Differential equations

Along this document we will often write the points in \mathbb{R}^n , n > 2, in bold face (as well as the vectors) in order to be consistent when handling points and vectors together.

1. Space of continuous and bounded functions

Definition 1. Let X, Y be topological spaces. We define the following sets:

$$C(X,Y) = \{ f : X \longrightarrow Y : f \text{ is continuous} \}$$

$$C_b(X,\mathbb{R}^n) = \{ f \in C(X,\mathbb{R}^n) : f \text{ is bounded} \}$$

Theorem 2. Let X be a topological space and $f \in$ $C_{\rm b}(X,\mathbb{R}^n)$. We define the norm of f as:

$$||f|| := \sup\{||f(x)|| : x \in X\}$$

and a distance d in $C_b(X, \mathbb{R}^n)$ as:

$$d(f,g) := ||f - g|| \quad \forall f, g \in \mathcal{C}_{\mathbf{b}}(X, \mathbb{R}^n)$$

Then, $(\mathcal{C}_{b}(X,\mathbb{R}^{n}),d)$ is a complete metric space.

Theorem 3. Let X be a topological space and $C \subseteq \mathbb{R}^n$ be a closed subset. Then, $(\mathcal{C}(X,C),d)$ is a complete metric

Corollary 4. Let $K \subset \mathbb{R}^n$ be a compact subset and $C \subseteq \mathbb{R}^n$ be a closed subset. Then, $(\mathcal{C}(K,C),d)$ is a complete metric space.

Corollary 5. Let $D \subset \mathbb{R}^n$ be a closed set and X = $\mathcal{C}([a,b],D)$. Then (X,d) is also a complete metric space.

2. Ordinary differential equations

Definition 6. An ordinary differential equation (ode) of m unknowns and of order n in *implicit form* is an expression of the form:

$$\mathbf{f}\left(t,\mathbf{x}(t),\mathbf{x}'(t),\mathbf{x}''(t),\ldots,\mathbf{x}^{(n)}(t)\right) = \mathbf{0}$$

where $\mathbf{x}:U\subseteq\mathbb{R}\to\mathbb{R}^m$ is a vector-valued function of one variable $t \in \mathbb{R}$ (which is called *independent variable*) and $\mathbf{f}: \Omega \subseteq \mathbb{R} \times \mathbb{R}^{m \cdot (n+1)} \to \mathbb{R}^m$, where both U and Ω are open sets. The same ordinary differential equation in explicit form is an expression of the form:

$$\mathbf{x}^{(n)}(t) = \mathbf{g}\left(t, \mathbf{x}(t), \mathbf{x}'(t), \mathbf{x}''(t), \dots, \mathbf{x}^{(n-1)}(t)\right)$$

where $\mathbf{g}: \Omega \subseteq \mathbb{R} \times \mathbb{R}^{m \cdot n} \to \mathbb{R}^{m \cdot 1}$.

Definition 7. Consider the following ODE of m unknowns and of order n:

$$\mathbf{x}^{(n)}(t) = \mathbf{f}\left(t, \mathbf{x}(t), \mathbf{x}'(t), \dots, \mathbf{x}^{(n-1)}(t)\right)$$
(1)

We say that $\varphi: I \subseteq \mathbb{R} \to \mathbb{R}^m$ is a solution of the ODE if: with initial conditions $\mathbf{x}(t_0) = \mathbf{x}_0$.

- Sometimes we will write $\mathbf{x}^{(n)} = \mathbf{g}(t, \mathbf{x}, \mathbf{x}', \dots, \mathbf{x}^{(n-1)})$ instead of $\mathbf{x}^{(n)}(t) = \mathbf{g}(t, \mathbf{x}(t), \mathbf{x}'(t), \dots, \mathbf{x}^{(n-1)}(t))$ in order to simplify the
 - ²Therefore, we will mainly study the ODEs of order 1.

- φ is *n* times differentiable on *I*.
- $\left\{ \left(t, \varphi(t), \varphi'(t), \dots, \varphi^{(n-1)}(t) \right) : t \in I \right\} \subseteq \text{dom } \mathbf{f}$
- For all $t \in I$ we have:

$$\varphi^{(n)}(t) = \mathbf{f}\left(t, \varphi(t), \varphi'(t), \dots, \varphi^{(n-1)}(t)\right)$$

The set of all solutions of an ODE is called *general solution* of the ODE.

Proposition 8. Consider an ODE of m unknowns and order n of the form of Eq. (1). Then, we can transform this ODE to an ODE of $m \cdot n$ unknowns and order 1 in the following way². Define $\mathbf{y}_i = \mathbf{x}^{(i-1)}$ for $i = 1, \dots, n$. Therefore, the functions \mathbf{y}_i must satisfy:

$$\begin{cases} \mathbf{y_1}' = \mathbf{y_2} \\ \mathbf{y_2}' = \mathbf{y_3} \\ \vdots \\ \mathbf{y_{n-1}}' = \mathbf{y_{n-2}} \\ \mathbf{y_n}' = \mathbf{f}\left(t, \mathbf{y_1}(t), \mathbf{y_2}(t), \dots, \mathbf{y_n}(t)\right) \end{cases}$$

This is called a system of ordinary differential equations (of order 1) or a differential system.

Definition 9. We say that an ODE is *autonomous* if it doesn't depend on the independent variable, that is, if it is of the form:

$$\mathbf{x}' = \mathbf{f}(\mathbf{x})$$

Otherwise, we say that an ODE is non-autonomous.

Definition 10. We say that an ODE of order n is linearif it is of the form:

$$a_0(t)\mathbf{x} + a_1(t)\mathbf{x}' + \dots + a_n(t)\mathbf{x}^{(n)} = \mathbf{b}(t) \tag{2}$$

where $a_i \in \mathcal{C}(I,\mathbb{R})$ for i = 0, ..., n and $\mathbf{b} \in \mathcal{C}(I,\mathbb{R}^m)$ are arbitrary functions which do not need to be linear. We say that the linear ODE of Eq. (2) is homogeneous if $\mathbf{b}(t) = \mathbf{0}$ $\forall t \in I$. We say that linear ODE of Eq. (2) is of constant coefficients if $a_i(t) := a_{i0} \in \mathbb{R} \ \forall t \in I \text{ and } \forall i = 0, \dots, n.$

Definition 11 (Initial value problem). Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}:U\to\mathbb{R}^n$ be a function. Given $(t_0, \mathbf{x}_0) \in U$, the initial value problem (ivp) (or Cauchy problem) consists in finding a solution of the ODE

$$\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$$

Methods for solving ODEs

Proposition 12 (Separation of variables). Let $f:(a,b)\to\mathbb{R},\ g:(c,d)\to\mathbb{R}$ be continuous functions such that $f(x)\neq 0\ \forall x\in(a,b)$. Consider the ODE x'=f(x)g(t). To find the solution of this ODE, proceed as follows:

$$x' = f(x)g(t) \iff \int \frac{\mathrm{d}x}{f(x)} = C + \int g(t) \,\mathrm{d}t$$

where the constant C is determined with the initial conditions of the ODE.

Proposition 13 (Variation of constants). Let $I \subset \mathbb{R}$ be an interval, $a, b \in \mathcal{C}(I, \mathbb{R})$. Consider the ODE x' = a(t)x + b(t). To find the solution of this ODE, proceed as follows:

- 1. Find the solution of the associated homogeneous system with the separation of variables method. Let's say that is $\varphi(t)c$, where $c \in \mathbb{R}$.
- 2. Try to find a general solution of the form $\varphi(t)c(t)$:

$$(\varphi(t)c(t))' = a(t)\varphi(t)c(t) + b(t) \iff \varphi(t)'c(t) + \varphi(t)c(t)' = a(t)\varphi(t)c(t) + b(t) \iff \varphi(t)c(t)' = b(t) \iff c(t) = d + \int \varphi(t)^{-1}b(t) dt$$

where $d \in \mathbb{R}$. Hence, the general solution will be:

$$\varphi(t)\left(d+\int \varphi(t)^{-1}b(t)\,\mathrm{d}t\right)$$

Proposition 14 (Characteristic equation). Consider the following ODE of order n of constant coefficients:

$$x^{(n)} + a_{n-1}x^{(n-1)} + \dots + a_1x' + a_0x = 0$$
 (3)

We define the *characteristic equation* of that system as the equation:

$$p(r) := r^n + a_{n-1}r^{n-1} + \dots + a_1r + a_0 = 0$$

In order to find the solution of this ODE, we need to find the solutions to p(r) = 0. So suppose p has s distinct real roots and 2(m-s) distinct complex roots.

$$\lambda_1, \ldots, \lambda_s, \lambda_{s+1}, \overline{\lambda_{s+1}}, \ldots, \lambda_m, \overline{\lambda_m}$$

Here, $\lambda_i \in \mathbb{R} \ \forall i = 1, \dots, s$ and $\lambda_i = \alpha_i + \mathrm{i}\beta_i \in \mathbb{C}$ $\forall i = s+1, \dots, m$. Assume, each of these roots have multiplicity $k_i \in \mathbb{N}$. Then, the general solution to Eq. (3) is:

$$\varphi(t) = \sum_{i=1}^{s} \left(c_{i,0} + c_{i,1}t + \dots + c_{i,k_{i-1}}t^{k_{i-1}} \right) e^{\lambda_{i}t} +$$

$$+ \sum_{i=s+1}^{m} \sum_{j=0}^{k_{i}-1} t^{j} e^{\alpha_{i}t} \left(c_{i,j,1} \cos(\beta_{i}t) + c_{i,j,2} \sin(\beta_{i}t) \right)$$

where $c_{i,j,k} \in \mathbb{R}$ are constants.

Proposition 15. Consider a system of the form Eq. (3) which is equivalent to:

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{pmatrix} =: \mathbf{A}\mathbf{x}$$

Then, the characteristic equation is precisely the characteristic polynomial of A.

Corollary 16. Consider the following ODE of order n of constant coefficients:

$$x'' + px' + q = 0 \tag{4}$$

Let λ_1, λ_2 be the roots of the polynomial $p(r) = r^2 + pr + q$. Then, the general solution to Eq. (4) is:

• If $p^2 - 4q > 0$:

$$\varphi(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

- If $p^2-4q=0$, then $\lambda_1=\lambda_2$ and the solution is: $\varphi(t)=c_1\mathrm{e}^{\lambda_1t}+c_2t\mathrm{e}^{\lambda_1t}$
- If $p^2-4q<0$, then $\lambda_1=\alpha+\mathrm{i}\beta\in\mathbb{C}$ and the solution is:

$$\varphi(t) = e^{\alpha t} \left[c_1 \cos(\beta t) + c_2 \sin(\beta t) \right]$$

Proposition 17 (Reducible linear ODE of second order). Let $I \subset \mathbb{R}$ be an interval, $a, b, c, d \in \mathcal{C}(I, \mathbb{R})$. Consider the system of ODEs:

$$\begin{cases} x' = a(t)x - b(t)y + c(t) \\ y' = b(t)x + a(t)y + d(t) \end{cases}$$

$$(5)$$

In order to find the solution of this ODE, consider the change of variable z = x + iy. Then, Eq. (5) becomes:

$$z' = [a(t) + ib(t)]z + c(t) + id(t)$$

which is a linear ODE of order 1 and can be easily solved.

Proposition 18 (Bernoulli differential equation). Let $p, q \in \mathcal{C}((a, b), \mathbb{R})$ and $\alpha \in \mathbb{R}$. Consider the Bernoulli differential equation:

$$x' + p(t)x = q(t)x^{\alpha} \tag{6}$$

If $\alpha=0,1$ the ODE is linear. So suppose $\alpha\neq 0,1$. In order to solve it, consider the change of variable $y=x^{1-\alpha}$. Then, Eq. (6) becomes:

$$y' + (1 - \alpha)p(t)y = (1 - \alpha)q(t)$$

which is a linear ODE of order 1 and can be easily solved.

Proposition 19 (Riccati differential equation). Let $q_0, q_1, q_2 \in \mathcal{C}((a, b), \mathbb{R})$. Consider the Riccati differential equation:

$$x' = q_0(t) + q_1(t)x + q_2(t)x^2$$
(7)

Suppose we have found a particular solution $x_1(t)$ of the ODE of Eq. (7). In order to find the general solution, consider the change of variable $x = x_1(t) + \frac{1}{y}$. Then, Eq. (7) becomes:

$$y' + [q_1(t) + 2q_2(t)x_1(t)]y = -q_2(t)$$

which is a linear ODE of order 1 and can be easily solved.

Proposition 20 (Integrating factor). Consider the ODE:

$$p(t,x) + q(t,x)x' = 0 \iff p(t,x) dt + q(t,x) dx = 0$$

where $p, q \in \mathcal{C}^1(U, \mathbb{R})$ and $U \subseteq \mathbb{R}^2$ is an open set. An integrating factor $\mu(t, x) \in \mathcal{C}^1(U)$, $\mu(t, x) \neq 0$, is a function so that

$$\mu(t,x)p(t,x) dt + \mu(t,x)q(t,x) dx$$

is an exact differential $(\mathrm{d}\Phi(t,x))$ of a function $\Phi(t,x),$ that is:

$$\frac{\partial \Phi}{\partial t}(t,x) = \mu(t,x)p(t,x) \tag{8}$$

$$\frac{\partial \Phi}{\partial x}(t,x) = \mu(t,x)q(t,x) \tag{9}$$

So we need that:

$$\frac{\partial}{\partial x} \left(\mu(t,x) p(t,x) \right) = \frac{\partial}{\partial t} \left(\mu(t,x) q(t,x) \right)$$

From here, in certain cases, we will be able to find $\mu(x, y)$ and, therefore, $\Phi(t, x)$ by integrating Eqs. (8) and (9).

3. Existence and uniqueness of solutions

Proposition 21. Let $f:(a,b)\to\mathbb{R}$ be a continuous function such that $f(x)\neq 0 \ \forall x\in(a,b)$. Then, the ivp

$$\begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$$

has a unique solution $\forall t_0 \in \mathbb{R}$ and $\forall x_0 \in (a, b)$.

Proposition 22. Let $f:(a,b)\to\mathbb{R},\ g:(c,d)\to\mathbb{R}$ be continuous functions such that $f(x)\neq 0\ \forall x\in(a,b)$. Then, the ivp

$$\begin{cases} x' = f(x)g(t) \\ x(t_0) = x_0 \end{cases}$$

has a unique solution $\forall t_0 \in (c,d)$ and $\forall x_0 \in (a,b)$.

Proposition 23. Let $I \subseteq \mathbb{R}$ be an interval and $a: I \to \mathbb{R}$ and $b: I \to \mathbb{R}$ be continuous functions. Then, the ivp

$$\begin{cases} x' = a(t)x + b(t) \\ x(t_0) = x_0 \end{cases}$$

has a unique solution $\forall t_0 \in I \text{ and } \forall x_0 \in \mathbb{R}^3$.

Lipschitz continuity

Definition 24. Let $\mathbf{f}: U \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m$ be a function. We say that \mathbf{f} is *Lipschitz continuous with respect to the second variable* if $\exists L \in \mathbb{R}_{>0}$ such that:

$$\|\mathbf{f}(t, \mathbf{x}) - \mathbf{f}(t, \mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\| \qquad \forall (t, \mathbf{x}), (t, \mathbf{y}) \in U$$

Definition 25. Let $\mathbf{f}: U \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m$ be a function. We say that \mathbf{f} is locally Lipschitz continuous with respect to the second variable if $\forall (t_0, \mathbf{x}_0) \in U$ there exists a neighbourhood V of (t_0, \mathbf{x}_0) such that $f|_V$ is Lipschitz continuous with respect to the second variable.

Proposition 26. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}: U \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a function. Then:

- 1. If \mathbf{f} is locally Lipschitz continuous with respect to the second variable, then it is continuous with respect to the second variable.
- 2. If \mathbf{f} is Lipschitz continuous with respect to the second variable, then it is uniformly continuous with respect to the second variable.
- 3. If \mathbf{f} is continuous, U is compact and \mathbf{f} is locally Lipschitz continuous with respect to the second variable, then \mathbf{f} is Lipschitz continuous with respect to the second variable.

Proposition 27. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open and convex set and $\mathbf{f}: U \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a function of class \mathcal{C}^1 . Then:

- 1. \mathbf{f} is locally Lipschitz continuous with respect to the second variable.
- 2. **f** is Lipschitz continuous with respect to the second variable if and only if **Df** is bounded.

Picard theorem

Proposition 28. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function. Let $I \subseteq \mathbb{R}$ be an open interval, $t_0 \in I$ and $\mathbf{x}_0 \in \mathbb{R}^n$ be such that $(t_0, \mathbf{x}_0) \in U$. Then, a continuous function $\varphi: I \to \mathbb{R}^n$ is a solution of the ivp

$$\begin{cases} \mathbf{x}' = \mathbf{f}(t, \mathbf{x}) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$
 (10)

if and only if

$$\varphi(t) = \mathbf{x}_0 + \int_{t_0}^t f(s, \varphi(s)) \, \mathrm{d}s \quad \forall t \in I$$

Definition 29. An *operator* is a function whose domain is a set of functions.

Definition 30. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set, $(t_0, \mathbf{x}_0) \in U$, $\mathbf{f} : U \to \mathbb{R}^n$ be a continuous function and I be a closed interval. We define the operator

$$\mathbf{T}: \mathcal{C}(I, \mathbb{R}^n) \longrightarrow \qquad \mathcal{C}(I, \mathbb{R}^n)$$
$$\boldsymbol{\varphi} \longmapsto \mathbf{T} \boldsymbol{\varphi}(t) = \mathbf{x}_0 + \int_{t_0}^t f(s, \boldsymbol{\varphi}(s)) \, \mathrm{d}s^{\frac{\mathbf{4}}{3}}$$

Theorem 31 (Banach fixed-point theorem). Let (X, d) be a complete metric space and $f: (X, d) \to (X, d)$ be a contraction. Then, f has a unique fixed point $p \in X^5$.

³See Eq. (12) for the solution.

⁴Note that the fixed points of this operator are precisely the solutions of the ivp of Eq. (10).

⁵Furthermore, p can be found as follows: start with an arbitrary element $x_0 \in X$ and define a sequence (x_n) by $x_n = f(x_{n-1})$ for $n \ge 1$. Then, $\lim_{n \to \infty} x_n = p$.

Corollary 32. Let (X,d) be a complete metric space and $f:(X,d)\to (X,d)$ be a function. If there exists $m\in\mathbb{N}$ such that f^m is a contraction, then f has a unique fixed point $p\in X$.

Definition 33. Let $t_0 \in \mathbb{R}$, $\mathbf{x}_0 \in \mathbb{R}^n$ and $a, b \in \mathbb{R}_{>0}$. We define the following sets:

$$I_a(t_0) := [t_0 - a, t_0 + a] \subset \mathbb{R} \text{ and } \overline{B}_b(\mathbf{x}_0) := \overline{B}(\mathbf{x}_0, b) \subset \mathbb{R}^n$$

Theorem 34 (Picard theorem). Let $t_0 \in \mathbb{R}$, $\mathbf{x}_0 \in \mathbb{R}^n$, $a, b \in \mathbb{R}_{>0}$, $\mathbf{f} : I_a(t_0) \times \overline{B}_b(\mathbf{x}_0) \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and Lipschitz continuous with respect to the second variable, and define:

$$M := \max\{\|\mathbf{f}(t,x)\| : (t,x) \in I_a(t_0) \times \overline{B}_b(\mathbf{x}_0)\}\$$

Then, the ivp of Eq. (10) has a unique solution φ $I_{\alpha}(t_0) \to \overline{B}_b(\mathbf{x}_0)$, where $\alpha := \min \left\{ a, \frac{b}{M} \right\}$.

Corollary 35. Let $I \subset \mathbb{R}$ be a closed interval, $t_0 \in I$, $\mathbf{x}_0 \in \mathbb{R}^n$ and $\mathbf{f} : I \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and Lipschitz continuous with respect to the second variable. Then, the ivp of Eq. (10) has a unique solution $\varphi : I \to \mathbb{R}^n$.

Corollary 36 (Picard iteration process). Suppose we want to solve the ivp of Eq. (10). That is, we look for a solution $\varphi(t)$. Let φ_0 be a fixed function (usually chosen to be $\varphi_0 = \mathbf{x}_0$) and define

$$\varphi_{n+1}(t) = \mathbf{T}\varphi_n(t) = \mathbf{x}_0 + \int_{t_0}^t f(s, \varphi_n(s)) ds$$

for all $n \ge 0$. Then, $\varphi(t) = \lim_{n \to \infty} \varphi_n(t)$.

Corollary 37. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function and locally Lipschitz continuous with respect to the second variable. Then, $\forall (t_0, \mathbf{x}_0) \in U$, there exists $\alpha(t_0, \mathbf{x}_0) \in \mathbb{R}_{>0}$ and a neighbourhood $V_{t_0, \mathbf{x}_0} = I_{a(t_0, \mathbf{x}_0)}(t_0) \times \overline{B}_{b(t_0, \mathbf{x}_0)}(\mathbf{x}_0)$ of (t_0, \mathbf{x}_0) in U such that the ivp of Eq. (10) has a unique solution $\varphi_{t_0, \mathbf{x}_0}$ defined on $I_{\alpha(t_0, \mathbf{x}_0)} \subseteq I_{a(t_0, \mathbf{x}_0)}$ with graph $(\varphi_{t_0, \mathbf{x}_0}) \subset V_{t_0, \mathbf{x}_0}$.

Proposition 38. Let $I \subseteq \mathbb{R}$ be an interval and $\mathbf{f}: I \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and Lipschitz continuous with respect to the second variable. Then, $\forall (t_0, \mathbf{x}_0) \in I \times \mathbb{R}^n$ there is a unique solution of the ivp of Eq. (10) defined on I.

Corollary 39. Let $I \subseteq \mathbb{R}$ be an interval and $\mathbf{A}: I \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ and $\mathbf{b}: I \to \mathbb{R}^n$ be continuous functions. Then, for all $(t_0, \mathbf{x}_0) \in I \times \mathbb{R}^n$ the ivp

$$\begin{cases} \mathbf{x}' = \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

has a unique solution defined on I.

Theorem 40. Let $f:[t_0,t_1]\times\mathbb{R}\to\mathbb{R}$ be a continuous function and $x_0\in\mathbb{R}$. Suppose that f is decreasing with respect to the second variable. Then, the ivp

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

has a unique solution defined on $[t_0, t_1^*]$, where $t_1^* \leq t_1$.

Peano theorem

Definition 41. Let (X,d) be a metric space and $F \subset \mathcal{C}(X,\mathbb{R}^n)$ be a subset. We say that F is *pointwise bounded* if

$$\forall x \in X \; \exists M_x > 0 \text{ such that } ||\mathbf{f}(x)|| \leq M_x \quad \forall \mathbf{f} \in F$$

We say that F is uniformly bounded if:

$$\exists M > 0 \text{ such that } \|\mathbf{f}(x)\| \leq M \quad \forall \mathbf{f} \in F \text{ and } \forall x \in X$$

Definition 42. Let (X,d) be a metric space and $F \subset \mathcal{C}(X,\mathbb{R}^n)$ be a subset. We say that F is equicontinuous at a point $x_0 \in X$ if $\forall \varepsilon > 0 \; \exists \delta > 0$ such that $\forall x \in X$ with $d(x,x_0) < \delta$ we have:

$$\|\mathbf{f}(x) - \mathbf{f}(x_0)\| < \varepsilon \quad \forall \mathbf{f} \in F$$

We say that F is pointwise equicontinuous if it is equicontinuous at each point of X. Finally, we say that F is uniformly equicontinuous if $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $\forall x,y \in X$ with $d(x,y) < \delta$ we have:

$$\|\mathbf{f}(x) - \mathbf{f}(y)\| < \varepsilon \quad \forall \mathbf{f} \in F$$

Proposition 43. Let (X,d) be a metric space and $F \subset \mathcal{C}_{\mathrm{b}}(X,\mathbb{R}^n)$ be a subset. Suppose that \mathbf{f} is Lipschitz continuous for all $\mathbf{f} \in F$. Then, F is uniformly equicontinuous.

Theorem 44 (Arzelà-Ascoli theorem). Let (X, d) be a compact metric space and (\mathbf{f}_m) be a sequence of functions such that $\mathbf{f}_m \in \mathcal{C}(X, \mathbb{R}^n) \ \forall m \geq 1$. If the sequence is pointwise equicontinuous and pointwise bounded, then there exists a subsequence (\mathbf{f}_{m_k}) that converges on $\mathcal{C}(X, \mathbb{R}^n)$.

Corollary 45. Let (X,d) be a compact metric space, $D \subset \mathbb{R}^n$ be a closed set and (\mathbf{f}_m) be a sequence of functions such that $\mathbf{f}_m \in \mathcal{C}(X,D) \ \forall m \geq 1$. If the sequence is pointwise equicontinuous and pointwise bounded, then there exists a subsequence (\mathbf{f}_{m_k}) that converges on $\mathcal{C}(X,D)$.

Theorem 46 (Peano theorem). Let $t_0 \in \mathbb{R}$, $\mathbf{x}_0 \in \mathbb{R}^n$, $a, b \in \mathbb{R}_{>0}$, $\mathbf{f} : I_a(t_0) \times \overline{B}_b(\mathbf{x}_0) \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function, and define:

$$M := \max\{\|\mathbf{f}(t, x)\| : (t, x) \in I_a(t_0) \times \overline{B}_b(\mathbf{x}_0)\}$$

Then, the ivp of Eq. (10) has at least one solution φ : $I_{\alpha}(t_0) \to \mathbb{R}^n$, where $\alpha := \min \left\{ a, \frac{b}{M} \right\}$.

Corollary 47. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set, $K \subset U$ be a compact set and $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function. Then, $\exists \alpha \in \mathbb{R}_{>0}$ such that $\forall (t_0, \mathbf{x}_0) \in K$, the ivp of Eq. (10) has a solution defined in $I_{\alpha}(t_0)$.

Maximal solutions

Definition 48. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set, $(t_0, \mathbf{x}_0) \in U$ and $\mathbf{f} : U \to \mathbb{R}^n$ be a continuous function. We define the set $\mathcal{S}(U, \mathbf{f}, t_0, \mathbf{x}_0)$ as:

$$\mathcal{S}(U, \mathbf{f}, t_0, \mathbf{x}_0) := \{(I, \boldsymbol{\varphi}) : I \subseteq \mathbb{R} \text{ is an interval}, t_0 \in I \text{ and } \boldsymbol{\varphi} : I \to \mathbb{R}^n \text{ is a solution of the ivp of Eq. (10)} \}$$

Definition 49. We define the relation \leq defined on $\mathcal{S}(U, \mathbf{f}, t_0, \mathbf{x}_0)$ in the following way. For $(I, \boldsymbol{\varphi}), (J, \boldsymbol{\psi}) \in \mathcal{S}(U, \mathbf{f}, t_0, \mathbf{x}_0)$:

$$(J, \psi) < (I, \varphi) \iff J \subset I \text{ and } \varphi|_J = \psi^6$$

In this case, we say that (I, φ) is an extension of (J, ψ) .

Definition 50. Let (A, \leq) be a poset. Then, $m \in A$ is a maximal element if and only if $\forall a \in A$ with $m \leq a$ we have m = a.

Definition 51. Consider the poset $(S(U, \mathbf{f}, t_0, \mathbf{x}_0), \leq)$. We say that a solution (I, φ) is *maximal* if for all extensions (J, ψ) of (I, φ) we have I = J and $\varphi = \psi$.

Definition 52. Let (A, \leq) be a poset and $C \subseteq A$ be a subset of A. We say that C is a *chain* if it is totally ordered in the inherited order, that is, if it is partially ordered and $\forall x, y \in C$ we have either $x \leq y$ or $y \leq x$.

Definition 53. Let (A, \leq) be a poset, $x \in A$ and $B \subseteq A$ be a subset. x is an *upper bound* of B if and only if $b \leq x$ $\forall b \in B$.

Definition 54. Let (A, \leq) be a poset and $B \subseteq A$ be a subset. Then, $g \in A$ is a *greatest element* of B if $g \in B$ and $\forall b \in B$ we have $b \leq g$.

Lemma 55 (Zorn's lemma). Let (A, \leq) be a poset. If every chain $C \subseteq A$ has an upper bound in A, then A contains at least one maximal element.

Theorem 56. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set, $(t_0, \mathbf{x}_0) \in U$ and $\mathbf{f} : U \to \mathbb{R}^n$ be a continuous function. Consider the poset $(S(U, \mathbf{f}, t_0, \mathbf{x}_0), \leq)$. Then, $S(U, \mathbf{f}, t_0, \mathbf{x}_0)$ has maximal elements. Furthermore, if (I, φ) is a maximal solution, then I is open.

Proposition 57. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be such that $\forall (t_0, \mathbf{x}_0) \in U$ the ivp of Eq. (10) has a unique solution defined in a neighbourhood of t_0 . Then, $\forall (t_0, \mathbf{x}_0) \in U$ the ivp of Eq. (10) has a unique maximal solution.

Lemma 58 (Wintner lemma). Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function, $\boldsymbol{\varphi}: I \to \mathbb{R}^n$ be a solution of $\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$ and $(b, y) \in U$ be an accumulation point of $\boldsymbol{\varphi}$. Then, $\lim_{t \to b} \boldsymbol{\varphi}(t) = y$ and the solution can be extended up to b.

Corollary 59. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function and $\boldsymbol{\varphi}: (a,b) \to \mathbb{R}^n$ be a maximal solution of $\mathbf{x}' = \mathbf{f}(t,\mathbf{x})$. If $b < \infty$, then for all compact set $K \subset U$, $\exists t_0 < \infty$ such that $(t,\boldsymbol{\varphi}(t)) \notin K \ \forall t \in [t_0,b)$. In that case, we say that $\boldsymbol{\varphi}$ tends to the boundary of U.

4. Linear differential equations

Definition 60. Let $I \subseteq \mathbb{R}$ be an interval. A *system of linear differential equations* is an expression of the form:

$$\mathbf{x}' = \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t) \tag{11}$$

where $\mathbf{A}: I \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ and $\mathbf{b}: I \to \mathbb{R}^n$ are continuous functions. We say that linear equation of Eq. (11) is homogeneous if $\mathbf{b}(t) = \mathbf{0} \ \forall t \in I$. We say that linear equation of Eq. (11) is of constant coefficients if $\mathbf{A}(t) = \mathbf{A} \ \forall t \in I$, where $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$.

Definition 61. Let $I \subseteq \mathbb{R}$ be an interval, $t_0 \in I$, $\mathbf{x}_0 \in \mathbb{R}^n$ and consider the ODE of Eq. (11). We define the *flow of the linear ODE* as the function:

$$\begin{array}{ccc} \phi: I \times I \times \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ (t, t_0, \mathbf{x}_0) & \longmapsto \varphi_{(t_0, \mathbf{x}_0)}(t) \end{array}$$

where $\varphi_{(t_0,\mathbf{x}_0)}$ is the solution of Eq. (11) with initial conditions (t_0,\mathbf{x}_0) .

Proposition 62. Let $I \subseteq \mathbb{R}$ be an interval and $a, b \in \mathcal{C}(I, \mathbb{R})$. Then, the general solution of the ivp

$$\begin{cases} x' = a(t)x + b(t) \\ x(t_0) = x_0 \end{cases}$$

is given by:

$$\varphi(t, t_0, x_0) = e^{\int_{t_0}^t a(s) ds} \left(x_0 + \int_{t_0}^t b(u) e^{-\int_{t_0}^u a(s) ds} du \right)$$
(12)

for all $t \in I$.

Homogeneous systems

Theorem 63. Let $I \subseteq \mathbb{R}$ be an interval and $\mathbf{A} \in \mathcal{C}(I, \mathcal{L}(\mathbb{R}^n))$. We define \mathcal{A}_n as the set of all solutions of the linear ODE:

$$\mathbf{x}' = \mathbf{A}(t)\mathbf{x} \tag{13}$$

Then, A_n is a vector space of dimension n and for each $t_0 \in I$, the function

$$egin{aligned} oldsymbol{\xi}_{t_0}: \mathbb{R}^n &\longrightarrow \mathcal{A}_n \ \mathbf{x}_0 &\longmapsto oldsymbol{arphi}(\cdot, t_0, \mathbf{x}_0) \end{aligned}$$

is an isomorphism.

Corollary 64. Let $I \subseteq \mathbb{R}$ be an interval, $t_0 \in I$, $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ be a basis of \mathbb{R}^n and $\varphi_1, \ldots, \varphi_n \in \mathcal{A}_n$ be such that:

$$\varphi_i = \boldsymbol{\xi}_{t_0}(\mathbf{v}_i)$$
 for $i = 1, \dots, n$

Then, $(\varphi_1, \ldots, \varphi_n)$ is a basis of A_n .

Corollary 65. Let $I \subseteq \mathbb{R}$ be an interval and $\psi \in \mathcal{A}_n$. Suppose $\exists t_0 \in I$ such that $\psi(t_0) = 0$. Then, $\psi = 0$.

⁶It can be seen that \leq is a partial (but not total) order relation.

Corollary 66. Let $I \subseteq \mathbb{R}$ be an interval, $m, n \in \mathbb{N}$ with Corollary 72. Let $I \subseteq \mathbb{R}$ be an interval, $\mathbf{A} \in \mathcal{C}(I, \mathcal{L}(\mathbb{R}^n))$ $m \leq n, \, \varphi_1, \ldots, \varphi_m \in \mathcal{A}_n \text{ and } t_0 \in I \text{ such that the vec-}$ tors $\varphi_1(t_0), \ldots, \varphi_m(t_0)$ are linearly independent. Then, $\varphi_1, \ldots, \varphi_m$ are linearly independent.

Corollary 67. Let $s, t, w \in \mathbb{R}$. Consider the function

$$\begin{array}{c} \boldsymbol{\phi}_s^t: \mathbb{R}^n \longrightarrow \mathbb{R}^n \\ \mathbf{x} \longmapsto (\boldsymbol{\xi}_s(\mathbf{x}))(t) \end{array}$$

Then, ϕ_s^t is an isomorphism and satisfies:

- 1. $\phi_{s}^{s} = id$
- 2. $\phi_s^t \circ \phi_w^s = \phi_w^t$
- 3. $[\phi_s^t]^{-1} = \phi_t^s$

Definition 68. Let $I \subseteq \mathbb{R}$ be an interval, $\mathbf{A} \in \mathcal{C}(I, \mathcal{L}(\mathbb{R}^n))$ and $\mathbf{M}(t) = (m_{ij}(t)) \in \mathcal{M}_n(\mathbb{R})$. We say that $\mathbf{M}(t)$ is a matrix solution of the ODE of Eq. (13) if φ_i $(m_{1j}(t),\ldots,m_{nj}(t))^{\mathrm{T}} \in \mathcal{A}_n \text{ for } j=1,\ldots,n.$ We say that $\mathbf{M}(t)$ is a fundamental matrix solution of the ODE of Eq. (13) if $\mathbf{M}(t)$ is a matrix solution and $\varphi_1, \ldots, \varphi_n$ are linearly independent.

Proposition 69. Let $I \subseteq \mathbb{R}$ be an interval, $\mathbf{A} \in$ $\mathcal{C}(I,\mathcal{L}(\mathbb{R}^n))$ and $\mathbf{M}(t) \in \mathcal{M}_n(\mathbb{R})$. Then:

- 1. $\mathbf{M}(t)$ is a matrix solution of the ODE of Eq. (13) $\iff \mathbf{M}'(t) = \mathbf{A}(t)\mathbf{M}(t)^{7}.$
- 2. $\mathbf{M}(t)$ is a matrix solution of the ODE of Eq. (13) $\iff \forall \mathbf{c} \in \mathbb{R}^n, \, \mathbf{M}(t)\mathbf{c} \in \mathcal{A}_n.$
- 3. If $\mathbf{M}(t)$ is a matrix solution of the ODE of Eq. (13), then $\forall \mathbf{C} \in \mathcal{M}_n(\mathbb{R}), \mathbf{M}(t)\mathbf{C}$ is a matrix solution of the ODE of Eq. (13).
- 4. If $\mathbf{M}(t)$ is a fundamental matrix solution of the ODE of Eq. (13), then det $\mathbf{M}(t) \neq 0 \ \forall t \in I$.
- 5. $\mathbf{M}(t)$ is a fundamental matrix solution of the ODE of Eq. (13) \iff $\mathbf{M}(t)$ is a matrix solution of the ODE of Eq. (13) and $\exists t_0 \in I$ such that $\det \mathbf{M}(t_0) \neq 0$.

Proposition 70. Let $I \subseteq \mathbb{R}$ be an interval, $\mathbf{A} \in$ $\mathcal{C}(I,\mathcal{L}(\mathbb{R}^n))$ and $\Phi(t),\psi(t)\in\mathcal{M}_n(\mathbb{R})$ be matrix solutions of the ODE of Eq. (13) such that $\Phi(t)$ is fundamental. Then, $\exists ! \mathbf{C} \in \mathcal{M}_n(\mathbb{R})$ such that $\psi(t) = \Phi(t)\mathbf{C}$. Moreover, $\psi(t)$ is fundamental if and only if det $\mathbf{C} \neq 0$.

Non-homogeneous linear systems

Proposition 71. Let $I \subseteq \mathbb{R}$ be an interval, $\mathbf{A} \in$ $\mathcal{C}(I,\mathcal{L}(\mathbb{R}^n))$ and $\mathbf{b} \in \mathcal{C}(I,\mathbb{R}^n)$. Suppose $\phi(t,t_0,\mathbf{x}_0)$ is the flow of the ODE of Eq. (11). Then,

$$\phi(t, t_0, \mathbf{x}_0) = \Phi(t) \left[\Phi(t_0)^{-1} \mathbf{x}_0 + \int_{t_0}^t \Phi(s)^{-1} \mathbf{b}(s) \, ds \right]$$

where $\Phi(t)$ is a fundamental matrix of the associated homogeneous system.

and $\mathbf{b} \in \mathcal{C}(I, \mathbb{R}^n)$. Then, the general solution $\varphi(t)$ of the ODE of Eq. (13) can be written as:

$$\varphi(t) = \varphi_{\rm h}(t) + \varphi_{\rm p}(t)$$

where $\varphi_{\rm h}(t)$ is the general solution to the associated homogeneous system and $\varphi_{\rm p}(t)$ is a particular solution of Eq. (13).

Proposition 73 (Liouville's formula). Let $I \subseteq \mathbb{R}$ be an interval, $\mathbf{A} \in \mathcal{C}(I, \mathcal{L}(\mathbb{R}^n)), \, \mathbf{\Phi}(t) \in \mathcal{M}_n(\mathbb{R})$ be a matrix solution of the ODE of Eq. (13) and $t_0 \in I$. Then, for all $t \in I$ we have:

$$\det(\Phi(t)) = \det(\Phi(t_0)) e^{\int_{t_0}^t \operatorname{tr}(\mathbf{A}(s)) ds}$$

Constant coefficients linear systems

Lemma 74. Let $I \subseteq \mathbb{R}$ be a compact interval and $\mathbf{f}: I \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and Lipschitz continuous with respect to the second variable. Let $\varphi: I \to \mathbb{R}^n$ be the solution of the ivp of Eq. (10). Then, $\forall \psi \in \mathcal{C}(I,\mathbb{R}^n)$ the sequence $(\mathbf{T}^m \psi)$ converges uniformly

Theorem 75. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\mathbf{\Phi}(t) \in \mathcal{M}_n(\mathbb{R})$ be a matrix solution of the ODE

$$\mathbf{x}' = \mathbf{A}\mathbf{x} \tag{14}$$

such that $\Phi(0) = \mathbf{I}_n$. Then:

- 1. For all $t, s \in \mathbb{R}$, then $\Phi(t+s) = \Phi(t)\Phi(s)$.
- 2. $\Phi(t)^{-1} = \Phi(-t)$.
- 3. The series $\sum_{k=0}^{\infty} \frac{\mathbf{A}^k t^k}{k!}$ converges uniformly on compact

Definition 76. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $t \in \mathbb{R}$. We define the matrix exponential $e^{\mathbf{A}t}$ as:

$$e^{\mathbf{A}t} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^k t^k}{k!} \tag{15}$$

Proposition 77. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $t, s \in \mathbb{R}$. Then, the matrix exponential $e^{\mathbf{A}t}$ is a fundamental matrix of the ODE of Eq. (14) and has the following properties:

- 1. $e^{\mathbf{A} \cdot 0} = \mathbf{I}_n$
- 2. $e^{\mathbf{A}(t+s)} = e^{\mathbf{A}t}e^{\mathbf{A}s}$
- 3. $(e^{\mathbf{A}t})^{-1} = e^{-\mathbf{A}t}$
- 4. $(e^{\mathbf{A}t})' = \mathbf{A}e^{\mathbf{A}t} = e^{\mathbf{A}t}\mathbf{A}$
- 5. If $\Phi(t)$ is an arbitrary fundamental matrix of the ODE of Eq. (14), then:

$$e^{\mathbf{A}t} = \mathbf{\Phi}(t)\mathbf{\Phi}(0)^{-1}$$

Lemma 78. Let $A, B, C \in \mathcal{M}_n(\mathbb{R})$. Then:

⁷By definition, if $\mathbf{M}(t) = (m_{ij}(t))$, then $\mathbf{M}'(t) := (m_{ij}'(t))$.

1. If $\mathbf{BC} = \mathbf{CA}$, then:

$$e^{\mathbf{B}t}\mathbf{C} = \mathbf{C}e^{\mathbf{A}t}$$

2. If AB = BA, then:

$$e^{\mathbf{A}t}\mathbf{B} = \mathbf{B}e^{\mathbf{A}t}$$
 and $e^{(\mathbf{A}+\mathbf{B})t} = e^{\mathbf{A}t}e^{\mathbf{B}t}$

Corollary 79. Let $t \in \mathbb{R}$, $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\mathbf{J} \in \mathcal{M}_n(\mathbb{R})$ be the Jordan form of \mathbf{A} such that $\mathbf{A} = \mathbf{CJC}^{-1}$ for some matrix $\mathbf{C} \in \mathrm{GL}_n(\mathbb{R})$. Then:

$$e^{\mathbf{A}t} = \mathbf{C}e^{\mathbf{J}t}\mathbf{C}^{-1}$$

Proposition 80. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $t \in \mathbb{R}$. If λ is an eigenvalue of \mathbf{A} with associated eigenvector \mathbf{v} , then $e^{\lambda t}$ is an eigenvalue of $e^{\mathbf{A}t}$ with associated eigenvector \mathbf{v} . That is, $e^{\mathbf{A}t}\mathbf{v} = e^{\lambda t}\mathbf{v}$. Hence, $\boldsymbol{\varphi}(t) = e^{\lambda t}\mathbf{v}$ is a solution of the ivp:

$$\begin{cases} \mathbf{x}' = \mathbf{A}\mathbf{x} \\ \mathbf{x}(0) = \mathbf{v} \end{cases}$$

Corollary 81. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $t \in \mathbb{R}$ and consider the linear ODE of Eq. (14). If $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ is a basis of eigenvectors with associated eigenvalues $\lambda_1, \dots, \lambda_n$, respectively, then $(\varphi_1, \dots, \varphi_n)$, where $\varphi_i = e^{\lambda_i t} \mathbf{v}_i$ for $i = 1, \dots, n$, is a basis of \mathcal{A}_n .

Lemma 82. Let $\mathbf{A} = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathcal{M}_n(\mathbb{R})$ and $t \in \mathbb{R}$. Then:

$$e^{\mathbf{A}t} = diag(e^{\lambda_1 t}, \dots, e^{\lambda_n t})$$

Proposition 83. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\lambda = \alpha + i\beta \in \mathbb{C} \setminus \mathbb{R}$ be an eigenvalue of \mathbf{A} with associated eigenvector $\mathbf{v} = \mathbf{u} + i\mathbf{w} \in \mathbb{C}^n$. Then:

$$e^{\mathbf{A}t}\mathbf{v} = e^{\mathbf{A}t}\mathbf{u} + ie^{\mathbf{A}t}\mathbf{w} = e^{\alpha t} \left[\cos(\beta t)\mathbf{u} - \sin(\beta t)\mathbf{w}\right] + ie^{\alpha t} \left[\sin(\beta t)\mathbf{u} + \cos(\beta t)\mathbf{w}\right]$$

and $e^{\mathbf{A}t}\mathbf{u}$, $e^{\mathbf{A}t}\mathbf{w}$ are linearly independent solutions of the ODE of Eq. (14) with initial conditions $\mathbf{x}(0) = \mathbf{u}$ and $\mathbf{x}(0) = \mathbf{w}$, respectively.

Definition 84. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. A vector $\mathbf{w} \in \mathbb{R}^n$ is a generalized eigenvector of rank m of \mathbf{A} corresponding to the eigenvalue $\lambda \in \mathbb{R}$ if:

$$(\mathbf{A} - \lambda \mathbf{I}_n)^m \mathbf{w} = 0$$
 but $(\mathbf{A} - \lambda \mathbf{I}_n)^{m-1} \mathbf{w} \neq 0$

The set spanned by all generalized eigenvectors of λ is called *generalized eigenspace* of λ .

Proposition 85. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\lambda \in \sigma(A)$. Then, the dimension of the generalized eigenspace is the algebraic multiplicity of λ .

Lemma 86. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\mathbf{v}_1 \in \mathbb{R}^n$ be an eigenvector of \mathbf{A} with associated eigenvalue λ . We define $\mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$ in the following way:

$$(\mathbf{A} - \lambda \mathbf{I}_n)\mathbf{v}_k = \mathbf{v}_{k-1} \qquad k = 2, \dots, m$$

That is, \mathbf{v}_k is a generalized eigenvector of rank k of \mathbf{A} with associated eigenvalue λ . Then,

$$\begin{cases} \boldsymbol{\varphi}_{1} = e^{\lambda t} \mathbf{v}_{1} \\ \boldsymbol{\varphi}_{2} = e^{\lambda t} \left(\mathbf{v}_{2} + t \mathbf{v}_{1} \right) \\ \boldsymbol{\varphi}_{3} = e^{\lambda t} \left(\mathbf{v}_{3} + t \mathbf{v}_{2} + \frac{t^{2}}{2} \mathbf{v}_{1} \right) \\ \vdots \\ \boldsymbol{\varphi}_{m} = e^{\lambda t} \left(\mathbf{v}_{m} + t \mathbf{v}_{m-1} + \dots + \frac{t^{m-1}}{(m-1)!} \mathbf{v}_{1} \right) \end{cases}$$

are solutions of the ODE of Eq. (14). Furthermore, if $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent, then so are $\varphi_1, \dots, \varphi_k$.

Corollary 87. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\sigma(\mathbf{A}) = \{\lambda_1, \dots, \lambda_n\}$ be the spectrum of \mathbf{A} such that:

- $\lambda_1, \ldots, \lambda_{2k} \in \mathbb{C} \setminus \mathbb{R}, \ \lambda_{k+i} = \overline{\lambda_i} \text{ and } \lambda_i = \alpha_i + i\beta_i,$ $\alpha_i, \beta_i \in \mathbb{R} \text{ for } i = 1, \ldots, k.$
- $\lambda_{2k+1}, \ldots, \lambda_n \in \mathbb{R}$

Then, the general solution of the ODE of Eq. (14) is of the form:

$$\varphi(t) = \sum_{i=1}^{k} e^{\alpha_i t} \left(\mathbf{P}_i(t) \cos(\beta_i t) + \mathbf{Q}_i(t) \sin(\beta_i t) \right) + \sum_{i=2k+1}^{n} e^{\lambda_i t} \mathbf{R}_i(t)$$

where $\mathbf{P}_i, \mathbf{Q}_i, \mathbf{R}_i \in \mathbb{R}^n[t]$ and $\deg \mathbf{P}_i, \deg \mathbf{Q}_i, \deg \mathbf{R}_i < n \ \forall i$.

5. Dependence on initial conditions and parameters

Definition 88. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function. Suppose that the ivp:

$$\begin{cases} \mathbf{x}' = \mathbf{f}(t, \mathbf{x}, \boldsymbol{\lambda}) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$
 (16)

has a unique maximal solution $\varphi_{(t_0,\mathbf{x}_0,\boldsymbol{\lambda})}(t)$ defined on an interval $I_{(t_0,\mathbf{x}_0,\boldsymbol{\lambda})}$. We define the *flow* of the ODE $\mathbf{x}' = \mathbf{f}(t,\mathbf{x},\boldsymbol{\lambda})$ as:

$$\phi: I_{(t_0, \mathbf{x}_0, \boldsymbol{\lambda})} \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p \longrightarrow \mathbb{R}^n \\ (t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}) \longmapsto \varphi_{(t_0, \mathbf{x}_0, \boldsymbol{\lambda})}(t)$$

Continuous and Lipschitz continuous dependence

Lemma 89. Let X be a compact metric space and (φ_m) be a sequence of functions $\varphi_m: X \to \mathbb{R}^n$ such that they are pointwise equicontinuous and pointwise bounded. Suppose that all convergent partial subsequences of (φ_m) have the same limit φ . Then, (φ_m) converges uniformly to φ .

Proposition 90. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}_m:U\to\mathbb{R}^n$ be continuous function for $m\in\mathbb{N}$ and such that for all compact $K \subset U$, the sequence $(\mathbf{f}_m|_K)$ converge uniformly to a function $\mathbf{f}_0|_K$. Let $((t_m, \mathbf{x}_m)) \subset U$ be a sequence such that $\lim_{m\to\infty} (t_m, \mathbf{x}_m) = (t_0, \mathbf{x}_0)$. Suppose that for all $m \geq 0$ the ivp

$$\begin{cases} \mathbf{x}' = \mathbf{f}_m(t, \mathbf{x}) \\ \mathbf{x}(t_m) = \mathbf{x}_m \end{cases}$$

has a unique maximal solution φ_m defined on I_m . Then, for all $[a,b] \subset I_0$ with $t_0 \in (a,b), \exists m_0 \in \mathbb{N}$ such that $[a,b] \subset I_m \ \forall m > m_0$. Furthermore, the sequence $(\varphi_m|_{[a,b]})_{m>m_0}$ converges uniformly to $\varphi_0|_{[a,b]}$.

Theorem 91. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}:U\to\mathbb{R}^n$ be a continuous function. Suppose that each ivp of the form of Eq. (10) has a unique maximal solution. Then, the flow $\phi(t, t_0, \mathbf{x}_0)$ is a continuous function defined in an open set.

Theorem 92. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$ be an open set and $\mathbf{f}:U\to\mathbb{R}^n$ be a continuous function. Suppose that each ivp of the form of Eq. (16) has a unique maximal solution. Then, the flow $\phi(t, t_0, \mathbf{x}_0, \lambda)$ is a continuous function defined in an open set $V \subseteq I_{(t_0, \mathbf{x}_0, \boldsymbol{\lambda})} \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$.

Lemma 93 (Grönwall's lemma). Let $u, v, w : [a, b) \rightarrow$ \mathbb{R} be continuous functions such that $v(t) \geq 0 \ \forall t \in [a,b)$ and satisfying:

$$u(t) \le w(t) + \int_{a}^{t} v(s)u(s) ds \quad \forall t \in [a, b)$$

Then:

$$u(t) \le w(t) + \int_{a}^{t} w(s)v(s)e^{\int_{s}^{t} v(r)dr} ds \quad \forall t \in [a, b)$$

If, moreover, $w \in C^1((a,b))$, then:

$$u(t) \le w(a) e^{\int_a^t v(r) dr} + \int_a^t w'(s) e^{\int_s^t v(r) dr} ds \quad \forall t \in [a, b)$$

Proposition 94. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}:U\to\mathbb{R}^n$ be a continuous function and Lipschitz continuous with respect to the second variable with Lipschitz constant L. Let ϕ be the flow of the ODE $\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$. Then, $\forall (t_0, \mathbf{x}_1), (t_0, \mathbf{x}_2) \in U$ and $\forall t \in I_{(t_0, \mathbf{x}_1)} \cap I_{(t_0, \mathbf{x}_2)}$, we have:

$$\|\phi(t, t_0, \mathbf{x}_2) - \phi(t, t_0, \mathbf{x}_1)\| \le e^{L|t - t_0|} \|\mathbf{x}_2 - \mathbf{x}_1\|$$

Thus, ϕ is locally Lipschitz continuous with respect to the third variable.

Differentiable dependence

Theorem 95 (Dependence on \mathbf{x}_0). Let $U \subseteq \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$ \mathbb{R}^p be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function and of class C^1 with respect to the second variable. Suppose that the flow $\phi(t, t_0, \mathbf{x}_0, \lambda)$ of $\mathbf{x}' = \mathbf{f}(t, \mathbf{x}, \lambda)$ is defined on an open set $V \subseteq \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$. Then, $\forall (t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}) \in V, \, \boldsymbol{\phi} \text{ is differentiable with respect to } \mathbf{x}_0$ and $\mathbf{D}_3 \phi(t, t_0, \mathbf{x}_0, \lambda)^8$ is continuous on V. Furthermore, $\mathbf{D}_3 \boldsymbol{\phi}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda})$ satisfies the following ivp:

$$\begin{cases} \mathbf{M}' = \mathbf{D}_2 \mathbf{f}(t, \boldsymbol{\phi}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}), \boldsymbol{\lambda}) \mathbf{M} \\ \mathbf{M}(t_0) = \mathbf{I}_n \end{cases}$$

Or, equivalently, $\frac{\partial \boldsymbol{\phi}}{\partial \mathbf{x}_{0i}}(t,t_0,\mathbf{x}_0,\boldsymbol{\lambda}) = \mathbf{D}_3 \boldsymbol{\phi}(t,t_0,\mathbf{x}_0,\boldsymbol{\lambda}) \mathbf{e}_i$ satisfies the following ivp:

$$\begin{cases} \mathbf{y}' = \mathbf{D}_2 \mathbf{f}(t, \boldsymbol{\phi}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}), \boldsymbol{\lambda}) \mathbf{y} \\ \mathbf{y}(t_0) = \mathbf{e}_i \end{cases}$$
 for $i = 1, \dots, n$

These kinds of equations are called *variational equations*.

Theorem 96 (Dependence on t_0). Let $U \subseteq \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function and of class \mathcal{C}^1 . Suppose that the flow $\phi(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda})$ of $\mathbf{x}' = \mathbf{f}(t, \mathbf{x}, \boldsymbol{\lambda})$ is defined on an open set $V \subseteq \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ $\mathbb{R}^n \times \mathbb{R}^p$. Then, $\forall (t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}) \in V, \boldsymbol{\phi}$ is differentiable with respect to t_0 and $\mathbf{D}_2 \phi(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda})$ is continuous on V. Furthermore, $\mathbf{D}_2 \boldsymbol{\phi}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda})$ satisfies the following ivp:

$$\begin{cases} \mathbf{y}' = \mathbf{D}_2 \mathbf{f}(t, \boldsymbol{\phi}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}), \boldsymbol{\lambda}) \mathbf{y} \\ \mathbf{y}(t_0) = -\mathbf{f}(t_0, \mathbf{x}_0, \boldsymbol{\lambda}) \end{cases}$$

Theorem 97 (Dependence on λ). Let $U \subseteq \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a continuous function and of class C^1 with respect to the second and third variable. Suppose that the flow $\phi(t, t_0, \mathbf{x}_0, \lambda)$ of $\mathbf{x}' = \mathbf{f}(t, \mathbf{x}, \lambda)$ is defined on an open set $V \subseteq \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$. Then, $\forall (t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}) \in V, \ \boldsymbol{\phi} \text{ is differentiable with respect to } \boldsymbol{\lambda}$ and $\mathbf{D}_4\phi(t,t_0,\mathbf{x}_0,\boldsymbol{\lambda})$ is continuous on V. Furthermore, $\mathbf{D}_4 \phi(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda})$ satisfies the following ivp:

$$egin{cases} \mathbf{M'} = \mathbf{D}_2 \mathbf{f}(t, oldsymbol{\phi}(t, t_0, \mathbf{x}_0, oldsymbol{\lambda}), oldsymbol{\lambda}) \mathbf{M} + \mathbf{B} \ \mathbf{M}(t_0) = \mathbf{0} \end{cases}$$

where $\mathbf{B} = \mathbf{D}_3 \mathbf{f}(t, \boldsymbol{\phi}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}), \boldsymbol{\lambda}).$ Equivalently, $\frac{\partial \phi}{\partial \boldsymbol{\lambda}}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda})$ satisfies the ivp:

$$\begin{cases} \mathbf{y}' = \mathbf{D}_2 \mathbf{f}(t, \boldsymbol{\phi}(t, t_0, \mathbf{x}_0, \boldsymbol{\lambda}), \boldsymbol{\lambda}) \mathbf{y} + \mathbf{B} \mathbf{e}_i \\ \mathbf{y}(t_0) = \mathbf{0} \end{cases}$$
 for $i = 1, \dots, n$

Higher order dependence

Theorem 98. Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and $\mathbf{f}:U\to\mathbb{R}^n$ be a continuous function and of class \mathcal{C}^k , $k \in \mathbb{N}$. Suppose that the flow $\phi(t, t_0, \mathbf{x}_0)$ of $\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$ is defined on an open set $V \subseteq \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n$. Then, $\phi(t, t_0, \mathbf{x}_0)$ is of class C^k on V.

⁸Here, $\mathbf{D}_3\phi(t,t_0,\mathbf{x}_0,\boldsymbol{\lambda}) = \frac{\partial \phi}{\partial \mathbf{x}_0}(t,t_0,\mathbf{x}_0,\boldsymbol{\lambda})$ denotes the matrix $\left(\frac{\partial \phi_i}{\partial \mathbf{x}_{0j}}(t,t_0,\mathbf{x}_0,\boldsymbol{\lambda})\right) \in \mathcal{M}_n(\mathbb{R})$, where \mathbf{x}_{0j} denotes the j-th component of \mathbf{x}_0 and $\boldsymbol{\phi}_i$ denotes the *i*-th component of $\boldsymbol{\phi}$.

6. | Qualitative theory of autonomous systems

Introduction to dynamical systems

Definition 99. A dynamical system is a triplet (X, G, Π) , where G is a topological abelian group⁹, X is a topological space and $\Pi: G \times X \to X$ is a function such that:

- $\Pi(t,\cdot)$ is continuous $\forall t \in G$.
- $\Pi(0,x) = x \ \forall x \in X$.
- $\Pi(s,\Pi(t,x)) = \Pi(t+s,x) \ \forall s,t \in G \text{ and } \forall x \in X.$

We say that a dynamical system (X, G, Π) is discrete if $G = \mathbb{Z}$ and we say that it is continuous if $G = \mathbb{R}$. If we have defined our system for $G_{\geq 0}$, we will say that we have a semidynamical system.

Definition 100. Let (G, X, Ψ) be a dynamical system and $x \in X$. The *orbit* through x is defined as:

$$\gamma(x) = \gamma_{\Psi}(x) := \{ \Psi(t, x) : t \in G \}^{10}$$

Moreover if $G = \mathbb{Z}$ or $G = \mathbb{R}$ we define the *positive semi-orbit* through x and the *negative semi-orbit* through x as the following respective sets:

$$\gamma^{+}(x) = \gamma_{\Psi}^{+}(x) := \{ \Psi(t, x) : t \in G_{\geq 0} \}$$
$$\gamma^{-}(x) = \gamma_{\Psi}^{-}(x) := \{ \Psi(t, x) : t \in G_{< 0} \}$$

Definition 101. Let (G, X, Ψ) be a dynamical system. Then, we have an equivalence relation \sim on X given by

$$x \sim y \iff \gamma(x) = \gamma(y) \quad \forall x, y \in X$$

which creates a partition of X, called *phase portrait*.

Definition 102. The *phase space* of an ODE or system of ODEs is the space in which all possible states of a system are represented with each possible state corresponding to one unique point in the phase space.

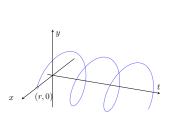


Figure 1: Phase space of the system $\{x' = -y, y' = x : (x(0), y(0)) = (r, 0)\}.$

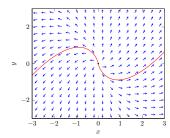


Figure 2: Vector field of the system $\{x' = x, y' = x + y\}$ together with two orbits.

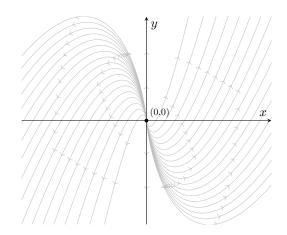


Figure 3: Phase portrait of the system $\{x' = x/2, y' = x + y/2\}$.

Definition 103. Let (G, X, Ψ) be a dynamical system and $x \in X$. We define the following function:

$$\Psi_x: G \longrightarrow \gamma(x)$$
$$t \longmapsto \Psi(t, x)$$

Lemma 104. Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that the flow $\phi(t, t_0, \mathbf{x}_0)$ of the ODE $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ is defined for all $t \in \mathbb{R}$. Then, $(\mathbb{R}, \mathbb{R}^n, \mathbf{\Psi})$ is a dynamical system, where $\mathbf{\Psi}(t, \mathbf{x}) = \phi(t, 0, \mathbf{x})$. Furthermore, note that $\gamma(\mathbf{x}) = \operatorname{im}(\phi(\cdot, 0, \mathbf{x}))$.

Lemma 105. Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that $\exists M, N \in \mathbb{R}_{\geq 0}$ with $\|\mathbf{f}(\mathbf{x})\| \leq M\|\mathbf{x}\| + N$. Then, the solutions of the ODE $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ are defined for all $t \in \mathbb{R}$.

Definition 106. Let $\mathbf{f}, \mathbf{g} : \mathbb{R}^n \to \mathbb{R}^n$ be continuous functions and $\mathbf{x}' = \mathbf{f}(\mathbf{x}), \mathbf{x}' = \mathbf{g}(\mathbf{x})$ be two ODEs for which we have existence and uniqueness of solutions. We say that these two ODEs are *equivalent* if there exists $\mathbf{h} : \mathbb{R}^n \to \mathbb{R}^n$ such that $\mathbf{h}(\mathbf{x}) \geq 0$ and $\mathbf{f}(\mathbf{x}) = \mathbf{h}(\mathbf{x})\mathbf{g}(\mathbf{x}) \ \forall \mathbf{x} \in \mathbb{R}^n$. Therefore, \mathbf{f} and \mathbf{g} have the same orbits oriented in the same way.

Corollary 107. Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that the ODE $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ has existence and uniqueness of solutions for all initial conditions. Then, there exists a continuous function $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ such that the autonomous ODEs induced by \mathbf{f} and \mathbf{g} are equivalent and the flow of the ODE $\mathbf{x}' = \mathbf{g}(\mathbf{x})$ is defined $\forall t \in \mathbb{R}$.

Lemma 108. Let H be a proper subgroup of \mathbb{R} which is closed. Then, $\exists T \in \mathbb{R}_{\geq 0}$ such that $H = T\mathbb{Z}$.

Proposition 109. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\gamma(\mathbf{x})$ be an orbit. Then, there are 3 possible cases for $\gamma(\mathbf{x})$:

- 1. $\gamma(\mathbf{x}) = {\mathbf{x}}.$
- 2. $\gamma(\mathbf{x}) \cong S^1$.
- 3. $\gamma(\mathbf{x})$ is homeomorphic to an injective and continuous image of \mathbb{R} .

 $^{^9\}mathrm{That}$ is, G is an abelian group with an inherited topological structure.

¹⁰In general, if the context is clear we will use the notation $\gamma(x)$ instead of $\gamma_{\Psi}(x)$.

Definition 110. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\mathbf{p} \in \mathbb{R}^n$. We say that $\mathbf{p} \in \mathbb{R}^n$ is a *critical point* or *singular point* if $\gamma(\mathbf{p}) = \{\mathbf{p}\}$. Otherwise, we say that \mathbf{p} is *non-singular* or *regular*.

Definition 111. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\gamma(\mathbf{x})$ be an orbit of $(\mathbb{R}, \mathbb{R}^n, \Psi)$. We say that $\gamma(\mathbf{x})$ is *periodic* of period T > 0 if $\gamma(\mathbf{x}) \cong S^1$ and $\ker \Psi_{\mathbf{x}} = T\mathbb{Z}$.

Proposition 112. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system such that $\Psi(t, \mathbf{x}) = \phi(t, 0, \mathbf{x})$, where $\phi(t, t_0, \mathbf{x}_0)$ is the flow of the ODE $\mathbf{x}' = \mathbf{f}(\mathbf{x})$. Let $\mathbf{p} \in \mathbb{R}^n$. Then, the following statements are equivalent:

- 1. $\{\mathbf{p}\}$ is a critical point.
- 2. $\phi(t, 0, \mathbf{p}) = \mathbf{p}$.
- 3. $\mathbf{f}(\mathbf{p}) = 0$.

Definition 113. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\mathbf{x} \in \mathbb{R}^n$. We say that $\mathbf{y} \in \mathbb{R}^n$ is an α -limit point of \mathbf{x} if there exists a sequence $(t_n) \subset \mathbb{R}$ such that $\lim_{n \to \infty} t_n = -\infty$ and $\lim_{n \to \infty} \Psi(t_n, \mathbf{x}) = \mathbf{y}$. The set of all α -limit points of \mathbf{x} is called α -limit set, and it is denoted by $\alpha(\mathbf{x})$. For an orbit γ of $(\mathbb{R}, \mathbb{R}^n, \Psi)$, we say that \mathbf{y} is an ω -limit point of γ , it is a ω -limit point of some point on the orbit γ . The set of such α -limit points will be denoted as $\alpha(\gamma)$.

Definition 114. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\mathbf{x} \in \mathbb{R}^n$. We say that $\mathbf{y} \in \mathbb{R}^n$ is an ω -limit point of \mathbf{x} if there exists a sequence $(t_n) \subset \mathbb{R}$ such that $\lim_{n \to \infty} t_n = +\infty$ and $\lim_{n \to \infty} \Psi(t_n, \mathbf{x}) = \mathbf{y}$. The set of all ω -limit points of \mathbf{x} is called ω -limit set, and it is denoted by $\omega(\mathbf{x})$. For an orbit γ of $(\mathbb{R}, \mathbb{R}^n, \Psi)$, we say that \mathbf{y} is an ω -limit point of γ , it is a ω -limit point of some point on the orbit γ . The set of such ω -limit points will be denoted as $\omega(\gamma)$.

Proposition 115. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\mathbf{x} \in \mathbb{R}^n$. Then:

$$Cl(\gamma(\mathbf{x})) = \alpha(\mathbf{x}) \cup \gamma(\mathbf{x}) \cup \omega(\mathbf{x})$$

Definition 116. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $A \subseteq \mathbb{R}^n$ be a subset. We say that A is *invariant* if $\gamma(\mathbf{x}) \subseteq A \ \forall \mathbf{x} \in A$. We say that A is *positively invariant* if $\gamma^+(\mathbf{x}) \subseteq A \ \forall \mathbf{x} \in A$. Analogously, we say that A is negatively invariant if $\gamma^-(\mathbf{x}) \subseteq A \ \forall \mathbf{x} \in A$.

Proposition 117. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system, $\mathbf{p} \in \mathbb{R}^n$ and $\boldsymbol{\gamma}$ be an orbit of the system such that $\boldsymbol{\gamma}^+$ is contained in a compact set. Then:

- $\omega(\mathbf{p}) \neq \emptyset$.
- $\omega(\mathbf{p})$ is compact.
- $\omega(\mathbf{p})$ is invariant.
- $\omega(\mathbf{p})$ is connected.
- If $\omega(\gamma) \subseteq \gamma \implies \omega(\gamma) = \gamma$, then γ is either a critical point or a period orbit.

Proposition 118. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system, $\mathbf{p} \in \mathbb{R}^n$ and $\boldsymbol{\gamma}$ be an orbit of the system such that $\boldsymbol{\gamma}^-$ is contained in a compact set. Then:

- $\alpha(\mathbf{p}) \neq \emptyset$.
- $\alpha(\mathbf{p})$ is compact.
- $\alpha(\mathbf{p})$ is invariant.
- $\alpha(\mathbf{p})$ is connected.
- If $\alpha(\gamma) \subseteq \gamma \implies \alpha(\gamma) = \gamma$, then γ is either a critical point or a period orbit.

Definition 119. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $K \subset \mathbb{R}^n$ be a compact set. We say that K is *positively stable* if for all neighbourhood U of K, there exists a neighbourhood V of K with $V \subseteq U$ and such that $\forall \mathbf{x} \in V$, $\gamma^+(\mathbf{x}) \subset U$. Analogously, we say that K is *negatively stable* if for all neighbourhood U of K, there exists a neighbourhood V of K with $V \subseteq U$ and such that $\forall \mathbf{x} \in V$, $\gamma^-(\mathbf{x}) \subset U$.

Definition 120. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $K \subset \mathbb{R}^n$ be a compact set. We say that K is attracting if there exists a neighbourhood U of K such that $\forall \mathbf{x} \in U$, $\omega(\mathbf{x}) \subset K$. We say that K is repelling if there exists a neighbourhood U of K such that $\forall \mathbf{x} \in U$, $\alpha(\mathbf{x}) \subset K$. We say that K is asymptotically stable if it is both attracting and positively stable.

Proposition 121. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $K \subset \mathbb{R}^n$ be a compact set. Suppose that K is positively stable. Then, K is positively invariant.

Definition 122. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\mathbf{p} \in \mathbb{R}^n$. We say that \mathbf{p} is a *center* if there exists a neighbourhood U of \mathbf{p} such that if $\gamma(\mathbf{x}) \subset U$, then $\gamma(\mathbf{x})$ is periodic. The largest neighbourhood with this property is called *basin* of the center.

Proposition 123. Let $(\mathbb{R}, \mathbb{R}^n, \Psi)$ be a dynamical system and $\mathbf{p} \in \mathbb{R}^n$ be a center. Then:

- 1. **p** is positively and negatively stable.
- 2. **p** is not attracting.

Equivalence and conjugacy of dynamical systems

Definition 124. Let (G, X, Ψ_1) and (G, X, Ψ_2) be dynamical systems and $r \in \mathbb{N} \cup \{0, \infty\}$. We say that (G, X, Ψ_1) and (G, X, Ψ_2) are equivalent dynamical systems of class \mathcal{C}^r if there exists a diffeomorphism $h: X \to Y$ of class \mathcal{C}^r such that $\forall x \in X$, $h(\gamma_{\Psi_1}(x)) = \gamma_{\Psi_2}(h(x))$ and preserving the orientation of the orbits. In particular, if r = 0 we say that (G, X, Ψ_1) and (G, X, Ψ_2) are topologically equivalent. That diffeomorphism h is called an equivalence (of class \mathcal{C}^r) between (G, X, Ψ_1) and (G, X, Ψ_2) .

Definition 125. Let (G, X, Ψ_1) and (G, X, Ψ_2) be dynamical systems and $r \in \mathbb{N} \cup \{0, \infty\}$. We say that (G, X, Ψ_1) and (G, X, Ψ_2) are conjugate dynamical systems of class \mathcal{C}^r if there exists a diffeomorphism $h: X \to Y$ of class \mathcal{C}^r such that $\forall (t, x) \in G \times X$, $h(\Psi_1(t, x)) = \Psi_2(t, h(x))$. In particular, if r = 0 we say that (G, X, Ψ_1) and (G, X, Ψ_2) are topologically conjugate. That diffeomorphism h is called a conjugacy (of class \mathcal{C}^r) between (G, X, Ψ_1) and (G, X, Ψ_2) .

Proposition 126. Let (G, X, Ψ_1) and (G, X, Ψ_2) be dynamical systems and h be a conjugacy of class \mathcal{C}^r between them. Then, h is an equivalence of class \mathcal{C}^r between (G, X, Ψ_1) and (G, X, Ψ_2) .

Proposition 127. Two dynamical systems induced by two equivalent ODEs are equivalent (as a dynamical systems).

Proposition 128. Let (G, X, Ψ_1) and (G, X, Ψ_2) be dynamical systems and $h: X \to Y$ be an equivalence of class \mathcal{C}^r between them. Then:

- 1. h preserves the type of orbit. More precisely if $p \in X$, we have:
 - i) If p is a critical point, then so it is h(p).
 - ii) If $\gamma(p)$ is a periodic orbit, then so it is $h(\gamma(p))^{11}$.
 - iii) If $\gamma(p)$ is the injective and continuous image of \mathbb{R} , then so it is $h(\gamma(p))$.
- 2. If $p \in X$ is a critical point of Ψ_1 , we have:
 - i) If p is attracting for (G, X, Ψ_1) , then so it is h(p) for (G, X, Ψ_2) .
 - ii) If p is repelling for (G, X, Ψ_1) , then so it is h(p) for (G, X, Ψ_2) .
 - iii) If p is positively stable for (G, X, Ψ_1) , then so it is h(p) for (G, X, Ψ_2) .
 - iv) If p is asymptotically stable for (G, X, Ψ_1) , then so it is h(p) for (G, X, Ψ_2) .

Proposition 129. A conjugacy between two dynamical systems preserves the period of periodic orbits.

Proposition 130. Let $\alpha, \beta \in \mathbb{R}$ such that $\alpha\beta > 0$. Consider the function $h : \mathbb{R} \to \mathbb{R}$ defined by:

$$h(x) = \begin{cases} x^{\beta/\alpha} & \text{if } x \ge 0\\ -|x|^{\beta/\alpha} & \text{if } x < 0 \end{cases}$$

Then, h is a topological conjugation between the systems induced by the ODEs $x' = \alpha x$ and $y' = \beta y$.

Proposition 131. Let $\mathbf{A}, \mathbf{B} \in \mathcal{M}_n(\mathbb{R})$ be similar matrices, that is, $\exists \mathbf{P} \in \mathcal{M}_n(\mathbb{R})$ such that $\mathbf{B} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}$. Then, the function

$$\mathbf{h}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$\mathbf{x} \longmapsto \mathbf{P}\mathbf{x}$$

is a conjugation between the systems induced by the ODEs $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and $\mathbf{y}' = \mathbf{B}\mathbf{y}$.

Local equivalence and conjugacy of dynamical systems

Definition 132. Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 . For all $\mathbf{x}_0 \in U$, let $\varphi_{\mathbf{x}_0}(t)$ be the maximal solution to the ivp

$$\begin{cases} \mathbf{x}' = \mathbf{f}(t, \mathbf{x}) \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

We define the flow of the vector field \mathbf{f} as $\phi(t, \mathbf{x}) := \varphi_{\mathbf{x}}(t)$.

Proposition 133. Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 . Then, the flow $\phi(t, \mathbf{x})$ of \mathbf{f} defines locally a dynamical system.

Definition 134. Let $U, V \subseteq \mathbb{R}^n$ be open sets and $\mathbf{f}: U \to \mathbb{R}^n$, $\mathbf{g}: V \to \mathbb{R}^n$ be vector fields of class \mathcal{C}^1 , and $r \in \mathbb{N} \cup \{0, \infty\}$. We say that \mathbf{f} and \mathbf{g} are equivalent of class \mathcal{C}^r if there exists a diffeomorphism $\mathbf{h}: U \to V$ of class \mathcal{C}^r such that $\forall \mathbf{x} \in U$, $\mathbf{h}(\gamma_{\mathbf{f}}(\mathbf{x})) = \gamma_{\mathbf{g}}(\mathbf{h}(\mathbf{x}))$ and preserving the orientation of the orbits. In particular, if r = 0 we say that \mathbf{f} and \mathbf{g} are locally topologically equivalent. That diffeomorphism \mathbf{h} is called a local equivalence (of class \mathcal{C}^r) between \mathbf{f} and \mathbf{g} .

Definition 135. Let $U, V \subseteq \mathbb{R}^n$ be open sets and $\mathbf{f}: U \to \mathbb{R}^n$, $\mathbf{g}: V \to \mathbb{R}^n$ be vector fields of class \mathcal{C}^1 with flows $\boldsymbol{\phi}$ and $\boldsymbol{\psi}$, respectively, and $r \in \mathbb{N} \cup \{0, \infty\}$. We say that \mathbf{f} and \mathbf{g} are *conjugate* of class \mathcal{C}^r if there exists a diffeomorphism $\mathbf{h}: U \to V$ of class \mathcal{C}^r such that $\mathbf{h}(\boldsymbol{\phi}(t, \mathbf{x})) = \boldsymbol{\psi}(t, \mathbf{h}(\mathbf{x})) \ \forall (t, \mathbf{x}) \in \text{dom}(\boldsymbol{\phi})$ when the equation is well-defined 12. In particular, if r = 0 we say that \mathbf{f} and \mathbf{g} are locally topologically conjugate. That diffeomorphism \mathbf{h} is called a local conjugacy (of class \mathcal{C}^r) between \mathbf{f} and \mathbf{g} .

Lemma 136. Let $U, V \subseteq \mathbb{R}^n$ be open sets and $\mathbf{f}: U \to \mathbb{R}^n$, $\mathbf{g}: V \to \mathbb{R}^n$ be vector fields of class \mathcal{C}^1 and $\mathbf{h}: U \to V$ be a diffeomorphism of class \mathcal{C}^1 . Then, \mathbf{h} is a conjugacy of class \mathcal{C}^1 between them if and only if $\mathbf{Dh}(\mathbf{x})(\mathbf{f}(\mathbf{x})) = \mathbf{g}(\mathbf{h}(\mathbf{x})) \ \forall \mathbf{x} \in U$.

Proposition 137. Let $U, V \subseteq \mathbb{R}^n$ be open sets and $\mathbf{f}: U \to \mathbb{R}^n$, $\mathbf{g}: V \to \mathbb{R}^n$ be vector fields. Suppose that \mathbf{h} is a conjugacy between $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ and $\mathbf{y}' = \mathbf{g}(\mathbf{y})$. Then, $\mathbf{x}' = -\mathbf{f}(\mathbf{x})$ and $\mathbf{y}' = -\mathbf{g}(\mathbf{y})$ are conjugate by \mathbf{h} .

Definition 138. Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^r , $r \geq 1$, and $A \subseteq \mathbb{R}^{n-1}$ be an open set. We say that function $\mathbf{s}: A \to U$ of class \mathcal{C}^r is a local transversal section of \mathbf{f} of class \mathcal{C}^r if $\forall a \in A$, $\langle \text{im } \mathbf{Dh}(a), \mathbf{f}(\mathbf{s}(\mathbf{a})) \rangle = \mathbb{R}^{n+1}$. Take $\Sigma := \mathbf{s}(A)$. If $\mathbf{s}: A \to \Sigma$ is a homeomorphism, we say that Σ is a transversal section of \mathbf{f} of class \mathcal{C}^r .

Theorem 139 (Flow box theorem). Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^r , $r \geq 1$, $\mathbf{p} \in U$ be a non-singular point of \mathbf{f} and $\mathbf{s}: A \to \Sigma$ be a transversal section of \mathbf{f} of class \mathcal{C}^r with $\mathbf{s}(\mathbf{0}) = \mathbf{p}$. Then, there exists a neighbourhood $V \subseteq U$ of \mathbf{p} and a diffeomorphism $\mathbf{h}: V \to (-\varepsilon, \varepsilon) \times B$ of class \mathcal{C}^r , where $\varepsilon > 0$ and $B \subseteq \mathbb{R}^{n-1}$ is an open ball centered at $\mathbf{0} = \mathbf{s}^{-1}(\mathbf{p})$, such that:

- $\mathbf{h}(\Sigma \cap V) = \{0\} \times B$.
- **h** is a conjugacy of class C^r between $\mathbf{f}|_V$ and $\mathbf{g}: (-\varepsilon, \varepsilon) \times B \to \mathbb{R}^n$ defined as $\mathbf{g}(\mathbf{x}) = (1, 0, \ldots, 0)$ $\forall \mathbf{x} \in \text{dom } \mathbf{g}$.

¹¹Note that the period of $\gamma(p)$ and $h(\gamma(p))$ may be different.

¹²That is, $\forall (t, \mathbf{x}) \in \text{dom}(\phi)$ such that $(t, \mathbf{h}(\mathbf{x})) \in \text{dom}(\psi)$.

¹³A plane version would be that $\mathbf{s}: A \subseteq \mathbb{R} \to U \subseteq \mathbb{R}^2$ is a *local transversal section* of \mathbf{f} if $\forall a \in A, \mathbf{s}'(a)$ and $\mathbf{f}(\mathbf{s}(\mathbf{a}))$ are linearly independent.

Lemma 140. Let $U, V \subseteq \mathbb{R}^n$ be open sets and $\mathbf{f}: U \to \mathbb{R}^n$, $\mathbf{g}: V \to \mathbb{R}^n$ be vector fields of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a critical point of \mathbf{f} . Suppose that \mathbf{h} is a conjugacy of class \mathcal{C}^1 between \mathbf{f} and \mathbf{g} . Then, the vector fields $\mathbf{Df}(\mathbf{p})$ and $\mathbf{Dg}(\mathbf{h}(\mathbf{p}))$ are conjugate by $\mathbf{Dh}(\mathbf{p})$. In particular, $\sigma(\mathbf{Df}(\mathbf{p})) = \sigma(\mathbf{Dg}(\mathbf{h}(\mathbf{p})))$.

Definition 141. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f} : U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a critical point of \mathbf{f} . Suppose $\sigma(\mathbf{Df}(\mathbf{p})) = \{\lambda_1, \lambda_2\}$. We say that \mathbf{p} is a

- stable node if $\lambda_1, \lambda_2 \in \mathbb{R}_{<0}$ and $\lambda_1 \neq \lambda_2$ (see Fig. 10a).
- stable degenerated node if $\lambda_1, \lambda_2 \in \mathbb{R}_{<0}$, $\lambda_1 = \lambda_2$ and $\mathbf{Df}(\mathbf{p}) \sim \begin{pmatrix} \lambda_1 & 0 \\ 1 & \lambda_1 \end{pmatrix}$ (see Fig. 10b).
- stable star if $\lambda_1, \lambda_2 \in \mathbb{R}_{<0}$, $\lambda_1 = \lambda_2$ and $\mathbf{Df}(\mathbf{p}) \sim \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{pmatrix}$ (see Fig. 10c).
- unstable node if $\lambda_1, \lambda_2 \in \mathbb{R}_{>0}$ and $\lambda_1 \neq \lambda_2$ (see Fig. 10d).
- unstable degenerated node if $\lambda_1, \lambda_2 \in \mathbb{R}_{>0}$, $\lambda_1 = \lambda_2$ and $\mathbf{Df}(\mathbf{p}) \sim \begin{pmatrix} \lambda_1 & 0 \\ 1 & \lambda_1 \end{pmatrix}$ (see Fig. 10e).
- unstable star if $\lambda_1, \lambda_2 \in \mathbb{R}_{>0}$, $\lambda_1 = \lambda_2$ and $\mathbf{Df}(\mathbf{p}) \sim \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{pmatrix}$ (see Fig. 10f).
- saddle point if $\lambda_1, \lambda_2 \in \mathbb{R}$ and $\lambda_1 \lambda_2 < 0$ (see Fig. 10j).
- stable focus (or sink) if $\lambda_1, \lambda_2 \in \mathbb{C}$ and $\text{Re}(\lambda_1) < 0$ (see Fig. 10h).
- unstable focus (or source) if $\lambda_1, \lambda_2 \in \mathbb{C}$ and $\operatorname{Re}(\lambda_1) > 0$ (see Fig. 10i).
- center if $\lambda_1, \lambda_2 \in \mathbb{C}$, $\operatorname{Re}(\lambda_1) = 0$ and **p** is surrounded by periodic orbits (see Fig. 10g).

Definition 142. Let $\mathbf{A} \in \mathcal{M}_2(\mathbb{R})$ and consider the linear system induced by \mathbf{A} such that the origin is a saddle point, and E_1 , E_2 be the eigenspaces of \mathbf{A} . We say that the four orbits contained in $E_1 \cup E_2$ (without taking into account the singular point $\mathbf{0}$) are the *saddle separatrices* of the linear system.

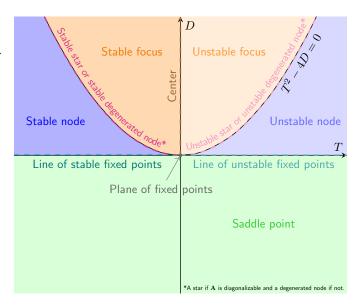


Figure 4: Classification of singular points of a linear dynamical system of dimension 2, induced by the equation $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{A} \in \mathcal{M}_2(\mathbb{R})$ in terms of $D = \det \mathbf{A}$ and $T = \operatorname{tr} \mathbf{A}$.

Definition 143. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f} : U \to \mathbb{R}^n$ be a vector field and consider the differential system induced by \mathbf{f} . Let $\boldsymbol{\gamma}$ be an orbit of that system. We say that $\boldsymbol{\gamma}$ is a *homoclinic orbit* if it joins a saddle point to itself. We say that $\boldsymbol{\gamma}$ is a *heteroclinic orbit* if it joins joins two different singular points.

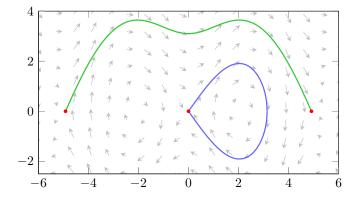


Figure 5: A homoclinic orbit (blue) and a heteroclinic orbit (green) of the differential system $x'' = \sin(x) + x \cos(x)$.

Definition 144. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a critical point of \mathbf{f} . We say that \mathbf{p} has

- an *elliptic sector* if a side of **p** is locally as Fig. 6.
- a hyperbolic sector if a side of **p** is locally as Fig. 7.
- an attracting parabolic sector if a side of **p** is locally as Fig. 8.
- a repelling parabolic sector if a side of \mathbf{p} is locally as Fig. 9.

The union of all sectors that form a neighbourhood of \mathbf{p} is called sectorial decomposition.

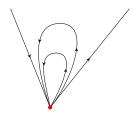


Figure 6: Elliptic sector

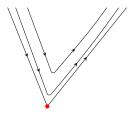


Figure 7: Hyperbolic sector

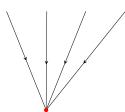


Figure 8: Attracting parabolic sector

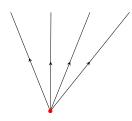


Figure 9: Repelling parabolic sector

Proposition 145. Any critical point of an analytic differential system in the plane can either be:

- A focus.
- A center.
- A finite collection of elliptic sectors, hyperbolic sectors and/or parabolic sectors.

Hamiltonian systems

Definition 146. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f} : U \to \mathbb{R}^n$ be a vector field and $H : U \to \mathbb{R}$ be a non-constant function. We say that H is a *first integral* for the differential system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ if for each solution $\varphi(t)$ of that system, we have $H(\varphi(\mathbf{t})) = \text{const.}$ Thus, the phase trajectory of a solution $\varphi(t)$ to $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ lies on a level surface of H. In particular, if n = 2, $\varphi(t)$ will be a level curve of H.

Proposition 147. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field such that $\mathbf{f} = (f_1, \dots, f_n)$ and $H: U \to \mathbb{R}$ be a non-constant function. Then, H is a first integral for the differential system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ if and only if:

$$\frac{\partial H}{\partial x_1}(\mathbf{x})f_1(\mathbf{x}) + \dots + \frac{\partial H}{\partial x_n}(\mathbf{x})f_n(\mathbf{x}) = 0 \quad \forall \mathbf{x} \in U$$

Definition 148. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f} : U \to \mathbb{R}^n$ be a vector field and $H_1, \ldots, H_k : U \to \mathbb{R}$ be $k \le n-1$ first integrals for the differential system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$. We say that H_1, \ldots, H_k are functionally independent (or simply independent) if for all $\mathbf{x} \in U$ (except for maybe a set of zero area), we have:

$$\operatorname{rank} \begin{pmatrix} \frac{\partial U_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial U_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial U_k}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial U_k}{\partial x_n}(\mathbf{x}) \end{pmatrix} = k$$

Proposition 149. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field and H_1, \ldots, H_k be $k \le n-1$ functionally independent first integrals for the differential system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$. Then, the number of unknowns of the system can be reduced to n - k.

Definition 150. Let $U \subseteq \mathbb{R}^{2n}$ be an open set, $H: U \to \mathbb{R}$ be a function and $(\mathbf{x}, \mathbf{y}) := (x_1, \dots, x_n, y_1, \dots, y_n)$. The differential system

$$\begin{cases} x_1' = -\frac{\partial H}{\partial y_1}(\mathbf{x}) \\ \vdots \\ x_n' = -\frac{\partial H}{\partial y_n}(\mathbf{x}) \\ y_1' = \frac{\partial H}{\partial x_1}(\mathbf{x}) \\ \vdots \\ y_n' = \frac{\partial H}{\partial x_1}(\mathbf{x}) \end{cases}$$

is called $Hamiltonian \ system$ in 2n unknowns and H is called Hamiltonian of the system.

Proposition 151. Let $U \subseteq \mathbb{R}^{2n}$ be an open set and $H: U \to \mathbb{R}$ be the Hamiltonian of its Hamiltonian associated system. Then, H is a first integral of that differential system.

Theorem 152. Let $U \subseteq \mathbb{R}^2$ be an open set, $H: U \to \mathbb{R}$ be the Hamiltonian of its Hamiltonian associated system and $\mathbf{p} \in U$ be a singular point. Then, \mathbf{p} is either a saddle point or a center.

Local structure of hyperbolic critical points

Definition 153. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class C^r with $r \geq 1$ and $\mathbf{p} \in U$ be a critical point of \mathbf{f} . We say that \mathbf{p} is hyperbolic critical point if $\text{Re}(\lambda) \neq 0 \ \forall \lambda \in \sigma(\mathbf{Df}(\mathbf{p}))$.

Theorem 154 (Hartman-Grobman theorem). Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a hyperbolic critical point of \mathbf{f} . Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be the vector field defined as $\mathbf{g}(\mathbf{x}) = \mathbf{Df}(\mathbf{p})(\mathbf{x})$. Then, there exist neighbourhoods $V \subseteq U$ of \mathbf{p} and $W \subseteq \mathbb{R}^n$ of $\mathbf{f}(\mathbf{p}) = \mathbf{0}$ such that $\mathbf{f}|_V$ and $\mathbf{g}|_W$ topologically conjugate.

Corollary 155. Let $U, V \subseteq \mathbb{R}^n$ be open sets and $\mathbf{f}: U \to \mathbb{R}^n$, $\mathbf{g}: V \to \mathbb{R}^n$ be vector fields of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a hyperbolic critical point of \mathbf{f} . Suppose that \mathbf{h} is a conjugacy of class \mathcal{C}^1 between \mathbf{f} and \mathbf{g} . Then, $\mathbf{h}(\mathbf{p})$ is a hyperbolic critical point of \mathbf{g} .

Definition 156. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. We say that \mathbf{A} is hyperbolic matrix if $\operatorname{Re}(\lambda) \neq 0 \ \forall \lambda \in \sigma(\mathbf{A})$.

Proposition 157. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a hyperbolic matrix. Then, $\mathbf{0} \in \mathbb{R}^n$ is the unique critical point of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and it is hyperbolic.

Definition 158. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. We define the *stability* number of \mathbf{A} as:

$$\iota(\mathbf{A}) := |\{\lambda \in \sigma(\mathbf{A}) : \operatorname{Re}(\lambda) < 0\}|$$

Theorem 159. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a hyperbolic matrix such that $\iota(\mathbf{A}) = n$. Then, $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and $\mathbf{y}' = -\mathbf{y}$, $\mathbf{y} \in \mathbb{R}^n$, are topologically conjugate. In particular, the origin is attracting.

Corollary 160. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a hyperbolic matrix such that $\iota(\mathbf{A}) = 0$. Then, $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and $\mathbf{y}' = \mathbf{y}$, $\mathbf{y} \in \mathbb{R}^n$, are topologically conjugate. In particular, the origin is repelling.

Corollary 161. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a hyperbolic matrix such that $\iota(\mathbf{A}) = k$. Then, $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and

$$\{\mathbf{y}'=-\mathbf{y},\mathbf{z}'=\mathbf{z}:\mathbf{y}\in\mathbb{R}^k,z\in\mathbb{R}^{n-k}\}$$

are topologically conjugate. In particular, the origin is neither attracting nor repelling.

Theorem 162. Let $\mathbf{A}, \mathbf{B} \in \mathcal{M}_n(\mathbb{R})$ be hyperbolic matrices. Then, $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and $\mathbf{y}' = \mathbf{B}\mathbf{y}$ are topologically conjugate if and only if $\iota(\mathbf{A}) = \iota(\mathbf{B})$.

Corollary 163. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a hyperbolic matrix. Then:

- **0** is attracting for $\mathbf{x}' = \mathbf{A}\mathbf{x} \iff \iota(\mathbf{A}) = n$.
- **0** is repelling for $\mathbf{x}' = \mathbf{A}\mathbf{x} \iff \iota(\mathbf{A}) = 0$.

Theorem 164. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a critical point of \mathbf{f} . Then:

- 1. If $\iota(\mathbf{Df}(\mathbf{p})) = n$, then **p** is asymptotically stable for the dynamical system induced by $\mathbf{x}' = \mathbf{f}(\mathbf{x})$.
- 2. If $\iota(\mathbf{Df}(\mathbf{p})) = 0$, then \mathbf{p} is repelling and negatively stable for the dynamical system induced by $\mathbf{x}' = \mathbf{f}(\mathbf{x})$.
- 3. If **p** is positively stable, then $Re(\lambda) \leq 0 \ \forall \lambda \in \sigma(\mathbf{Df}(\mathbf{p}))$.
- 4. If **p** is negatively stable, then $Re(\lambda) \geq 0 \ \forall \lambda \in \sigma(\mathbf{Df}(\mathbf{p}))$.

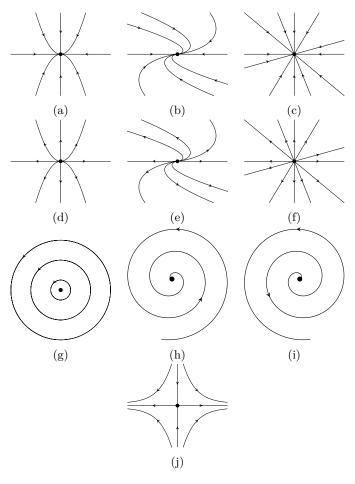


Figure 10: Phase portraits of hyperbolic singular points

7. | Qualitative theory of planar differential systems

Polynomial vectors fields

Definition 165. Let $p, q \in \mathbb{R}[x, y]$. The system of ODEs

$$\begin{cases} x' = p(x, y) \\ y' = q(x, y) \end{cases}$$
 (17)

is called a polynomial system. The field $\mathbf{f} = (p,q)$ is called polynomial vector field. We define the degree of that system as $n := \max\{\deg p, \deg q\}$. Another commonly used notation for expressing the vector field is through the operator

$$\mathbf{X} := p(x, y) \frac{\partial}{\partial x} + q(x, y) \frac{\partial}{\partial y}$$
 (18)

Definition 166. Let $f \in \mathbb{R}[x,y]$ be a polynomial. An algebraic curve is the set of points satisfying the equation f(x,y) = 0.

Definition 167. Let f(x,y) = 0 be an algebraic curve, $p, q \in \mathbb{R}[x,y]$ and consider the polynomial system of degree n of Eq. (17). We say that f(x,y) = 0 is an *invariant algebraic curve* under the system of Eq. (17) if

$$\frac{\partial f}{\partial x}(x,y)p(x,y) + \frac{\partial f}{\partial y}q(x,y) = k(x,y)f(x,y)$$
 (19)

¹⁴Note that $\deg k \leq n-1$.

 $f(x,y) = 0^{14}$. The Eq. (19) can be written as:

$$\mathbf{X}f = kf$$

where X is the operator defined in Eq. (18).

Proposition 168. Let f(x,y) = 0 be an algebraic curve, $p,q \in \mathbb{R}[x,y]$ and consider the polynomial system of degree n of Eq. (17). Then, the invariant curve f(x,y)=0is a set of orbits of the differential system of Eq. (17).

Local structure of periodic orbits

Definition 169 (Poincaré map). Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 with flow $\phi(t, \mathbf{x})$, $\mathbf{p} \in U$ and $\gamma(\mathbf{p})$ be a periodic orbit of period T that passes through **p**. Let Σ be a transversal section at **p**. For each $\mathbf{q} \in \Sigma$ (close enough to **p**) such that the trajectory $\phi(t, \mathbf{q})$ intersects Σ in a distinct point from \mathbf{q} , we define the *Poincaré map* as the function $\pi: \Sigma_0 \subset \Sigma \to \Sigma$ sending **q** to the first point where $\phi(t, \mathbf{q})$ intersects Σ (different from \mathbf{q}).

Definition 170. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and $\boldsymbol{\gamma}$ be a periodic orbit. We say that γ is a *limit cycle* if there exists a neighbourhood V of γ such that γ is the only periodic orbit in V.

Definition 171. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and γ be a periodic orbit. We denote by $\operatorname{Ext}(\gamma)$ the set of points which belong to the unbounded component of $\mathbb{R}^2 \setminus \gamma$, and by $\operatorname{Int}(\gamma)$ the set of points which belong to the bounded component of $\mathbb{R}^2 \setminus \gamma$.

Proposition 172. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ \mathbb{R}^2 be a vector field of class \mathcal{C}^1 , $\boldsymbol{\gamma}$ be a limit cycle and V be a neighbourhood of γ . Then, γ is exactly one of the following three types of limit cycles:

- γ is stable if $\omega(\mathbf{q}) = \gamma \ \forall \mathbf{q} \in V$ (Fig. 11a).
- γ is unstable if $\alpha(\mathbf{q}) = \gamma \ \forall \mathbf{q} \in V$ (Fig. 11b).
- γ is *semi-stable* if either

$$\{\omega(\mathbf{q}) = \boldsymbol{\gamma} \quad \forall \mathbf{q} \in V \cap \operatorname{Ext}(\boldsymbol{\gamma})\} \land \\ \land \{\alpha(\mathbf{q}) = \boldsymbol{\gamma} \quad \forall \mathbf{q} \in V \cap \operatorname{Int}(\boldsymbol{\gamma})\}$$

or

$$\{\omega(\mathbf{q}) = \gamma \quad \forall \mathbf{q} \in V \cap \text{Int}(\gamma)\} \land \\ \land \{\alpha(\mathbf{q}) = \gamma \quad \forall \mathbf{q} \in V \cap \text{Ext}(\gamma)\}$$

(Figs. 11c and 11d)

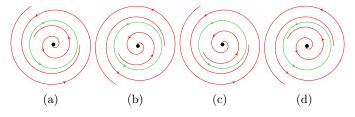


Figure 11: Stability of limit cycles

where $k \in \mathbb{R}[x,y]$ is called *cofactor* of the invariant curve **Definition 173.** Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and γ be a periodic orbit of period T. We say that γ is a hyperbolic periodic orbit if

$$I(\boldsymbol{\gamma}) := \int_{0}^{T} \operatorname{\mathbf{div}} \mathbf{f}(\boldsymbol{\gamma}(t)) \, \mathrm{d}t \neq 0$$

Theorem 174. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and $\boldsymbol{\gamma}$ be a periodic orbit of period T. Then:

- $I(\gamma) > 0 \implies \gamma(t)$ is an unstable limit cycle.
- $I(\gamma) < 0 \implies \gamma(t)$ is a stable limit cycle.

Poincaré-Bendixson theorem

Lemma 175. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class C^1 , Σ be a transversal section of $\mathbf{f}, \, \boldsymbol{\gamma}$ be an orbit of \mathbf{f} and $\mathbf{p} \in \Sigma \cap \omega(\boldsymbol{\gamma})$. Suppose that $\varphi(t)$ is the flux of the system. Then, $\exists (t_n) \in \mathbb{R}$ such that $\varphi(t_n) \in \Sigma$ and $\lim_{n \to \infty} \varphi(t_n) = \mathbf{p}$.

Lemma 176. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 , Σ be a transversal section of \mathbf{f} , γ be an orbit of **f** and $\mathbf{p} \in \Sigma \cap \omega(\gamma)$. Then, $\gamma^+(\mathbf{p})$ intersect Σ in a (finite or infinite) monotone sequence of points.

Lemma 177. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class C^1 , Σ be a transversal section of \mathbf{f} and $\mathbf{p} \in U$. Then, $|\Sigma \cap \omega(\mathbf{p})|$ is either 0 or 1.

Lemma 178. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class C^1 , $\mathbf{p} \in U$ be such that $\gamma^+(\mathbf{p})$ is contained in a compact set, and γ be an orbit such that $\gamma \subseteq \omega(\mathbf{p})$. If $\omega(\mathbf{p})$ contains only non-singular points, then $\omega(\mathbf{p})$ is a periodic orbit and $\gamma = \omega(\mathbf{p})$.

Theorem 179 (Poincaré-Bendixson theorem). Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be such that $\gamma^+(\mathbf{p})$ is contained in a compact set. Suppose that f has a finite number of singular points. Then:

- 1. If $\omega(\mathbf{p})$ contains only non-singular points, then $\omega(\mathbf{p})$ is a periodic orbit.
- 2. If $\omega(\mathbf{p})$ contains only singular points, then $\omega(\mathbf{p})$ is a singular point.
- 3. If $\omega(\mathbf{p})$ contains both singular and non-singular points, then $\omega(\mathbf{p})$ is a collection of singular points together with homoclinic and heteroclinic orbits connecting those points.

Corollary 180 (Poincaré-Bendixson theorem). Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class C^1 and $\mathbf{p} \in U$ be such that $\boldsymbol{\gamma}^-(\mathbf{p})$ is contained in a compact set. Suppose that f has a finite number of singular points. Then:

1. If $\alpha(\mathbf{p})$ contains only non-singular points, then $\alpha(\mathbf{p})$ is a periodic orbit.

- 2. If $\alpha(\mathbf{p})$ contains only singular points, then $\alpha(\mathbf{p})$ is a singular point.
- 3. If $\alpha(\mathbf{p})$ contains both singular and non-singular points, then $\alpha(\mathbf{p})$ is a collection of singular points together with homoclinic and heteroclinic orbits connecting those points.

Corollary 181. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 and $\boldsymbol{\gamma}$ be a periodic orbit of \mathbf{f} . Then, there is at least one singular point in $\mathrm{Int}(\boldsymbol{\gamma})$.

Lyapunov stability

Definition 182. Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a critical point of \mathbf{f} . We say that \mathbf{p} is *Lyapunov stable* if the set $\{\mathbf{p}\}$ is positively stable.

Definition 183. Let $U \subseteq \mathbb{R}^n$ be an open set, $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a critical point of \mathbf{f} . We say that a function $V: U \to \mathbb{R}$ of class \mathcal{C}^1 is a Lyapunov function for \mathbf{p} if there exists a neighbourhood $\tilde{U} \subseteq U$ of \mathbf{p} such that:

- $V(\mathbf{p}) = 0$ and $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \tilde{U} \setminus \{\mathbf{p}\}$
- $\nabla V(\mathbf{q}) \cdot \mathbf{f}(\mathbf{q}) < 0 \ \forall \mathbf{q} \in \tilde{U}$

If instead of the second condition we have

• $\nabla V(\mathbf{q}) \cdot \mathbf{f}(\mathbf{q}) < 0 \ \forall \mathbf{q} \in \tilde{U} \setminus \{\mathbf{p}\}$

we say that V is a strict Lyapunov function for \mathbf{p} .

Theorem 184 (Lyapunov's theorem). Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{f}: U \to \mathbb{R}^n$ be a vector field of class \mathcal{C}^1 and $\mathbf{p} \in U$ be a critical point of \mathbf{f} .

- If there exists a Lyapunov function for \mathbf{p} in a neighbourhood of \mathbf{p} , then \mathbf{p} is Lyapunov stable.
- If there exists a strict Lyapunov function for **p** in a neighbourhood of **p**, then **p** is asymptotically stable.

Theorem 185 (Bendixson's theorem). Let $U \subseteq \mathbb{R}^2$ be an open set and $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 such that $\mathbf{div} \mathbf{f}$ has constant sign in a simply connected region R and is not identically zero on any subregion of R with positive area. Then, the system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ does not have periodic orbits that lie entirely on R.

Theorem 186 (Bendixson-Dulac theorem). Let $U \subseteq \mathbb{R}^2$ be an open set and $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 . Suppose that there exists a simply connected region R and a function $h: R \to \mathbb{R}$ of class \mathcal{C}^1 such that $\mathbf{div}(h\mathbf{f})$ has constant sign on R and is not identically zero on any subregion of R with positive area. Then, the system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ doesn't have periodic orbits that lie entirely on R.

Theorem 187 (Generalized Bendixson-Dulac theorem). Let $U \subseteq \mathbb{R}^2$ be an open set, $n \in \mathbb{N} \cup \{0\}$ and $\mathbf{f}: U \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 . Suppose that

there exists a subset $R \subseteq U$ homeomorphic to a disk with n holes and a function $h: R \to \mathbb{R}$ of class \mathcal{C}^1 such that $\operatorname{\mathbf{div}}(h\mathbf{f})$ has constant sign on R and is not identically zero on any subregion of R with positive area. Then, the system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ has at most n periodic orbits that lie entirely on R.

Poincaré compactification

Definition 188. Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be a vector field of class \mathcal{C}^1 . Consider the sphere S^2 and the plane $\Pi = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 1\} \cong \mathbb{R}^2$. Let

$$H_{+} := S^{2} \cap \{(x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : x_{3} > 0\}$$

$$H_{-} := S^{2} \cap \{(x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : x_{3} < 0\}$$

For each point $p \in \Pi$, the line joining p and (0,0,0) intersects S^2 in two points. We define the following functions

$$\begin{split} \mathbf{g}_{+} : & \Pi & \longrightarrow & H_{+} \\ & (x_{1}, x_{2}, 1) \longmapsto \left(\frac{x_{1}}{\sqrt{1 + x_{1}^{2} + x_{2}^{2}}}, \frac{x_{2}}{\sqrt{1 + x_{1}^{2} + x_{2}^{2}}}, \frac{1}{\sqrt{1 + x_{1}^{2} + x_{2}^{2}}}\right) \\ \mathbf{g}_{-} : & \Pi & \longrightarrow & H_{-} \\ & (x_{1}, x_{2}, 1) \longmapsto \left(\frac{-x_{1}}{\sqrt{1 + x_{1}^{2} + x_{2}^{2}}}, \frac{-x_{2}}{\sqrt{1 + x_{1}^{2} + x_{2}^{2}}}, \frac{-1}{\sqrt{1 + x_{1}^{2} + x_{2}^{2}}}\right) \end{split}$$

which are diffeomorphisms. The induced vector field $\tilde{\mathbf{f}}$ defined in $S^2 \setminus S^1 := H_+ \cup H_-$ is S^1 :

$$\tilde{\mathbf{f}}(\mathbf{y}) = \begin{cases} \mathbf{D}\mathbf{g}_{+}(\mathbf{x})\mathbf{f}(\mathbf{x}) & \text{if } \mathbf{y} = \mathbf{g}_{+}(\mathbf{x}) \in H_{+} \\ \mathbf{D}\mathbf{g}_{-}(\mathbf{x})\mathbf{f}(\mathbf{x}) & \text{if } \mathbf{y} = \mathbf{g}_{-}(\mathbf{x}) \in H_{-} \end{cases}$$

Proposition 189. Let $\mathbf{f} = (p,q) : \mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial vector field of degree d, $\tilde{\mathbf{f}}$ be the induced vector field on $S^2 \setminus S^1$ and $\rho : S^2 \to \mathbb{R}$ be the function defined as $\rho(y_1, y_2, y_3) = {y_3}^{d-1}$. Then, the field $\rho \tilde{\mathbf{f}}$ can be extended analytically to S^2 with the equator of S^2 remaining invariant.

Corollary 190. Let $\mathbf{f} = (p, q) : \mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial vector field of degree d and consider the local charts $(U_i, \phi_i), (V_i, \psi_i)$ for i = 1, 2, 3 defined as:

$$U_i = \{(x_1, x_2, x_3) \in S^2 : x_i > 0\}$$
$$V_i = \{(x_1, x_2, x_3) \in S^2 : x_i < 0\}$$

and

$$\phi_i: U_i \longrightarrow \mathbb{R}^2$$

$$(y_1, y_2, y_3) \longmapsto \left(\frac{y_j}{y_i}, \frac{y_k}{y_i}\right)$$

$$\psi_i: V_i \longrightarrow \mathbb{R}^2$$

$$(y_1, y_2, y_3) \longmapsto \left(\frac{y_j}{y_i}, \frac{y_k}{y_i}\right)$$

with $j, k \neq i, j < k$ and i = 1, 2, 3. Then, the extended vector field defined on each (U_i, ϕ_i) is:

• On
$$(U_1, \phi_1)$$
, if $(u, v) = \left(\frac{x_2}{x_1}, \frac{1}{x_1}\right)$, then:

$$\begin{cases} u' = v^d \left[-up\left(\frac{1}{v}, \frac{u}{v}\right) + q\left(\frac{1}{v}, \frac{u}{v}\right) \right] \\ v' = -v^{d+1}p\left(\frac{1}{v}, \frac{u}{v}\right) \end{cases}$$

¹⁵ The idea behind this concept is to study the asymptotic behaviour of the orbits of the system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$. In order to do so, we would like to extend the field $\tilde{\mathbf{f}}$ to the equator of S^2 ($\{(x_1, x_2, x_3) \in S^2 : x_3 = 0\}$). And that set would correspond to the infinity in \mathbb{R}^2 .

• On (U_2, ϕ_2) , if $(u, v) = \left(\frac{x_3}{x_2}, \frac{1}{x_2}\right)$, then:

$$\begin{cases} u' = v^d \left[p\left(\frac{u}{v}, \frac{1}{v}\right) - uq\left(\frac{u}{v}, \frac{1}{v}\right) \right] \\ v' = -v^{d+1}q\left(\frac{u}{v}, \frac{1}{v}\right) \end{cases}$$

• On (U_3, ϕ_3) , if $(u, v) = \left(\frac{x_1}{x_3}, \frac{1}{x_3}\right)$, then:

$$\begin{cases} u' = p(u, v) \\ v' = q(u, v) \end{cases}$$

The extended vector field defined on each (V_i, ψ_i) is the one defined on each (U_i, ϕ_i) multiplied by $(-1)^{d-1}$. This extension is called *Poincaré compactification* of **f**.

Definition 191. We define the *Poincaré disk* as the orthogonal projection $\pi: \overline{H_+} \to \overline{D(0,1)}$.

Integrability theory of polynomial systems

Definition 192. Let $U \subseteq \mathbb{R}^2$ be an open set, $p, q \in \mathbb{R}[x, y]$ and consider the polynomial system of Eq. (17). We say that a function $R: U \to \mathbb{R}$ is an *integrating factor* if

$$\mathbf{div}(Rp, Rq) = \frac{\partial(Rp)}{\partial x} + \frac{\partial(Rq)}{\partial y} = 0$$

Lemma 193. Let $U \subseteq \mathbb{R}^2$ be an open set, $R: U \to \mathbb{R}$ be a differentiable function, $p, q \in \mathbb{R}[x, y]$ and consider the polynomial system of Eq. (17). Then, R is an integrating factor if and only if:

$$\mathbf{X}R = p\frac{\partial R}{\partial x} + q\frac{\partial R}{\partial y} = -R\operatorname{\mathbf{div}}(p,q)$$

where X is the operator defined in Eq. (18).

Proposition 194. Let $U \subseteq \mathbb{R}^2$ be an open set, $p, q \in \mathbb{R}[x,y]$ and consider the polynomial system of Eq. (17). Suppose that system admits an integrating factor $R: U \to \mathbb{R}$. Then, the system admits a first integral $H: U \to \mathbb{R}$ given by:

$$H(x,y) = -\int R(x,y)p(x,y)\,\mathrm{d}y + h(x)$$

where h(x) satisfy:

$$h'(x) = R(x,y)q(x,y) + \frac{\partial}{\partial x} \left(\int R(x,y)p(x,y) \,dy \right)$$

Definition 195. Let $p, q, g, h \in \mathbb{R}[x, y]$ and consider the polynomial system of Eq. (17) of degree d and let \mathbf{X} be the vector field operator of that system (defined by Eq. (18)).

We say that $e^{\frac{g(x,y)}{h(x,y)}}$ is an exponential factor with cofactor $k(x,y) \in \mathbb{R}[x,y]$ if $\deg k \leq d-1$ and:

$$\mathbf{X}e^{\frac{g(x,y)}{h(x,y)}} = k(x,y)e^{\frac{g(x,y)}{h(x,y)}}$$

Theorem 196 (Darboux theorem). Let $p, q \in \mathbb{R}[x, y]$ and consider the polynomial system of Eq. (17) of degree $d, f_i(x, y) = 0$ be invariant algebraic curves with cofactors $k_i(x, y)$ for $i = 1, \ldots, r$ and $e^{\frac{g_j(x, y)}{h_j(x, y)}}$ be exponential factors with cofactors $\ell_i(x, y)$ for $j = 1, \ldots, s$. Then:

1. If $\exists \lambda_i, \mu_j \in \mathbb{R}$, $i = 1, \dots, r$ and $j = 1, \dots, s$, not all zero such that $\sum_{i=1}^r \lambda_i k_i + \sum_{j=1}^s \mu_j \ell_j = 0$, then

$$H = f_1^{\lambda_1} \cdots f_r^{\lambda_r} e^{\mu_1 \frac{g_1(x,y)}{h_1(x,y)}} \cdots e^{\mu_s \frac{g_s(x,y)}{h_s(x,y)}}$$
(20)

is a first integral for the system.

- 2. If $r+s \geq \frac{d(d+1)}{2}+1$, then $\exists \lambda_i, \mu_j \in \mathbb{R}$, $i=1,\ldots,r$ and $j=1,\ldots,s$, not all zero such that $\sum_{i=1}^p \lambda_i k_i + \sum_{j=1}^q \mu_j \ell_j = 0$. And so, the system has the first integral defined in Eq. (20).
- 3. If $r + s \ge \frac{d(d+1)}{2} + 2$, then the system has a rational first integral. Consequently all trajectories of the system are contained in invariant algebraic curves.
- 4. If $\exists \lambda_i, \mu_j \in \mathbb{R}$, $i = 1, \dots, r$ and $j = 1, \dots, s$, not all zero such that $\sum_{i=1}^p \lambda_i k_i + \sum_{j=1}^q \mu_j \ell_j = -\operatorname{\mathbf{div}}(p, q)$, then

$$R = f_1^{\lambda_1} \cdots f_r^{\lambda_r} e^{\mu_1 \frac{g_1(x,y)}{h_1(x,y)}} \cdots e^{\mu_s \frac{g_s(x,y)}{h_s(x,y)}}$$

is an integrating factor for the system. And so the system also admits a first integral by Theorem 194.

Index of paths and homotopy

Definition 197. Let $\gamma:[a,b]\to\mathbb{R}^2$ be a closed path, $q\in\mathbb{R}\setminus\gamma^*$ and L be a ray with vertex at q. Consider a continuous determination $\varphi:[a,b]\to\mathbb{R}$ of the angle (measured counterclockwisely) between $\gamma(t)$ and L. Then, we define the *index* of q with respect to γ as:

$$\operatorname{Ind}(\boldsymbol{\gamma},q) := \frac{\varphi(b) - \varphi(a)}{2\pi}$$

Proposition 198. Let $q_1, q_2 \in \mathbb{R}^2$ and $\gamma : I \to \mathbb{R}^2$ be a closed path such that the segment $\overline{q_1q_2}$ does not intersect γ^* . Then, $\operatorname{Ind}(\gamma, q_1) = \operatorname{Ind}(\gamma, q_2)$.

Corollary 199. Let $\gamma: I \to \mathbb{R}^2$ be a closed path. Then, all points in the same connected component of $\mathbb{R}^2 \setminus \gamma^*$ have the same index.

Proposition 200. Let $\gamma_1, \gamma_2 : I \to \mathbb{R}^2$ be two closed paths and $q \in \mathbb{R}^2$ be such that $q \notin \overline{\gamma_1(t)\gamma_2(t)} \ \forall t \in I$. Then, $\operatorname{Ind}(\gamma_1, q) = \operatorname{Ind}(\gamma_2, q)$.

Proposition 201. Let $\gamma_1, \gamma_2 : I \to \mathbb{R}^2$ be two closed paths and $q \in \mathbb{R}^2$ be such that $q \notin {\gamma_1}^* \cup {\gamma_2}^*$ and $\|\gamma_1(t) - \gamma_2(t)\| < \|q - \gamma_2(t)\| \ \forall t \in I$. Then, $\operatorname{Ind}(\gamma_1, q) = \operatorname{Ind}(\gamma_2, q)$.

Definition 202. Let $\gamma_1, \gamma_2 : I \to \mathbb{R}^2$ be two closed paths. We say that the are *homotopic*, and we denote it by $\gamma_1 \sim \gamma_2$, if there exists a continuous function $\mathbf{h} : I \times [0,1] \to \mathbb{R}^2$ such that:

- 1. $\gamma_1(t) = \mathbf{h}(t,0) \ \forall t \in I$
- 2. $\gamma_2(t) = \mathbf{h}(t,1) \ \forall t \in I$
- 3. $\mathbf{h}(0,s) = \mathbf{h}(1,s) \ \forall s \in [0,1]$

Such function **h** is called the *homotopy* between γ_1 and γ_2 .

Lemma 203. Being homotopic is an equivalence relation.

Proposition 204. Let $\gamma_1, \gamma_2 : I \to \mathbb{R}^2$ be two closed homotopic paths, $\mathbf{h} : I \times [0,1] \to \mathbb{R}^2$ be the respective homotopy and $q \in \mathbb{R}^2$ be such that $q \notin \operatorname{im}(\mathbf{h})^{16}$. Then, $\operatorname{Ind}(\gamma_1, q) = \operatorname{Ind}(\gamma_2, q)$.

Definition 205. Let $\gamma: I \to \mathbb{R}^2$ be a closed path. We say that γ is *contractible* if it is homotopic to the constant path $\alpha(t) = a \in \mathbb{R}^2$.

Proposition 206. Let $\gamma : \underline{I} \to \mathbb{R}^2$ be a closed contractible path and $q \in \mathbb{R}^2 \setminus \overline{D(\gamma)}$, where $D(\gamma)$ is the domain enclosed by γ . Then, $\operatorname{Ind}(\gamma, q) = 0$.

Proposition 207. Let $\gamma: I \to \mathbb{R}^2$ be a closed path which is homotopic to the path $\alpha_n := q + e^{2\pi i n t}$ (thought in \mathbb{R}^2), $n \in \mathbb{Z}$ and $q \in \mathbb{R}^2 \setminus \overline{D(\gamma - \alpha_n)}$. Then, $\operatorname{Ind}(\gamma, q) = n$.

Proposition 208. Let $\gamma: I \to \mathbb{R}^2$ be a closed path and $q \in \mathbb{R}^2 \setminus \gamma^*$ be such that $\operatorname{Ind}(\gamma, q) = n$. Then, $\gamma \sim \alpha_n$.

Theorem 209. Let $\underline{\gamma_1, \gamma_2}: I \to \mathbb{R}^2$ be two closed paths and $q \in \mathbb{R}^2 \setminus \overline{D(\gamma_1 - \gamma_2)}$. Then, $\gamma_1 \sim \gamma_2 \iff \operatorname{Ind}(\gamma_1, q) = \operatorname{Ind}(\gamma_2, q)$

Theorem 210. Let $\mathbf{f}: \overline{D(0,1)} = [0,1] \times [0,2\pi] \to \mathbb{R}^2$ be a continuous function, $\boldsymbol{\gamma}(t) = \mathbf{f}(1,2\pi t)$ with $t \in [0,1]$ and $q \in \mathbb{R}^2 \setminus \mathbf{f}(S^1)$ be such that $\mathrm{Ind}(\boldsymbol{\gamma},q) \neq 0$. Then, $q \in \mathrm{im} \mathbf{f}$.

Poincaré-Hopf theorem

Definition 211. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{X} : U \to \mathbb{R}^2$ be a differentible vector field and $\boldsymbol{\alpha}$ be the path defined on the boundary of a closed disk $D \subseteq U$. Let $\boldsymbol{\gamma}(t) := (\mathbf{X} \circ \boldsymbol{\alpha})(t)$ and $q \in \operatorname{Int}(\boldsymbol{\gamma})$. We define the *index* of \mathbf{X} on ∂D as:

$$\operatorname{Ind}_{\partial D}(\mathbf{X}) := \operatorname{Ind}(\boldsymbol{\gamma}, q)^{17}$$

Definition 212. Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{X} : U \to \mathbb{R}^2$ be a differentible vector field and $p \in U$ be an isolated singular point (on the set of all singular points). Let D be a disk that surrounds only that singular point p. We define the index of p as:

$$\operatorname{Ind}_p(\mathbf{X}) := \operatorname{Ind}_{\partial D}(\mathbf{X})^{18}$$

Proposition 213. Let $\overline{D} \subseteq \mathbb{R}^2$ be a closed disk and $\mathbf{X} : \overline{D} \to \mathbb{R}^2$ be a continuous vector field such that $\mathbf{X}(q) \neq 0 \ \forall q \in \partial \overline{D}$. Suppose that \mathbf{X} has a finite number of singular points p_1, \ldots, p_n . Then:

$$\sum_{i=1}^{n} \operatorname{Ind}_{p_i}(\mathbf{X}) = \operatorname{Ind}_{\partial D}(\mathbf{X})$$

Definition 214. Let $U \subseteq S^2$ be an open set. A tangent vector field defined on S^2 is a vector field \mathbf{X} such that $\mathbf{X}(q) \in T_p S^2 \ \forall q \in U^{19}$.

Definition 215. Let $U \subseteq S^2$ be an open set and $\mathbf{X}: U \to \mathbb{R}^3$ be a tangent vector field and p be a singular point of \mathbf{X} . Suppose (rotating the sphere if necessary) that p is in one of its poles. Let $\tilde{\mathbf{X}}$ be the field created from the stereographic projection from -p to the equator plane. We define the index of p with respect to the field \mathbf{X} as:

$$\operatorname{Ind}_p(X) = \operatorname{Ind}_0(\tilde{\mathbf{X}})$$

Theorem 216 (Poincaré-Hopf theorem). Consider a continuous vector field \mathbf{X} on a compact manifold M with a finite number of singular points. Then, the sum of their indices is $\chi(M)$.

Corollary 217 (Poincaré-Hopf theorem on S^2). Consider a continuous vector field \mathbf{X} on S^2 with a finite number of singular points. Then, the sum of their indices is 2.

Proposition 218 (Poincaré index formula). Let $U \subseteq \mathbb{R}^2$ be an open set, $\mathbf{X}: U \to \mathbb{R}^2$ be a differentible vector field and p be a singular point with a finite finite sectorial decomposition. Denote by e the number of elliptic sectors; by h, the number of hyperbolic sectors, and by p, the number of parabolic sectors. Then:

$$\operatorname{Ind}_p(\mathbf{X}) = \frac{e-h}{2} + 1$$

Corollary 219. Every tangent vector field \mathbf{X} defined on S^2 has singular points.

8. Introduction to partial differential equations

Definition 220. Let $U \subseteq \mathbb{R}^n$ be an open set. A partial differential equation (PDE) of order k is an expression of the form

$$F\left(\mathbf{x}, u(\mathbf{x}), \frac{\partial u}{\partial \mathbf{x}}, \dots, \frac{\partial^k u}{\partial \mathbf{x}^k}\right) = 0$$

where $\mathbf{x} = (x_1, \dots, x_n)$, $F: U \times \mathbb{R} \times \mathbb{R}^{n^1} \times \dots \times \mathbb{R}^{n^k} \to \mathbb{R}$ is a given function and $u: U \to \mathbb{R}$ is an unknown function. The function u is called *solution* of the PDE defined by F.

Quasilinear partial differential equations

Definition 221. Let $U \subseteq \mathbb{R}^n$ be an open set and $u: U \to \mathbb{R}$ be a function. A *quasilinear PDE* is an expression of the form:

$$p_1(\mathbf{x}, u) \frac{\partial u}{\partial x_1} + \dots + p_n(\mathbf{x}, u) \frac{\partial u}{\partial x_n} = q(\mathbf{x}, u)$$
 (21)

Theorem 222. Let $U \subseteq \mathbb{R}^n$ be an open set and $u: U \to \mathbb{R}$ be a function and consider the PDE of Eq. (21). Let H_1, \ldots, H_n be the n independent first integrals of the system:

$$\begin{cases} x_1' = p_1(x_1, \dots, x_n, u) \\ \vdots \\ x_n' = p_n(x_1, \dots, x_n, u) \\ u' = q(x_1, \dots, x_n, u) \end{cases}$$

From now on we will denote $q \notin \operatorname{im}(\mathbf{h})$ as $q \in \mathbb{R}^2 \setminus \overline{D(\gamma_1 - \gamma_2)}$, where $D(\gamma_1 - \gamma_2)$ is the domain enclosed between γ_1 and γ_2 .

¹⁷It can be seen that this definition doesn't depend on the point q inside γ chosen.

 $^{^{18}\}mathrm{It}$ can be seen that this definition doesn't depend on the disk D chosen.

 $^{^{19}}$ Recall ??.

equation

$$F(H_1(\mathbf{x}, u), \dots, H_n(\mathbf{x}, u)) = 0$$

is a solution to Eq. (21).

Heat, wave and Laplace equations

Definition 223 (Heat equation). Let $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be an unknown function. The heat equation is the PDE defined by

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

where $k \in \mathbb{R}$.

Proposition 224. Consider a bar of line $L \in \mathbb{R}_{>0}$ whose temperature can be modeled by a function $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, and $f:[0,L]\to\mathbb{R}$ be a function. Then, the solution u(x,t) to the heat equation with boundary conditions u(x,0) = f(x) and u(0,t) = u(L,t) = 0 is:

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{\pi nx}{L}\right) e^{-\frac{n^2 \pi^2 k}{L^2} t}$$

where
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{\pi nx}{L}\right) dx$$
.

Definition 225 (Wave equation). Let $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be an unknown function. The wave equation is the PDE defined by

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

where $c \in \mathbb{R}$.

Proposition 226. Consider a string of line $L \in \mathbb{R}_{>0}$ whose position can be modeled by a function $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ \mathbb{R} , and $f,g:[0,L]\to\mathbb{R}$ be functions. Then, the solution u(x,t) to the wave equation with boundary conditions $u(x,0) = f(x), u_t(x,0) = g(x) \text{ and } u(0,t) = u(L,t) = 0$

$$u(x,t) = \sum_{n=0}^{\infty} \sin\left(\frac{\pi nx}{L}\right) \left[a_n \cos\left(\frac{\pi nc}{L}t\right) + b_n \sin\left(\frac{\pi nc}{L}t\right)\right]$$

where:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{\pi nx}{L}\right) dx$$

$$b_n = \frac{1}{\pi nc} \int_{-L}^{L} g(x) \sin\left(\frac{\pi nx}{L}\right) dx$$

Then, for any function $F: \mathbb{R}^n \to \mathbb{R}$ of class \mathcal{C}^1 , the implicit **Proposition 227.** Let u(x,t) be a solution to the wave equation. Then, $\exists F, G : \mathbb{R} \to \mathbb{R}$ such that:

$$u(x,t) = F(x+ct) + G(x-ct)$$

Proposition 228 (D'Alembert formula). Let f, g: $\mathbb{R} \to \mathbb{R}$ be functions. The solution u(x,t) to the wave equation with boundary conditions u(x,0) = f(x) and $u_t(x,0) = q(x)$ is:

$$u(x,t) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{a}^{x+ct} g(s) ds$$

Definition 229 (Laplace equation). Let $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be an unknown function. The Laplace equation is the PDE defined by:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u = 0$$

Proposition 230. The Laplacian of a function u: $(0,\infty)\times[0,2\pi]\to\mathbb{R}$ in polar coordinates (r,θ) is:

$$\Delta u = u_{rr} + \frac{u_r}{r} + \frac{u_{\theta\theta}}{r^2}$$

Proposition 231 (Dirichlet problem). Let f: $[0,2\pi] \to \mathbb{R}$ be a continuous function such that f(0) = $f(2\pi)$. Then, there exists a continuous function v: $D(0,\rho) \to \mathbb{R}$ such that:

1.
$$v(r,0) = v(r,2\pi) \ \forall r \in [0,\rho]$$

2.
$$v \in \mathcal{C}^2(D(0, \rho) \setminus \{0\})$$
 and $\Delta v = 0$.

3.
$$v(\rho, \theta) = f(\theta) \ \forall \theta \in [0, 2\pi]$$

An example of such function is:

$$v(r,\theta) = \sum_{n=0}^{\infty} \frac{r^n}{\rho^n} \left[a_n \cos(n\theta) + b_n \sin(n\theta) \right]$$

where:

$$a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \cos(n\theta) d\theta$$

$$b_n = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \sin(n\theta) d\theta$$