
Complex analysis

1. | Complex numbers
Definition of complex numbers

Definition 1. Consider x2 + 1 ∈ R[x] and the ring
R := R[x]/(x2 + 1). Then, R is a commutative field,
which we will denote by C, whose elements are of the
form a + bx =: a + bi, a, b ∈ R1. This field is called field
of complex numbers.

Proposition 2. Let a1 + b1i, a2 + b2i ∈ C, a1, a2, b1, b2 ∈
R2. Then:

• (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i

• (a1 + b1i) · (a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i

• a1 + b1i
a2 + b2i = a1a2 + b1b2

a22 + b2
2 + a2b1 − a1b2

a22 + b2
2 i, provided

that a2, b2 ̸= 0.

Theorem 3. C is not an ordered field.

Complex conjugate, modulus and argument
Definition 4. Let z = a + bi ∈ C. We define the complex
conjugate (or simply conjugate) of z as z := a − bi.

Proposition 5. Let z, w ∈ C. Then:

1. z = z

2. z + w = z + w

3. z · w = z · w

4.
( z

w

)
= z

w
, provided that w ̸= 0.

5. z ∈ R ⇐⇒ z = z

Definition 6. Let z = a + bi ∈ C. We define the real part
of z as Re z := a. We define the imaginary part of z as
Im z := b.

Proposition 7. Let z ∈ C. Then:

Re z = z + z

2 and Im z = z − z

2i
Definition 8. Let z = a + bi ∈ C. We define the modulus
of z as:

|z| :=
√

a2 + b2

Proposition 9. Let z, w ∈ C. Then:

1. |z| ≥ 0

2. |z| = 0 ⇐⇒ z = 0

3. zz = |z|2

4. z−1 = 1
|z|2 · z

5. |Re z|, |Im z| ≤ |z| ≤ |Re z| + |Im z|

6. |z · w| = |z| · |w|

7. |zn| = |z|n ∀n ∈ Z

8.
∣∣∣ z

w

∣∣∣ = |z|
|w|

, provided that w ̸= 0.

9. |z ± w|2 = |z|2 + |w|2 ± 2 Re(zw)

10. |z ± w| ≤ |z| + |w|

11. ||z| − |w|| ≤ |z ± w|

Corollary 10. Let n ∈ N and z1, . . . , zn ∈ C. Then:

•
∣∣∣∣∣

n∑
i=1

zi

∣∣∣∣∣ ≤
n∑

i=1
|zi|

• |z1 · · · zn| = |z1| · · · |zn|

• |Re(z1 · · · zn)|, |Im(z1 · · · zn)| ≤ |z1| · · · |zn|

Definition 11. Let z ∈ C∗. We define the argument of z,
denoted by arg z, as the real number θ satisfying:

z = |z|(cos θ + i sin θ)

Note that arg z is not unique. Because of that, we say that
arg z is a multivalued function.

Definition 12. Let U ⊆ C be an open set and f : U → C∗

be a function. A determination of the argument of f
is a continuous function g : U → R such that f(z) =
|f(z)|eig(z) ∀z ∈ U .

Definition 13. Let z ∈ C∗. We define the principal ar-
gument of z as the unique real number θ satisfying:

Arg z := {θ ∈ (−π, π] : z = |z|(cos θ + i sin θ)}

Note that this determination of the argument is not con-
tinuous.

Proposition 14. Let z = a + bi ∈ C. Then:

Arg z =


arctan

(
y
x

)
if x > 0

arctan
(

y
x

)
+ π if x < 0, y ≥ 0

arctan
(

y
x

)
− π if x < 0, y < 0

sgn (y) π
2 if x = 0

1Such expression of a complex number is called Cartesian form of a complex number.
2From now on, we will omit to say that these values are real numbers. If they aren’t, we will explicitly remark it.
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Metric topology of C

Proposition 15. Consider the distance d defined as:

d : C × C −→ R
(z, w) 7−→ |z − w|

Then, (C, d) is a metric space3.

Proposition 16. Thinking complex numbers as an or-
dered pair of real numbers, the topology of C induced by
d is the same as the ordinary topology of R2.

Definition 17. We define the extended complex plane as
C∞ := C ∪ {∞}. We define the extended real numbers as
R∞ := R ∪ {∞}. The topologies added to those sets are
the ones given by the one-point compactification4.

Definition 18 (Stereographic projection). The stere-
ographic projection is the function p : S2 → C∞ defined
as:

p(x1, x2, x3) =
{

x1
1−x3

+ i x2
1−x3

if x3 ̸= 1
∞ if x3 = 1

The inverse of the stereographic projection p−1 : C∞ → S2

is:

p−1(z) =
{(

z+z
1+|z|2 , z−z

i(1+|z|2) , |z|2−1
1+|z|2

)
if z ∈ C

(0, 0, 1) if z = ∞

x1

x2

x3

1

p(P )

0

P

C

Figure 1: Stereographic projection

2. | Sequences and series
Sequences
Definition 19. A sequence of complex numbers is a func-
tion of the form

N −→ C
n 7−→ zn

In general, we will denote that sequence by (zn).

Definition 20. Let (zn) ∈ C be a sequence. A subse-
quence of (zn) is a sequence (zkn), where (kn) ∈ N is an
increasing sequence of natural numbers.

Definition 21. Let (zn) ∈ C be a sequence. We say that
(zn) has limit z ∈ C (or it converges to z) if ∀ε > 0,
∃n0 ∈ N such that

|zn − z| < ε ∀n > n0

In that case, we will write lim
n→∞

zn = z and we say that se-
quence is convergent. Otherwise, we say that the sequence
is divergent.

Definition 22. Let (zn) ∈ C be a sequence. We say that
(zn) is bounded if ∃M ∈ R such that |zn| ≤ M ∀n ∈ N.

Definition 23. Let (zn) ∈ C be a sequence. We say that
(zn) is Cauchy if ∀ε > 0, ∃n0 ∈ N such that

|zn − zm| < ε ∀n, m > n0

Proposition 24. Let (zn) ∈ C be a convergent sequence.
Then, (zn) is bounded and Cauchy.

Proposition 25. Let (zn) ∈ C be a sequence. Then,
(zn) is convergent if and only if all its subsequences are
convergent.

Proposition 26. Let (zn), (wn) ∈ C be two convergent
sequences whose limits are z, w ∈ C, respectively. Then:

1. lim
n→∞

zn + wn = z + w

2. lim
n→∞

znwn = zw

3. lim
n→∞

zn

wn
= z

w
, provided that wn ̸= 0 ∀n ∈ N.

Definition 27. Let (zn) ∈ C be a sequence such that
zn = xn + yni ∀n ∈ N, where xn, yn ∈ R. Then:

1. (zn) is convergent if and only if (xn) and (yn) are
convergent. In that case, we have:

lim
n→∞

zn = lim
n→∞

xn + i lim
n→∞

yn

2. (zn) is Cauchy if and only if (xn) and (yn) are
Cauchy.

Theorem 28. C is a complete metric space.

Series

Definition 29. Let (zn) ∈ C be a sequence. A numeric
series of complex numbers is an expression of the form

∞∑
n=1

zn

We call zn general term of the series and SN :=
N∑

n=1
zn,

for all N ∈ N, N -th partial sum of the series5.
3In order to simplify the notation we will refer to (C, d) simply as C.
4See ??.

5Sometimes we will write
∑

zn to refer to
∞∑

n=1

zn.
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Definition 30. We say the series of complex numbers∑
zn is convergent if S = lim

N→∞
SN exists and it is finite.

In that case, S is called the sum of the series. If the pre-
vious limit doesn’t exist or it is infinite, we say the series
is divergent6.

Definition 31. Let
∑

zn be a series of complex num-
bers. A reordering of

∑
zn is any series

∑
zσ(n), where

σ : N → N be a bijective function.

Proposition 32. Let (zn) ∈ C be a sequence and
∑

zn

be a convergent series. Then, lim
n→∞

zn = 0.

Proposition 33. Let (zn) ∈ C be a sequence such that
such that zn = xn + yni ∀n ∈ N, where xn, yn ∈ R,
and

∑
zn be a series. Then,

∑
zn < ∞ if and only if∑

xn < ∞ and
∑

yn < ∞. In that case, we have:

∞∑
n=1

zn =
∞∑

n=1
xn + i

∞∑
n=1

yn

Proposition 34. Let
∑

zn = z ∈ C and
∑

wn = w ∈ C
be two series, and λ ∈ C. Then:

1.
∑

(zn + wn) is convergent and
∑

(zn + wn) = z + w.

2.
∑

(λzn) is convergent and
∑

(λzn) = λz.

Lemma 35 (Abel’s summation formula). Let
(zn), (wn) ∈ C be two sequence. Let SN :=

∑N
n=1 zn.

Then:
N∑

n=1
znwn = SN wN +

N−1∑
n=1

Sn(wn − wn+1)

Definition 36. Let
∑

zn be a series of complex numbers.
We say that

∑
zn is absolutely convergent if

∑
|zn| < ∞7.

Proposition 37. Let
∑

zn be a series of complex num-
bers.

1.
∑

|zn| < ∞ =⇒
∑

zn < ∞

2.
∑

|zn| = z < ∞ =⇒ ∀σ ∈ S(N),
∑

zσ(n) = w <
∞ for some w ∈ C.

Definition 38 (Cauchy product). Let
∑

zn,
∑

wn be
absolutely convergent series of complex numbers. We de-
fine the product of

∑
zn and

∑
wn as the series

∑
pn,

where pn =
∑n

k=0 zkwn−k.

Proposition 39. Let
∑

zn,
∑

wn be absolutely conver-
gent series of complex numbers. Then, the product of
these series is absolutely convergent and satisfy:

∞∑
n=1

pn =
( ∞∑

n=1
zn

)( ∞∑
n=1

wn

)

3. | Complex functions
Continuity
Definition 40. Let D ⊆ C be a set. We define a complex
function8 as a function of the form:

f : D −→ C
z 7−→ f(z)

Definition 41. Let D ⊆ C be a set and f : D → C be
a function. We say that f is continuous at z0 ∈ D if and
only if ∀ε > 0 ∃δ > 0 such that |f(z) − f(z0)| < ε when-
ever |z − z0| < δ. We say that f is continuous on D if it
is continuous at z ∀z ∈ D.

Definition 42. Let D ⊆ C be a set and f : D → C be a
function. We define the function Re f as the function:

Re f : D −→ C
z 7−→ Re(f(z))

Analogously, we define the function Im f as the function:

Im f : D −→ C
z 7−→ Im(f(z))

Proposition 43. Let D ⊆ C be a set, f : D → C be a
function and z0 ∈ D. Then, f = Re f + i Im f is contin-
uous at z0 if and only if Re f and Im f are continuous at
z0.

Proposition 44. Let D ⊆ C be a set, f : D → C be a
function and z0 ∈ D. Then, f is continuous at z0 if and
only if for all sequence (wn) ∈ D convergent to z0, the
sequence (f(wn)) converges to f(z0).

Proposition 45. Let D ⊆ C be a set, f, g : D ⊆ C −→ C
be two continuous function at a point z0 ∈ D and λ ∈ C.
Then, λf , f + g, and fg are continuous at z0. Moreover,
if g(z0) ̸= 0, then f/g is continuous at z0.

Sequences of functions
Definition 46. Let D ⊆ C. A set

(fn(z)) = {f1(z), f2(z), . . . , fn(z), . . .}

is a sequence of complex functions if fi : D → C is a com-
plex function ∀i ∈ N. In this case we say the sequence
(fn(z)), or simply (fn), is well-defined on D9.

Definition 47. Let (fn) ∈ D ⊆ C be a sequence of func-
tions and f : D → C. We say (fn) converges pointwise to
f on D if ∀z ∈ D, lim

n→∞
fn(z) = f(z).

Definition 48. Let (fn) ∈ D ⊆ C be a sequence of func-
tions and f : D → C. We say (fn) converges uniformly
to f on D if ∀ε > 0, ∃n0 such that |fn(z) − f(z)| < ε
∀n ≥ n0 and ∀z ∈ D.

6We will use the notation
∑

zn < ∞ or
∑

zn = +∞ to express that the series converges or diverges, respectively.
7Note that since

∑
|zn| is a sequence of real numbers, all the criteria for convergence of numeric series of real numbers are, thus,

applicable.
8Due to the close similarity between these kind of functions and the multivariate functions, we will only expose the most remarkable

results about continuity of complex functions.
9The majority of definitions and results of sequences of real-valued functions can be extended conveniently to sequences of complex

functions. So in this document, we will only expose the most important ones.
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Lemma 49. Let (fn) ∈ D ⊆ C be a sequence of func-
tions. (fn) converges uniformly to f : D → C on D if and
only if lim

n→∞
sup {|fn(z) − f(z)| : z ∈ D} = 0.

Theorem 50 (Cauchy’s test). A sequence of functions
(fn) ∈ D ⊆ C converges uniformly to f : D → C on D ⊆ C
if and only if ∀ε > 0 ∃n0 ∈ N such that ∀n, m ≥ n0, we
have:

sup {|fn(z) − fm(z)| : z ∈ D} < ε

Theorem 51. Let (fn) ∈ D ⊆ C be a sequence of contin-
uous functions. If (fn) converges uniformly to f : D → C
on D, then f is continuous on D.

Series of functions

Definition 52. Let (fn) ∈ D ⊆ C be a sequence of func-
tions. The expression

∞∑
n=1

fn(z)

is the series of functions associated with (fn)10.

Definition 53. A series of functions
∑

fn(z) defined on
D ⊆ C converges pointwise on D if the sequence of partials
sums

FN (z) =
N∑

n=1
fn(z)

converges pointwise on D. If the pointwise limit of (FN )
is F (z), we say F is the sum of the series in a pointwise
sense.

Definition 54. A series of functions
∑

fn(z) defined on
D ⊆ C converges uniformly on D if the sequence of par-
tials sums

FN (z) =
N∑

n=1
fn(z)

converges uniformly on D. If the uniform limit of (FN )
is F (z), we say F is the sum of the series in an uniform
sense.

Theorem 55 (Cauchy’s test). A series of functions∑
fn(z) defined on D ⊆ C converges uniformly on D

if and only if ∀ε > 0 ∃n0 such that ∀M, N ≥ n0 (with
N ≤ M), we have:

sup
{∣∣∣∣∣

M∑
n=N

fn(z)
∣∣∣∣∣ : z ∈ D

}
< ε

Corollary 56. Let (fn) ∈ D ⊆ C be a sequence of func-
tions. If

∑
fn(z) is uniformly convergent on D ⊆ C, then

(fn) converges uniformly to zero on D.

Theorem 57. Let (fn) ∈ D ⊆ C be a sequence of con-
tinuous functions. If

∑
fn(z) is uniformly convergent on

D ⊆ C, then its sum function is also continuous on D.

Theorem 58 (Weierstraß M-test). Let (fn) ∈ D ⊆ C
be a sequence of functions such that |fn(z)| ≤ Mn ∀z ∈ D
and suppose that

∑
Mn < ∞. Then,

∑
fn(z) converges

uniformly on D.
Theorem 59 (Dirichlet’s test). Let (fn) ∈ X ⊆ C
and (gn) ∈ Y ⊆ C be two sequences of functions and
FN :=

∑N
n=1 fn(z). Suppose:

1. (FN ) is uniformly bounded on X.

2. (gn(z)) is a monotone sequence of real numbers and
converges uniformly to 0 on Y .

Then,
∑

fn(z)gn(z) converges uniformly on X × Y .
Theorem 60 (Abel’s test). Let (fn) ∈ X ⊆ C and
(gn) ∈ Y ⊆ C be two sequences of functions. Suppose:

1.
∑

fn(z) is uniformly convergent on X.

2. (gn) is a monotone and bounded sequence of real
numbers.

Then,
∑

fn(z)gn(z) converges uniformly on X × Y .
Theorem 61 (Dedekind’s test). Let (fn) ∈ X ⊆ C
and (gn) ∈ Y ⊆ C be two sequences of functions and
FN :=

∑N
n=1 fn(z). Suppose:

1. (FN ) is uniformly bounded on X.

2. (gn) converges uniformly to 0 on Y .

3.
∑

|gn(z) − gn+1(z)| converges uniformly on Y .
Then,

∑
fn(z)gn(z) converges uniformly on X × Y .

Theorem 62 (Du Bois-Reymond’s test). Let (fn) ∈
X ⊆ C and (gn) ∈ Y ⊆ C be two sequences of functions.
Suppose:

1.
∑

fn(z) is uniformly convergent on X.

2.
∑

|gn(z) − gn+1(z)| < ∞ ∀z ∈ Y .
Then,

∑
fn(z)gn(z) converges uniformly on X × Y .

Power series
Definition 63. Let (an) ∈ C be a sequence and z0 ∈ C. A
complex power series centered at z0 is a series of functions
of the form:

∞∑
n=0

an(z − z0)n

Theorem 64 (Cauchy-Hadamard theorem). Let∑
an(z − z0)n be a complex power series. Then, ∃!R ∈

[0, ∞] defined as

R =
(

lim sup
n→∞

n
√

|an|
)−1

∈ [0, ∞]

that satisfies the following properties:
1. If |z − z0| < R =⇒

∑
an(z − z0)n converges abso-

lutely.

2. If 0 ≤ r < R =⇒
∑

an(z − z0)n converges abso-
lutely and uniformly on {z ∈ C : |z − z0| ≤ r}.

10The majority of definitions and results of series of real-valued functions can be extended conveniently to series of complex functions.
So in this document, we will only expose the most important ones.
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3. If |z − z0| > R =⇒
∑

|an||z − z0|n diverges.

The number R is called radius of convergence of series.

Theorem 65 (Abel’s theorem). Let
∑

anzn be a com-
plex power series that converges uniformly on D ⊆ C.
Then, the series

∑
anzn converges uniformly on {rζ ∈ C :

r ∈ [0, 1] ∧ ζ ∈ D}, which is a cone with base D.

Corollary 66 (Abel’s theorem). Let
∑

anzn be a com-
plex power series with radius of convergence R ∈ (0, ∞)
and I ⊆ [0, 2π) be a non-empty connected set. Sup-
pose that the series

∑
anzn is uniformly convergent on

D := {Reiθ ∈ C : θ ∈ I}. Then, f(z) :=
∑

anzn converges
uniformly on the cone C with base D. In particular, we
have:

lim
z→Reiθ

z∈C

f(z) =
∞∑

n=0
anRneinθ ∀θ ∈ I

Proposition 67. Let f : C → C be the sum function
of a complex power series. Then f is continuous on the
domain of convergence of the series.

Exponential and logarithmic functions

Definition 68. For all z ∈ C, we define the complex ex-
ponential function as:

ez :=
∞∑

n=0

zn

n!

Proposition 69. The radius of convergence of ez is infi-
nite, and its image is C∗.

Proposition 70. Let z, w ∈ C. Then:

1. ez+w = ezew

2. ez = ez

3. |ez| = eRe z

Corollary 71 (Euler’s formula). Let x ∈ R. Then:

eix = cos x + i sin x

Proposition 72. Let z, w ∈ C and n ∈ Z. Then:

1. arg(zw) = arg z + arg w

2. arg(zn) = n arg z

Definition 73 (Polar form). Let z ∈ C, r = |z| and
θ = arg z. We define the polar form of z as:

z = reiθ = r(cos θ + i sin θ)

Corollary 74. Let z, w ∈ C. Then:

1. ez = 1 ⇐⇒ z = 2πki, k ∈ Z.

2. ez is periodic of period 2πi.

3. ez = ew ⇐⇒ z = w + 2πik, k ∈ Z.

Corollary 75. Let x ∈ R. Then:

cos x =
∞∑

n=0

(−1)nx2n

(2n)! sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!

Proposition 76 (De Moivre’s formula). Let θ ∈ R
and n ∈ Z. Then:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

Theorem 77. Let n ∈ N. Then, there are n n-th
roots of any complex number z ∈ C∗. Assuming z =
r(cos θ + i sin θ), these roots are:

n
√

r

[
cos
(

θ

n
+ 2π

n
k

)
+ i sin

(
θ

n
+ 2π

n
k

)]
for k = 0, . . . , n − 1.

Proposition 78. Let z ∈ C∗. Then, the equation ew = z
has infinitely many solutions.

Definition 79. Let z ∈ C. We define a complex natural
logarithm of z as a solution to the equation ew = z. That
is:

ln z := ln |z| + i arg z

Note that ln z is a multivalued function. We define the
principal value of ln z as:

Ln z := ln |z| + i Arg z

Trigonometric functions
Definition 80. Let z ∈ C. We define the complex sine
and complex cosine respectively as:

cos z = eiz + e−iz

2 =
∞∑

n=0

(−1)nz2n

(2n)!

sin z = eiz − e−iz

2i =
∞∑

n=0

(−1)nz2n+1

(2n + 1)!

Proposition 81. Let z, w ∈ C. Then:

1. (cos z)2 + (sin z)2 = 1

2. cos(−z) = cos z, sin(−z) = − sin z

3. cos(z ± w) = cos z cos w ∓ sin z sin w

4. sin(z ± w) = sin z cos w ± cos z sin w

Proposition 82. The functions cos z, sin z are un-
bounded and periodic of period 2π.

Proposition 83. Let z ∈ C. Then:

• cos z = 0 =⇒ z = π
2 + πk ∈ R, for some k ∈ Z.

• sin z = 0 =⇒ z = πk ∈ R, for some k ∈ Z.

Definition 84. We define the complex tangent, complex
secant, complex cosecant and complex cotangent respec-
tively as:

tan z = sin z

cos z
= −i e

iz − e−iz

eiz + e−iz ∀z ∈ C \
⋃
k∈Z

{π

2 + πk
}
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sec z = 1
cos z

= 2
eiz + e−iz ∀z ∈ C \

⋃
k∈Z

{π

2 + πk
}

csc z = 1
sin z

= 2i
eiz − e−iz ∀z ∈ C \

⋃
k∈Z

{πk}

cot z = 1
tan z

= ie
iz + e−iz

eiz − e−iz ∀z ∈ C \
⋃
k∈Z

{πk}

Definition 85. Let z ∈ C. We define the complex hyper-
bolic sine and complex hyperbolic cosine respectively as:

cosh z = ez + e−z

2 =
∞∑

n=0

z2n

(2n)!

sinh z = ez − e−z

2 =
∞∑

n=0

z2n+1

(2n + 1)!

Proposition 86. Let z, w ∈ C. Then:
1. (cosh z)2 − (sinh z)2 = 1

2. cosh(−z) = cosh z, sinh(−z) = − sinh z

3. cosh (z ± w) = cosh z cosh w ± sinh z sin w

4. sinh (z ± w) = sinh z cosh w ± cosh z sin w

Proposition 87. Let z = x + iy ∈ C. Then:
1. cos z = cos x cosh y − i sin x sinh y

2. sin z = sin x cosh y + i cos x sinh y

Definition 88. We define the complex hyperbolic tangent,
complex hyperbolic secant, complex hyperbolic cosecant and
complex hyperbolic cotangent respectively as:

tanh z = sinh z

cosh z
= ez − e−z

ez + e−z
∀z ∈ C \

⋃
k∈Z

{
i
(π

2 + πk
)}

sech z = 1
cosh z

= 2
ez + e−z

∀z ∈ C \
⋃
k∈Z

{
i
(π

2 + πk
)}

csch z = 1
sinh z

= 2
ez − e−z

∀z ∈ C \
⋃
k∈Z

{πki}

coth z = 1
tanh z

= ez + e−z

ez − e−z
∀z ∈ C \

⋃
k∈Z

{πki}

4. | Complex differentiation
Holomorphic functions
Definition 89. Let U ⊆ C be an open set, z0 ∈ U and
f : U → C be a function. We say that f is C-differentiable
at z0 if the following limit exists:

lim
z→z0

f(z) − f(z0)
z − z0

= lim
h→0

f(z0 + h) − f(z0)
h

In that case, the limit is called derivative of f at z0 and
it is denoted by f ′(z0).
Proposition 90. Let U ⊆ C be an open set, z0 ∈ U and
f : U → C be a function. Then, f is C-differentiable at
z0 if and only if ∃a + bi ∈ C such that ∀ε > 0 ∃δ > 0 such
that

|f(z0 + h) − f(z0) − (a + bi)h| ≤ ε|h|
whenever |h| < δ.

Proposition 91. Let U ⊆ C be an open set, z0 ∈ U and
f : U → C be a C-differentiable function at z0. Then, f is
continuous at z0.

Proposition 92. Let U ⊆ C be an open set, z0 ∈ U ,
f, g : U → C be two C-differentiable functions at z0 and
α, β ∈ C. Then:

1. αf + βg is C-differentiable at z0 and:

(αf + βg)′(z0) = αf ′(z0) + βg′(z0)

2. fg is C-differentiable at z0 and:

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0)

3. If g(z0) ̸= 0, then f/g is C-differentiable at z0 and:(
f

g

)′

(z0) = f ′(z0)g(z0) − f(z0)g′(z0)
g(z0)2

Theorem 93 (Chain rule). Let U, V ⊆ C be open sets,
z0 ∈ U , f : U → C be a C-differentiable function at z0
such that f(U) ⊆ V , and g : V → C be a C-differentiable
function at f(z0). Then, g◦f is C-differentiable at z0 and:

(g ◦ f)′(z0) = g′(f(z0))f ′(z0)

Proposition 94. Let z ∈ C. Then:

• (ez)′ = ez

• (cos z)′ = − sin z

• (sin z)′ = cos z

• (tan z)′ = 1 + (tan z)2

• (cosh z)′ = sinh z

• (sinh z)′ = cosh z

• (tanh z)′ = 1 − (tanh z)2

Definition 95. Let U ⊆ C be an open set and f : U → C
be a function. We say that f is holomorphic on U if f is
C-differentiable at each z ∈ U . We denote the set of all
holomorphic functions on U by H(U).

Definition 96. We say that f : C → C is an entire func-
tion if f is holomorphic on the whole complex plane.

Proposition 97. Let n ∈ N ∪ {0} and f : C → C be a
function defined as f(z) = zn. Then, f is holomorphic
and f ′(z) = nzn−1 ∀z ∈ C.

Corollary 98. Let p(z) = f(z)
g(z) ∈ C(z) be a rational

function. Then, p(z) is a holomorphic on the open set
C \ Z(g), where Z(g) = {z ∈ C : g(z) = 0}. In particular,
if p(z) ∈ C[z] is a polynomial, p(z) is holomorphic on C.
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Theorem 99. Let
∑∞

n=0 an(z − z0)n be a complex power
series with radius of convergence R ∈ [0, ∞]. Then, the
series

∑∞
n=1 nan(z − z0)n−1 has the same radius of conver-

gence R and if f(z) =
∑∞

n=0 an(z − z0)n for |z − z0| < R,
then f is holomorphic and:

f ′(z) =
∞∑

n=1
nan(z − z0)n−1 for |z − z0| < R

Corollary 100. Let
∑∞

n=0 an(z − z0)n be a complex
power series with radius of convergence R ∈ [0, ∞]. Then,
the series

∑∞
n=k n(n − 1) · · · (n − k + 1)an(z − z0)n−k has

the same radius of convergence R for all k ∈ N ∪ {0} and
if f(z) =

∑∞
n=0 an(z − z0)n for |z − z0| < R, then f (k) is

holomorphic and:

f (k)(z) =
∞∑

n=k

n(n − 1) · · · (n − k + 1)an(z − z0)n−k

for |z − z0| < R and ∀k ∈ N ∪ {0}. In particular
f (k)(z0) = k!ak ∀k ∈ N ∪ {0}.
Proposition 101. Let U ⊆ C be a connected open set
and f ∈ H(U) such that f ′(z) = 0 ∀z ∈ U . Then, f is
constant.

Determination of the logarithm and n-th roots
Definition 102. Let U ⊆ C be an open set and f : U −→
C∗ and g : U → C be functions. We say that g is a deter-
mination of ln f(z) if g is continuous on U and eg(z) = f(z)
∀z ∈ U . In particular, we say that g is a determination of
the logarithm if g is continuous on U and eg(z) = z ∀z ∈ U .
Proposition 103. Let θ ∈ [0, 2π), Lθ := {reiθ : r ∈ R≥0}
and U = C\Lθ. Then, there exists a determination of the
logarithm g : U → C defined as:

g(z) = ln |z| + i arg(z) arg(z) ∈ (θ, θ + 2π)

Theorem 104. Let U, V ⊆ C be open sets, f : U −→ C∗

be a function and g ∈ H(V ). Suppose f(U) ⊆ V ,
g(f(z)) = z and g′(f(z)) ̸= 0 ∀z ∈ U . Then, f is holo-
morphic on U and:

f ′(z) = 1
g′(f(z)) ∀z ∈ U

Proposition 105. Let U, V1, V2 ⊆ C be open sets, f :
U → C∗ be a continuous function and g1 : V1 −→ C∗,
g2 : V2 −→ C∗ be two determinations of the logarithm. If
W ⊆ V1 ∩ V2 ̸= ∅ is connected, then ∃k ∈ Z such that:

g2(z) = g1(z) + 2πik ∀z ∈ W

Corollary 106. Let U ⊆ C be an open set, f : U −→ C∗

be a holomorphic function and g : U → C be a determi-
nation of ln f . Then, g is holomorphic and:

g′(z) = f ′(z)
f(z) ∀z ∈ U

In particular, if g is a determination of the logarithm, then
g′(z) = 1

z .

Definition 107. Let U ⊆ C be an open set and f : U −→
C∗ be a continuous function. A determination of n

√
f is a

continuous function g : U → C such that gn = f .

Proposition 108. Let U ⊆ C be an open set and
f : U −→ C∗ be a continuous function. Suppose that
there exists a determination of log f . Then, there exists a
determination of the n

√
f given by:

n
√

f = e 1
n log f

Definition 109. Let z ∈ C \ (−∞, 0] and α ∈ C. We
define zα as zα := eα log z.

Cauchy-Riemann equations

Definition 110. Let U ⊆ C be an open set, z0 ∈ U and
f : U → C be a function. We define the partial derivatives
of f at z0 as

∂f

∂x
(z0) = lim

t→0

f(z0 + t) − f(z0)
t

∂f

∂y
(z0) = lim

t→0

f(z0 + it) − f(z0)
t

whenever the limits exist.

Proposition 111. Let U ⊆ C be an open set and
f : U → C be a function such that f(z) = u(z) + iv(z)
∀z ∈ U with u, v : U → R. Then, if z = x + iy, we have:

∂f

∂x
(z) = ∂u

∂x
(z) + i ∂v

∂x
(z)

∂f

∂y
(z) = ∂u

∂y
(z) + i∂v

∂y
(z)

Definition 112. Let U ⊆ C be set and f : U → C
be a function such that f(z) = u(z) + iv(z) ∀z ∈ U
with u, v : U → R. We define the associated multival-
ued function of f as the function F : R2 → R2 defined by
F(x, y) = (u(x, y), v(x, y)) := (u(x + iy), v(x + iy)).

Definition 113. Let U ⊆ C be an open set, z0 ∈ U ,
f : U → C be a function. We say that f is R-differentiable
at z0 ∈ U if and only if there exists a R-linear function
L : C → R2 such that:

lim
h+ki→0

|f(z0 + h + ki) − f(z0) − L(h + ki)|
|h + ki| = 011

In that case, the function L is called differential of f at z0
and it is denoted by Df(z0)12.

Proposition 114. Let U ⊆ C be an open set, z0 ∈ U and
f : U → C be a R-differentiable function at z0 such that
f(z) = u(z) + iv(z) ∀z ∈ U with u, v : U → R. Then:

Df(z0) =
(

∂u
∂x (z0) ∂u

∂y (z0)
∂v
∂x (z0) ∂v

∂y (z0)

)
13

11Here we shall think the outcomes of L inside C instead of R2.
12That is, the R-differentiability is the usual one if we think f inside R2 instead of inside C.
13From now on, if we use the matrix notation in the complex plane, that should be interpreted as the first row being the real part and

the second row being the imaginary part.
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Theorem 115 (Cauchy-Riemann theorem). Let U ⊆
C be an open set, f : U → C be a function and z0 ∈ U .
Then, f is C-differentiable and f ′(z0) = a + bi if and only
if f is R-differentiable and:

Df(z0) =
(

a −b
b a

)
Which is equivalent to:

∂u

∂x
(z0) = ∂v

∂y
(z0) ∂u

∂y
(z0) = − ∂v

∂x
(z0) (1)

These equations are called Cauchy-Riemann equations.
Corollary 116. Let U ⊆ C be an open set, u, v : U → C
be functions such that their partial derivatives exist, they
are continuous and they satisfy Eq. (1). Then, f = u + iv
is holomorphic on U .
Definition 117. Let U ⊆ C be an open set, f : U → C
be a function. We define the Wirtinger operators as:

∂f := ∂f

∂z
:= 1

2

(
∂f

∂x
− i∂f

∂y

)
∂f := ∂f

∂z
:= 1

2

(
∂f

∂x
+ i∂f

∂y

)
Proposition 118. Let U ⊆ C be an open set, f, g : U →
C be R-differentiable functions, z ∈ U and w = g(z).
Then:

1. ∂(f ◦ g)(z) = ∂f(w)∂g(z) + ∂f(w)∂g(z)

2. ∂(f ◦ g)(z) = ∂f(w)∂g(z) + ∂f(w)∂g(z)
Proposition 119. Let U ⊆ C be an open set, z0 ∈ U and
f : U → C be a C-differentiable function at z0. Then, the
Cauchy-Riemann equations of Eq. (1) can also be written
as:

∂f(z0) = 0
Proposition 120. Let U ⊆ C be an open set, f : U → C
be a function and z0 ∈ U . We say that f is R-differentiable
at z0 ∈ U if and only if there exist x, y ∈ C such that:

lim
h→0

f(z0 + h) − f(z0) − xh − yh

h
= 0

In that case, we have x = ∂f(z0) and y = ∂f(z0).
Proposition 121. Let U ⊆ C be an open set and
f ∈ H(U) such that f = u + iv with u, v : U → R. Then:

|f ′(z)|2 = det D(u, v)(z) =
(

∂u

∂x

)2
+
(

∂u

∂y

)2

Proposition 122. Let U ⊆ C be an open connected set
and f ∈ H(U) such that it satisfies one of the following
properties:

• Re f = const.

• Im f = const.

• |f | = const.

• f(U) is contained in a line.

• f(U) is contained in a circle.
Then, f is constant.

5. | Complex integration

Definition 123. Let f : [a, b] ⊂ R → C be a function
such that f = u + iv with u, v : [a, b] → R. We define the
integral of f on the interval [a, b] as:

bˆ

a

f(t) dt :=
bˆ

a

u(t) dt + i
bˆ

a

v(t) dt

Proposition 124. Let f, g : [a, b] ⊂ R → C be functions
and α ∈ C. Then:

1.
bˆ

a

(f + g)(t) dt =
bˆ

a

f(t) dt +
bˆ

a

g(t) dt

2.
bˆ

a

(αf)(t) dt = α

bˆ

a

f(t) dt

3.

∣∣∣∣∣∣
bˆ

a

f(t) dt

∣∣∣∣∣∣ ≤
bˆ

a

|f(t)| dt

4.
aˆ

b

f(t) dt = −
bˆ

a

f(t) dt

Proposition 125. Let f : [a, b] ⊂ R → C be a function
and φ : [a, b] → R be a change of variable of class C1 such
that φ([a, b]) ⊆ [a, b]. Then:

bˆ

a

f(φ(t))φ′(t) dt =
φ(b)ˆ

φ(a)

f(t) dt

Curves

Definition 126. Let γ1 : [a, b] → C, γ2 : [c, d] → C
be two curves14 of class C1 such that γ1(t1) = γ2(t2) =
z0 ∈ C for some t1 ∈ [a, b] and t2 ∈ [c, d]. Suppose that
γ1

′(t1), γ2
′(t2) ̸= 0. We define the angle between γ1 and

γ2 at z0 as
arg γ1

′(t1) − arg γ2
′(t2)

which does not depend on the determination of the argu-
ment.

Definition 127. Let γ : [a, b] → U be a piecewise path
of class C1. We define the inverse path γ− : [a, b] → C as
γ−(t) = γ(a + b − t).

Definition 128. Let γ : [a, b] → U be an injective curve.
We say that γ is a triangular path if γ∗ = ∂ T , where
T ⊂ C is a triangle. The domain delimited by T is de-
noted by D(γ) := T .

14Recall ??.
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Line integration

Definition 129. Let U ⊆ C be an open set, f : U ⊂ R →
C be a continuous function, γ : [a, b] → U be a rectifiable
curve and {t0, . . . , tn} be a partition of [a, b]. We define
the line integral of f along γ as:

ˆ

γ

f(z) dz := lim
n→∞

n−1∑
j=0

f(γ(ηj))(γ(tj+1) − γ(tj))

where ηj ∈ [tj , tj+1] ∀j ∈ {0, 1, . . . , n − 1}.

Definition 130. Let U ⊆ C be an open set, f : U ⊂
R → C be a continuous function and γ : [a, b] → U be a
piecewise curve of class C1. Suppose {t0, . . . , tn} is par-
tition of [a, b] with the property that γ ∈ C1([tj , tj+1])
∀j ∈ {0, 1, . . . , n − 1}. Then:

ˆ

γ

f(z) dz =
n−1∑
j=0

tj+1ˆ

tj

f(γ(t))γ′(t) dt

In particular, if γ ∈ C1([a, b]), then:

ˆ

γ

f(z) dz =
bˆ

a

f(γ(t))γ′(t) dt

Theorem 131. Let U ⊆ C be an open set, f : U ⊂ R → C
be a continuous function and γ : [a, b] → U be a piece-
wise curve of class C1. Suppose there exists a function
F ∈ H(U) such that F ′(z) = f(z) ∀z ∈ U . Then:

ˆ

γ

f(z) dz = F (γ(b)) − F (γ(a))

In particular if γ is a closed curve, then
´

γ
f(z) dz = 0.

Corollary 132. There is no determination of the loga-
rithm in any set of the form {z ∈ C : 0 < r ≤ |z| ≤ R} for
r, R ∈ R>0 with r < R.

Proposition 133. Let U ⊆ C be an open set, f : U ⊂
R → C be a continuous function and γ : [a, b] → U be a
piecewise curve of class C1. Let L(γ) be the length of γ.
Then:

L(γ) =
bˆ

a

|γ′(t)| dt

Proposition 134. Let U ⊆ C be an open set, f : U ⊂
R → C be a continuous function, γ1 : [a, b] → U be a
piecewise curve of class C1 and γ2 be a reparametrization
of γ1.

• If the parametrization is positive15, then:
ˆ

γ1

f(z) dz =
ˆ

γ2

f(z) dz

• If the parametrization is negative, then:
ˆ

γ1

f(z) dz = −
ˆ

γ2

f(z) dz

In particular, for any piecewise curve of class C1

γ : [a, b] → U we have:
ˆ

γ

f(z) dz = −
ˆ

γ−

f(z) dz

Definition 135. Let U ⊆ C be an open set, f : U ⊂
R → C be a continuous function and γ : [a, b] → C be
a piecewise curve of class C1 with respect to the parti-
tion {t0, . . . , tn} of [a, b]. We define the line integral with
respect to the length as:

ˆ

γ

f(z)|dz| :=
n−1∑
j=0

tj+1ˆ

tj

f(γ(t))|γ′(t)| dt

Definition 136. Let U ⊆ C be an open set, f : U ⊂
R → C be a continuous function and γ : [a, b] → C be a
piecewise curve of class C1. We define the following line
integral with respect to z:

ˆ

γ

f(z) dz :=
ˆ

γ

f(z) dz

Proposition 137. Let U ⊆ C be an open set, f : U ⊂
R → C be a continuous function and γ : [a, b] → C be a
piecewise curve of class C1. Then:

1.
ˆ

γ

|dz| = L(γ)

2.

∣∣∣∣∣∣
ˆ

γ

f(z) dz

∣∣∣∣∣∣ ≤
ˆ

γ

|f(z)||dz|

6. | Local Cauchy theory
Theorem 138 (Goursat’s theorem). Let U ⊆ C be an
open set, f ∈ H(U) and γ be a triangular path such that
D(γ) ⊆ U . Then:

ˆ

γ

f(z) dz = 0

Theorem 139 (Local Cauchy’s integral theorem).
Let U ⊆ C be an open convex set, f ∈ H(U) and
γ : [a, b] → C be a closed piecewise curve of class C1 with
γ∗ ⊂ U . Then: ˆ

γ

f(z) dz = 0

15Recall ??.
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Lemma 140. Let U ⊆ C be an open convex set, z0 ∈ U ,
f ∈ H(U \ {z0}) and γ : [a, b] → C be a closed piece-
wise curve of class C1 such that γ∗ ⊆ U \ {z0}. Suppose
lim

z→z0
f(z)(z − z0) = 0. Then:

ˆ

γ

f(z) dz = 0

Definition 141. We define the Fresnel integrals S(z) and
C(z) as:

S(z) =
zˆ

0

sin
(
ζ2)dζ C(z) =

zˆ

0

cos
(
ζ2)dζ

Index of a curve
Theorem 142. Let γ : [a, b] → C be a closed curve
and z0 /∈ γ∗. Then, there exist an open disc D0 cen-
tered at z0 such that D0 ∩ γ∗ = ∅, and a determination
Φ : [a, b] × D0 → C of ln(γ(t) − z0). Moreover, given
t ∈ [a, b] the function z 7→ Φ(t, z) is holomorphic and for
each z ∈ D0 the function t 7→ Φ(t, z) has the same differ-
entiability as γ.
Definition 143. Let γ : [a, b] → C be a closed curve,
z0 /∈ γ∗ and Φ : [a, b] × D0 → C be a determination of
ln(γ(t) − z0). We define the index (or winding number) of
γ with respect to z0, denoted by Ind(γ, z0), as:

Ind(γ, z0) := Φ(b, z0) − Φ(a, z0)
2πi

16

Proposition 144. Let γ : [a, b] → C be a closed curve
and z0 /∈ γ∗. Then:

1. The value Ind(γ, z0) ∈ Z does not depend on the
determination of ln(γ(t) − z0) chosen.

2. Ind(γ, z0) ∈ Z.

3. Ind(γ−, z0) = − Ind(γ, z0).

4. The function
C \ γ∗ −→ Z

z 7−→ Ind(γ, z)

is continuous and therefore it is constant on each
connected component of C \ γ∗.

5. If z ∈ C\γ∗ is in the unbounded component of C\γ∗,
then Ind(γ, z) = 0.

Theorem 145. Let γ : [a, b] → C be a closed piecewise
curve of class C1 and z0 /∈ γ∗. Then:

Ind(γ, z0) = 1
2πi

ˆ

γ

dz

z − z0

Theorem 146 (Local Cauchy’s integral formula).
Let U ⊆ C be an open convex set, f ∈ H(U), γ : [a, b] → C
be a closed piecewise curve of class C1 and z0 /∈ γ∗. Then:

f(z0) · Ind(γ, z0) = 1
2πi

ˆ

γ

f(z)
z − z0

dz

Corollary 147. Let U ⊆ C be an open convex set,
f ∈ H(U), z0 ∈ C and r ∈ R≥0. Then:

f(z0) = 1
2π

2πˆ

0

f(z0 + reiθ) dθ

Lemma 148. Let U ⊆ C be an open, (fn) ∈ U ⊆ C be
a sequence of continuous functions, f : U → C be such
that (fn) converge uniformly to f over compact sets in U ,
and γ : [a, b] → C be a closed piecewise curve of class C1.
Then:

lim
n→∞

ˆ

γ

fn(z) dz =
ˆ

γ

f(z) dz

Corollary 149. Let z0 ∈ C and f(z) =
∑

an(z − z0)n.
Then:

zˆ

0

f(ζ) dζ =
∞∑

n=0
an

(z − z0)n+1

n + 1

Analytic functions

Definition 150. Let U ⊆ C be an open set and f : U → C
be a function. We say that f is analytic on U if for each
z0 ∈ U , there exists a power series

∑∞
n=0 an(z − z0)n with

radius of convergence Rz0 > 0 such that

f(z) =
∞∑

n=0
an(z − z0)n

in a neighbourhood of z.

Theorem 151. Let U ⊆ C be an open set and f ∈ H(U).
Then, ∀z0 ∈ U there exists a power series

∑
an(z − z0)n

with radius of convergence Rz0 ≥ d(z0, ∂ U) > 0 such that:

f(z) =
∞∑

n=0
an(z − z0)n

That is, f is analytic.

Corollary 152. Let U ⊆ C be an open set and f : U → C
be a function. Then, f is analytic on U if and only if f is
holomorphic on U .

Corollary 153 (Local Cauchy’s integral formula for
derivatives). Let U ⊆ C be an open set, f ∈ H(U)
and z0 ∈ U , r ∈ R>0 such that D(z0, r) ⊂ U . Let
γ(t) = z0 + reit, t ∈ [0, 2π]. Then:

f (n)(z0) = n!
2πi

ˆ

γ

f(z)
(z − z0)n+1 dz

Corollary 154. Let f ∈ H(C). Then, for all z0 ∈ C there
exists a power series

∑
an(z − z0)n with infintie radius of

convergence such that:

f(z) =
∞∑

n=0
an(z − z0)n

16Intuitively it can be though as the number of turns made by γ around z0.
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Corollary 155. Let f(z) =
∑

an(z − z0)n be a power
series with radius of convergence R ∈ (0, ∞). Then, f is
analytic on D(z0, R) and ∀w0 ∈ D(z0, R) we have

f(z) =
∞∑

n=0
bn(z − w0)n

whenever |z − w0| < R − |z0 − w0|. Here the coefficients
bn can be determined with the formula bn = f(n)(w0)

n! .

Some important theorems

Proposition 156 (Cauchy’s inequality). Let U ⊆ C
be an open set, f ∈ H(U) and z0 ∈ U , r ∈ R>0 such that
D(z0, r) ⊂ U . Let M = sup{|f(z)| : |z − z0| = r}. Then:∣∣∣f (n)(z0)

∣∣∣ ≤ n!M
rn

Theorem 157 (Liouville’s theorem). Let f ∈ H(C)
and bounded. Then, f is constant.

Corollary 158. Let f ∈ H(C) such that Re(f(z)) ≥ 0
∀z ∈ C. Then, f is constant.

Theorem 159 (Fundamental theorem of algebra).
Let p(z) = a0 + a1z · · · + anzn ∈ C[z] with an ̸= 0. Then,
∃α ∈ C such that p(α) = 0.

Corollary 160. C is an algebraically closed field.

Proposition 161 (Cardano-Vieta’s formulas). Let
p(z) = a0 + a1z · · · + anzn ∈ C[z] with an ̸= 0 and with
roots z1, . . . , zn. Then, we have the following relations:

n∑
i=1

zi = −an−1

an∑
1≤i<j≤n

zizj = an−2

an

...

z1 · · · zn = (−1)n a0

an

Theorem 162 (Morera’s theorem). Let U ⊆ C be
an open set, f : U → C be a continuous function such
that

ˆ

γ

f(z) dz = 0 for all triangular path γ with γ∗ ⊂ U .

Then, f is analytic.

Theorem 163. Let f ∈ H(C) be non-constant. Then,
f(C) = C.

Corollary 164. Let f = u + iv ∈ H(C) be non-constant.
Then, u(C) = R and v(C) = R.

Theorem 165 (Weierstraß’ theorem). Let U ⊆ C be
an open set, (fn) ∈ H(U) be a sequence of functions such
that they converge uniformly to f : U → C over compact
sets of U . Then, f ∈ H(U) and ∀k ∈ N, (fn

(k)) converge
uniformly to f (k) over compact sets.

Corollary 166. Let U ⊆ C be an open set, (fn) ∈
H(U) be a sequence of functions such that they con-
verge uniformly to 0 over compact sets of U , and f(z) =∑∞

n=0 fn(z). Then, f ∈ H(U) and:

f (k)(z) =
∞∑

n=0
fn

(k)(z)

7. | Local properties of holomorphic
functions

Zeros of holomorphic functions
Definition 167. Let U ⊆ C be an open set and f ∈ H(U).
We denote by Z(f) the set of all zeros of f .

Theorem 168. Let U ⊆ C be an open connected set and
f ∈ H(U). Then, the following statements are equivalent:

1. f(z) = 0.

2. ∃z0 ∈ U such that f (n)(z0) = 0 ∀n ∈ N ∪ {0}.

3. Z(f)′ ∩ U ̸= ∅.

Corollary 169. Let U ⊆ C be an open connected set
and f ∈ H(U) such that f is not identically zero. Then,
if z0 ∈ U is a zero of f , ∃m ∈ N and g ∈ H(U) such that
g(z0) ̸= 0 and:

f(z) = (z − z0)m
g(z)

The value of m is called multiplicity of z0. In particular,
the zeros of f are isolated.

Theorem 170 (Analytic continuation theorem). Let
U ⊆ C be an open connected set and f, g ∈ H(U) such
that {z ∈ U : f(z) = g(z)}′ ∩ U ̸= ∅. Then, f(z) = g(z)
∀z ∈ U .

Corollary 171. Let U ⊆ C be an open connected set,
f ∈ H(U) be not identically zero. Then, Z(f) is count-
able.

Maximum and minimum principles
Theorem 172 (Maximum modulus principle). Let
U ⊆ C be an open connected set, f ∈ H(U) and a ∈ U
such that |f(a)| ≥ |f(z)| ∀z ∈ D(a, r) ⊂ U , for some
r ∈ R>0. Then, f is constant.

Corollary 173 (Minimum modulus principle). Let
U ⊆ C be an open connected set, f ∈ H(U) such
that it doesn’t have zeros on U and a ∈ U such that
0 < |f(a)| ≤ |f(z)| ∀z ∈ D(a, r) ⊂ U , for some r ∈ R>0.
Then, f is constant.

Corollary 174. Let U ⊆ C be an open bounded set and
f ∈ H(U). Then:

1. |f | attains its absolute maximum on ∂ U , that is:

max{|f(z)| : z ∈ U} = max{|f(z)| : z ∈ ∂ U}

2. If f doesn’t have zeros on U , |f | attains its absolute
minimum on ∂ U , that is:

min{|f(z)| : z ∈ U} = min{|f(z)| : z ∈ ∂ U}
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Harmonic functions

Definition 175. Let U ⊆ C ∼= R2 be an open set and
u : U → R be a function of class C2. We say that u is
harmonic if ∆u(z) = 0 ∀z ∈ U17.
Proposition 176. Let U ⊆ C be an open set and
f ∈ H(U) such that f = u + iv with u, v : U → R. Then,
u and v are harmonic and u, v ∈ C∞(U).
Definition 177. Let U ⊆ Rn be a set. We say that U is
a domain or region if U is open and connected.
Definition 178. Let S ⊆ Rn be a subset and s0 ∈ S. We
say that S is a star domain with respect to s0 if ∀s ∈ S,
the line segment from s0 to s lies in S.
Definition 179. Let U ⊆ Rn be a subset. We say that
U is convex if it is a star domain with respect to x ∈ U ,
for all x ∈ U .
Proposition 180. Let U ⊆ C be a star domain with
respect to z0 = x0 + iy0 ∈ U and u : U → R be a har-
monic function. Then, there exists a harmonic function
v : U → R such that f = u + iv is holomorphic. That
function v is:

v(x + iy) =
yˆ

y0

∂u

∂x
(x + it) dt −

xˆ

x0

∂u

∂y
(t + iy0) dt + C

for some constant C ∈ R.
Theorem 181 (Mean value property). Let U ⊆ C,
u : U → C be a harmonic function, a ∈ C and r ∈ R>0
such that D(a, r) ⊂ U . Then:

u(a) = 1
2π

2πˆ

0

u(a + reit) dt

8. | General Cauchy theory
Chains and homology
Definition 182. Let γ1 : [a, b] → C, γ2 : [c, d] → C be
two paths and n ∈ Z. We define the path γ1 + γ2 as the
concatenation of γ1 and γ2. That is:

(γ1 + γ2)(t) :=
{

γ1(2t) if a
2 ≤ t ≤ b

2
γ2(2t − b) if c+b

2 < t ≤ d+b
2

We define the path nγ1 as the path:

(nγ1)(t) :=

γ1 +
(n)
· · · + γ1 if n ≥ 0

γ1
− +

(|n|)
· · · + γ1

− if n < 0

Definition 183. Let γ1, . . . , γk be paths. A chain of paths
is a linear combination

Γ = n1γ1 + · · · + nkγk

where ni ∈ Z ∀i = 1, . . . , k. We define the image of Γ, Γ∗,
as:

Γ∗ :=
k⋃

i=1
γi

∗

Definition 184. Let Γ = n1γ1 + · · · + nkγk be a chain of
paths. We say that Γ is a cycle if the paths γi are closed
∀i = 1, . . . , k.

Definition 185. Let Γ = n1γ1 + · · · + nkγk be a cycle
and z0 ∈ C \ γ∗. We define the index of Γ with respect to
z0 as:

Ind(Γ, a) :=
k∑

i=1
ni Ind(γi, a)

Definition 186. Let U ⊆ C be an open set and Γ be a
cycle such that Γ∗ ⊂ U . We say that Γ is homologous to
zero on U , and we denoted it by Γ ≈

U
0, if Ind(Γ, z) = 0

∀z ∈ C \ U .

Lemma 187. Let U ⊆ C be an open set and f ∈ H(U).
Consider the function φ : U × U → C defined as:

φ(z, w) =
{

f(z)−f(w)
z−w if z ̸= w

f ′(z) if z = w

Then, φ is continuous and ∀w0 ∈ U the function φ(·, w0)
is holomorphic on U .

Lemma 188. Let U, V ⊆ C be open sets, g : U × V → C
be a continuous function and Γ be a chain of path of class
C1 with Γ∗ ⊂ V . Suppose that given w0 ∈ V we have
g(·, w0) ∈ H(U). Then, F (z) :=

´
Γ g(z, w) dw is holomor-

phic on U and

F ′(z) =
ˆ

Γ

∂g

∂z
(z, w) dw

Theorem 189 (General Cauchy’s integral formula).
Let U ⊆ C be an open set, f ∈ H(U), Γ be a piecewise
cycle of class C1 with Γ∗ ⊂ U and z0 ∈ U \ Γ∗. Suppose
that Γ ≈

U
0. Then:

f(z0) · Ind(Γ, z0) = 1
2πi

ˆ

Γ

f(z)
z − z0

dz

If Γ = n1γ1 +· · ·+nkγk, the previous formula is equivalent
to:

f(z0)
k∑

i=1
ni Ind(γi, z0) = 1

2πi

k∑
i=1

ni

ˆ

γi

f(z)
z − z0

dz

Theorem 190 (Cauchy’s integral theorem). Let U ⊆
C be an open set, f ∈ H(U) and Γ : [a, b] → C be a piece-
wise cycle of class C1 with Γ∗ ⊂ U . Suppose that Γ ≈

U
0.

Then: ˆ

Γ

f(z) dz = 0

17Recall ??.
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Corollary 191 (General Cauchy’s integral formula
for derivatives). Let U ⊆ C be an open set, f ∈ H(U),
Γ be a piecewise cycle of class C1 with Γ∗ ⊂ U and
z0 ∈ U \ Γ∗. Suppose that Γ ≈

U
0. Then:

f (n)(z0) · Ind(Γ, z0) = n!
2πi

ˆ

Γ

f(z)
(z − z0)n+1 dz

Theorem 192. Let U ⊆ C be an open connected set and
f ∈ H(U). Let z1, . . . , zn be the zeros of f (counting rep-
etitions) and Γ ≈

U
0 be a piecewise cycle of class C1 such

that Γ∗ ∩ {z1, . . . , zn} = ∅. Then:

1
2πi

ˆ

Γ

f ′(z)
f(z) dz =

n∑
j=1

Ind(Γ, zj) =:
∑

Ind(Γ, f−1(0))

where the last expression is a new notation that we will
sometimes use in order to simplify the lecture.

Corollary 193. Let U ⊆ C be an open connected set,
f ∈ H(U), w ∈ C and Γ ≈

U
0 be a piecewise cycle of class

C1 such that Γ∗ ∩ f−1(w) = ∅. Then:

1
2πi

ˆ

Γ

f ′(z)
f(z) − w

dz =
∑

Ind(Γ, f−1(w))

Moreover we have that:

Ind(f ◦ Γ, w) =
∑

Ind(Γ, f−1(w))

Local behaviour and open mapping theorems
Theorem 194 (Local behaviour of a holomorphic
function). Let a ∈ C, r ∈ R>0 and f ∈ H(D(a, r)) be
a non constant function. Suppose f(a) = b ∈ C and so
we can write f(z) − b = (z − a)m

g(z) with m ∈ N and
g ∈ H(D(a, r)) with g(a) ̸= 0. Then, there exists ε > 0
and δ > 0 such that D(a, ε) ⊂ D(a, r) and all the points
of D(b, δ)\{b} have m preimages in D(a, ε) of multiplicity
1.

Theorem 195 (Open mapping theorem). Let U ⊆ C
be an open connected set and f ∈ H(U) be a non-constant
function. Then, f is open.

Corollary 196. Let U ⊆ C be an open set, f ∈ H(U)
and z0 ∈ U such that f ′(z0) ̸= 0. Then, f is a local
homeomorphism at z0.

Corollary 197. Let U ⊆ C be an open set and f ∈ H(U)
be an injective function. Then, V := f(U) ⊆ C is open
and ∀z ∈ U , f ′(z) ̸= 0, f−1 ∈ H(V ) and:

(f−1)′(w) = 1
f ′(f−1(w)) ∀w ∈ V

Theorem 198. Let a ∈ C, r ∈ R>0 and f ∈ H(D(a, r))
be a non constant function. Suppose f(a) = b ∈ C with
multiplicity m > 1, that is, we can write f(z) − b =
(z − a)m

g(z) with m > 1 and g ∈ H(D(a, r)) with
g(a) ̸= 0. Then, there exists ε > 0 and δ > 0 such
that g(D(a, ε)) ⊂ D(g(a), |g(a)|) and so ∃h ∈ H(D(a, r))
such that hm = g and f(z) = b + F (z)m, where F (z) =
(z − a)h(z) and F ′(a) ̸= 0.

Definition 199. Let U ⊆ C be an open connected set.
We say that U is simply connected if C∞ \ U is connected.

Proposition 200. Let U ⊆ C be an open connected set.
Then, U is simply connected is and only if for all closed
path γ with γ∗ ⊂ U we have γ ≈

U
0.

Definition 201. Let U ⊆ C be an open set. We say
that U is simply connected if each connected component
is simply connected.

Theorem 202. Let U ⊆ C be an open simply connected
set and f ∈ H(U). Then, f has a primitive.

Theorem 203. Let U ⊆ C be a simply connected domain,
f ∈ H(U) be such that f(z) ̸= 0 ∀z ∈ U . Then, there exist
a determination of log f . Moreover that determination is
unique if we fix its value at a point z0 ∈ U .

Isolated singularities of holomorphic functions

Definition 204. Let a ∈ C, r ∈ R>0 and f : D(a, r) \
{a} → C be a function. We say that a is an isolated sin-
gularity of f if ∃ε > 0 such that f ∈ H(D(a, ε) \ {a}).

Definition 205 (Removable singularity). Let a ∈ C,
r ∈ R>0 and f : D(a, r) \ {a} → C be a function with
an isolated singularity at a. We say that a is a removable
singularity of f if there exists g ∈ H(D(a, R)) such that
f(z) = g(z) ∀z ∈ D(a, r) \ {a}.

Theorem 206 (Riemann’s theorem on removable
singularities). Let a ∈ C, r ∈ R>0 and f ∈ H(D(a, r) \
{a}). Then, a is a removable singularity of f if and only
if

lim
z→a

f(z)(z − a) = 0

Definition 207. Let a ∈ C, r ∈ R>0 and f ∈ H(D(a, r)\
{a}) be such that it has an isolated singularity at a. We
say that a is a pole of f if lim

z→a
|f(z)| = ∞.

Proposition 208 (Pole). Let a ∈ C, r ∈ R>0 and
f ∈ H(D(a, r) \ {a}) be such that it has a pole at a.
Then, we can write f as:

f(z) = A−m

(z − a)m + · · · + A−1

z − a
+

∞∑
n=0

An(z − a)n

where Ai ∈ C for i ∈ {−m, −m + 1, · · · } and m ∈ N. The
value of m is called order of the pole a. If m = 1, we say
that the pole is simple. The term A−1 is called residue of
f at a and it is denoted as Res(f, a) := A−1. We denote
by P (f) the set of all poles of f .

Definition 209 (Essential singularity). Let a ∈ C,
r ∈ R>0 and f ∈ H(D(a, r) \ {a}) be such that it has an
isolated singularity at a. If a is neither a removable singu-
larity nor a pole, we say that a is an essential singularity
of f .
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Definition 210. Let (zn)n∈Z ∈ C be a sequence. We say
that a series of the form of

+∞∑
n=−∞

zn

is convergent, absolutely convergent or uniformly conver-
gent if and only if the series

∞∑
n=1

z−n and
∞∑

n=0
zn

are both convergent, absolutely convergent or uniformly
convergent, respectively.

Theorem 211 (Laurent series theorem). Let a ∈ C,
R1, R2 ∈ R>=0 ∪ {∞} with R1 < R2 and consider the
crown C = {z ∈ C : R1 < |z − a| < R2}. Let f ∈ H(C).
Then:

f(z) =
+∞∑

n=−∞
an(z − a)n ∀z ∈ C

and the coefficients are given by:

an = 1
2πi

ˆ

γr

f(z)
(z − a)n+1 dz

where γr(t) = a + reit, t ∈ [0, 2π] and r ∈ (R1, R2) be any
value of that interval. This expression is called Laurent
series of f . Moreover we have the following properties:

1. If z ∈ C, then Laurent series converges absolutely at
z.

2. Given R1 < r1 ≤ r2 < R2, the Laurent series
converges absolutely and uniformly on the crown
{z ∈ C : r1 ≤ |z − z0| ≤ r2}.

Corollary 212. Let U ⊆ C be an open set, a ∈ U ,
f ∈ H(U \ {a}) be a function with an isolated singular-
ity at a and f =

∑+∞
n=−∞ an(z − a)n be its Laurent series

centered at a. Then:

1. The following statements are equivalent:

i) a is a removable singularity.
ii) lim

z→a
f(z) = w ∈ C.

iii) an = 0 ∀n ≤ −1.

2. The following statements are equivalent:

i) a is a pole of order m ∈ N.

ii) lim
z→a

∣∣∣f(z)(z − a)k
∣∣∣ = ∞ ∀k ∈ {0, 1, . . . , m − 1}.

iii) an = 0 ∀n ≤ −m − 1 and a−m ̸= 0.

3. The following statements are equivalent:

i) a is an essential singularity.
ii) lim

z→a
f(z) doesn’t exist.

iii) There exist infinite n ∈ N such that a−n ̸= 0.

Corollary 213 (Partial fraction decomposition
theorem). Let p, q ∈ C[z] such that q(z) =
(z − a1)n1 · · · (z − ak)nk . Suppose that:

p(z)
q(z) = An1

1
(z − a1)n1 + · · · + A1

1
z − a1

+ h1(z)

h1(z) = An2
2

(z − a2)n2 + · · · + A1
2

z − a2
+ h2(z)

...

hk(z) = Ank

k

(z − ak)nk
+ · · · + A1

k

z − ak
+ g(z)

And define sj :=
∑ni

i=1
Ai

j

(z−aj)i . Then, g(z) = p(z)
q(z) −∑k

j=1 sj(z) is a polynomial.

Residues theorem and applications
Theorem 214 (Residues theorem). Let U ⊆ C be an
open set, A ⊂ U such that A′∩U = ∅18, f ∈ H(U \A) and
Γ≈

U
0 be a piecewise cycle of class C1 such that Γ∗ ⊂ U \A.

Then:
1

2πi

ˆ

Γ

f(z) dz =
∑
a∈A

Res(f, a) Ind(Γ, a)

Proposition 215. Let U ⊆ C be an open set, a ∈ U ,
f ∈ H(U \ {a}) be a function with a pole of order m at a.
Then:

Res(f, a) = 1
(m − 1)! lim

z→a

dm−1

dzm−1 [(z − a)m
f(z)]

In particular, if f(z) = g(z)
h(z) with g, h ∈ H(U) and the pole

is simple, then:
Res(f, a) = g(a)

h′(a)
Proposition 216 (Calculation of integrals). For the
following cases use the function and cycle given to find the
integrals using the Residues theorem.

1.
2πˆ

0

g(cos x, sin x) dx, g ∈ R(x, y).

i) Function: f(z) = g
(

z+ 1
z

2 ,
z− 1

z

2i

)
ii) Cycle: Γ(t) = eit, t ∈ [0, 2π]

2.
+∞ˆ

−∞

g(x) dx, g = p
q ∈ C(x) such that q(x) ̸= 0 ∀x ∈ R

and deg q ≥ deg p + 2.

i) Function: f(z) = g(z)
ii) Cycle: Γ(t) = γ1(t) + γ2(t), where:{

γ1(t) = t t ∈ [−R, R]
γ2(t) = Reit t ∈ [0, π]

and R ∈ R>0.
18That is, all points of A are isolated.
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3.
+∞ˆ

0

g(x)
xα

dx, g ∈ R(x) and α ∈ R be such that the

integral converges.

i) Function: f(z) = g(z)z−α

ii) Cycle: Γ(t) =
∑4

i=1 γi(t), where:
γ1(t) = t t ∈ [ε, R]
γ2(t) = Reit t ∈ [0, 2π − δ]
γ3(t) = te−iδ t ∈ [R, ε]
γ4(t) = εeit t ∈ [2π − δ, 0]

and ε, δ, R ∈ R>0.

4.
+∞ˆ

0

g(x) log x dx, g ∈ R(x) such that it doesn’t have

singularities on R and lim
x→0

xg(x) = 0.

i) Function: f(z) = g(z)(log z)2

ii) Cycle: Γ(t) =
∑4

i=1 γi(t), where:
γ1(t) = t t ∈ [ε, R]
γ2(t) = Reit t ∈ [0, 2π − δ]
γ3(t) = te−iδ t ∈ [R, ε]
γ4(t) = εeit t ∈ [2π − δ, 0]

and ε, δ, R ∈ R>0.

5.
+∞ˆ

0

g(x) sin x dx or
+∞ˆ

0

g(x) sin x dx, g(z) ∈ H(U)

with certain restrictions.

i) Function: f(z) = g(z)eiz

ii) Cycle: Γ(t) = γ1(t) + γ2(t), where:{
γ1(t) = t t ∈ [−R, R]
γ2(t) = Reit t ∈ [0, π]

and R ∈ R>0.

Theorem 217. Let f ∈ C(z) be a rational function such
that lim

|z|→∞
f(z) = 0 and P be the set of poles of f .

If P ∩ Z = ∅, then:

lim
N→∞

N∑
n=−N

f(n) = −
∑
p∈P

Res(π cot(πz)f(z), p)

lim
N→∞

N∑
n=−N

(−1)n
f(n) = −

∑
p∈P

Res(π csc(πz)f(z), p)

If P ∩ (Z + 1
2 ) = ∅, then:

lim
N→∞

N∑
n=−N

f

(
n + 1

2

)
= −

∑
p∈P

Res(π cot(πz)f(z), p)

lim
N→∞

N∑
n=−N

(−1)n
f

(
n + 1

2

)
= −

∑
p∈P

Res(π csc(πz)f(z), p)

Theorem 218 (Casorati-Weierstraß theorem). Let
a ∈ C, r ∈ R>0 and f ∈ H(D(a, r) \ {a}) be such that it
has an essential singularity at a. Then, ∀δ > 0:

f(D(a, δ) \ {a}) = C

Corollary 219. Let a ∈ C, r ∈ R>0, w ∈ C and
f ∈ H(D(a, r) \ {a}) be such that it has an essential sin-
gularity at a. Then, there exists a sequence (zn) ∈ C\{a}
such that lim

n→∞
zn = a and lim

n→∞
f(zn) = w.

Theorem 220 (Little Picard’s theorem). Let f ∈
H(C) be a non-constant function. Then, im f is either the
whole complex plane or the plane minus a single point.

Theorem 221 (Great Picard’s theorem). Let a ∈ C,
r ∈ R>0, w ∈ C and f ∈ H(D(a, r) \ {a}) be such that it
has an essential singularity at a. Then, ∃α ∈ C such that
∀δ > 0:

f(D(a, δ) \ {a}) ⊇ C \ {α}

Definition 222. Let U ⊆ C be an open set, A ⊂ U such
that A′ ∩ U = ∅ and f ∈ H(U \ A) be such that for each
a ∈ A, f has a pole at a. In these conditions, we say that f
is meromorphic and we denote the set of all meromorphic
on U by m(U).

Theorem 223 (Argument principle). Let U ⊆ C be
an open set and f ∈ m(U) be not identically zero. We
denote by Z(f) the set of zeros of f and by P (f) the set
of its poles. Let Γ ≈

U
0 be a piecewise cycle of class C1 such

that Γ∗ ⊂ U \ (Z(f) ∪ P (f)). Then:

1
2πi

ˆ

Γ

f ′(ζ)
f(ζ) dζ =

∑
z∈Z(f)

Ind(Γ, z) −
∑

p∈P (f)

Ind(Γ, p)

Theorem 224 (Generalized argument principle).
Let U ⊆ C be an open set w ∈ U , f ∈ m(U) be not
identically w and g ∈ H(U). We denote by Z(f − w) the
set of zeros of the function f(z) − w and by P (f − w) the
set of its poles. Let Γ ≈

U
0 be a piecewise cycle of class C1

such that Γ∗ ⊂ U \ (Z(f − w) ∪ P (f − w)). Then:

1
2πi

ˆ

Γ

g(ζ) f ′(ζ)
f(ζ) − w

dζ =

=
∑

z∈Z(f−w)

g(z) Ind(Γ, z) −
∑

p∈P (f−w)

g(p) Ind(Γ, p)

Corollary 225. Let U ⊆ C be an open set w ∈ U ,
f ∈ m(U) be not identically w and g ∈ H(U). Let γ ≈

U
0

be a piecewise curve defined on [a, b] of class C1 such that
γ∗ ⊂ U \ (Z(f − w) ∪ P (f − w)). Then:

Ind(f ◦ γ, w) = arg(f(γ(b)) − w) − arg(f(γ(a)) − w)
2π

=
∑

z∈Z(f−w)

Ind(γ, z) −
∑

p∈P (f−w)

Ind(γ, p)
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Theorem 226 (Rouché’s theorem). Let U ⊆ C be an
open set, f, g ∈ m(U) and γ ≈

U
0 be a piecewise path of

class C1 such that γ∗ ⊂ U \ (Z(f) ∪ P (f) ∪ Z(g) ∪ P (g))
and Ind(γ, z) ∈ {0, 1} ∀z ∈ U . Suppose that:

|f(z) + g(z)| < |f(z)| + |g(z)| ∀z ∈ γ∗

Then if Zf and Zg denote the number of zeros of the
respective functions on D(γ) and Pf and Pg denote the
number of poles of the respective functions on D(γ), we
have:

Zf − Pf = Zg − Pg

Definition 227. Let α ∈ C∗ and n ∈ N. We define the
number

(
α
n

)
as:(

α

n

)
= α(α − 1) · · · (α − n + 1)

n!

For the case n = 0, we define
(

α
0
)

:= 1.

Proposition 228. Let α ∈ C∗ and n ∈ N. Then:(
α

n

)
=
(

α − 1
n − 1

)
+
(

α − 1
n

)
Theorem 229 (Binomial theorem). Let α ∈ C∗.
Then, ∀z ∈ C, with |z| < 1 we have:

(1 + z)α =
∞∑

n=0

(
α

n

)
zn

Theorem 230 (Hurwitz’s theorem). Let U ⊆ C be a
domain, (fn) ∈ H(U) be a sequence of functions such that
they converge uniformly to f : U → C over compact sets
of U . Suppose f(z) ̸= 0 ∀z ∈ ∂ D(a, r), with D(a, r) ⊆ U .
Then, ∃m ∈ N such that ∀n ≥ m, fn and f have the same
number of zeros on D(a, r).

Corollary 231. Let U ⊆ C be a domain, (fn) ∈ H(U) be
a sequence of functions such that they converge uniformly
to f : U → C over compact sets of U . Suppose fn(z) ̸= 0
∀n ∈ N and ∀z ∈ U . Then, either f = 0 or f(z) ̸= 0
∀z ∈ U .

Corollary 232. Let U ⊆ C be a domain, (fn) ∈ H(U) be
a sequence of injective functions such that they converge
uniformly to f : U → C over compact sets of U . Then,
either f is injective or f = const.

9. | Conformal representation
Introduction
Definition 233. Let U ⊆ C be an open set, f : U → C be
a function and z0 ∈ C. We say that f is conformal at z0 if
it preserves the oriented angle between curves that inter-
sect at z0. We say that f is conformal if it is conformal at
each point z ∈ U .

Definition 234. Let U, V ⊆ C be open sets and f : U →
V be a function. We say that f is a conformal represen-
tation between U and V if f is bijective, holomorphic and
its inverse is also holomorphic.

Theorem 235. Let U ⊆ C be an open set and f ∈ H(U).
Then, f is conformal at the points z ∈ U such that
f ′(z) ̸= 0.

Möbius transformations

Definition 236 (Möbius transformations). A Möbius
transformation19 of the complex plane is a rational func-
tion f : C∞ → C∞ of the form:

f(z) = az + b

cz + d

with a, b, c, d ∈ C and ad − bc ̸= 0. The special values
f(∞) and f

(
− d

c

)
are defined conveniently as f(∞) = a

c

and f
(
− d

c

)
= ∞. The set of all Möbius transformations

is denoted by M.

Proposition 237. Let f, g ∈ M such that

f(z) = az + b

cz + d
and g(z) = a′z + b′

c′z + d′

Then, f(z) = g(z) ⇐⇒ ∃λ ∈ C∗ such that a′ = λa,
b′ = λb, c′ = λc and d′ = λd.

Proposition 238. Let f ∈ M. Then, f is a homeomor-
phism of C∞ and moreover if ◦ denotes the composition
of Möbius transformations, (M, ◦) is a non-abelian group.
Moreover we have the following group morphism:

GL2(C) −→ M(
a b
c d

)
7−→ az + b

cz + d

Definition 239. Let f ∈ M and a, eiθ ∈ C. We say that
f is

• a translation if f(z) = z + a.

• a rotation if f(z) = eiθz.

• a dilatation if a ̸= 0 and f(z) = az.

• an inversion if f(z) = 1
z .

Theorem 240. Let f ∈ M. Then, f is a composition
of a finite number of translations and dilatations and an
inversion.

Proposition 241. Let f ∈ M. Then, f is a bijection
between C∞ and C∞.

Proposition 242. Let U be a domain and f ∈ M be
such that f is holomorphic on U . Then, f |U is conformal.

Proposition 243. Let f = az+b
cz+d ∈ M. Then, z ∈ C∞ is

a fixed point for f if and only if:

c2z2 + (d − a)z − b = 0

Hence, f can have at most two fixed points.

Corollary 244. Let f, g ∈ M such that they coincide in
three points. Then, f = g.

19Also called linear fractional transformation, homography or homographic transformation.
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Cross ratio
Definition 245. Let z2, z3, z4 ∈ C∞ be distinct points
and z ∈ C∞. We define the cross ratio of z, z2, z3 and z4,
denoted by (z, z2, z3, z4) as the image under the unique
Möbius transformation f ∈ M such that f(z2) = 1,
f(z3) = 0 and f(z4) = ∞.

Proposition 246. Let z2, z3, z4 ∈ C∞ be distinct points
and z ∈ C∞. Then:

(z, z2, z3, z4) = z − z3

z − z4
· z2 − z4

z2 − z3

Corollary 247. Let z1, z2, z3 ∈ C∞ and w1, w2, w3 ∈ C∞
be two triplets of distinct points. Then, ∃!f ∈ M such
that:

f(z1) = w1 f(z2) = w2 f(z3) = w3

Theorem 248. Let z1, z2, z3 ∈ C∞ be distinct points and
f ∈ M. Then:

(z, z2, z3, z4) = (f(z), f(z2), f(z3), f(z4))

Circles in C∞

Definition 249. We define a circle in C∞ as a circle in
C or the set r ∪ {∞}, where r is a line in C20.

Proposition 250. Given three points of C∞, there exists
a unique circle that passes through them.

Proposition 251. Let f ∈ M. Then, f(R∞) is a circle
of C∞.

Proposition 252. Let z1, z2, z3, z4 ∈ C∞ be distinct
points. Then, these points lie on a circle if and only if
(z1, z2, z3, z4) ∈ R∞

Theorem 253. Let f ∈ M and C ⊂ C∞ be a circle.
Then, f(C) ⊂ C∞ is also a circle.

Orientation and symmetry
Definition 254. Let C ⊂ C∞ be a circle and z2, z3, z4 ∈
C. An orientation of C is an ordered triplet (z2, z3, z4)21.
This determines a partition of the plane into three sets:

• Right side of C: {z ∈ C∞ : Im(z, z2, z3, z4) > 0}

• Left side of C: {z ∈ C∞ : Im(z, z2, z3, z4) < 0}

• Center of C: {z ∈ C∞ : Im(z, z2, z3, z4) = 0}

Theorem 255 (Orientation principle). Let C ⊂ C∞
be a circle, (z1, z2, z3) be an orientation of C, and f ∈ M.
Then, C ′ := f(C) is a circle and f carries the right/left
side of C to the right/left side of C ′.

Definition 256. Let C ⊂ C∞ be a circle, z2, z3, z4 ∈ C
and z, z∗ ∈ C∞. We say that z and z∗ are symmetric with
respect to C if:

(z, z2, z3, z4) = (z∗, z2, z3, z4)22

The function
RC : C∞ −→ C∞

z 7−→ z∗

is called reflection with respect to C.

Theorem 257 (Symmetry principle). Let C ⊂ C∞
be a circle, f ∈ M and z, z∗ ∈ C∞. Then, if z, z∗ are
symmetric with respect to C, then f(z) and f(z∗) are
symmetric with respect to f(C).

Proposition 258. Let C ⊂ C be a circle of center a and
radius R. Then:

RC(z) = a + R2

|z − a|2
(z − a)

Corollary 259. Let C1, C2 ⊂ C∞ be two circles. Then,
there exists f ∈ M such that f(C1) = C2. Moreover if
we fix the image of three points of C1, the transformation
f is unique. Furthermore, f(Int C1) maps to either Int C2
or Ext C2 and the same happens with Ext C2.

Automorphisms of the unit disk
Definition 260. We denote by D the unit disk D(0, 1).

Lemma 261 (Schwarz lemma). Let f ∈ H(D) such
that f(0) = 0 and |f(z)| ≤ 1. Then:

1. |f ′(0)| ≤ 1

2. |f(z)| ≤ z ∀z ∈ D

Moreover if ∃w ∈ D such that the equality holds in either
of the inequalities of above, then f(z) = eiθz, for some
θ ∈ R.

Definition 262. Let a ∈ D. We define the Möbius trans-
formation φa as:

φa(z) = z − a

1 − az

Proposition 263. Let a ∈ D. Then:

1. φa is a bijection from D to itself.

2. φa(D) = D

3. φa(∂ D) = ∂ D

Lemma 264 (Schwarz-Pick lemma). Let f ∈ H(D)
such that f(0) = 0 and |f(z)| ≤ 1. Then ∀a, z ∈ D we
have: ∣∣∣∣∣ f(z) − f(a)

1 − f(a)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − a

1 − az

∣∣∣∣
And therefore:

|f ′(z)| ≤ 1 − |f(z)|2

1 − |z|2

Theorem 265. Let f : D → D be a holomorphic and
bijective function and a ∈ D such that f(a) = 0. Then,
∃θ ∈ R such that f(z) = eiθφa(z).

20Note that with this definition R∞ is a circle.
21The orientation is determined by going from z2 to z3 without passing through z4, by going form z3 to z4 without passing through z2

and by going form z4 to z2 without passing through z3, all these travels always on C.
22It can be seen that this definition does not depend on the triplet (z2, z3, z4) chosen.
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10. | Space of holomorphic functions
Definition 266. Let U ⊆ C be an open set. We denote
by C(U,C) the set of all continuous functions f : U → C

Definition 267. Let U ⊆ C be an open set. A sequence
(Kn) ⊆ U of compact sets is surjective if Kn ⊆ Int(Kn+1)
∀n ∈ N and U =

⋃
n∈N Kn.

Proposition 268. Let U ⊆ C be an open set. Then,
there exists a sequence (Kn) of compact sets such that:

1. It is surjective.

2. For each compact set K ⊂ U , ∃n ∈ N such that
K ⊂ Kn.

3. Each connected component of C∞ \ Kn contains a
connected component of C∞ \ U .

Definition 269. Let U ⊆ C be an open set, K ⊂ U be a
compact set and f ∈ C(U,C). We define:

∥f∥K := sup{|f(z)| : z ∈ K} = max{|f(z)| : z ∈ K}

Theorem 270. Let (Kn) be a surjective sequence of com-
pact sets and d : C(U,C) × C(U,C) → R be the function
defined by:

d(f, g) :=
∞∑

n=1

1
2n

min{∥f − g∥Kn
, 1} ∀f, g ∈ C(U,C)

Then:

1. d is a distance.

2. If (fn), f ∈ C(U,C), then:

lim
n→∞

d(fn, f) = 0 ⇐⇒ (fn) converges

uniformly to f over compact sets

3. (C(U,C), d) is complete.

Proposition 271. Consider the metric (C(U,C), d) de-
fined above. Then, H(U) ⊂ C(U,C) is closed.

Definition 272. Let F ⊆ C(U,C). We say that F is rel-
atively compact (or normal) if for any sequence (fn) ∈ F ,
(fn) has a subsequence uniformly convergent over com-
pact sets of U . Equivalently F is relatively compact if F
is compact.

Definition 273. Let F ⊆ C(U,C). We say that F is
equicontinuous at z0 ∈ U if ∀ε > 0 ∃δ > 0 such that
∀z ∈ X with |z − z0| < δ we have:

|f(z) − f(z0)| < ε ∀f ∈ F

Theorem 274 (Arzelà-Ascoli theorem). Let F ⊆
C(U,C). Then, F is normal if and only if:

1. The set
⋃

f∈F {f(z)} is relatively compact ∀z ∈ U .

2. F is equicontinuous at z ∀z ∈ U .

Definition 275. Let F ⊆ C(U,C). We say that F is lo-
cally bounded if ∀a ∈ U ∃r > 0 and M > 0 such that
|f(z)| ≤ M ∀z ∈ D(a, r) ∀f ∈ F .

Definition 276. Let F ⊆ C(U,C). We say that F is
bounded by compact sets if for each compact set K ⊂ U
∃MK > 0 such that ∀f ∈ F we have ∥f∥K ≤ MK .

Lemma 277. Let F ⊆ C(U,C). F is locally bounded
⇐⇒ F is bounded by compact sets.

Theorem 278 (Montel’s theorem). Let F ⊆ H(U).
Then, F is normal ⇐⇒ F is locally bounded.

Theorem 279 (Riemann conformal representation
theorem). Let U ⊂ C be a simply connected domain
such that U ̸= ∅,C and a ∈ U . Then, ∃!f ∈ H(U) such
that:

1. f(a) = 0, f ′(a) ∈ R>0.

2. f : U → D is a bijection.
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