Numerical methods

1. Errors

Floating-point representation

Theorem 1. Let $b \in \mathbb{N}$, $b \geq 2$. Any real number $x \in \mathbb{R}$ can be represented of the form

$$x = s \left(\sum_{i=1}^{\infty} \alpha_i b^{-i} \right) b^q$$

where $s \in \{-1, 1\}$, $q \in \mathbb{Z}$ and $\alpha_i \in \{0, 1, \dots, b-1\}$. Moreover, this representation is unique if $\alpha_1 \neq 0$ and $\forall i_0 \in \mathbb{N}$, $\exists i \geq i_0 : \alpha_i \neq b-1$. We will write

$$x = s(0.\alpha_1\alpha_2\cdots)_b b^q$$

where the subscript b in the parenthesis indicates that the number $0.\alpha_1\alpha_2\alpha_3\cdots$ is in base b.

Definition 2 (Floating-point representation). Let x be a real number. Then, the *floating-point representation* of x is:

$$x = s\left(\sum_{i=1}^{t} \alpha_i b^{-i}\right) b^q$$

Here s is called the sign; $\sum_{i=1}^{t} \alpha_i b^{-i}$, the significant or mantissa, and q, the exponent, limited to a prefixed range $q_{\min} \leq q \leq q_{\max}$. Therefore, the floating-point representation of x can be expressed as:

$$x = smb^q = s(0.\alpha_1\alpha_2\cdots\alpha_t)_bb^q$$

Finally, we say a floating-point number is normalized if $\alpha_1 \neq 0$.

Format	$\mid b \mid$	t	q_{\min}	$q_{\rm max}$	bits
IEEE simple	2	24	-126	127	32
IEEE double	2	53	-1022	1023	64

Table 1: Parameters of IEEE simple and IEEE double formats.

Definition 3. Let $x \in \mathbb{R}$ be such that $x = s(0.\alpha_1\alpha_2\cdots)_bb^q$ with $q_{\min} \leq q \leq q_{\max}$. We say the floating-point representation by truncation of x is:

$$fl_T(x) = s(0.\alpha_1\alpha_2\cdots\alpha_t)_b b^q$$

We say the floating-point representation by rounding of x is:

$$\mathbf{fl}_R(x) = \begin{cases} s(0.\alpha_1 \cdots \alpha_t)_b b^q & \text{if } 0 \le \alpha_{t+1} < \frac{b}{2} \\ s(0.\alpha_1 \cdots \alpha_{t-1}(\alpha_t + 1))_b b^q & \text{if } \frac{b}{2} \le \alpha_{t+1} \le b - 1 \end{cases}$$

Definition 4. Given a value $x \in \mathbb{R}$ and an approximation \tilde{x} of x, the *absolute error* is:

$$\Delta x := |x - \tilde{x}|$$

If $x \neq 0$, the relative error is:

$$\delta x := \frac{|x - \tilde{x}|}{r}$$

If x is unknown, we take:

$$\delta x pprox rac{|x - \tilde{x}|}{\tilde{x}}$$

Definition 5. Let \tilde{x} be an approximation of x. If $\Delta x \leq \frac{1}{2}10^{-t}$, we say \tilde{x} has t correct decimal digits. If $x = sm10^q$ with $0.1 \leq m < 1$, $\tilde{x} = s\tilde{m}10^q$ and

$$u := \max\{i \in \mathbb{Z} : |m - \tilde{m}| \le \frac{1}{2}10^{-i}\}$$

then we say that \tilde{x} has u significant digits.

Proposition 6. Let $x \in \mathbb{R}$ be such that $x = s(0.\alpha_1\alpha_2\cdots)_bb^q$ with $\alpha_1 \neq 0$ and $q_{\min} \leq q \leq q_{\max}$. Then, its floating-point representation in base b and with t digits satisfy:

$$|f|_T(x) - x| \le b^{q-t}$$
 $|f|_R(x) - x| \le \frac{1}{2}b^{q-t}$ $\left|\frac{f|_T(x) - x}{x}\right| \le b^{1-t}$ $\left|\frac{f|_R(x) - x}{x}\right| \le \frac{1}{2}b^{1-t}$

Definition 7. The machine epsilon ϵ is defined as:

$$\epsilon := \min\{\varepsilon > 0 : \text{fl}(1+\varepsilon) \neq 1\}$$

Proposition 8. For a machine working by truncation, $\epsilon = b^{1-t}$. For a machine working by rounding, $\epsilon = \frac{1}{2}b^{1-t}$.

Propagation of errors

Proposition 9 (Propagation of absolute errors). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 . If Δx_j is the absolute error of the variable x_j and $\Delta f(x)$ is the absolute error of the function f evaluated at the point $x = (x_1, \ldots, x_n)$, we have:

$$|\Delta f(x)| \lesssim \sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_j}(x) \right| |\Delta x_j|^{\mathbf{1}}$$

The coefficients $\left|\frac{\partial f}{\partial x_j}(x)\right|$ are called absolute condition numbers of the problem.

Proposition 10 (Propagation of relative errors). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 . If δx_j is the relative error of the variable x_j and $\delta f(x)$ is the relative error of the function f evaluated at the point $x = (x_1, \dots, x_n)$, we have:

$$|\delta f(x)| \lesssim \sum_{i=1}^{n} \frac{\left|\frac{\partial f}{\partial x_{j}}(x)\right| |x_{j}|}{|f(x)|} |\delta x_{j}|$$

¹The symbol \lesssim means that we are omitting terms of order $\Delta x_j \Delta x_k$ and higher.

The coefficients $\frac{\left|\frac{\partial f}{\partial x_j}(x)\right||x_j|}{|f(x)|}$ are called *relative condition numbers* of the problem.

Numerical stability of algorithms

Definition 11. An algorithm is said to be *numerically stable* if errors in the input lessen in significance as the algorithm executes, having little effect on the final output. On the other hand, an algorithm is said to be *numerically unstable* if errors in the input cause a considerably larger error in the final output.

Definition 12. A problem with a low condition number is said to be *well-conditioned*. Conversely, a problem with a high condition number is said to be *ill-conditioned*.

2. Zeros of functions

Definition 13. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. We say α is a zero or a solution to the equation f(x) = 0 if $f(\alpha) = 0$.

Definition 14. Let $f: \mathbb{R} \to \mathbb{R}$ be a sufficiently differentiable function. We say α is a zero of multiplicity $m \in \mathbb{N}$ if

$$f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = 0$$
 and $f^{(m)}(\alpha) \neq 0$

If m=1, the zero is called simple; if m=2, double; if m=3, triple...

Root-finding methods

For the following methods consider a continuous function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ with an unknown zero $\alpha \in I$. Given $\varepsilon > 0$, we want to approximate α with $\tilde{\alpha}$ such that $|\alpha - \tilde{\alpha}| < \varepsilon$.

Proposition 15 (Bisection method). Suppose $I = [a_0, b_0]$. For each step $n \ge 0$ of the algorithm we will approximate α by

$$c_n = \frac{a_n + b_n}{2}$$

If $f(c_n) = 0$ we are done. If not, let

$$[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, c_n] & \text{if } f(a_n) f(c_n) < 0\\ [c_n, b_n] & \text{if } f(a_n) f(c_n) > 0 \end{cases}$$

and iterate the process again². The length of the interval $[a_n, b_n]$ is $\frac{b_0 - a_0}{2^n}$ and therefore:

$$|\alpha - c_n| < \frac{b_0 - a_0}{2^{n+1}} < \varepsilon \iff n > \frac{\log\left(\frac{b_0 - a_0}{\varepsilon}\right)}{\log 2} - 1$$

Proposition 16 (Regula falsi method). Suppose $I = [a_0, b_0]$. For each step $n \geq 0$ of the algorithm we will approximate α by

$$c_n = b_n - f(b_n) \frac{b_n - a_n}{f(b_n) - f(a_n)} = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

If $f(c_n) = 0$ we are done. If not, let

$$[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, c_n] & \text{if } f(a_n) f(c_n) < 0\\ [c_n, b_n] & \text{if } f(a_n) f(c_n) > 0 \end{cases}$$

and iterate the process again.

Proposition 17 (Secant method). Suppose $I = \mathbb{R}$ and that we have two different initial approximations x_0, x_1 . Then, for each step $n \geq 0$ of the algorithm we obtain a new approximation x_{n+2} , given by:

$$x_{n+2} = x_{n+1} - f(x_{n+1}) \frac{x_{n+1} - x_n}{f(x_{n+1}) - f(x_n)}$$

Proposition 18 (Newton-Raphson method). Suppose $I = \mathbb{R}$, $f \in \mathcal{C}^1$ and that we have an initial approximation x_0 . Then, for each step $n \geq 0$ we obtain a new approximation x_{n+1} , given by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Proposition 19 (Newton-Raphson modified method). Suppose $I = \mathbb{R}$, $f \in \mathcal{C}^1$ and that we have an initial approximation x_0 of a zero α of multiplicity m. Then, for each step $n \geq 0$ we obtain a new approximation x_{n+1} , given by:

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

Proposition 20 (Chebyshev method). Suppose $I = \mathbb{R}$, $f \in C^2$ and that we have an initial approximation x_0 . Then, for each step $n \geq 0$ we obtain a new approximation x_{n+1} , given by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{1}{2} \frac{f(x_n)^2 f''(x_n)}{f'(x_n)^3}$$

Fixed-point iterations

Definition 21. Let $g:[a,b] \to [a,b] \subset \mathbb{R}$ be a function. A point $\alpha \in [a,b]$ is n-periodic if $g^n(\alpha) = \alpha$ and $g^j(\alpha) \neq \alpha$ for $j = 1, \ldots, n-1^3$.

Definition 22. Let (X,d) and (Y,d') be metric spaces and $f: X \to Y$ be a function. We say that f is a *contraction* if there exists $0 \le k < 1$ such that:

$$d'(f(x), f(y)) \le kd(x, y) \qquad \forall x \in X, y \in Y$$

Theorem 23 (Fixed-point theorem). Let (X, d) be a complete metric space and $g: X \to X$ be a contraction⁴. Then, g has a unique fixed point $\alpha \in X$ and for every $x_0 \in X$,

$$\lim_{n \to \infty} x_n = \alpha, \quad \text{where } x_n = g(x_{n-1}) \quad \forall n \in \mathbb{N}$$

²Note that bisection method only works for zeros of odd multiplicity.

 $^{^3\}mathrm{Note}$ that 1-periodic points are the fixed points of f.

⁴Recall ????.

Proposition 24. Let (X, d) be a metric space and $g: X \to X$ be a contraction of constant k. Then, if we want to approximate a fixed point α by the iteration $x_n = g(x_{n-1})$, we have:

$$d(x_n, \alpha) \le \frac{k^n}{1-k} d(x_1, x_0)$$
 (a priori estimation)
 $d(x_n, \alpha) \le \frac{k}{1-k} d(x_n, x_{n-1})$ (a posteriori estimation)

Corollary 25. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class \mathcal{C}^1 . Suppose α is a fixed point of g and $|g'(\alpha)| < 1$. Then, there exists $\varepsilon > 0$ and $I_{\varepsilon} := [\alpha - \varepsilon, \alpha + \varepsilon]$ such that $g(I_{\varepsilon}) \subseteq I_{\varepsilon}$ and g is a contraction on I_{ε} . In particular, if $x_0 \in I_{\varepsilon}$, the iteration $x_{n+1} = g(x_n)$ converges to α .

Definition 26. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class \mathcal{C}^1 and α be a fixed point of g. We say α is an attractor fixed point if $|g'(\alpha)| < 1$. In this case, any iteration $x_{n+1} = g(x_n)$ in I_{ε} converges to α . If $|g'(\alpha)| > 1$, we say α is a repulsor fixed point. In this case, $\forall x_0 \in I_{\varepsilon}$ the iteration $x_{n+1} = g(x_n)$ doesn't converge to α .

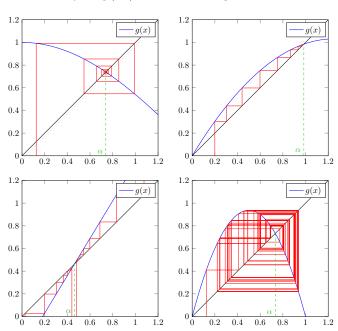


Figure 1: Cobweb diagrams. In the figures at the top, α is an attractor point, that is, $|g'(\alpha)| < 1$. More precisely, the figure at the top left occurs when $-1 < g'(\alpha) \le 0$ and the figure at the top right when $0 \le g'(\alpha) < 1$. In the figure at bottom left, α is a repulsor point. Finally, in the figure at bottom right the iteration $x_{n+1} = g(x_n)$ has no limit. It is said to have a *chaotic behavior*.

Order of convergence

Definition 27 (Order of convergence). Let (x_n) be a sequence of real numbers that converges to $\alpha \in \mathbb{R}$. We say (x_n) has order of convergence $p \in \mathbb{R}_{>0}$ if exists C > 0 such that:

$$\lim_{n \to \infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^p} = C$$

The constant C is called asymptotic error constant. For the case p=1, we need C<1. In this case the convergence is called *linear convergence*; for p=2, is called quadratic convergence; for p=3, cubic convergence... If it's satisfied that

$$\lim_{n \to \infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^p} = 0$$

for some $p \in \mathbb{R}_{>0}$, we say the sequence has order of convergence at least p.

Theorem 28. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class C^p and let α be a fixed point of g. Suppose

$$g'(\alpha) = g''(\alpha) = \dots = g^{(p-1)}(\alpha) = 0$$

with $|g'(\alpha)| < 1$ if p = 1. Then, the iteration $x_{n+1} = g(x_n)$, with x_0 sufficiently close to α , has order of convergence at least p. If, moreover, $g^{(p)}(\alpha) \neq 0$, then the previous iteration has order of convergence p with asymptotic error constant $C = \frac{|g^{(p)}(\alpha)|}{p!}$.

Theorem 29. Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class C^3 and α be a simple zero of f. If $f''(\alpha) \neq 0$, then Newton-Raphson method for finding α has quadratic convergence with asymptotic error constant $C = \frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right|$.

If $f \in \mathcal{C}^{m+2}$, and α is a zero of multiplicity m > 1, then Newton-Raphson method has linear convergence but Newton-Raphson modified method has at least quadratic convergence.

Theorem 30. Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^3 and let α be a simple zero of f. Then, Chebyshev's method for finding α has at least cubic convergence.

Definition 31. We define the computational efficiency of an algorithm as a function E(p,t), where t is the time taken for each iteration of the method and p is the order of convergence of the method. E(p,t) must satisfy the following properties:

- 1. E(p,t) is increasing with respect to the variable p and decreasing with respect to t.
- 2. $E(p,t) = E(p^m, mt) \ \forall m \in \mathbb{R}$.

Examples of such functions are the following:

$$E(p,t) = \frac{\log p}{t} \qquad E(p,t) = p^{1/t}$$

Sequence acceleration

Proposition 32 (Aitken's Δ^2 method). Let (x_n) be a sequence of real numbers. We denote:

$$\Delta x_n := x_{n+1} - x_n$$
$$\Delta^2 x_n := \Delta x_{n+1} - \Delta x_n = x_{n+2} - 2x_{n+1} + x_n$$

Aitken's Δ^2 method is the transformation of the sequence (x_n) into a sequence y_n , defined as:

$$y_n := x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n} = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

with $y_0 = x_0$.

Theorem 33. Let (x_n) be a sequence of real numbers such that $\lim_{n\to\infty} x_n = \alpha$, $x_n \neq \alpha \ \forall n \in \mathbb{N}$ and $\exists C, |C| < 1$, satisfying

$$x_{n+1} - \alpha = (C + \delta_n)(x_n - \alpha)$$
 with $\lim_{n \to \infty} \delta_n = 0$

Then, the sequence (y_n) obtained from Aitken's Δ^2 process is well-defined and

$$\lim_{n \to \infty} \frac{y_n - \alpha}{x_n - \alpha} = 0^5$$

Proposition 34 (Steffensen's method). Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function and suppose we have an iterative method $x_{n+1} = g(x_n)$. Then, for each step n we can consider a new iteration y_{n+1} , with $y_0 = x_0$, given by:

$$y_{n+1} = y_n - \frac{(g(y_n) - y_n)^2}{g(g(y_n)) - 2g(y_n) + y_n}$$

Proposition 35. Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^2 and α be a simple zero of f. Then, Steffensen's method for finding α has at least quadratic convergence⁶.

Zeros of polynomials

Lemma 36. Let $p(z) = a_0 + a_1 z + \cdots + a_n z^n \in \mathbb{C}[x]$ with $a_n \neq 0$. We define

$$\lambda := \max \left\{ \left| \frac{a_i}{a_n} \right| : i = 0, 1, \dots, n - 1 \right\}$$

Then, if $p(\alpha) = 0$ for some $\alpha \in \mathbb{C}$, $|\alpha| \leq \lambda + 1$.

Definition 37 (Strum's sequence). Let (f_i) , $i = 0, \ldots, n$, be a sequence of continuous functions defined on $[a, b] \subset \mathbb{R}$ and $f : [a, b] \to \mathbb{R}$ be a function of class \mathcal{C}^1 such that $f(a)f(b) \neq 0$. We say (f_n) is a *Sturm's sequence* if:

- 1. $f_0 = f$.
- 2. If $\alpha \in [a, b]$ satisfies $f_0(\alpha) = 0 \implies f'_0(\alpha)f_1(\alpha) > 0$.
- 3. For i = 1, ..., n 1, if $\alpha \in [a, b]$ satisfies $f_i(\alpha) = 0 \implies f_{i-1}(\alpha)f_{i+1}(\alpha) < 0$.
- 4. $f_n(x) \neq 0 \ \forall x \in [a, b]$.

Definition 38. Let (a_i) , i = 0, ..., n, be a sequence. We define $\nu(a_i)$ as the number of sign variations of the sequence

$$\{a_0, a_1, \ldots, a_n\}$$

without taking into account null values.

Theorem 39 (Sturm's theorem). Let $f:[a,b] \to \mathbb{R}$ be a function of class \mathcal{C}^1 such that $f(a)f(b) \neq 0$ and with a finite number of zeros. Let $(f_i), i = 0, \ldots, n$, be a Sturm sequence defined on [a,b]. Then, the number of zeros of f on [a,b] is

$$\nu\left(f_i(a)\right) - \nu\left(f_i(b)\right)$$

Lemma 40. Let $p \in \mathbb{C}[x]$ be a polynomial. Then, the polynomial $q = \frac{p}{\gcd(p,p')}$ has the same roots as p but all of them are simple.

Proposition 41. Let $p \in \mathbb{R}[x]$ be a polynomial with $\deg p = m$. We define $f_0 = \frac{p}{\gcd(p,p')}$ and $f_1 = f'_0$. If $\deg f_0 = n$, then for $i = 0, 1, \ldots, n-2$, we define f_{i+2} as:

$$f_i(x) = q_{i+1}(x)f_{i+1}(x) - f_{i+2}(x)$$

(similarly to the euclidean division between f_i and f_{i+1}). Then, f_n is constant and hence the sequence (f_i) , $i = 0, \ldots, n$, is a Sturm sequence.

Theorem 42 (Budan-Fourier theorem). Let $p \in \mathbb{R}[x]$ be a polynomial with deg p = n. Consider the sequence $(p^{(i)}), i = 0, \ldots, n$. If $p(a)p(b) \neq 0$, the number of zeros of p on [a, b] is:

$$\nu\left(p^{(i)}(a)\right) - \nu\left(p^{(i)}(b)\right) - 2k, \quad \text{for some } k \in \mathbb{N} \cup \{0\}$$

Corollary 43 (Descartes' rule of signs). Let $p = a_0 + a_1 x + \cdots + a_n x^n \in \mathbb{R}[x]$ be a polynomial. If $p(0) \neq 0$, the number of zeros of p on $[0, \infty)$ is:

$$\nu(a_i) - 2k$$
, for some $k \in \mathbb{N} \cup \{0\}^7$

Theorem 44 (Gershgorin circle theorem). Let $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$ be a complex matrix and λ be an eigenvalue of A. For all $i, j \in \{1, 2, ..., n\}$ we define:

$$r_i = \sum_{\substack{k=1\\k \neq i}}^{n} |a_{ik}| \qquad R_i = \{ z \in \mathbb{C} : |z - a_{ii}| \le r_i \}$$

$$c_j = \sum_{\substack{k=1\\k\neq j}}^n |a_{kj}| \qquad C_j = \{z \in \mathbb{C} : |z - a_{jj}| \le c_j\}$$

Then, $\lambda \in \bigcup_{i=1}^n R_i$ and $\lambda \in \bigcup_{j=1}^n C_j$. Moreover in each connected component of $\bigcup_{i=1}^n R_i$ or $\bigcup_{j=1}^n C_j$ there are as many eigenvalues (taking into account the multiplicity) as disks R_i or C_j , respectively.

Corollary 45. Let $p(z) = a_0 + a_1 z + \cdots + a_n z^n + z^{n+1} \in \mathbb{C}[x]$. We define

$$r = \sum_{i=1}^{n-1} |a_i| \quad c = \max\{|a_0|, |a_1| + 1, \dots, |a_{n-1}| + 1\}$$

Then, if $p(\alpha) = 0$ for some $\alpha \in \mathbb{C}$,

$$\alpha \in (B(0,1) \cup B(-a_n,r)) \cap (B(-a_n,1) \cup B(0,c))$$

⁵This means that Aitken's Δ^2 method produces an acceleration of the convergence of the sequence (x_n) .

⁶Note that the advantage of Steffensen's method over Newton-Raphson method is that in the former we don't need the differentiability of the function whereas in the latter we do.

⁷Note that making the change of variable t = -x one can obtain the number of zeros on $(-\infty, 0]$ of p by considering the polynomial p(t).

3. Interpolation

Definition 46. We denote by Π_n the vector space of polynomials with real coefficients and degree less than or equal to n.

Definition 47. Suppose we have a family of real valued functions \mathfrak{C} and a set of points $\{(x_i, y_i)\}_{i=0}^n := \{(x_i, y_i) \in \mathbb{R}^2 : i = 0, \dots, n \text{ and } x_j \neq x_k \iff j \neq k\}$. These points $\{(x_i, y_i)\}_{i=0}^n$ are called *support points*. The *interpolation problem* consists in finding a function $f \in \mathfrak{C}$ such that $f(x_i) = y_i$ for $i = 0, \dots, n^8$.

Polynomial interpolation

Definition 48. Given a set of support points $\{(x_i, y_i)\}_{i=0}^n$, Lagrange's interpolation problem consists in finding a polynomial $p_n \in \Pi_n$ such that $p_n(x_i) = y_i$ for $i = 0, 1, \ldots, n$.

Definition 49. Let $\{(x_i, y_i)\}_{i=0}^n$ be a set of support points. We define $\omega_n(x) \in \mathbb{R}[x]$ as:

$$\omega_n(x) = \prod_{i=0}^n (x - x_i)$$

We define Lagrange basis polynomials $\ell_i(x) \in \mathbb{R}[x]$ as:

$$\ell_i(x) = \frac{\omega_n(x)}{(x - x_i)\omega_n(x_i)} = \prod_{\substack{j=0\\ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Proposition 50. Let $\{(x_i, y_i)\}_{i=0}^n$ be a set of support points. Then, Lagrange's interpolation problem has a unique solution and this is:

$$p_n(x) = \sum_{i=0}^n y_i \ell_i(x)$$

Proposition 51 (Neville's algorithm). Let $\{(x_i, y_i)\}_{i=0}^n$ be a set of support points, $\{i_0, \ldots, i_k\} \subset \{0, \ldots, n\}$ and $P_{i_0, \ldots, i_k}(x) \in \Pi_k$ be such that $P_{i_0, \ldots, i_k}(x_{i_j}) = y_{i_j}$ for $j = 0, \ldots, k$. Then, it is satisfied that:

1.
$$P_i(x) = y_i$$
.

2.
$$P_{i_0,...,i_k}(x) = \frac{\begin{vmatrix} P_{i_1,...,i_k}(x) & x - x_{i_k} \\ P_{i_0,...,i_{k-1}}(x) & x - x_{i_0} \end{vmatrix}}{x_{i_k} - x_{i_0}}$$
.

Definition 52. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be pairwise distinct points. We define the *divided difference* of order k of f applied to $\{x_i\}_{i=0}^k$, denoted by $f[x_0, \ldots, x_k]$, as the coefficient of x^k of the interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^k$.

Proposition 53. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be pairwise distinct points. Lagrange interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^n$ is:

$$p_n(x) = f[x_0] + \sum_{j=1}^n f[x_0, \dots, x_j] \omega_{j-1}(x)$$

Proposition 54 (Newton's divided differences

method). Let $f: \mathbb{R} \to \mathbb{R}$ be a function. For $x \in \mathbb{R}$, we have f[x] = f(x). And if $\{x_i\}_{i=0}^n \subset \mathbb{R}$ are different points, then

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

Theorem 55. Let $f:[a,b] \to \mathbb{R}$ be a function of class C^{n+1} , $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be pairwise distinct points and $p_n \in \mathbb{R}[x]$ be the interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^n$. Then, $\forall x \in [a, b]$,

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_n(x)$$

where $\xi_x \in \langle x_0, \dots, x_n, x \rangle^{9}$.

Lemma 56. Let $f:[a,b]\to\mathbb{R}$ be a function of class \mathcal{C}^{n+1} and $\{x_i\}_{i=0}^n\subset\mathbb{R}$ be pairwise distinct points. Then: $\exists \xi\in\langle x_0,\ldots,x_n\rangle$ such that:

$$f[x_0, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Proposition 57. Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class C^{n+1} , $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be pairwise distinct points and $\sigma \in S_n$. Then,

$$f[x_0,\ldots,x_n] = f[x_{\sigma(0)},\ldots,x_{\sigma(n)}]$$

Definition 58. Let $\{(x_i, y_i)\}_{i=0}^n$ be support points. The points $\{x_i\}_{i=0}^n$ are equally-spaced if

$$x_i = x_0 + ih$$
, for $i = 0, \dots, n$ and with $h := \frac{x_n - x_0}{n}$

Proposition 59. Let $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be equally-spaced points such that $x_i = x_0 + ih$, where $h = \frac{x_n - x_0}{n}$. Then:

$$\max\{|\omega_n(x)| : x \in [x_0, x_n]\} \le \frac{h^{n+1}n!}{4}$$

Corollary 60. Let $f:[a,b]\to\mathbb{R}$ be a function of class \mathcal{C}^{n+1} , $\{x_i\}_{i=0}^n\subset\mathbb{R}$ be equally-spaced points such that $x_i=x_0+ih$, where $h=\frac{x_n-x_0}{n}$ and $p_n\in\mathbb{R}[x]$ be the interpolating polynomial with support points $\{(x_i,f(x_i))\}_{i=0}^n$. Then:

$$\max\{|f(x) - p_n(x)| : x \in [x_0, x_n]\} \le \frac{h^{n+1}}{4(n+1)} \max\{|f^{(n+1)}(x)| : x \in [x_0, x_n]\}$$

Definition 61. Let $f:[a,b] \to \mathbb{R}$ be a function and $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be equally-spaced points. We define:

$$\Delta f(x) := f(x+h) - f(x)$$
$$\Delta^{n+1} f(x) := \Delta(\Delta^n f(x))$$

Lemma 62. Let $f:[a,b]\to\mathbb{R}$ be a function and $\{x_i\}_{i=0}^n\subset\mathbb{R}$ be equally-spaced points. Then:

$$\Delta^n f(x_0) = n! h^n f[x_0, \dots, x_n]$$

Corollary 63. Let $f \in \mathbb{R}[x]$ with $\deg f = n$. Suppose we interpolate f with equally-spaced nodes. Then, $\Delta^n f(x) = \text{const.}$

⁸Types of interpolation are for example polynomial interpolation, trigonometric interpolation, Padé interpolation, Hermite interpolation and spline interpolation

and spline interpolation.
⁹The interval $\langle a_1, \ldots, a_k \rangle$ is defined as $\langle a_1, \ldots, a_k \rangle := (\min(a_1, \ldots, a_k), \max(a_1, \ldots, a_k))$.

Hermite interpolation

Definition 64. Given sets of points $\{x_i\}_{i=0}^m \subset \mathbb{R}$, $\{n_i\}_{i=0}^m \subset \mathbb{N}$ and $\{y_i^{(k)}: k=0,\ldots,n_i-1\}_{i=0}^m \subset \mathbb{R}$, Hermite interpolation problem consists in finding a polynomial $h_n \in \Pi_n$ such that $\sum_{i=0}^m n_i = n+1$ and

$$h_n^{(k)}(x_i) = y_i^{(k)}$$
 for $i = 0, ..., m$ and $k = 0, ..., n_i - 1$

Proposition 65. Hermite interpolation problem has a unique solution.

Definition 66. Let $f:[a,b] \to \mathbb{R}$ be a function of class \mathcal{C}^n and $\{x_i\}_{i=0}^n \subset \mathbb{R}$ be points. We define $f[x_i, \stackrel{(n+1)}{\dots}, x_i]$ as:

$$f[x_i, \stackrel{(n+1)}{\dots}, x_i] = \frac{f^{(n)}(x_i)}{n!}$$

Theorem 67. Let $f:[a,b] \to \mathbb{R}$ be a function of class C^{n+1} , $\{x_i\}_{i=0}^m \subset \mathbb{R}$ be pairwise distinct points and $\{n_i\}_{i=0}^m \subset \mathbb{N}$ be such that $\sum_{i=0}^m n_i = n+1$. Let h_n be the Hermite interpolating polynomial of f with nodes $\{x_i\}_{i=0}^m \subset \mathbb{R}$, that is,

$$h_n^{(k)}(x_i) = f^{(k)}(x_i)$$
 for $i = 0, \dots, m$ and $k = 0, \dots, n_i - 1$

Then, $\forall x \in [a, b] \; \exists \xi_x \in \langle x_0, \dots, x_n, x \rangle$ such that:

$$f(x) - h_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} (x - x_0)^{n_0} \cdots (x - x_m)^{n_m}$$

Spline interpolation

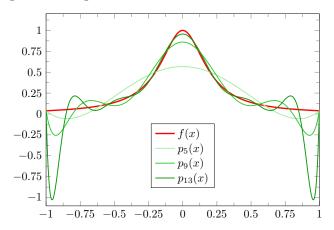


Figure 2: Runge's phenomenon. In this case $f(x) = \frac{1}{1+25x^2}$. $p_5(x)$ is the 5th-order Lagrange interpolating polynomial with equally-spaced interpolating points; $p_9(x)$, the 9th-order Lagrange interpolating polynomial with equally-spaced interpolating points, and $p_{13}(x)$, the 13th-order Lagrange interpolating polynomial with equally-spaced interpolating points.

Definition 68 (Spline). Let $\{(x_i, y_i)\}_{i=0}^n$ be support points of an interval [a, b]. A *spline* of degree p is a function $s: [a, b] \to \mathbb{R}$ of class \mathcal{C}^{p-1} satisfying:

$$s|_{[x_i, x_{i+1}]} \in \mathbb{R}[x]$$
 and $\deg(s|_{[x_i, x_{i+1}]}) = p$

for i = 0, ..., n-1 and $s(x_i) = y_i$ for i = 0, ..., n. The most common case are splines of degree p = 3 or *cubic splines*. In this case we can impose two more conditions on their definition in one of the following ways:

1. Natural cubic spline:

$$s''(x_0) = s''(x_n) = 0$$

2. Cubic Hermite spline: Given $y'_0, y'_n \in \mathbb{R}$,

$$s'(x_0) = y'_0, \quad s'(x_n) = y'_n$$

3. Cubic periodic spline:

$$s'(x_0) = s'(x_n), \quad s''(x_0) = s''(x_n)$$

Definition 69. Let $f:[a,b] \to \mathbb{R}$ be a function of class C^2 . We define the $seminorm^{10}$ of f as:

$$||f||^2 = \int_a^b (f''(x))^2 dx$$

Proposition 70. Let $f:[a,b] \to \mathbb{R}$ be a function of class C^2 interpolating the support points $\{(x_i,y_i)\}_{i=0}^n \subset \mathbb{R}^2$, $a \le x_0 < \cdots < x_n \le b$. If s a spline associated with $\{(x_i,y_i)\}_{i=0}^n$, then:

$$||f-s||^2 = ||f||^2 - ||s||^2 - 2(f'-s)s''\Big|_{x_0}^{x_n} + 2\sum_{i=1}^n (f-s)s'''\Big|_{x_{i-1}^+}^{x_i^-}$$

Theorem 71. Let $f:[a,b] \to \mathbb{R}$ a function of class C^2 interpolating the support points $\{(x_i,y_i)\}_{i=0}^n \subset \mathbb{R}^2$, $a \le x_0 < \cdots < x_n \le b$. If s is the natural cubic spline associated with $\{(x_i,y_i)\}_{i=0}^n$, then:

$$||s|| \le ||f||^{11}$$

4. Numerical differentiation and integration

Differentiation

Theorem 72 (Intermediate value theorem). Let f: $[a,b] \to \mathbb{R}$ be a continuous function, $x_0, \ldots, x_n \in [a,b]$ and $\alpha_0, \ldots, \alpha_n \geq 0$. Then, $\exists \xi \in [a,b]$ such that:

$$\sum_{i=0}^{n} \alpha_i f(x_i) = \left(\sum_{i=0}^{n} \alpha_i\right) f(\xi)$$

Theorem 73 (Forward and backward difference formula of order 1). Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^2 . Then, the forward difference formula of order 1 is:

$$f'(a) = \frac{f(a+h) - f(a)}{h} - \frac{f''(\xi)}{2}h$$

where $\xi \in \langle a, a+h \rangle$. Analogously, the backward difference formula of order 1 is:

$$f'(a) = \frac{f(a) - f(a-h)}{h} + \frac{f''(\eta)}{2}h$$

where $\eta \in \langle a - h, a \rangle$.

 $^{^{10}}$ The term seminorm has been used instead of norm to emphasize that not all properties of a norm are satisfied with this definition.

¹¹We can interpret this result as the natural cubic spline being the configuration that require the least "energy" to be "constructed".

Theorem 74 (Symmetric difference formula of order 1). Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class \mathcal{C}^3 . Then, the symmetric difference formula of order 1 is:

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} - \frac{f^{(3)}(\xi)}{6}h^2$$

where $\xi \in \langle a - h, a + h \rangle$.

Theorem 75 (Symmetric difference formula of order 2). Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^4 . Then, the symmetric difference formula of order 2 is:

$$f''(a) = \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} - \frac{f^{(4)}(\xi)}{12}h^2$$

where $\xi \in \langle a - h, a, a + h \rangle$.

Richardson extrapolation

Theorem 76 (Richardson extrapolation). Suppose we have a function f that approximate a value α with an error that depends on a small quantity h. That is:

$$\alpha = f(h) + a_1 h^{k_1} + a_2 h^{k_2} + \cdots$$

with $k_1 < k_2 < \cdots$ and a_i are unknown constants. Given q > 0, we define:

$$D_1(h) = f(h)$$
 and $D_{n+1}(h) = \frac{q^{k_n} D_n (h/q) - D_n(h)}{q^{k_n} - 1}$

And we can observe that $\alpha = D_{n+1}(h) + O(h^{k_{n+1}})$.

Integration

Definition 77. Let $f:[a,b] \to \mathbb{R}$ be a continuous function, $\{x_i\}_{i=0}^n \subset [a,b]$ be a set of nodes and p_n be the Lagrange interpolating polynomial with support points $\{(x_i, f(x_i))\}_{i=0}^n$. We define the quadrature formula as:

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \int_{a}^{b} p_{n}(x) \, \mathrm{d}x$$

Lemma 78. Let $f:[a,b] \to \mathbb{R}$ be a continuous function $\{x_i\}_{i=0}^n \subset [a,b]$ be a set of nodes. Then:

$$\int_{a_i}^{b} f(x) dx \approx \sum_{i=1}^{n} a_i f(x_i) \text{ where } a_i := \int_{a_i}^{b} \ell_i(x) dx$$

Definition 79. The degree of precision of a quadrature formula is the largest $m \in \mathbb{N}$ such that the formula is exact for $x^k \ \forall k = 0, 1, \dots, m$.

Lemma 80. Let $p \in \Pi_n$ be a polynomial and $\{x_i\}_{i=0}^n \subset [a,b]$ be a set of nodes. Then:

$$\int_{a}^{b} p(x) dx = \sum_{i=0}^{n} a_i p(x_i)$$

for some $a_i \in \mathbb{R}$.

Newton-Cotes formulas

Theorem 81 (Mean value theorem for integrals). Let $f, g : [a, b] \to \mathbb{R}$ be such that f is continuous and g integrable. Suppose that g does not change the sign on [a, b]. Then, $\exists \xi \in [a, b]$ such that:

$$\int_{a}^{b} f(x)g(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$

Theorem 82 (Closed Newton-Cotes Formulas). Let $f:[a,b]\to\mathbb{R}$ be a function and $\{x_i\}_{i=0}^n\subset [a,b]$ be a set of equally-spaced points. If $I=\int_a^b f(x)\,\mathrm{d}x$ and $h=\frac{b-a}{n}$, then $\exists \xi\in[a,b]$ such that:

• If n is even and $f \in \mathcal{C}^{n+2}$:

$$I = \sum_{i=0}^{n} a_i f(x_i) + \frac{h^{n+3} f^{n+2}(\xi)}{(n+2)!} \int_{0}^{n} t \prod_{i=0}^{n} (t-i) dt$$

• If n is odd and $f \in \mathcal{C}^{n+1}$:

$$I = \sum_{i=0}^{n} a_i f(x_i) + \frac{h^{n+2} f^{n+1}(\xi)}{(n+1)!} \int_{0}^{n} \prod_{i=0}^{n} (t-i) dt^{\frac{12}{2}}$$

Corollary 83 (Trapezoidal rule). Let $f : [a, b] \to \mathbb{R}$ be a function of class C^2 . Then, $\exists \xi \in [a, b]$ such that:

$$\int_{a}^{b} f(x) dx = \frac{h}{2} (f(a) + f(b)) - \frac{f''(\xi)}{12} h^{3}$$

where h = b - a. This is the case n = 1 of closed Newton-Cotes formulas.

Corollary 84 (Simpson's rule). Let $f:[a,b] \to \mathbb{R}$ be a function of class \mathcal{C}^4 . Then, $\exists \xi \in [a,b]$ such that:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left(f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right) - \frac{f^{(4)}(\xi)}{90} h^{5}$$

where $h = \frac{b-a}{2}$. This is the case n = 2 of closed Newton-Cotes formulas.

Theorem 85 (Composite Trapezoidal rule). Let $f:[a,b]\to\mathbb{R}$ be a function of class \mathcal{C}^4 , $h=\frac{b-a}{n}$ and $x_j=a+jh$ for each $j=0,1,\ldots,n$. Then, $\exists \xi\in[a,b]$ such that:

$$I = \int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right] - \frac{f''(\xi)(b-a)}{12} h^2$$

We denote by T(f, a, b, h) the approximation of I by trapezoidal rule.

 $^{^{12}}$ Note that when n is even, the degree of precision is n+1, although the interpolation polynomial is of degree at most n. When n is odd, the degree of precision is only n.

Theorem 86 (Composite Simpson's rule). Let $f:[a,b] \to \mathbb{R}$ be a function of class \mathcal{C}^4 , n be an even number, $h=\frac{b-a}{n}$ and $x_j=a+jh$ for each $j=0,1,\ldots,n$. Then, $\exists \xi \in [a,b]$ such that:

$$I = \int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] - \frac{f^{(4)}(\xi)(b-a)}{180} h^{4}$$

We denote by S(f, a, b, h) the approximation of I by Simpson's rule.

Romberg method

Definition 87. We define Bernoulli polynomials $B_n(x)$ as $B_0(x) = 1$, $B_1(x) = x - \frac{1}{2}$ and

$$B'_{k+1} = (k+1)B_k \quad \text{for } k \ge 1$$

Bernoulli numbers are $B_n = B_n(0), \forall n \geq 0^{13}$.

Theorem 88 (Euler-Maclaurin formula). Let $f \in \mathcal{C}^{2m+2}([a,b])$ be a function. Then:

$$T(f, a, b, h) = \int_{a}^{b} f(t) dt + \sum_{k=1}^{m} \frac{B_{2k}h^{2k}}{(2k)!} \left(f^{(2k-1)}(b) - f^{(2k-1)}(a) \right) + \frac{(b-a)B_{2m+2}h^{2m+1}}{(2m+2)!} f^{(2m+2)}(\xi)$$

where $h = \frac{b-a}{n}$, B_n are the Bernoulli numbers and $\xi \in [a,b]$.

Theorem 89 (Romberg method). Let $f \in \mathcal{C}^{2m+2}([a,b])$ be a function. Then, by Euler-Maclaurin formula, we obtain:

$$T(f, a, b, h) = \int_{a}^{b} f(t) dt + \beta_1 h^2 + \beta_2 h^4 + \cdots$$

where $h = \frac{b-a}{n}$. For n = 1, 2, ... we define:

$$T_{n,1} = T\left(f, a, b, \frac{b-a}{2^n}\right)$$
 $T_{n,m+1} = \frac{4^m T_{n+1,m} - T_{n,m}}{4^m - 1}$

for $m \leq n$. Then, we can observe that:

$$T_{n,m} = \int_{a}^{b} f(t) dt + O\left(\left(\frac{b-a}{2^{n}}\right)^{2m}\right)$$

Orthogonal polynomials

Definition 90. Let $f,g:[a,b]\to\mathbb{R}$ be continuous function and $\omega(x):[a,b]\to\mathbb{R}_{>0}$ be a weight function. The expression

$$\langle f, g \rangle = \int_{a}^{b} \omega(x) f(x) g(x) dx$$

defines a positive semidefinite dot product in the vector space of bounded functions on [a, b].

Definition 91 (Orthogonal polynomials). Let $\mathfrak{P} = \{\phi_i(x) \in \mathbb{R}[x] : \deg \phi_i(x) = i, i \in \mathbb{N} \cup \{0\}\}$ be a family of polynomials and $\omega(x) : [a,b] \to \mathbb{R}_{>0}$ be a weight function. We say \mathfrak{P} is orthogonal with respect to the weight $\omega(x)$ on an interval [a,b] if

$$\langle \phi_i, \phi_j \rangle = \int_a^b \omega(x)\phi_i(x)\phi_j(x) dx = 0 \iff i \neq j$$

Note that $\langle \phi_i, \phi_i \rangle > 0$ for each $i \in \mathbb{N} \cup \{0\}$.

Lemma 92. We define \mathfrak{P}_n as $\mathfrak{P}_n = \{\phi_i(x) \in \Pi_n : \deg \phi_i(x) = i \text{ and } \langle \phi_i, \phi_j \rangle = 0 \iff i \neq j, i = 0, \dots, n\}$. Then, \mathfrak{P}_n is an *orthogonal basis* of Π_n .

Lemma 93. Let $\phi_k \in \mathfrak{P}_k$ and $q \in \Pi_n$. Then, $\langle q, \phi_k \rangle = 0$ for each k > n.

Lemma 94. Let $\phi_n \in \mathfrak{P}_n$. Then, $\forall n \in \mathbb{N} \cup \{0\}$, all roots of ϕ_n are real, simple and contained in the interval (a, b), where the associated weight function $\omega(x)$ is defined.

Theorem 95 (Existence of orthogonal polynomials). For each $n \in \mathbb{N} \cup \{0\}$ there exists a unique monic orthogonal polynomial ϕ_n with $\deg \phi_n = n$, associated with the weight function $\omega(x)$, defined by:

$$\phi_0 = 1 \quad \phi_1(x) = x - \alpha_0$$

$$\phi_{n+1}(x) = (x - \alpha_n)\phi_n(x) - \beta_n \phi_{n-1}(x)$$

with $\alpha_n = \frac{\langle \phi_n, x \phi_n \rangle}{\langle \phi_n, \phi_n \rangle} \ \forall n \in \mathbb{N} \cup \{0\} \ \text{and} \ \beta_n = \frac{\langle \phi_n, \phi_n \rangle}{\langle \phi_{n-1}, \phi_{n-1} \rangle} \ \forall n \in \mathbb{N}.$

Definition 96 (Chebyshev polynomials). Chebyshev polynomials T_n are the orthogonal polynomials defined on [-1,1] with the weight $\omega(x) = \frac{1}{\sqrt{1-x^2}}$. These can be defined recursively as:

$$T_0(x) = 1$$
 $T_1(x) = x$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

for n = 1, 2, ... Moreover $T_n(x) = \cos(n \arccos(x))$ which implies that the roots of $T_n(x)$ are:

$$x_k = \cos\left(\frac{2k-1}{2n}\pi\right)$$
 for $k = 1, \dots, n$

Definition 97 (Laguerre polynomials). Laguerre polynomials L_n are the orthogonal polynomials defined on $[0,\infty)$ with the weight $\omega(x) = e^{-x}$. These can be defined recursively as:

$$L_0(x) = 1 \quad L_1(x) = 1 - x$$
$$L_{n+1}(x) = \frac{(2n+1-x)L_n(x) - nL_{n-1}(x)}{n+1}$$

for $n=1,2,\ldots$ The closed form of these polynomials is:

$$L_n(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{k!} x^k$$

¹³Exponential generating function of the sequence (B_n) of Bernoulli numbers is $\frac{x}{e^x - 1} = \sum_{n=1}^{\infty} \frac{B_n}{n!} x^n$.

Definition 98 (Legendre polynomials). Legendre polynomials P_n are the orthogonal polynomials defined on [-1,1] with the weight $\omega(x)=1$. These can be defined recursively as:

$$P_0(x) = 1 \quad P_1(x) = x$$

$$P_{n+1}(x) = \frac{(2n+1)xP_n(x) - nP_{n-1}(x)}{n+1}$$

for n = 1, 2, ... The closed form of these polynomials is:

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (x-1)^{n-k} (x+1)^k$$

Gaußian quadrature

Definition 99. Let $f:[a,b] \to \mathbb{R}$ be a function and $\omega(x):[a,b] \to \mathbb{R}_{>0}$ be a weight function. Given a set of nodes $\{x_i\}_{i=1}^n \subset [a,b]$, the quadrature formula with weight $\omega(x)$ of a function f is

$$\int_{a}^{b} \omega(x) f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i}) \text{ with } \omega_{i} = \int_{a}^{b} \omega(x) \ell_{i}(x) dx$$

Lemma 100. Let $f:[a,b] \to \mathbb{R}$ be a function and $\{x_i\}_{i=1}^n$ be the zeros of the orthogonal polynomial $\phi_n \in \mathfrak{P}_n$ with weight $\omega(x)$ on the interval [a,b]. Then, the formula

$$\int_{a}^{b} \omega(x) f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i}) \text{ with } \omega_{i} = \int_{a}^{b} \omega(x) \ell_{i}(x) dx$$

is exact for all polynomials in Π_{2n-1} .

Proposition 101. Let $f:[a,b] \to \mathbb{R}$ be a function and $\{x_i\}_{i=1}^n$ be the zeros of the orthogonal polynomial $\phi_n \in \mathfrak{P}_n$ with weight $\omega(x)$ on the interval [a,b]. Then, in the formula

$$\int_{a}^{b} \omega(x) f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

the values ω_i are positive and real for $i = 1, \ldots, n$.

Theorem 102. Let $f:[a,b] \to \mathbb{R}$ be a function of class C^{2n} and $\{x_i\}_{i=1}^n$ be the zeros of the orthogonal polynomial $\phi_n \in \mathfrak{P}_n$ with weight $\omega(x)$ on the interval [a,b]. Then:

$$\int_{a}^{b} \omega(x) f(x) dx - \sum_{i=1}^{n} \omega_{i} f(x_{i}) = \frac{f^{2n}(\xi)}{(2n)!} \langle \phi_{n}, \phi_{n} \rangle$$

where $\xi \in [a, b]$.

5. Numerical linear algebra

Triangular matrices

Definition 103. A matrix $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$ is upper triangular if $a_{ij} = 0$ whenever i > j. That is, \mathbf{A} is of the form:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{(n-1)n} \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

Definition 104. A matrix $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$ is lower triangular if $a_{ij} = 0$ whenever j > i. That is, \mathbf{A} is of the form:

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n(n-1)} & a_{nn} \end{pmatrix}$$

Definition 105. A linear system with a triangular matrix associated is called a *triangular system*.

Matrix norms

Definition 106. A matrix norm on the vector space $\mathcal{M}_n(\mathbb{R})$ is a function $\|\cdot\| : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ satisfying all properties of a norm¹⁴ and that:

$$\|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \|\mathbf{B}\| \quad \forall \mathbf{A}\mathbf{B} \in \mathcal{M}_n(\mathbb{R})$$

This property is called *sub-multiplicativity*.

Remark. Some other definitions in the literature exclude this property for a matrix norm.

Definition 107. Let $\|\cdot\|_{\alpha}$ be a vector norm. We say a matrix norm $\|\cdot\|_{\beta}$ is *compatible with* $\|\cdot\|_{\alpha}$ if

$$\|\mathbf{A}\mathbf{v}\|_{\alpha} \leq \|\mathbf{A}\|_{\beta} \|\mathbf{v}\|_{\alpha} \quad \forall \mathbf{A} \in \mathcal{M}_n(\mathbb{R}) \text{ and } \forall \mathbf{v} \in \mathbb{R}^n$$

Definition 108. Let $\|\cdot\|$ be a vector norm and $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. We define a *subordinated matrix norm* $\|\cdot\|$ as:

$$\|\mathbf{A}\| = \max\{\|\mathbf{A}\mathbf{v}\| : \mathbf{v} \in \mathbb{R}^n \text{ such that } \|\mathbf{v}\| = 1\}$$
$$= \sup\left\{\frac{\|\mathbf{A}\mathbf{v}\|}{\|\mathbf{v}\|} : \mathbf{v} \in \mathbb{R}^n \text{ such that } \mathbf{v} \neq 0\right\}$$

Lemma 109. All subordinated matrix norms are compatible.

Proof. Let $\|\cdot\|_{\alpha}$, $\|\cdot\|_{\beta}$ be vector and matrix norms respectively, $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$. Then, from the definition of subordinated matrix we have $\frac{\|\mathbf{A}\mathbf{v}\|_{\alpha}}{\|\mathbf{v}\|_{\alpha}} \leq \|\mathbf{A}\|_{\beta}$. For $\mathbf{v} = 0$ the inequality clearly holds.

Lemma 110. For all subordinated matrix norm $\|\cdot\|$, we have $\|\mathbf{I}\| = 1$.

Proof.
$$\mathbf{I} = \max_{\substack{\mathbf{v} \in \mathbb{R}^n \\ \|v\| = 1}} \|\mathbf{I}\mathbf{v}\| = \max_{\substack{\mathbf{v} \in \mathbb{R}^n \\ \|v\| = 1}} \|\mathbf{v}\| = 1$$

Definition 111. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ be a matrix. We define the *spectrum* $\sigma(\mathbf{A})$ of \mathbf{A} as:

$$\sigma(\mathbf{A}) := \{ \lambda \in \mathbb{C} : \mathbf{A} - \lambda \text{id is not invertible} \}$$

Proposition 112. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ be a matrix. Then:

$$\sigma(\mathbf{A}) = \{ \lambda \in \mathbb{C} : \lambda \text{ is an eigenvalue of } \mathbf{A} \}$$

¹⁴See ??

Proof. Let $\mathbf{B} := \mathbf{A} - \lambda \mathrm{id}$. If \mathbf{B} is not invertible, then there exist a non-trivial combination of its columns $\mathbf{b}_1, \ldots, \mathbf{b}_n$ that is equal to the zero vector:

$$c_1\mathbf{b}_1 + \dots + c_n\mathbf{b}_n = \mathbf{0}$$

Now consider $\mathbf{v} = c_1 \mathbf{e}_1 + \cdots + c_n \mathbf{e}_n$, where \mathbf{e}_i is the *i*-th vector of the canonical basis of \mathbb{R}^n . Then, \mathbf{v} is an eigenvector of \mathbf{A} with eigenvalue λ .

Definition 113. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ be a matrix. We define the *spectral radius* $\rho(\mathbf{A})$ of \mathbf{A} as:

$$\rho(\mathbf{A}) := \max\{|\lambda| \in \mathbb{C} : \lambda \in \sigma(\mathbf{A})\}\$$

Proposition 114. Let $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$ and $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. Given the vector norms:

$$\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i|$$

$$\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$$

$$\|\mathbf{v}\|_{\infty} = \max\{|v_i| : i = 1, \dots, n\}$$

their subordinated matrix norms are respectively:

$$\|\mathbf{A}\|_{1} = \max \left\{ \sum_{i=1}^{n} |a_{ij}| : j = 1, \dots, n \right\}$$
$$\|\mathbf{A}\|_{2} = \sqrt{\rho(\mathbf{A}^{T}\mathbf{A})}$$
$$\|\mathbf{A}\|_{\infty} = \max \left\{ \sum_{j=1}^{n} |a_{ij}| : i = 1, \dots, n \right\}$$

Proof. Let's start with the $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ norms. Let $A_1 := \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$ and $A_{\infty} := \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$ and suppose they are attained at $j = j_0$ and $i = i_0$. Then, for all $\mathbf{v} = (v_j), \mathbf{u} = (u_j) \in \mathbb{R}^n$ such that $\|\mathbf{v}\|_1 = \|\mathbf{u}\|_{\infty} = 1$ we have:

$$\|\mathbf{A}\mathbf{v}\|_{1} = \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} v_{j} \right| \leq \sum_{j=1}^{n} |v_{j}| \sum_{i=1}^{n} |a_{ij}| \leq$$

$$\leq \sum_{j=1}^{n} |v_{j}| A_{1} = A_{1}$$

$$\|\mathbf{A}\mathbf{u}\|_{\infty} = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij} u_{j} \right| \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| |u_{j}| \leq$$

$$\leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| = A_{\infty}$$

And taking $\mathbf{v} = \mathbf{e}_{j_0}$ and $\mathbf{u} = (\operatorname{sgn} a_{i_0 1}, \dots, \operatorname{sgn} a_{i_0 n})$ we have that $\|\mathbf{A}\mathbf{v}\|_1 = A_1$ and $\|\mathbf{A}\mathbf{u}\|_{\infty} = A_{\infty}$. So $\|\mathbf{A}\|_1 = A_1$ and $\|\mathbf{A}\|_{\infty} = A_{\infty}$. Now, let's do the $\|\cdot\|_2$ norm. Observe that $\mathbf{A}^T\mathbf{A}$ is symmetric, and therefore it diagonalizes in an orthonormal basis of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ with eigenvalues $\lambda_1, \dots, \lambda_n$. Note that for each of these eigenvectors we have:

$$\|\mathbf{A}\mathbf{v}_i\|_2^2 = \mathbf{v}_i^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{v}_i = \lambda_i\mathbf{v}_i^{\mathrm{T}}\mathbf{v}_i = \lambda_i$$

So, $\|\mathbf{A}v_i\|_2 = \sqrt{\rho(\mathbf{A}^T\mathbf{A})}$ for some i. Now take $\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{v}_i$ normalized to 1 (i.e. $\sum_{i=1}^n |\alpha_i|^2 = 1$). Then, using the orthogonality of the eigenvectors:

$$\|\mathbf{A}\mathbf{v}\|_2^2 = \mathbf{v}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{v} = \sum_{i=1}^n |\alpha_i|^2 \mathbf{v}_i^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{v}_i \le \rho(\mathbf{A}^{\mathrm{T}}\mathbf{A})$$

Proposition 115. Consider the function:

$$\|\cdot\|: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

 $(a_{ij}) \longmapsto \sum_{i,j=1}^n |a_{ij}|$

Then, $\|\cdot\|$ is a matrix norm, but it isn't the subordinated matrix norm of any vector norm.

Proof. Clearly it is a matrix norm in the sense of ??, but it doesn't satisfy the sub-multiplicative (consider $\mathbf{A} = \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$) and so it cannot be the subordinated matrix norm of any vector norm.

Proposition 116 (Properties of matrix norms).

- 1. Matrix norms are continuous functions.
- 2. Given two matrix norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$, there exist $\ell, L \in \mathbb{R}_{>0}$ such that:

$$\ell \|\mathbf{A}\|_{\beta} \leq \|\mathbf{A}\|_{\alpha} \leq L \|\mathbf{A}\|_{\beta} \quad \forall \mathbf{A} \in \mathcal{M}_n(\mathbb{R})$$

3. For all subordinated matrix norm $\|\cdot\|$ and for all $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$:

$$\rho(\mathbf{A}) \leq \|\mathbf{A}\|$$

4. Given a matrix $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\varepsilon > 0$, there exist a matrix norm $\|\cdot\|_{\mathbf{A}_{\varepsilon}}$ such that:

$$\rho(\mathbf{A}) \le \|\mathbf{A}\|_{\mathbf{A},\varepsilon} \le \rho(\mathbf{A}) + \varepsilon$$

Definition 117. A matrix $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ is convergent if $\lim_{k \to \infty} \mathbf{A}^k = \mathbf{0}$.

Theorem 118. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. The following statements are equivalent:

- 1. **A** is convergent.
- 2. $\lim_{k\to\infty} \|\mathbf{A}^k\| = \mathbf{0}$ for some matrix norm $\|\cdot\|$.
- 3. $\rho(\mathbf{A}) < 1$.

Corollary 119. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. If there is a matrix norm $\|\cdot\|$ satisfying $\|\mathbf{A}\| < 1$, then \mathbf{A} converges.

Theorem 120. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$.

- 1. The series $\sum_{k=0}^{\infty} \mathbf{A}^k$ converges if and only if \mathbf{A} converge.
- 2. If **A** is convergent, then $I_n A$ is non-singular and moreover:

$$(\mathbf{I}_n - \mathbf{A})^{-1} = \sum_{k=0}^{\infty} \mathbf{A}^k$$

Corollary 121. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. If there is a subordinated matrix norm $\|\cdot\|$ satisfying $\|\mathbf{A}\| < 1$, then $\mathbf{I}_n - \mathbf{A}$ is non-singular and moreover:

$$\frac{1}{1+\|\mathbf{A}\|} \le \|(\mathbf{I}_n - \mathbf{A})^{-1}\| \le \frac{1}{1-\|\mathbf{A}\|}$$

Matrix condition number

Definition 122. Let $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R})$. We define the *condi*tion number $\kappa(\mathbf{A})$ of \mathbf{A} as:

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

Theorem 123. Let $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ be a system of linear equations and $\|\cdot\|$ be a subordinated matrix norm. Suppose we know A and b with absolute errors $\Delta \mathbf{A}$ and $\Delta \mathbf{b}$, respectively. Therefore, we actually have to solve the system:

$$(\mathbf{A} + \Delta \mathbf{A})(\mathbf{x} + \Delta \mathbf{x}) = (\mathbf{b} + \Delta \mathbf{b}) \tag{1}$$

If $\|\Delta \mathbf{A}\| < \frac{1}{\|\mathbf{A}^{-1}\|}$, then:

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{\kappa(\mathbf{A})}{1 - \|\mathbf{A}^{-1}\| \|\Delta \mathbf{A}\|} \left(\frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} + \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|}\right)$$

Proof. Since $\|\mathbf{A}^{-1}\Delta\mathbf{A}\| \leq \|\mathbf{A}^{-1}\| \|\Delta\mathbf{A}\| < 1$, we have that $\mathbf{I}_n + \mathbf{A}^{-1} \Delta \mathbf{A}$ is non-singular and moreover:

$$\|(\mathbf{I}_n + \mathbf{A}^{-1}\Delta\mathbf{A})^{-1}\| \le \frac{1}{1 - \|\mathbf{A}^{-1}\| \|\Delta\mathbf{A}\|}$$

Furthermore, from Eq. (1) we have:

$$\Delta \mathbf{x} \mathbf{A} (I + \mathbf{A}^{-1} \Delta \mathbf{A}) = \Delta \mathbf{b} - \Delta \mathbf{A} \mathbf{x}$$

Therefore:

$$\begin{split} \frac{\|\Delta\mathbf{x}\|}{\|\mathbf{x}\|} &\leq \frac{\|\Delta\mathbf{b} - \Delta\mathbf{A}\mathbf{x}\| \left\| (\mathbf{I}_n + \mathbf{A}^{-1}\Delta\mathbf{A})^{-1} \right\| \left\| \mathbf{A}^{-1} \right\|}{\|\mathbf{x}\|} \\ &\leq \left(\frac{\|\Delta\mathbf{b}\|}{\|\mathbf{x}\|} + \|\Delta\mathbf{A}\| \right) \frac{\left\| \mathbf{A}^{-1} \right\|}{1 - \left\| \mathbf{A}^{-1} \right\| \left\| \Delta\mathbf{A} \right\|} \\ &\leq \frac{\kappa(\mathbf{A})}{1 - \left\| \mathbf{A}^{-1} \right\| \left\| \Delta\mathbf{A} \right\|} \left(\frac{\left\| \Delta\mathbf{b} \right\|}{\left\| \mathbf{A} \right\| \left\| \mathbf{x} \right\|} + \frac{\left\| \Delta\mathbf{A} \right\|}{\left\| \mathbf{A} \right\|} \right) \\ &\leq \frac{\kappa(\mathbf{A})}{1 - \left\| \mathbf{A}^{-1} \right\| \left\| \Delta\mathbf{A} \right\|} \left(\frac{\left\| \Delta\mathbf{b} \right\|}{\left\| \mathbf{b} \right\|} + \frac{\left\| \Delta\mathbf{A} \right\|}{\left\| \mathbf{A} \right\|} \right) \end{split}$$

because $\mathbf{b} \leq \|\mathbf{A}\| \|\mathbf{x}\|$.

Theorem 124. Let $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R})$ and $\|\cdot\|$ be a subordinated matrix norm. Then:

- 1. $\kappa(\mathbf{A}) \geq \rho(\mathbf{A})\rho(\mathbf{A}^{-1})$.
- 2. If $\mathbf{b}, \mathbf{z} \in \mathbb{R}^n$ are such that $\mathbf{A}\mathbf{z} = \mathbf{b}$, then:

$$\left\|\mathbf{A}^{-1}\right\| \ge \frac{\|\mathbf{z}\|}{\|\mathbf{b}\|}$$

3. If $\mathbf{B} \in \mathcal{M}_n(\mathbb{R})$ is a singular matrix, then:

$$\kappa(\mathbf{A}) \ge \frac{\|\mathbf{A}\|}{\|\mathbf{A} - \mathbf{B}\|}$$

Proof. The first two properties are easy. For the third one, if $\mathbf{P} \in \mathcal{M}_n(\mathbb{R})$ is such that $\|\mathbf{P}\| < \frac{1}{\|\mathbf{A}^{-1}\|}$, then $\mathbf{A} + \mathbf{P} = \mathbf{A}$ is singular. Equivalently, if $\mathbf{B} := \mathbf{A} + \mathbf{P}$ is singular, then we must have $\|\mathbf{P}\| = \|\mathbf{B} - \mathbf{A}\| \ge \frac{1}{\|\mathbf{A}^{-1}\|}$.

P = N − A = $\begin{pmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{(n-1)n} \end{pmatrix}$ *Proof.* The first two properties are easy. For the third one,

Iterative methods

Definition 125. Suppose we want to solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^n$. We choose a matrix $\mathbf{N} \in \mathrm{GL}_n(\mathbb{R})$ and define $\mathbf{P} := \mathbf{N} - \mathbf{A}$. Then:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff \mathbf{x} = \mathbf{N}^{-1}\mathbf{P}\mathbf{x} + \mathbf{N}^{-1}\mathbf{b} =: \mathbf{M}\mathbf{x} + \mathbf{N}^{-1}\mathbf{b}$$

The matrix \mathbf{M} is called the *iteration matrix*. This defines a fixed-point iteration in the following way:

$$\begin{cases} \mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b} \\ \mathbf{x}^{(0)} & \text{(initial approximation)} \end{cases}$$

Theorem 126. The iterative method $\mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} +$ $\mathbf{N}^{-1}\mathbf{b}$ is convergent if and only if **M** is convergent and if and only if $\rho(\mathbf{M}) < 1$.

Corollary 127. If $\|\mathbf{M}\| < 1$ for some matrix norm, then the iterative method $\mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b}$ is conver-

Definition 128. We define the rate of convergence R of an iterative method $\mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b}$ as:

$$R = -\log(\rho(\mathbf{M}))$$

Proposition 129. Let $\mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b}$ be an iterative method to approximate the solution \mathbf{x} of a system of equations Ax = b. Then, we have the following estimations:

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| \le \frac{\|\mathbf{M}\|^k}{1 - \|\mathbf{M}\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$$
 (a priori)

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| \le \frac{\|\mathbf{M}\|}{1 - \|\mathbf{M}\|} \|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|$$
 (a posteriori)

Definition 130. Let $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. We say A is strictly diagonally dominant by rows if

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

We say A is strictly diagonally dominant by columns if

$$|a_{jj}| > \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}|$$

Definition 131 (Jacobi method). Let $\mathbf{A} = (a_{ij}) \in$ $\mathcal{M}_n(\mathbb{R})$ be such that $\prod_{i=1}^n a_{ii} \neq 0$, $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{A}\mathbf{x} = \mathbf{b}$ be a system of equations. Jacobi method consists in defining a matrix N (and consequently matrices P and M as defined above) in the following way:

$$\mathbf{N} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

$$\mathbf{P} = \mathbf{N} - \mathbf{A} = \begin{pmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{(n-1)n} \\ -a_{n1} & \cdots & -a_{n(n-1)} & 0 \end{pmatrix}$$

$$\mathbf{M} = \mathbf{N}^{-1}\mathbf{P} = \begin{pmatrix} 0 & \frac{-a_{12}}{a_{11}} & \cdots & \frac{-a_{1n}}{a_{11}} \\ \frac{-a_{21}}{a_{22}} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \frac{-a_{(n-1)n}}{a_{(n-1)(n-1)}} \\ \frac{-a_{n1}}{a_{nn}} & \cdots & \frac{-a_{n(n-1)}}{a_{nn}} & 0 \end{pmatrix}$$

Note that the iterative method $\mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b}$ can also be written as:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\j \neq i}}^n a_{ij} x_j^{(k)} \right)$$
 for $i = 1, \dots, n$

Theorem 132. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be such that $\prod_{i=1}^n a_{ii} \neq 0$ and $\mathbf{b} \in \mathbb{R}^n$. If \mathbf{A} is strictly diagonally dominant by rows or columns, then Jacobi method applied to solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is convergent.

Definition 133 (Gauß-Seidel method). Let $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ be such that $\prod_{i=1}^n a_{ii} \neq 0$, $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{A}\mathbf{x} = \mathbf{b}$ be a system of equations. $Gau\beta$ -Seidel method consists in defining a matrix \mathbf{N} (and consequently matrices \mathbf{P} and \mathbf{M} as defined above) in the following way:

$$\mathbf{N} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n(n-1)} & a_{nn} \end{pmatrix}$$

$$\mathbf{P} = \mathbf{N} - \mathbf{A} = \begin{pmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{(n-1)n} \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\mathbf{M} = \mathbf{N}^{-1}\mathbf{P}$$

Note that the iterative method $\mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b}$ can also be written as:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=i+1}^n a_{ij} x_j^{(k)} - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} \right)$$

for $i = 1, \ldots, n$.

Theorem 134. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be such that $\prod_{i=1}^n a_{ii} \neq 0$ and $\mathbf{b} \in \mathbb{R}^n$. If \mathbf{A} is strictly diagonally dominant by rows, then Gauß-Seidel method applied to solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is convergent.

Proposition 135 (Over-relaxation methods). Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ be a system of equations and $\alpha \in \mathbb{R}$ be a parameter (called *relaxation factor*). Over-relaxation methods consist in defining matrices $\mathbf{N}(\alpha)$, $\mathbf{P}(\alpha)$ and $\mathbf{M}(\alpha)$ as follows:

$$\mathbf{P}(\alpha) = \mathbf{N}(\alpha) - \mathbf{A}$$
 $\mathbf{M}(\alpha) = \mathbf{N}(\alpha)^{-1}\mathbf{P}(\alpha)$

Then, the iterative method can be written as:

$$\mathbf{x}^{(k+1)} = \mathbf{M}(\alpha)\mathbf{x}^{(k)} + \mathbf{N}(\alpha)^{-1}\mathbf{b}$$

Proposition 136 (Successive over-relaxation

method). Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$ be such that $\alpha \neq -1$ and $\mathbf{x}^{(k+1)} = \mathbf{N}^{-1}\mathbf{P}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b}$ be an iterative method. Successive over-relaxation method (SOR) consists in defining

$$\mathbf{N}(\alpha) = (1 + \alpha)\mathbf{N}$$
 and $\mathbf{P}(\alpha) = \mathbf{P} + \alpha\mathbf{N}$

because it must be true that $\mathbf{A} = \mathbf{N}(\alpha) - \mathbf{P}(\alpha)$. Then, the previous iteration becomes:

$$\mathbf{x}^{(k+1)} = \mathbf{N}(\alpha)^{-1} \mathbf{P}(\alpha) \mathbf{x}^{(k)} + \mathbf{N}(\alpha)^{-1} \mathbf{b}$$

Definition 137. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$ be such that $\alpha \neq -1$ and $\mathbf{x}^{(k+1)} = \mathbf{N}(\alpha)^{-1}\mathbf{P}(\alpha)\mathbf{x}^{(k)} + \mathbf{N}(\alpha)^{-1}\mathbf{b}$ be a SOR method. Since $\mathbf{M}(\alpha) = \mathbf{N}(\alpha)^{-1}\mathbf{P}(\alpha)$, we have that

$$\mathbf{M}(\alpha) = \frac{1}{1+\alpha} (\mathbf{M} + \alpha \mathbf{I}_n)$$

and therefore:

$$\sigma(\mathbf{M}(\alpha)) = \left\{ \frac{\lambda + \alpha}{1 + \alpha} : \lambda \in \sigma(\mathbf{M}) \right\}$$

Theorem 138. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{x}^{(k+1)} = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{N}^{-1}\mathbf{b}$ be an iterative method. Suppose that the eigenvalues λ_i , $i = 1, \dots, n$, of \mathbf{M} are all real and satisfy:

$$0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_n < 1$$

Then, the associated SOR method given by $\mathbf{N}(\alpha) = (1+\alpha)\mathbf{N}$ and $\mathbf{P}(\alpha) = \mathbf{P} + \alpha\mathbf{N}$ converges for $\alpha > -\frac{1+\lambda_1}{2}$. Moreover, $\rho(\mathbf{M}(\alpha))$ is minimum whenever $\alpha = -\frac{\lambda_1 + \lambda_n}{2}$.

Eigenvalues and eigenvectors

Definition 139. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a matrix whose eigenvalues are $\lambda_1, \ldots, \lambda_n$. λ_1 is called *dominant eigenvalue* of \mathbf{A} if $|\lambda_1| > |\lambda_i|$ for $i = 2, \ldots, n$. The associated eigenvector to λ_1 is called *dominant eigenvector* of \mathbf{A} .

Definition 140. We say a matrix $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ is reducible if $\exists \mathbf{P} \in \mathcal{M}_n(\mathbb{R})$ a permutation matrix, such that

$$\mathbf{PAP}^{-1} = \begin{pmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{F} & \mathbf{G} \end{pmatrix}$$

for some square matrices E and G and for some other matrix F. A matrix is *irreducible* if it is not reducible.

Theorem 141 (Perron-Frobenius theorem). Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be a non-negative irreducible matrix. Then, $\rho(\mathbf{A})$ is a real number and it is the dominant eigenvalue.

Proposition 142 (Power method). Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. For simplicity, suppose \mathbf{A} is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Suppose $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$. The power method consists in finding an approximation of the dominant eigenvalue λ_1 starting from an initial approximation $\mathbf{x}^{(0)}$ of \mathbf{v}_1 . We define:

$$\mathbf{x}^{(k+1)} = \mathbf{A}\mathbf{x}^{(k)} \qquad k \ge 0$$

Suppose $\mathbf{x}^{(0)} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$. If we denote by $\mathbf{v}_{i,m}$ the m-th component of the vector \mathbf{v}_i and choose ℓ such that $\mathbf{v}_{1,\ell} \neq 0$. Then:

$$\lim_{k \to \infty} \frac{\mathbf{x}^{(k)}}{\lambda_1^k} = \mathbf{v}_1 \qquad \lim_{k \to \infty} \frac{\mathbf{x}_{\ell}^{(k+1)}}{\mathbf{x}_{\ell}^{(k)}} = \lambda_1$$

provided that $\alpha_1 \neq 0$. More precisely we have:

$$\frac{\mathbf{x}_{\ell}^{(k+1)}}{\mathbf{x}_{\ell}^{(k)}} = \lambda_1 + O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

Proposition 143 (Normalized power method). Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\|\cdot\|$ be a vector norm¹⁵. For simplicity suppose \mathbf{A} is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Suppose $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$. The normalized power method consists in defining

$$\mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\|\mathbf{x}^{(k)}\|} \quad \mathbf{x}^{(k+1)} = \mathbf{A}\mathbf{y}^{(k)} \quad \text{for } k \ge 0$$

Suppose $\mathbf{x}^{(0)} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$ such that $\alpha_1 \neq 0$. If we choose ℓ such that $\mathbf{v}_{1,\ell} \neq 0$. Then:

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{v}_1 \qquad \lim_{k \to \infty} \frac{\mathbf{x}_{\ell}^{(k+1)}}{\mathbf{y}_{\ell}^{(k)}} = \lambda_1$$

More precisely we have:

$$\frac{\mathbf{x}_{\ell}^{(k+1)}}{\mathbf{y}_{\ell}^{(k)}} = \lambda_1 + O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

Proposition 144 (Rayleigh quotient). Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. Suppose we have a power method $\mathbf{x}^{(k+1)} = \mathbf{A}\mathbf{x}^{(k)}$ to approximate the dominant eigenvalue λ_1 of \mathbf{A} . Then Rayleigh quotient approximates λ_1 as follows:

$$\lim_{k \to \infty} \frac{\left(\mathbf{x}^{(k+1)}\right)^{\mathrm{T}} \cdot \mathbf{x}^{(k)}}{\left(\mathbf{x}^{(k)}\right)^{\mathrm{T}} \cdot \mathbf{x}^{(k)}} = \lambda_1$$

More precisely:

$$\frac{\left(\mathbf{x}^{(k+1)}\right)^{\mathrm{T}} \cdot \mathbf{x}^{(k)}}{\left(\mathbf{x}^{(k)}\right)^{\mathrm{T}} \cdot \mathbf{x}^{(k)}} = \lambda_1 + \mathrm{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

If instead of a power method, we have a normalized power method $\mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\|\mathbf{x}^{(k)}\|}$, $\mathbf{x}^{(k+1)} = \mathbf{A}\mathbf{y}^{(k)}$, then:

$$\lim_{k \to \infty} \frac{\left(\mathbf{x}^{(k+1)}\right)^{\mathrm{T}} \cdot \mathbf{y}^{(k)}}{\left(\mathbf{y}^{(k)}\right)^{\mathrm{T}} \cdot \mathbf{y}^{(k)}} = \lambda_1$$

Proposition 145 (Inverse power method). Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ and $\mu \in \mathbb{C}$. The inverse power method consists in finding an approximation of the eigenvalue λ closest to μ starting from an initial approximation $\mathbf{x}^{(0)}$ of its associated eigenvector \mathbf{v} . So we applied the power method to the matrix $(\mathbf{A} - \mu \mathbf{I}_n)^{-1}$. That is, we have the recurrence:

$$\mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\|\mathbf{x}^{(k)}\|} \quad \mathbf{x}^{(k+1)} = (\mathbf{A} - \mu \mathbf{I}_n)^{-1} \mathbf{y}^{(k)} \quad \text{for } k \ge 0$$

¹⁵For power method it is recommended to use $\|\cdot\|_{\infty}$.

Or, equivalently,

$$\mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\|\mathbf{x}^{(k)}\|} \quad (\mathbf{A} - \mu \mathbf{I}_n) \mathbf{x}^{(k+1)} = \mathbf{y}^{(k)} \quad \text{for } k \ge 0$$

Therefore, in each step we have to solve a system of equations to obtain $\mathbf{x}^{(k+1)}$. Finally¹⁶, if we choose ℓ such that $\mathbf{v}_{\ell} \neq 0$, then:

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{v} \qquad \lim_{k \to \infty} \frac{\mathbf{x}_{\ell}^{(k+1)}}{\mathbf{y}_{\ell}^{(k)}} = \frac{1}{\lambda - \mu}^{17}$$

Exact methods

Proposition 146 (Gaussian elimination). Let $\mathbf{A} = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$. We define $a_{ij}^{(1)} := a_{ij}$ for $i, j = 1, \ldots, n$ and

$$\mathbf{A}^{(1)} := \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{(n-1)n}^{(1)} \\ a_{n1}^{(1)} & \cdots & a_{n(n-1)}^{(1)} & a_{nn}^{(1)} \end{pmatrix}$$

For $i=2,\ldots,n$ we define $m_{i1}=\frac{a_{i1}^{(1)}}{a_{11}^{(1)}}$ to transform the matrix $\mathbf{A}^{(1)}$ into a matrix $\mathbf{A}^{(2)}$ defined by $a_{ij}^{(2)}=a_{ij}^{(1)}-m_{i1}a_{1j}^{(1)}$ for $i=2,\ldots,n$ and by $a_{ij}^{(1)}$ for i=1. That is, we obtain a matrix of the form:

$$\mathbf{A}^{(1)} \sim \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & a_{(n-1)n}^{(2)} \\ 0 & a_{n2}^{(2)} & \cdots & a_{n(n-1)}^{(2)} & a_{nn}^{(2)} \end{pmatrix} =: \mathbf{A}^{(2)}$$

Proceeding analogously creating multipliers m_{ij} , i > j, to echelon the matrix \mathbf{A} , at the end we will obtain an upper triangular matrix $\mathbf{A}^{(n)}$ of the form:

$$\mathbf{A}^{(n)} = \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & a_{24}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & a_{34}^{(3)} & \cdots & a_{3n}^{(3)} \\ 0 & 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & a_{(n-1)(n-1)}^{(n-1)} & a_{(n-1)n}^{(n-1)} \\ 0 & 0 & 0 & \cdots & 0 & a_{nn}^{(n)} \end{pmatrix}$$

Proposition 147. Partial pivoting method in gaussian elimination consists in selecting as the pivot element the entry with largest absolute value from the column of the matrix that is being considered.

¹⁶Alternatively, here we could have applied the Rayleigh quotient.

¹⁷There's another method that applies power method to the matrix $\mathbf{A} - \mu \mathbf{I}_n$ with the same purpose as the inverse power method but without having to solve a system of equations in each iteration. In this case, this method gives the farthest eigenvalue of \mathbf{A} from μ .

Proposition 148. Complete pivoting method in gaussian elimination interchanges both rows and columns in order to use the largest element (by absolute value) in the matrix as the pivot.

Definition 149 (LU descompostion). Let $A \in$ $\mathrm{GL}_n(\mathbb{R})$ be a matrix. A LU decomposition of **A** is an expression $\mathbf{A} = \mathbf{L}\mathbf{U}$, where $\mathbf{L} = (\ell_{ij}), \mathbf{U} = (u_{ij}) \in \mathcal{M}_n(\mathbb{R})$ are matrices of the form:

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \ell_{21} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \ell_{n1} & \cdots & \ell_{n(n-1)} & 1 \end{pmatrix}$$
 (2)

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \ell_{21} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \ell_{n1} & \cdots & \ell_{n(n-1)} & 1 \end{pmatrix}$$

$$\mathbf{U} = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & u_{(n-1)n} \\ 0 & \cdots & 0 & u_{nn} \end{pmatrix}$$
(3)

Lemma 150. Let $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{A}\mathbf{x} = \mathbf{b}$ be a system of linear equations. Suppose A = LU for some matrices $\mathbf{L}, \mathbf{U} \in \mathcal{M}_n(\mathbb{R})$ of the form of Eqs. (2) and (3), respectively. Then, to solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ we can proceed in the following way:

- 1. Solve the triangular system Ly = b.
- 2. Solve the triangular system $\mathbf{U}\mathbf{x} = \mathbf{y}$.

Proposition 151. Let $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R})$. Then:

- 1. If LU decomposition exists, it is unique.
- 2. If we can make the gaussian elimination without pivoting rows, then 18:

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ m_{n1} & \cdots & m_{n(n-1)} & 1 \end{pmatrix} \quad \mathbf{U} = \mathbf{A}^{(n)}$$

Definition 152. A permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0 elsewhere.

Proposition 153. Let $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R})$. Then, there exist a permutation matrix $\mathbf{P} \in \mathcal{M}_n(\mathbb{R})$ and matrices $\mathbf{L}, \mathbf{U} \in$ $\mathcal{M}_n(\mathbb{R})$ of the form of Eqs. (2) and (3), respectively, such

$$PA = LU$$

 $^{^{18}}$ In practice, LU decomposition is implemented making gaussian elimination and storing the values m_{ij} in the position ij of the matrix $\mathbf{A}^{(k)}$, where there should be a 0.