Tn,u)

16From now on we will denote ¢ ¢ im(h) as ¢ € R?\ D(y; — v5), where D(v; — 75) is the domain enclosed between ~v; and 5.
171t can be seen that this definition doesn’t depend on the point g inside ~ chosen.
181t can be seen that this definition doesn’t depend on the disk D chosen.

19Recall ?7?.
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Then, for any function F : R” — R of class C!, the implicit
equation
F(Hy(x,u),...,Hy(x,u)) =0

is a solution to Eq. (21).

Heat, wave and Laplace equations

Definition 223 (Heat equation). Let u : Rx R — R
be an unknown function. The heat equation is the PDE
defined by

ou k82u

ot 0x2
where k£ € R.

Proposition 224. Consider a bar of line L € Ry whose
temperature can be modeled by a function u : RXR — R,
and f : [0,L] — R be a function. Then, the solution
u(z,t) to the heat equation with boundary conditions
u(z,0) = f(z) and u(0,t) = u(L,t) =0 is:

i . (TNT\ _n2z2k,
u(z,t) = Z by, sin (T) e 12
n=1

L
1 . /TnX
where b, = 7 / f(z)sin (T) dz.
-L

Definition 225 (Wave equation). Let v : Rx R —» R
be an unknown function. The wave equation is the PDE

defined by
0%u B

o2

2 0%u
0z2
where ¢ € R.

Proposition 226. Consider a string of line L € Ry
whose position can be modeled by a function u : R x R —
R, and f,g : [0,L] — R be functions. Then, the solu-
tion u(x, t) to the wave equation with boundary conditions
u(z,0) = f(z), u(z,0) = g(z) and u(0,t) = u(L,t) =0

1S:

u(z,t) = i sin (%) {an Cos (%t) + by, sin (%t)}
n=0

L
1 ™
an = 7 / f(x)cos (—) dz
L
. L
. /TN
by, = — /g(m) sin (T) dz
g

Proposition 227. Let u(z,t) be a solution to the wave
equation. Then, 3F, G : R — R such that:

u(z,t) = F(x + ct) + G(z — ct)

Proposition 228 (D’Alembert formula). Let f, g :
R — R be functions. The solution u(x,t) to the wave
equation with boundary conditions u(z,0) = f(z) and
ug(x,0) = g(x) is:

fz— ct)—;—f(x—kct) N

u(z,t)

- 2c

T—ct

Definition 229 (Laplace equation). Let v : RxR — R
be an unknown function. The Laplace equation is the PDE
defined by:

o
Oy?

0u
Proposition 230. The Laplacian of a function u
(0,00) % [0,27] — R in polar coordinates (r, 8) is:

Ay = Upy + Ur u—eze

rooor
Proposition 231 (Dirichlet problem). Let f
[0,27] — R be a continuous function such that f(0)
f(2m).  Then, there exists a continuous function v :
D(0, p) — R such that:

1. v(r,0) = v(r,2m) Vr € [0, p]
2. v € C*(D(0,p) \ {0}) and Av =0.
3. v(p,0) = f(0) VO € [0, 27]

An example of such function is:

n

v(r,0) = Z ;n [an, cos (nB) + b, sin (nd)]

n=0
where:
27
an = — [ f(6)cos(nd)do
m
0
1 2m
b, =— [ f(6)sin(nd)do
m
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