
Numerical methods

1. | Errors

Floating-point representation

Theorem 1. Let b ∈ N, b ≥ 2. Any real number x ∈ R
can be represented of the form

x = s

( ∞∑
i=1

αib
−i

)
bq

where s ∈ {−1, 1}, q ∈ Z and αi ∈ {0, 1, . . . , b − 1}. More-
over, this representation is unique if α1 ̸= 0 and ∀i0 ∈ N,
∃i ≥ i0 : αi ̸= b − 1. We will write

x = s(0.α1α2 · · · )bbq

where the subscript b in the parenthesis indicates that the
number 0.α1α2α3 · · · is in base b.

Definition 2 (Floating-point representation). Let x
be a real number. Then, the floating-point representation
of x is:

x = s

(
t∑

i=1
αib

−i

)
bq

Here s is called the sign;
∑t

i=1 αib
−i, the significant or

mantissa, and q, the exponent, limited to a prefixed range
qmin ≤ q ≤ qmax. Therefore, the floating-point represen-
tation of x can be expressed as:

x = smbq = s(0.α1α2 · · · αt)bbq

Finally, we say a floating-point number is normalized if
α1 ̸= 0.

Format b t qmin qmax bits
IEEE simple 2 24 -126 127 32
IEEE double 2 53 -1022 1023 64

Table 1: Parameters of IEEE simple and IEEE double for-
mats.

Definition 3. Let x ∈ R be such that x =
s(0.α1α2 · · · )bbq with qmin ≤ q ≤ qmax. We say the
floating-point representation by truncation of x is:

flT (x) = s(0.α1α2 · · · αt)bbq

We say the floating-point representation by rounding of x
is:

flR(x) =

=


s(0.α1 · · · αt)bbq if 0 ≤ αt+1 <

b

2
s(0.α1 · · · αt−1(αt+1))bbq if b

2 ≤ αt+1 ≤ b−1

Definition 4. Given a value x ∈ R and an approximation
x̃ of x, the absolute error is:

∆x := |x − x̃|

If x ̸= 0, the relative error is:

δx := |x − x̃|
x

If x is unknown, we take:

δx ≈ |x − x̃|
x̃

Definition 5. Let x̃ be an approximation of x. If ∆x ≤
1
2 10−t, we say x̃ has t correct decimal digits. If x = sm10q

with 0.1 ≤ m < 1, x̃ = sm̃10q and

u := max{i ∈ Z : |m − m̃| ≤ 1
210−i}

then we say that x̃ has u significant digits.

Proposition 6. Let x ∈ R be such that x =
s(0.α1α2 · · · )bbq with α1 ̸= 0 and qmin ≤ q ≤ qmax. Then,
its floating-point representation in base b and with t digits
satisfy:

|flT (x) − x| ≤ bq−t |flR(x) − x| ≤ 1
2bq−t∣∣∣∣flT (x) − x

x

∣∣∣∣ ≤ b1−t

∣∣∣∣flR(x) − x

x

∣∣∣∣ ≤ 1
2b1−t

Definition 7. The machine epsilon ϵ is defined as:

ϵ := min{ε > 0 : fl(1 + ε) ̸= 1}

Proposition 8. For a machine working by truncation,
ϵ = b1−t. For a machine working by rounding, ϵ = 1

2 b1−t.

Propagation of errors
Proposition 9 (Propagation of absolute errors). Let
f : Rn → R be a function of class C2. If ∆xj is the absolute
error of the variable xj and ∆f(x) is the absolute error of
the function f evaluated at the point x = (x1, . . . , xn), we
have:

|∆f(x)| ≲
n∑

j=1

∣∣∣∣ ∂f

∂xj
(x)
∣∣∣∣ |∆xj |1

The coefficients
∣∣∣ ∂f

∂xj
(x)
∣∣∣ are called absolute condition

numbers of the problem.

Proposition 10 (Propagation of relative errors).
Let f : Rn → R be a function of class C2. If δxj is the rela-
tive error of the variable xj and δf(x) is the relative error
of the function f evaluated at the point x = (x1, . . . , xn),
we have:

|δf(x)| ≲
n∑

j=1

∣∣∣ ∂f
∂xj

(x)
∣∣∣ |xj |

|f(x)| |δxj |

1The symbol ≲ means that we are omitting terms of order ∆xj∆xk and higher.
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The coefficients

∣∣∣ ∂f
∂xj

(x)
∣∣∣|xj |

|f(x)| are called relative condition
numbers of the problem.

Numerical stability of algorithms
Definition 11. An algorithm is said to be numerically
stable if errors in the input lessen in significance as the al-
gorithm executes, having little effect on the final output.
On the other hand, an algorithm is said to be numerically
unstable if errors in the input cause a considerably larger
error in the final output.

Definition 12. A problem with a low condition number
is said to be well-conditioned. Conversely, a problem with
a high condition number is said to be ill-conditioned.

2. | Zeros of functions
Definition 13. Let f : R → R be a function. We say α is
a zero or a solution to the equation f(x) = 0 if f(α) = 0.

Definition 14. Let f : R → R be a sufficiently differen-
tiable function. We say α is a zero of multiplicity m ∈ N
if

f(α) = f ′(α) = · · · = f (m−1)(α) = 0 and f (m)(α) ̸= 0

If m = 1, the zero is called simple; if m = 2, double; if
m = 3, triple...

Root-finding methods
For the following methods consider a continuous function
f : I ⊆ R → R with an unknown zero α ∈ I. Given ε > 0,
we want to approximate α with α̃ such that |α − α̃| < ε.

Proposition 15 (Bisection method). Suppose I =
[a0, b0]. For each step n ≥ 0 of the algorithm we will
approximate α by

cn = an + bn

2

If f(cn) = 0 we are done. If not, let

[an+1, bn+1] =
{

[an, cn] if f(an)f(cn) < 0
[cn, bn] if f(an)f(cn) > 0

and iterate the process again2. The length of the interval
[an, bn] is b0−a0

2n and therefore:

|α − cn| <
b0 − a0

2n+1 < ε ⇐⇒ n >
log
(

b0−a0
ε

)
log 2 − 1

Proposition 16 (Regula falsi method). Suppose I =
[a0, b0]. For each step n ≥ 0 of the algorithm we will
approximate α by

cn = bn − f(bn) bn − an

f(bn) − f(an) = anf(bn) − bnf(an)
f(bn) − f(an)

If f(cn) = 0 we are done. If not, let

[an+1, bn+1] =
{

[an, cn] if f(an)f(cn) < 0
[cn, bn] if f(an)f(cn) > 0

and iterate the process again.

Proposition 17 (Secant method). Suppose I = R and
that we have two different initial approximations x0, x1.
Then, for each step n ≥ 0 of the algorithm we obtain a
new approximation xn+2, given by:

xn+2 = xn+1 − f(xn+1) xn+1 − xn

f(xn+1) − f(xn)

Proposition 18 (Newton-Raphson method). Sup-
pose I = R, f ∈ C1 and that we have an initial approx-
imation x0. Then, for each step n ≥ 0 we obtain a new
approximation xn+1, given by:

xn+1 = xn − f(xn)
f ′(xn)

Proposition 19 (Newton-Raphson modified
method). Suppose I = R, f ∈ C1 and that we have
an initial approximation x0 of a zero α of multiplicity m.
Then, for each step n ≥ 0 we obtain a new approximation
xn+1, given by:

xn+1 = xn − m
f(xn)
f ′(xn)

Proposition 20 (Chebyshev method). Suppose I =
R, f ∈ C2 and that we have an initial approximation x0.
Then, for each step n ≥ 0 we obtain a new approximation
xn+1, given by:

xn+1 = xn − f(xn)
f ′(xn) − 1

2
f(xn)2

f ′′(xn)
f ′(xn)3

Fixed-point iterations

Definition 21. Let g : [a, b] → [a, b] ⊂ R be a function.
A point α ∈ [a, b] is n-periodic if gn(α) = α and gj(α) ̸= α
for j = 1, . . . , n − 13.

Definition 22. Let (X, d) and (Y, d′) be metric spaces
and f : X → Y be a function. We say that f is a contrac-
tion if there exists 0 ≤ k < 1 such that:

d′(f(x), f(y)) ≤ kd(x, y) ∀x ∈ X, y ∈ Y

Theorem 23 (Fixed-point theorem). Let (X, d) be a
complete metric space and g : X → X be a contraction4.
Then, g has a unique fixed point α ∈ X and for every
x0 ∈ X,

lim
n→∞

xn = α, where xn = g(xn−1) ∀n ∈ N
2Note that bisection method only works for zeros of odd multiplicity.
3Note that 1-periodic points are the fixed points of f .
4Recall ????.
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Proposition 24. Let (X, d) be a metric space and g :
X → X be a contraction of constant k. Then, if we want to
approximate a fixed point α by the iteration xn = g(xn−1),
we have:

d(xn, α) ≤ kn

1 − k
d(x1, x0) (a priori estimation)

d(xn, α) ≤ k

1 − k
d(xn, xn−1) (a posteriori estimation)

Corollary 25. Let g : R → R be a function of class C1.
Suppose α is a fixed point of g and |g′(α)| < 1. Then, there
exists ε > 0 and Iε := [α − ε, α + ε] such that g(Iε) ⊆ Iε

and g is a contraction on Iε. In particular, if x0 ∈ Iε, the
iteration xn+1 = g(xn) converges to α.

Definition 26. Let g : R → R be a function of class
C1 and α be a fixed point of g. We say α is an attrac-
tor fixed point if |g′(α)| < 1. In this case, any iteration
xn+1 = g(xn) in Iε converges to α. If |g′(α)| > 1, we
say α is a repulsor fixed point. In this case, ∀x0 ∈ Iε the
iteration xn+1 = g(xn) doesn’t converge to α.
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Figure 1: Cobweb diagrams. In the figures at the top, α
is an attractor point, that is, |g′(α)| < 1. More precisely,
the figure at the top left occurs when −1 < g′(α) ≤ 0 and
the figure at the top right when 0 ≤ g′(α) < 1. In the
figure at bottom left, α is a repulsor point. Finally, in the
figure at bottom right the iteration xn+1 = g(xn) has no
limit. It is said to have a chaotic behavior.

Order of convergence
Definition 27 (Order of convergence). Let (xn) be a
sequence of real numbers that converges to α ∈ R. We
say (xn) has order of convergence p ∈ R>0 if exists C > 0
such that:

lim
n→∞

|xn+1 − α|
|xn − α|p

= C

The constant C is called asymptotic error constant. For
the case p = 1, we need C < 1. In this case the con-
vergence is called linear convergence; for p = 2, is called

quadratic convergence; for p = 3, cubic convergence... If
it’s satisfied that

lim
n→∞

|xn+1 − α|
|xn − α|p

= 0

for some p ∈ R>0, we say the sequence has order of con-
vergence at least p.

Theorem 28. Let g : R → R be a function of class Cp

and let α be a fixed point of g. Suppose

g′(α) = g′′(α) = · · · = g(p−1)(α) = 0

with |g′(α)| < 1 if p = 1. Then, the iteration xn+1 =
g(xn), with x0 sufficiently close to α, has order of con-
vergence at least p. If, moreover, g(p)(α) ̸= 0, then the
previous iteration has order of convergence p with asymp-
totic error constant C = |g(p)(α)|

p! .

Theorem 29. Let f : R → R be a function of class C3

and α be a simple zero of f . If f ′′(α) ̸= 0, then Newton-
Raphson method for finding α has quadratic convergence
with asymptotic error constant C = 1

2

∣∣∣ f ′′(α)
f ′(α)

∣∣∣.
If f ∈ Cm+2, and α is a zero of multiplicity m > 1,
then Newton-Raphson method has linear convergence but
Newton-Raphson modified method has at least quadratic
convergence.

Theorem 30. Let f : R → R be a function of class C3 and
let α be a simple zero of f . Then, Chebyshev’s method
for finding α has at least cubic convergence.

Definition 31. We define the computational efficiency of
an algorithm as a function E(p, t), where t is the time
taken for each iteration of the method and p is the order
of convergence of the method. E(p, t) must satisfy the
following properties:

1. E(p, t) is increasing with respect to the variable p
and decreasing with respect to t.

2. E(p, t) = E(pm, mt) ∀m ∈ R.

Examples of such functions are the following:

E(p, t) = log p

t
E(p, t) = p1/t

Sequence acceleration

Proposition 32 (Aitken’s ∆2 method). Let (xn) be a
sequence of real numbers. We denote:

∆xn := xn+1 − xn

∆2xn := ∆xn+1 − ∆xn = xn+2 − 2xn+1 + xn

Aitken’s ∆2 method is the transformation of the sequence
(xn) into a sequence yn, defined as:

yn := xn − (∆xn)2

∆2xn
= xn − (xn+1 − xn)2

xn+2 − 2xn+1 + xn

with y0 = x0.
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Theorem 33. Let (xn) be a sequence of real numbers
such that lim

n→∞
xn = α, xn ̸= α ∀n ∈ N and ∃C, |C| < 1,

satisfying

xn+1 − α = (C + δn)(xn − α) with lim
n→∞

δn = 0

Then, the sequence (yn) obtained from Aitken’s ∆2 pro-
cess is well-defined and

lim
n→∞

yn − α

xn − α
= 05

Proposition 34 (Steffensen’s method). Let g : R → R
be a continuous function and suppose we have an iterative
method xn+1 = g(xn). Then, for each step n we can con-
sider a new iteration yn+1, with y0 = x0, given by:

yn+1 = yn − (g(yn) − yn)2

g(g(yn)) − 2g(yn) + yn

Proposition 35. Let f : R → R be a function of class C2

and α be a simple zero of f . Then, Steffensen’s method
for finding α has at least quadratic convergence6.

Zeros of polynomials
Lemma 36. Let p(z) = a0 + a1z + · · ·+ anzn ∈ C[x] with
an ̸= 0. We define

λ := max
{∣∣∣∣ ai

an

∣∣∣∣ : i = 0, 1, . . . , n − 1
}

Then, if p(α) = 0 for some α ∈ C, |α| ≤ λ + 1.

Definition 37 (Strum’s sequence). Let (fi), i =
0, . . . , n, be a sequence of continuous functions defined on
[a, b] ⊂ R and f : [a, b] → R be a function of class C1 such
that f(a)f(b) ̸= 0. We say (fn) is a Sturm’s sequence if:

1. f0 = f .

2. If α ∈ [a, b] satisfies f0(α) = 0 =⇒ f ′
0(α)f1(α) > 0.

3. For i = 1, . . . , n − 1, if α ∈ [a, b] satisfies fi(α) =
0 =⇒ fi−1(α)fi+1(α) < 0.

4. fn(x) ̸= 0 ∀x ∈ [a, b].

Definition 38. Let (ai), i = 0, . . . , n, be a sequence. We
define ν(ai) as the number of sign variations of the se-
quence

{a0, a1, . . . , an}

without taking into account null values.

Theorem 39 (Sturm’s theorem). Let f : [a, b] → R be
a function of class C1 such that f(a)f(b) ̸= 0 and with a
finite number of zeros. Let (fi), i = 0, . . . , n, be a Sturm
sequence defined on [a, b]. Then, the number of zeros of f
on [a, b] is

ν (fi(a)) − ν (fi(b))

Lemma 40. Let p ∈ C[x] be a polynomial. Then, the
polynomial q = p

gcd(p, p′) has the same roots as p but all
of them are simple.

Proposition 41. Let p ∈ R[x] be a polynomial with
deg p = m. We define f0 = p

gcd(p, p′) and f1 = f ′
0. If

deg f0 = n, then for i = 0, 1, . . . , n − 2, we define fi+2 as:

fi(x) = qi+1(x)fi+1(x) − fi+2(x)

(similarly to the euclidean division between fi and fi+1).
Then, fn is constant and hence the sequence (fi), i =
0, . . . , n, is a Sturm sequence.

Theorem 42 (Budan-Fourier theorem). Let p ∈ R[x]
be a polynomial with deg p = n. Consider the sequence
(p(i)), i = 0, . . . , n. If p(a)p(b) ̸= 0, the number of zeros of
p on [a, b] is:

ν
(

p(i)(a)
)

− ν
(

p(i)(b)
)

− 2k, for some k ∈ N ∪ {0}

Corollary 43 (Descartes’ rule of signs). Let p =
a0 + a1x + · · · + anxn ∈ R[x] be a polynomial. If p(0) ̸= 0,
the number of zeros of p on [0, ∞) is:

ν(ai) − 2k, for some k ∈ N ∪ {0}7

Theorem 44 (Gershgorin circle theorem). Let A =
(aij) ∈ Mn(C) be a complex matrix and λ be an eigen-
value of A. For all i, j ∈ {1, 2, . . . , n} we define:

ri =
n∑

k=1
k ̸=i

|aik| Ri = {z ∈ C : |z − aii| ≤ ri}

cj =
n∑

k=1
k ̸=j

|akj | Cj = {z ∈ C : |z − ajj | ≤ cj}

Then, λ ∈
⋃n

i=1 Ri and λ ∈
⋃n

j=1 Cj . Moreover in each
connected component of

⋃n
i=1 Ri or

⋃n
j=1 Cj there are as

many eigenvalues (taking into account the multiplicity) as
disks Ri or Cj , respectively.

Corollary 45. Let p(z) = a0 + a1z + · · · + anzn + zn+1 ∈
C[x]. We define

r =
n−1∑
i=1

|ai| c = max{|a0|, |a1| + 1, . . . , |an−1| + 1}

Then, if p(α) = 0 for some α ∈ C,

α ∈ (B(0, 1) ∪ B(−an, r)) ∩ (B(−an, 1) ∪ B(0, c))
5This means that Aitken’s ∆2 method produces an acceleration of the convergence of the sequence (xn).
6Note that the advantage of Steffensen’s method over Newton-Raphson method is that in the former we don’t need the differentiability

of the function whereas in the latter we do.
7Note that making the change of variable t = −x one can obtain the number of zeros on (−∞, 0] of p by considering the polynomial

p(t).
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3. | Interpolation
Definition 46. We denote by Πn the vector space of poly-
nomials with real coefficients and degree less than or equal
to n.

Definition 47. Suppose we have a family of real valued
functions C and a set of points {(xi, yi)}n

i=0 := {(xi, yi) ∈
R2 : i = 0, . . . , n and xj ̸= xk ⇐⇒ j ̸= k}. These points
{(xi, yi)}n

i=0 are called support points. The interpolation
problem consists in finding a function f ∈ C such that
f(xi) = yi for i = 0, . . . , n8.

Polynomial interpolation
Definition 48. Given a set of support points
{(xi, yi)}n

i=0, Lagrange’s interpolation problem consists
in finding a polynomial pn ∈ Πn such that pn(xi) = yi for
i = 0, 1, . . . , n.

Definition 49. Let {(xi, yi)}n
i=0 be a set of support

points. We define ωn(x) ∈ R[x] as:

ωn(x) =
n∏

i=0
(x − xi)

We define Lagrange basis polynomials ℓi(x) ∈ R[x] as:

ℓi(x) = ωn(x)
(x − xi)ωn(xi)

=
n∏

j=0
j ̸=i

x − xj

xi − xj

Proposition 50. Let {(xi, yi)}n
i=0 be a set of support

points. Then, Lagrange’s interpolation problem has a
unique solution and this is:

pn(x) =
n∑

i=0
yiℓi(x)

Proposition 51 (Neville’s algorithm). Let
{(xi, yi)}n

i=0 be a set of support points, {i0, . . . , ik} ⊂
{0, . . . , n} and Pi0,...,ik

(x) ∈ Πk be such that
Pi0,...,ik

(xij
) = yij

for j = 0, . . . , k. Then, it is satis-
fied that:

1. Pi(x) = yi.

2. Pi0,...,ik
(x) =

∣∣∣∣ Pi1,...,ik
(x) x − xik

Pi0,...,ik−1(x) x − xi0

∣∣∣∣
xik

−xi0
.

Definition 52. Let f : R → R be a function and
{xi}n

i=0 ⊂ R be pairwise distinct points. We define the di-
vided difference of order k of f applied to {xi}k

i=0, denoted
by f [x0, . . . , xk], as the coefficient of xk of the interpolat-
ing polynomial with support points {(xi, f(xi))}k

i=0.

Proposition 53. Let f : R → R be a function and
{xi}n

i=0 ⊂ R be pairwise distinct points. Lagrange inter-
polating polynomial with support points {(xi, f(xi))}n

i=0
is:

pn(x) = f [x0] +
n∑

j=1
f [x0, . . . , xj ]ωj−1(x)

Proposition 54 (Newton’s divided differences
method). Let f : R → R be a function. For x ∈ R, we
have f [x] = f(x). And if {xi}n

i=0 ⊂ R are different points,
then

f [x0, . . . , xn] = f [x1, . . . , xn] − f [x0, . . . , xn−1]
xn − x0

Theorem 55. Let f : [a, b] → R be a function of
class Cn+1, {xi}n

i=0 ⊂ R be pairwise distinct points and
pn ∈ R[x] be the interpolating polynomial with support
points {(xi, f(xi))}n

i=0. Then, ∀x ∈ [a, b],

f(x) − pn(x) = f (n+1)(ξx)
(n + 1)! ωn(x)

where ξx ∈ ⟨x0, . . . , xn, x⟩9.
Lemma 56. Let f : [a, b] → R be a function of class
Cn+1 and {xi}n

i=0 ⊂ R be pairwise distinct points. Then:
∃ξ ∈ ⟨x0, . . . , xn⟩ such that:

f [x0, . . . , xn] = f (n)(ξ)
n!

Proposition 57. Let f : R → R be a function of class
Cn+1, {xi}n

i=0 ⊂ R be pairwise distinct points and σ ∈ Sn.
Then,

f [x0, . . . , xn] = f [xσ(0), . . . , xσ(n)]
Definition 58. Let {(xi, yi)}n

i=0 be support points. The
points {xi}n

i=0 are equally-spaced if

xi = x0 + ih, for i = 0, . . . , n and with h := xn − x0

n

Proposition 59. Let {xi}n
i=0 ⊂ R be equally-spaced

points such that xi = x0 + ih, where h = xn−x0
n . Then:

max{|ωn(x)| : x ∈ [x0, xn]} ≤ hn+1n!
4

Corollary 60. Let f : [a, b] → R be a function of class
Cn+1, {xi}n

i=0 ⊂ R be equally-spaced points such that
xi = x0 + ih, where h = xn−x0

n and pn ∈ R[x] be the inter-
polating polynomial with support points {(xi, f(xi))}n

i=0.
Then:

max{|f(x) − pn(x)| : x ∈ [x0, xn]} ≤

≤ hn+1

4(n + 1) max{|f (n+1)(x)| : x ∈ [x0, xn]}

Definition 61. Let f : [a, b] → R be a function and
{xi}n

i=0 ⊂ R be equally-spaced points. We define:

∆f(x) := f(x + h) − f(x)
∆n+1f(x) := ∆(∆nf(x))

Lemma 62. Let f : [a, b] → R be a function and
{xi}n

i=0 ⊂ R be equally-spaced points. Then:

∆nf(x0) = n!hnf [x0, . . . , xn]

Corollary 63. Let f ∈ R[x] with deg f = n. Sup-
pose we interpolate f with equally-spaced nodes. Then,
∆nf(x) = const.

8Types of interpolation are for example polynomial interpolation, trigonometric interpolation, Padé interpolation, Hermite interpolation
and spline interpolation.

9The interval ⟨a1, . . . , ak⟩ is defined as ⟨a1, . . . , ak⟩ := (min(a1, . . . , ak), max(a1, . . . , ak)).
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Hermite interpolation

Definition 64. Given sets of points {xi}m
i=0 ⊂ R,

{ni}m
i=0 ⊂ N and {y

(k)
i : k = 0, . . . , ni − 1}m

i=0 ⊂ R, Her-
mite interpolation problem consists in finding a polynomial
hn ∈ Πn such that

∑m
i=0 ni = n + 1 and

h(k)
n (xi) = y

(k)
i for i = 0, . . . , m and k = 0, . . . , ni − 1

Proposition 65. Hermite interpolation problem has a
unique solution.

Definition 66. Let f : [a, b] → R be a function of class
Cn and {xi}n

i=0 ⊂ R be points. We define f [xi,
(n+1). . . , xi]

as:

f [xi,
(n+1). . . , xi] = f (n)(xi)

n!
Theorem 67. Let f : [a, b] → R be a function of
class Cn+1, {xi}m

i=0 ⊂ R be pairwise distinct points and
{ni}m

i=0 ⊂ N be such that
∑m

i=0 ni = n + 1. Let hn

be the Hermite interpolating polynomial of f with nodes
{xi}m

i=0 ⊂ R, that is,

h(k)
n (xi) = f (k)(xi) for i = 0, . . . , m and k = 0, . . . , ni − 1

Then, ∀x ∈ [a, b] ∃ξx ∈ ⟨x0, . . . , xn, x⟩ such that:

f(x) − hn(x) = f (n+1)(ξx)
(n + 1)! (x − x0)n0 · · · (x − xm)nm

Spline interpolation

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

f(x)

p5(x)

p9(x)

p13(x)

Figure 2: Runge’s phenomenon. In this case f(x) =
1

1+25x2 . p5(x) is the 5th-order Lagrange interpolat-
ing polynomial with equally-spaced interpolating points;
p9(x), the 9th-order Lagrange interpolating polynomial
with equally-spaced interpolating points, and p13(x),
the 13th-order Lagrange interpolating polynomial with
equally-spaced interpolating points.

Definition 68 (Spline). Let {(xi, yi)}n
i=0 be support

points of an interval [a, b]. A spline of degree p is a function
s : [a, b] → R of class Cp−1 satisfying:

s|[xi,xi+1] ∈ R[x] and deg(s|[xi,xi+1]) = p

for i = 0, . . . , n − 1 and s(xi) = yi for i = 0, . . . , n. The
most common case are splines of degree p = 3 or cubic
splines. In this case we can impose two more conditions
on their definition in one of the following ways:

1. Natural cubic spline:

s′′(x0) = s′′(xn) = 0

2. Cubic Hermite spline: Given y′
0, y′

n ∈ R,

s′(x0) = y′
0, s′(xn) = y′

n

3. Cubic periodic spline:

s′(x0) = s′(xn), s′′(x0) = s′′(xn)

Definition 69. Let f : [a, b] → R be a function of class
C2. We define the seminorm10 of f as:

∥f∥2 =
bˆ

a

(f ′′(x))2 dx

Proposition 70. Let f : [a, b] → R be a function of class
C2 interpolating the support points {(xi, yi)}n

i=0 ⊂ R2,
a ≤ x0 < · · · < xn ≤ b. If s a spline associated with
{(xi, yi)}n

i=0, then:

∥f −s∥2 = ∥f∥2−∥s∥2−2(f ′−s)s′′
∣∣∣xn

x0
+2

n∑
i=1

(f −s)s′′′
∣∣∣x−

i

x+
i−1

Theorem 71. Let f : [a, b] → R a function of class
C2 interpolating the support points {(xi, yi)}n

i=0 ⊂ R2,
a ≤ x0 < · · · < xn ≤ b. If s is the natural cubic spline
associated with {(xi, yi)}n

i=0, then:

∥s∥ ≤ ∥f∥11

4. | Numerical differentiation and inte-
gration

Differentiation
Theorem 72 (Intermediate value theorem). Let f :
[a, b] → R be a continuous function, x0, . . . , xn ∈ [a, b] and
α0, . . . , αn ≥ 0. Then, ∃ξ ∈ [a, b] such that:

n∑
i=0

αif(xi) =
(

n∑
i=0

αi

)
f(ξ)

Theorem 73 (Forward and backward difference for-
mula of order 1). Let f : R → R be a function of class
C2. Then, the forward difference formula of order 1 is:

f ′(a) = f(a + h) − f(a)
h

− f ′′(ξ)
2 h

where ξ ∈ ⟨a, a+h⟩. Analogously, the backward difference
formula of order 1 is:

f ′(a) = f(a) − f(a − h)
h

+ f ′′(η)
2 h

where η ∈ ⟨a − h, a⟩.
10The term seminorm has been used instead of norm to emphasize that not all properties of a norm are satisfied with this definition.
11We can interpret this result as the natural cubic spline being the configuration that require the least “energy” to be “constructed”.
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Theorem 74 (Symmetric difference formula of or-
der 1). Let f : R → R be a function of class C3. Then,
the symmetric difference formula of order 1 is:

f ′(a) = f(a + h) − f(a − h)
2h

− f (3)(ξ)
6 h2

where ξ ∈ ⟨a − h, a + h⟩.

Theorem 75 (Symmetric difference formula of or-
der 2). Let f : R → R be a function of class C4. Then,
the symmetric difference formula of order 2 is:

f ′′(a) = f(a + h) − 2f(a) + f(a − h)
h2 − f (4)(ξ)

12 h2

where ξ ∈ ⟨a − h, a, a + h⟩.

Richardson extrapolation
Theorem 76 (Richardson extrapolation). Suppose
we have a function f that approximate a value α with an
error that depends on a small quantity h. That is:

α = f(h) + a1hk1 + a2hk2 + · · ·

with k1 < k2 < · · · and ai are unknown constants. Given
q > 0, we define:

D1(h) = f(h) and Dn+1(h) = qknDn (h/q) − Dn(h)
qkn − 1

And we can observe that α = Dn+1(h) + O
(
hkn+1

)
.

Integration
Definition 77. Let f : [a, b] → R be a continuous func-
tion, {xi}n

i=0 ⊂ [a, b] be a set of nodes and pn be the
Lagrange interpolating polynomial with support points
{(xi, f(xi))}n

i=0. We define the quadrature formula as:

bˆ

a

f(x) dx ≈
bˆ

a

pn(x) dx

Lemma 78. Let f : [a, b] → R be a continuous function
{xi}n

i=0 ⊂ [a, b] be a set of nodes. Then:

bˆ

a

f(x) dx ≈
n∑

i=1
aif(xi) where ai :=

bˆ

a

ℓi(x) dx

Definition 79. The degree of precision of a quadrature
formula is the largest m ∈ N such that the formula is exact
for xk ∀k = 0, 1, . . . , m.

Lemma 80. Let p ∈ Πn be a polynomial and {xi}n
i=0 ⊂

[a, b] be a set of nodes. Then:

bˆ

a

p(x) dx =
n∑

i=0
aip(xi)

for some ai ∈ R.

Newton-Cotes formulas

Theorem 81 (Mean value theorem for integrals).
Let f, g : [a, b] → R be such that f is continuous and g
integrable. Suppose that g does not change the sign on
[a, b]. Then, ∃ξ ∈ [a, b] such that:

bˆ

a

f(x)g(x) dx = f(ξ)
bˆ

a

g(x) dx

Theorem 82 (Closed Newton-Cotes Formulas). Let
f : [a, b] → R be a function and {xi}n

i=0 ⊂ [a, b] be a set
of equally-spaced points. If I =

´ b

a
f(x) dx and h = b−a

n ,
then ∃ξ ∈ [a, b] such that:

• If n is even and f ∈ Cn+2:

I =
n∑

i=0
aif(xi) + hn+3fn+2(ξ)

(n + 2)!

n̂

0

t

n∏
i=0

(t − i) dt

• If n is odd and f ∈ Cn+1:

I =
n∑

i=0
aif(xi) + hn+2fn+1(ξ)

(n + 1)!

n̂

0

n∏
i=0

(t − i) dt 12

Corollary 83 (Trapezoidal rule). Let f : [a, b] → R be
a function of class C2. Then, ∃ξ ∈ [a, b] such that:

bˆ

a

f(x) dx = h

2 (f(a) + f(b)) − f ′′(ξ)
12 h3

where h = b − a. This is the case n = 1 of closed Newton-
Cotes formulas.

Corollary 84 (Simpson’s rule). Let f : [a, b] → R be
a function of class C4. Then, ∃ξ ∈ [a, b] such that:

bˆ

a

f(x) dx = h

3

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
− f (4)(ξ)

90 h5

where h = b−a
2 . This is the case n = 2 of closed Newton-

Cotes formulas.

Theorem 85 (Composite Trapezoidal rule). Let
f : [a, b] → R be a function of class C4, h = b−a

n and
xj = a + jh for each j = 0, 1, . . . , n. Then, ∃ξ ∈ [a, b] such
that:

I =
bˆ

a

f(x) dx = h

2

f(a) + 2
n−1∑
j=1

f(xj) + f(b)

−

− f ′′(ξ)(b − a)
12 h2

We denote by T (f, a, b, h) the approximation of I by trape-
zoidal rule.

12Note that when n is even, the degree of precision is n + 1, although the interpolation polynomial is of degree at most n. When n is
odd, the degree of precision is only n.
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Theorem 86 (Composite Simpson’s rule). Let f :
[a, b] → R be a function of class C4, n be an even number,
h = b−a

n and xj = a + jh for each j = 0, 1, . . . , n. Then,
∃ξ ∈ [a, b] such that:

I =
bˆ

a

f(x) dx = h

3

f(a) + 2
n/2−1∑

j=1
f(x2j) +

+ 4
n/2∑
j=1

f(x2j−1) + f(b)

− f (4)(ξ)(b − a)
180 h4

We denote by S(f, a, b, h) the approximation of I by Simp-
son’s rule.

Romberg method
Definition 87. We define Bernoulli polynomials Bn(x)
as B0(x) = 1, B1(x) = x − 1

2 and

B′
k+1 = (k + 1)Bk for k ≥ 1

Bernoulli numbers are Bn = Bn(0), ∀n ≥ 013.

Theorem 88 (Euler-Maclaurin formula). Let f ∈
C2m+2([a, b]) be a function. Then:

T (f, a, b, h) =
bˆ

a

f(t) dt +
m∑

k=1

B2kh2k

(2k)!

(
f (2k−1)(b) −

− f (2k−1)(a)
)

+ (b − a)B2m+2h2m+1

(2m + 2)! f (2m+2)(ξ)

where h = b−a
n , Bn are the Bernoulli numbers and ξ ∈

[a, b].

Theorem 89 (Romberg method). Let f ∈
C2m+2([a, b]) be a function. Then, by Euler-Maclaurin for-
mula, we obtain:

T (f, a, b, h) =
bˆ

a

f(t) dt + β1h2 + β2h4 + · · ·

where h = b−a
n . For n = 1, 2, . . . we define:

Tn,1 = T

(
f, a, b,

b − a

2n

)
Tn,m+1 = 4mTn+1,m − Tn,m

4m − 1

for m ≤ n. Then, we can observe that:

Tn,m =
bˆ

a

f(t) dt + O
((

b − a

2n

)2m
)

Orthogonal polynomials
Definition 90. Let f, g : [a, b] → R be continuous func-
tion and ω(x) : [a, b] → R>0 be a weight function. The
expression

⟨f, g⟩ =
bˆ

a

ω(x)f(x)g(x) dx

defines a positive semidefinite dot product in the vector
space of bounded functions on [a, b].

Definition 91 (Orthogonal polynomials). Let P =
{ϕi(x) ∈ R[x] : deg ϕi(x) = i, i ∈ N ∪ {0}} be a family of
polynomials and ω(x) : [a, b] → R>0 be a weight function.
We say P is orthogonal with respect to the weight ω(x) on
an interval [a, b] if

⟨ϕi, ϕj⟩ =
bˆ

a

ω(x)ϕi(x)ϕj(x) dx = 0 ⇐⇒ i ̸= j

Note that ⟨ϕi, ϕi⟩ > 0 for each i ∈ N ∪ {0}.

Lemma 92. We define Pn as Pn = {ϕi(x) ∈ Πn :
deg ϕi(x) = i and ⟨ϕi, ϕj⟩ = 0 ⇐⇒ i ̸= j, i = 0, . . . , n}.
Then, Pn is an orthogonal basis of Πn.

Lemma 93. Let ϕk ∈ Pk and q ∈ Πn. Then, ⟨q, ϕk⟩ = 0
for each k > n.

Lemma 94. Let ϕn ∈ Pn. Then, ∀n ∈ N ∪ {0}, all roots
of ϕn are real, simple and contained in the interval (a, b),
where the associated weight function ω(x) is defined.

Theorem 95 (Existence of orthogonal polynomi-
als). For each n ∈ N ∪ {0} there exists a unique monic
orthogonal polynomial ϕn with deg ϕn = n, associated
with the weight function ω(x), defined by:

ϕ0 = 1 ϕ1(x) = x − α0

ϕn+1(x) = (x − αn)ϕn(x) − βnϕn−1(x)

with αn = ⟨ϕn,xϕn⟩
⟨ϕn,ϕn⟩ ∀n ∈ N ∪ {0} and βn = ⟨ϕn,ϕn⟩

⟨ϕn−1,ϕn−1⟩
∀n ∈ N.

Definition 96 (Chebyshev polynomials). Chebyshev
polynomials Tn are the orthogonal polynomials defined on
[−1, 1] with the weight ω(x) = 1√

1−x2 . These can be de-
fined recursively as:

T0(x) = 1 T1(x) = x

Tn+1(x) = 2xTn(x) − Tn−1(x)

for n = 1, 2, . . . Moreover Tn(x) = cos(n arccos(x)) which
implies that the roots of Tn(x) are:

xk = cos
(

2k − 1
2n

π

)
for k = 1, . . . , n

Definition 97 (Laguerre polynomials). Laguerre poly-
nomials Ln are the orthogonal polynomials defined on
[0, ∞) with the weight ω(x) = e−x. These can be defined
recursively as:

L0(x) = 1 L1(x) = 1 − x

Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x)
n + 1

for n = 1, 2, . . . The closed form of these polynomials is:

Ln(x) =
n∑

k=0

(
n

k

)
(−1)k

k! xk

13Exponential generating function of the sequence (Bn) of Bernoulli numbers is
x

ex − 1
=

∞∑
n=1

Bn

n!
xn.
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Definition 98 (Legendre polynomials). Legendre
polynomials Pn are the orthogonal polynomials defined on
[−1, 1] with the weight ω(x) = 1. These can be defined
recursively as:

P0(x) = 1 P1(x) = x

Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x)
n + 1

for n = 1, 2, . . . The closed form of these polynomials is:

Pn(x) = 1
2n

n∑
k=0

(
n

k

)2
(x − 1)n−k(x + 1)k

Gaußian quadrature
Definition 99. Let f : [a, b] → R be a function and
ω(x) : [a, b] → R>0 be a weight function. Given a set of
nodes {xi}n

i=1 ⊂ [a, b], the quadrature formula with weight
ω(x) of a function f is

bˆ

a

ω(x)f(x) dx ≈
n∑

i=1
ωif(xi) with ωi =

bˆ

a

ω(x)ℓi(x) dx

Lemma 100. Let f : [a, b] → R be a function and {xi}n
i=1

be the zeros of the orthogonal polynomial ϕn ∈ Pn with
weight ω(x) on the interval [a, b]. Then, the formula

bˆ

a

ω(x)f(x) dx ≈
n∑

i=1
ωif(xi) with ωi =

bˆ

a

ω(x)ℓi(x) dx

is exact for all polynomials in Π2n−1.
Proposition 101. Let f : [a, b] → R be a function and
{xi}n

i=1 be the zeros of the orthogonal polynomial ϕn ∈ Pn

with weight ω(x) on the interval [a, b]. Then, in the for-
mula

bˆ

a

ω(x)f(x) dx ≈
n∑

i=1
ωif(xi)

the values ωi are positive and real for i = 1, . . . , n.
Theorem 102. Let f : [a, b] → R be a function of class
C2n and {xi}n

i=1 be the zeros of the orthogonal polynomial
ϕn ∈ Pn with weight ω(x) on the interval [a, b]. Then:

bˆ

a

ω(x)f(x) dx −
n∑

i=1
ωif(xi) = f2n(ξ)

(2n)! ⟨ϕn, ϕn⟩

where ξ ∈ [a, b].

5. | Numerical linear algebra
Triangular matrices
Definition 103. A matrix A = (aij) ∈ Mn(C) is upper
triangular if aij = 0 whenever i > j. That is, A is of the
form:

A =


a11 a12 · · · a1n

0 a22
. . . ...

... . . . . . . a(n−1)n

0 · · · 0 ann



Definition 104. A matrix A = (aij) ∈ Mn(C) is lower
triangular if aij = 0 whenever j > i. That is, A is of the
form:

A =


a11 0 · · · 0

a21 a22
. . . ...

... . . . . . . 0
an1 · · · an(n−1) ann


Definition 105. A linear system with a triangular matrix
associated is called a triangular system.

Matrix norms

Definition 106. A matrix norm on the vector space
Mn(R) is a function ∥·∥ : Mn(R) → R satisfying all prop-
erties of a norm14 and that:

∥AB∥ ≤ ∥A∥ ∥B∥ ∀AB ∈ Mn(R)

This property is called sub-multiplicativity.

Remark. Some other definitions in the literature exclude
this property for a matrix norm.

Definition 107. Let ∥·∥α be a vector norm. We say a
matrix norm ∥·∥β is compatible with ∥·∥α if

∥Av∥α ≤ ∥A∥β ∥v∥α ∀A ∈ Mn(R) and ∀v ∈ Rn

Definition 108. Let ∥·∥ be a vector norm and A ∈
Mn(R). We define a subordinated matrix norm ∥·∥ as:

∥A∥ = max{∥Av∥ : v ∈ Rn such that ∥v∥ = 1}

= sup
{

∥Av∥
∥v∥

: v ∈ Rn such that v ̸= 0
}

Lemma 109. All subordinated matrix norms are com-
patible.

Proof. Let ∥·∥α, ∥·∥β be vector and matrix norms respec-
tively, A ∈ Mn(R) and v ∈ Rn \ {0}. Then, from the
definition of subordinated matrix we have ∥Av∥α

∥v∥α
≤ ∥A∥β .

For v = 0 the inequality clearly holds. □

Lemma 110. For all subordinated matrix norm ∥·∥, we
have ∥I∥ = 1.

Proof. I = max
v∈Rn

∥v∥=1

∥Iv∥ = max
v∈Rn

∥v∥=1

∥v∥ = 1 □

Definition 111. Let A ∈ Mn(C) be a matrix. We define
the spectrum σ(A) of A as:

σ(A) := {λ ∈ C : A − λid is not invertible}

Proposition 112. Let A ∈ Mn(C) be a matrix. Then:

σ(A) = {λ ∈ C : λ is an eigenvalue of A}
14See ??.
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Proof. Let B := A−λid. If B is not invertible, then there
exist a non-trivial combination of its columns b1, . . . , bn

that is equal to the zero vector:

c1b1 + · · · + cnbn = 0

Now consider v = c1e1 + · · · + cnen, where ei is the i-th
vector of the canonical basis of Rn. Then, v is an eigen-
vector of A with eigenvalue λ. □

Definition 113. Let A ∈ Mn(C) be a matrix. We define
the spectral radius ρ(A) of A as:

ρ(A) := max{|λ| ∈ C : λ ∈ σ(A)}

Proposition 114. Let v = (v1, . . . , vn) ∈ Rn and A =
(aij) ∈ Mn(R). Given the vector norms:

∥v∥1 =
n∑

i=1
|vi|

∥v∥2 =

√√√√ n∑
i=1

vi
2

∥v∥∞ = max{|vi| : i = 1, . . . , n}

their subordinated matrix norms are respectively:

∥A∥1 = max
{

n∑
i=1

|aij | : j = 1, . . . , n

}

∥A∥2 =
√

ρ(ATA)

∥A∥∞ = max


n∑

j=1
|aij | : i = 1, . . . , n


Proof. Let’s start with the ∥·∥1 and ∥·∥∞ norms. Let

A1 := max
1≤j≤n

n∑
i=1

|aij | and A∞ := max
1≤i≤n

n∑
j=1

|aij | and sup-

pose they are attained at j = j0 and i = i0. Then, for all
v = (vj), u = (uj) ∈ Rn such that ∥v∥1 = ∥u∥∞ = 1 we
have:

∥Av∥1 =
n∑

i=1

∣∣∣∣∣∣
n∑

j=1
aijvj

∣∣∣∣∣∣ ≤
n∑

j=1
|vj |

n∑
i=1

|aij | ≤

≤
n∑

j=1
|vj |A1 = A1

∥Au∥∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1
aijuj

∣∣∣∣∣∣ ≤ max
1≤i≤n

n∑
j=1

|aij ||uj | ≤

≤ max
1≤i≤n

n∑
j=1

|aij | = A∞

And taking v = ej0 and u = (sgn ai01, . . . , sgn ai0n) we
have that ∥Av∥1 = A1 and ∥Au∥∞ = A∞. So ∥A∥1 = A1
and ∥A∥∞ = A∞. Now, let’s do the ∥·∥2 norm. Observe
that ATA is symmetric, and therefore it diagonalizes in an
orthonormal basis of eigenvectors v1, . . . , vn with eigenval-
ues λ1, . . . , λn. Note that for each of these eigenvectors we
have:

∥Avi∥2
2 = vi

TATAvi = λivi
Tvi = λi

So, ∥Avi∥2 =
√

ρ(ATA) for some i. Now take v =∑n
i=1 αivi normalized to 1 (i.e.

∑n
i=1 |αi|2 = 1). Then,

using the orthogonality of the eigenvectors:

∥Av∥2
2 = vTATAv =

n∑
i=1

|αi|2vi
TATAvi ≤ ρ(ATA)

□

Proposition 115. Consider the function:
∥·∥ : Mn(R) −→ R

(aij) 7−→
∑n

i,j=1 |aij |

Then, ∥·∥ is a matrix norm, but it isn’t the subordinated
matrix norm of any vector norm.
Proof. Clearly it is a matrix norm in the sense of ??, but it
doesn’t satisfy the sub-multiplicative (consider A = B =(

1 0
1 1

)
) and so it cannot be the subordinated matrix

norm of any vector norm. □

Proposition 116 (Properties of matrix norms).
1. Matrix norms are continuous functions.

2. Given two matrix norms ∥·∥α and ∥·∥β , there exist
ℓ, L ∈ R>0 such that:

ℓ ∥A∥β ≤ ∥A∥α ≤ L ∥A∥β ∀A ∈ Mn(R)

3. For all subordinated matrix norm ∥·∥ and for all
A ∈ Mn(R):

ρ(A) ≤ ∥A∥

4. Given a matrix A ∈ Mn(R) and ε > 0, there exist
a matrix norm ∥·∥A,ε such that:

ρ(A) ≤ ∥A∥A,ε ≤ ρ(A) + ε

Definition 117. A matrix A ∈ Mn(R) is convergent if
lim

k→∞
Ak = 0.

Theorem 118. Let A ∈ Mn(R). The following state-
ments are equivalent:

1. A is convergent.

2. lim
k→∞

∥Ak∥ = 0 for some matrix norm ∥·∥.

3. ρ(A) < 1.
Corollary 119. Let A ∈ Mn(R). If there is a matrix
norm ∥·∥ satisfying ∥A∥ < 1, then A converges.
Theorem 120. Let A ∈ Mn(R).

1. The series
∑∞

k=0 Ak converges if and only if A con-
verge.

2. If A is convergent, then In − A is non-singular and
moreover:

(In − A)−1 =
∞∑

k=0
Ak

Corollary 121. Let A ∈ Mn(R). If there is a subordi-
nated matrix norm ∥·∥ satisfying ∥A∥ < 1, then In − A is
non-singular and moreover:

1
1 + ∥A∥

≤ ∥(In − A)−1∥ ≤ 1
1 − ∥A∥
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Matrix condition number
Definition 122. Let A ∈ GLn(R). We define the condi-
tion number κ(A) of A as:

κ(A) = ∥A∥ ∥A−1∥

Theorem 123. Let A ∈ GLn(R), b ∈ Rn, Ax = b be
a system of linear equations and ∥·∥ be a subordinated
matrix norm. Suppose we know A and b with absolute
errors ∆A and ∆b, respectively. Therefore, we actually
have to solve the system:

(A + ∆A)(x + ∆x) = (b + ∆b) (1)

If ∥∆A∥ < 1
∥A−1∥ , then:

∥∆x∥
∥x∥

≤ κ(A)
1 −

∥∥A−1∥∥ ∥∆A∥

(
∥∆b∥
∥b∥

+ ∥∆A∥
∥A∥

)
Proof. Since

∥∥A−1∆A
∥∥ ≤

∥∥A−1∥∥ ∥∆A∥ < 1, we have
that In + A−1∆A is non-singular and moreover:∥∥(In + A−1∆A)−1∥∥ ≤ 1

1 −
∥∥A−1∥∥ ∥∆A∥

Furthermore, from Eq. (1) we have:

∆xA(I + A−1∆A) = ∆b − ∆Ax

Therefore:

∥∆x∥
∥x∥

≤
∥∆b − ∆Ax∥

∥∥(In + A−1∆A)−1
∥∥∥∥A−1∥∥

∥x∥

≤
(

∥∆b∥
∥x∥

+ ∥∆A∥
) ∥∥A−1∥∥

1 −
∥∥A−1∥∥ ∥∆A∥

≤ κ(A)
1 −

∥∥A−1∥∥ ∥∆A∥

(
∥∆b∥

∥A∥ ∥x∥
+ ∥∆A∥

∥A∥

)
≤ κ(A)

1 −
∥∥A−1∥∥ ∥∆A∥

(
∥∆b∥
∥b∥

+ ∥∆A∥
∥A∥

)
because b ≤ ∥A∥ ∥x∥. □

Theorem 124. Let A ∈ GLn(R) and ∥·∥ be a subordi-
nated matrix norm. Then:

1. κ(A) ≥ ρ(A)ρ(A−1).

2. If b, z ∈ Rn are such that Az = b, then:∥∥A−1∥∥ ≥ ∥z∥
∥b∥

3. If B ∈ Mn(R) is a singular matrix, then:

κ(A) ≥ ∥A∥
∥A − B∥

Proof. The first two properties are easy. For the third one,
if P ∈ Mn(R) is such that ∥P∥ < 1

∥A−1∥ , then A + P =
A(In+A−1P) is non-singular. Equivalently, if B := A+P
is singular, then we must have ∥P∥ = ∥B − A∥ ≥ 1

∥A−1∥ .
□

Iterative methods
Definition 125. Suppose we want to solve the system
Ax = b, where A ∈ Mn(R) and b ∈ Rn. We choose a
matrix N ∈ GLn(R) and define P := N − A. Then:

Ax = b ⇐⇒ x = N−1Px + N−1b =: Mx + N−1b

The matrix M is called the iteration matrix. This defines
a fixed-point iteration in the following way:{

x(k+1) = Mx(k) + N−1b
x(0) (initial approximation)

Theorem 126. The iterative method x(k+1) = Mx(k) +
N−1b is convergent if and only if M is convergent and if
and only if ρ(M) < 1.

Corollary 127. If ∥M∥ < 1 for some matrix norm, then
the iterative method x(k+1) = Mx(k) + N−1b is conver-
gent.

Definition 128. We define the rate of convergence R of
an iterative method x(k+1) = Mx(k) + N−1b as:

R = − log(ρ(M))

Proposition 129. Let x(k+1) = Mx(k) + N−1b be an
iterative method to approximate the solution x of a sys-
tem of equations Ax = b. Then, we have the following
estimations:

∥x(k) − x∥ ≤ ∥M∥k

1 − ∥M∥
∥x(1) − x(0)∥ (a priori)

∥x(k) − x∥ ≤ ∥M∥
1 − ∥M∥

∥x(k) − x(k−1)∥ (a posteriori)

Definition 130. Let A = (aij) ∈ Mn(R). We say A is
strictly diagonally dominant by rows if

|aii| >

n∑
j=1
j ̸=i

|aij |

We say A is strictly diagonally dominant by columns if

|ajj | >

n∑
i=1
i̸=j

|aij |

Definition 131 (Jacobi method). Let A = (aij) ∈
Mn(R) be such that

∏n
i=1 aii ̸= 0, b ∈ Rn and Ax = b

be a system of equations. Jacobi method consists in defin-
ing a matrix N (and consequently matrices P and M as
defined above) in the following way:

N =


a11 0 · · · 0

0 a22
. . . ...

... . . . . . . 0
0 · · · 0 ann



P = N − A =


0 −a12 · · · −a1n

−a21 0 . . . ...
... . . . . . . −a(n−1)n

−an1 · · · −an(n−1) 0


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M = N−1P =


0 −a12

a11
· · · −a1n

a11

−a21
a22

0 . . . ...
... . . . . . . −a(n−1)n

a(n−1)(n−1)
−an1
ann

· · · −an(n−1)
ann

0


Note that the iterative method x(k+1) = Mx(k) + N−1b
can also be written as:

x
(k+1)
i = 1

aii

bi −
n∑

j=1
j ̸=i

aijx
(k)
j

 for i = 1, . . . , n

Theorem 132. Let A ∈ Mn(R) be such that
∏n

i=1 aii ̸=
0 and b ∈ Rn. If A is strictly diagonally dominant by
rows or columns, then Jacobi method applied to solve the
system Ax = b is convergent.

Definition 133 (Gauß-Seidel method). Let A =
(aij) ∈ Mn(R) be such that

∏n
i=1 aii ̸= 0, b ∈ Rn and

Ax = b be a system of equations. Gauß-Seidel method
consists in defining a matrix N (and consequently matri-
ces P and M as defined above) in the following way:

N =


a11 0 · · · 0

a21 a22
. . . ...

... . . . . . . 0
an1 · · · an(n−1) ann



P = N − A =


0 −a12 · · · −a1n

0 0 . . . ...
... . . . . . . −a(n−1)n

0 · · · 0 0


M = N−1P

Note that the iterative method x(k+1) = Mx(k) + N−1b
can also be written as:

x
(k+1)
i = 1

aii

bi −
n∑

j=i+1
aijx

(k)
j −

i−1∑
j=1

aijx
(k+1)
j


for i = 1, . . . , n.

Theorem 134. Let A ∈ Mn(R) be such that
∏n

i=1 aii ̸=
0 and b ∈ Rn. If A is strictly diagonally dominant by
rows, then Gauß-Seidel method applied to solve the sys-
tem Ax = b is convergent.

Proposition 135 (Over-relaxation methods). Let
A ∈ Mn(R), b ∈ Rn, Ax = b be a system of equa-
tions and α ∈ R be a parameter (called relaxation fac-
tor). Over-relaxation methods consist in defining matrices
N(α), P(α) and M(α) as follows:

P(α) = N(α) − A M(α) = N(α)−1P(α)

Then, the iterative method can be written as:

x(k+1) = M(α)x(k) + N(α)−1b

Proposition 136 (Successive over-relaxation
method). Let A ∈ Mn(R), b ∈ Rn, α ∈ R be such
that α ̸= −1 and x(k+1) = N−1Px(k) + N−1b be an it-
erative method. Successive over-relaxation method (SOR)
consists in defining

N(α) = (1 + α)N and P(α) = P + αN

because it must be true that A = N(α) − P(α). Then,
the previous iteration becomes:

x(k+1) = N(α)−1P(α)x(k) + N(α)−1b

Definition 137. Let A ∈ Mn(R), b ∈ Rn, α ∈ R be such
that α ̸= −1 and x(k+1) = N(α)−1P(α)x(k) + N(α)−1b
be a SOR method. Since M(α) = N(α)−1P(α), we have
that

M(α) = 1
1 + α

(M + αIn)

and therefore:

σ(M(α)) =
{

λ + α

1 + α
: λ ∈ σ(M)

}
Theorem 138. Let A ∈ Mn(R), b ∈ Rn and x(k+1) =
Mx(k) + N−1b be an iterative method. Suppose that the
eigenvalues λi, i = 1, . . . , n, of M are all real and satisfy:

0 < λ1 ≤ λ2 ≤ · · · ≤ λn < 1

Then, the associated SOR method given by N(α) =
(1 + α)N and P(α) = P + αN converges for α > − 1+λ1

2 .
Moreover, ρ(M(α)) is minimum whenever α = − λ1+λn

2 .

Eigenvalues and eigenvectors

Definition 139. Let A ∈ Mn(R) be a matrix whose
eigenvalues are λ1, . . . , λn. λ1 is called dominant eigen-
value of A if |λ1| > |λi| for i = 2, . . . , n. The associated
eigenvector to λ1 is called dominant eigenvector of A.

Definition 140. We say a matrix A ∈ Mn(R) is reducible
if ∃P ∈ Mn(R) a permutation matrix, such that

PAP−1 =
(

E 0
F G

)
for some square matrices E and G and for some other
matrix F. A matrix is irreducible if it is not reducible.

Theorem 141 (Perron-Frobenius theorem). Let A ∈
Mn(R) be a non-negative irreducible matrix. Then, ρ(A)
is a real number and it is the dominant eigenvalue.

Proposition 142 (Power method). Let A ∈ Mn(R).
For simplicity, suppose A is diagonalizable with eigen-
values λ1, . . . , λn and eigenvectors v1, . . . , vn. Suppose
|λ1| > |λ2| ≥ · · · ≥ |λn|. The power method consists in
finding an approximation of the dominant eigenvalue λ1
starting from an initial approximation x(0) of v1. We de-
fine:

x(k+1) = Ax(k) k ≥ 0

12



Suppose x(0) =
∑n

i=1 αivi. If we denote by vi,m the m-
th component of the vector vi and choose ℓ such that
v1,ℓ ̸= 0. Then:

lim
k→∞

x(k)

λk
1

= v1 lim
k→∞

x(k+1)
ℓ

x(k)
ℓ

= λ1

provided that α1 ̸= 0. More precisely we have:

x(k+1)
ℓ

x(k)
ℓ

= λ1 + O
(∣∣∣∣λ2

λ1

∣∣∣∣k
)

Proposition 143 (Normalized power method). Let
A ∈ Mn(R) and ∥·∥ be a vector norm15. For simplicity
suppose A is diagonalizable with eigenvalues λ1, . . . , λn

and eigenvectors v1, . . . , vn. Suppose |λ1| > |λ2| ≥ · · · ≥
|λn|. The normalized power method consists in defining

y(k) = x(k)

∥x(k)∥
x(k+1) = Ay(k) for k ≥ 0

Suppose x(0) =
∑n

i=1 αivi such that α1 ̸= 0. If we choose
ℓ such that v1,ℓ ̸= 0. Then:

lim
k→∞

x(k) = v1 lim
k→∞

x(k+1)
ℓ

y(k)
ℓ

= λ1

More precisely we have:

x(k+1)
ℓ

y(k)
ℓ

= λ1 + O
(∣∣∣∣λ2

λ1

∣∣∣∣k
)

Proposition 144 (Rayleigh quotient). Let A ∈
Mn(R). Suppose we have a power method x(k+1) = Ax(k)

to approximate the dominant eigenvalue λ1 of A. Then
Rayleigh quotient approximates λ1 as follows:

lim
k→∞

(
x(k+1))T · x(k)(
x(k)

)T · x(k)
= λ1

More precisely:(
x(k+1))T · x(k)(
x(k)

)T · x(k)
= λ1 + O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)

If instead of a power method, we have a normalized power
method y(k) = x(k)

∥x(k)∥ , x(k+1) = Ay(k), then:

lim
k→∞

(
x(k+1))T · y(k)(
y(k)

)T · y(k)
= λ1

Proposition 145 (Inverse power method). Let A ∈
Mn(R) and µ ∈ C. The inverse power method consists in
finding an approximation of the eigenvalue λ closest to µ
starting from an initial approximation x(0) of its associ-
ated eigenvector v. So we applied the power method to
the matrix (A − µIn)−1. That is, we have the recurrence:

y(k) = x(k)

∥x(k)∥
x(k+1) = (A − µIn)−1y(k) for k ≥ 0

Or, equivalently,

y(k) = x(k)

∥x(k)∥
(A − µIn)x(k+1) = y(k) for k ≥ 0

Therefore, in each step we have to solve a system of equa-
tions to obtain x(k+1). Finally16, if we choose ℓ such that
vℓ ̸= 0, then:

lim
k→∞

x(k) = v lim
k→∞

x(k+1)
ℓ

y(k)
ℓ

= 1
λ − µ

17

Exact methods

Proposition 146 (Gaussian elimination). Let A =
(aij) ∈ Mn(C). We define a

(1)
ij := aij for i, j = 1, . . . , n

and

A(1) :=


a

(1)
11 a

(1)
12 · · · a

(1)
1n

a
(1)
21 a

(1)
22

. . . ...
... . . . . . . a

(1)
(n−1)n

a
(1)
n1 · · · a

(1)
n(n−1) a

(1)
nn


For i = 2, . . . , n we define mi1 = a

(1)
i1

a
(1)
11

to transform the ma-

trix A(1) into a matrix A(2) defined by a
(2)
ij = a

(1)
ij −mi1a

(1)
1j

for i = 2, . . . , n and by a
(1)
ij for i = 1. That is, we obtain

a matrix of the form:

A(1) ∼



a
(1)
11 a

(1)
12 a

(1)
13 · · · a

(1)
1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 a
(2)
32 a

(2)
33

. . . ...
...

... . . . . . . a
(2)
(n−1)n

0 a
(2)
n2 · · · a

(2)
n(n−1) a

(2)
nn


=: A(2)

Proceeding analogously creating multipliers mij , i > j, to
echelon the matrix A, at the end we will obtain an upper
triangular matrix A(n) of the form:

A(n) =



a
(1)
11 a

(1)
12 a

(1)
13 a

(1)
14 · · · a

(1)
1n

0 a
(2)
22 a

(2)
23 a

(2)
24 · · · a

(2)
2n

0 0 a
(3)
33 a

(3)
34 · · · a

(3)
3n

0 0 0 . . . . . . ...
...

...
... . . . a

(n−1)
(n−1)(n−1) a

(n−1)
(n−1)n

0 0 0 · · · 0 a
(n)
nn


Proposition 147. Partial pivoting method in gaussian
elimination consists in selecting as the pivot element the
entry with largest absolute value from the column of the
matrix that is being considered.

15For power method it is recommended to use ∥·∥∞.
16Alternatively, here we could have applied the Rayleigh quotient.
17There’s another method that applies power method to the matrix A − µIn with the same purpose as the inverse power method but

without having to solve a system of equations in each iteration. In this case, this method gives the farthest eigenvalue of A from µ.
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Proposition 148. Complete pivoting method in gaussian
elimination interchanges both rows and columns in order
to use the largest element (by absolute value) in the matrix
as the pivot.
Definition 149 (LU descompostion). Let A ∈
GLn(R) be a matrix. A LU decomposition of A is an
expression A = LU, where L = (ℓij), U = (uij) ∈ Mn(R)
are matrices of the form:

L =


1 0 · · · 0

ℓ21 1 . . . ...
... . . . . . . 0

ℓn1 · · · ℓn(n−1) 1

 (2)

U =


u11 u12 · · · u1n

0 u22
. . . ...

... . . . . . . u(n−1)n

0 · · · 0 unn

 (3)

Lemma 150. Let A ∈ GLn(R), b ∈ Rn and Ax = b be
a system of linear equations. Suppose A = LU for some
matrices L, U ∈ Mn(R) of the form of Eqs. (2) and (3),
respectively. Then, to solve the system Ax = b we can
proceed in the following way:

1. Solve the triangular system Ly = b.

2. Solve the triangular system Ux = y.

Proposition 151. Let A ∈ GLn(R). Then:

1. If LU decomposition exists, it is unique.

2. If we can make the gaussian elimination without piv-
oting rows, then18:

L =


1 0 · · · 0

m21 1 . . . ...
... . . . . . . 0

mn1 · · · mn(n−1) 1

 U = A(n)

Definition 152. A permutation matrix is a square binary
matrix that has exactly one entry of 1 in each row and each
column and 0 elsewhere.

Proposition 153. Let A ∈ GLn(R). Then, there exist
a permutation matrix P ∈ Mn(R) and matrices L, U ∈
Mn(R) of the form of Eqs. (2) and (3), respectively, such
that:

PA = LU

18In practice, LU decomposition is implemented making gaussian elimination and storing the values mij in the position ij of the matrix
A(k), where there should be a 0.
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