Numerical methods

1. | Errors

Floating-point representation

Theorem 1. Let b € N, b > 2. Any real number x € R
can be represented of the form

=35 (i aib_i> b?
i=1

where s € {—1,1}, ¢ € Z and o; € {0,1,...,b—1}. More-
over, this representation is unique if a; # 0 and Vig € N,
di > i a; #£b— 1. We will write

x=s(0.ajag - )pb?

where the subscript b in the parenthesis indicates that the
number 0.y acrg - -+ is in base b.

Definition 2 (Floating-point representation). Let x
be a real number. Then, the floating-point representation

of z is:
t
=35 (Z aib_i> b?
i=1

Here s is called the sign; 22:1 a;b~*, the significant or
mantissa, and ¢, the exponent, limited to a prefixed range
Gmin < ¢ < @max- Therefore, the floating-point represen-
tation of x can be expressed as:

x = smb? = s(0.cyaa - - - ) pb?

Finally, we say a floating-point number is normalized if
Qaq 7& 0.

Format ‘ bt Gmin  Qmax Dbits
IEEE simple | 2 24 -126 127 32
IEEE double | 2 53 -1022 1023 64

Table 1: Parameters of IEEE simple and IEEE double for-
mats.

Definition 3. Let + € R be such that z =
8(0'a1a2 T )bbq with Gmin < ¢ < Gmax- We say the
floating-point representation by truncation of x is:

fir(z) = s(0.a1an - - - ) pb?

We say the floating-point representation by rounding of x
is:

ﬂR(ZI}) =

s(0.aq - - ay)pb? if 0<ayq1< g

|
o

s(0.ag - - ay_q (e +1))pd? 55 2 < o1 <b—1

5 =

Definition 4. Given a value z € R and an approximation
Z of x, the absolute error is:

Ax = |z — &

If © # 0, the relative error is:

Sz e |z — Z|
' x
If = is unknown, we take:
S~ |z — Z|
T

Definition 5. Let & be an approximation of xz. If Az <
%10_t, we say & has t correct decimal digits. If x = sm10?
with 0.1 <m < 1, £ = sm10? and

1.
u:=max{i €Z:|m—m| < 5107’}

then we say that Z has u significant digits.

Proposition 6. Let + € R be such that z =
s(0.a1ag - -+ )pb? with a1 # 0 and ¢min < ¢ < @max. Then,
its floating-point representation in base b and with ¢ digits
satisfy:

iy () — x| < b7

flr(z) —x

1
fln(e) — 2] < b7

ﬂR(x) — & < lbl—t
T -2

< bl—t ‘

Definition 7. The machine epsilon € is defined as:
e:=min{e > 0:i(1+¢) # 1}

Proposition 8. For a machine working by truncation,
e = b'~'. For a machine working by rounding, e = 1b'~".

Propagation of errors

Proposition 9 (Propagation of absolute errors). Let
f :R™ — R be a function of class C2. If Az; is the absolute
error of the variable z; and Af(z) is the absolute error of
the function f evaluated at the point = (z1,...,z,), we
have:

| Azt

n

Af@) S

j=1

of
87% (z)

The coefficients ng(x)‘ are called absolute condition
J

numbers of the problem.

Proposition 10 (Propagation of relative errors).
Let f : R™ — R be a function of class C%. If §x; is the rela-
tive error of the variable x; and ¢ f(z) is the relative error
of the function f evaluated at the point = = (z1,...,2,),
we have:
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1The symbol < means that we are omitting terms of order AzjAxy and higher.



]
ij<z>]|mj|

The coefficients e
numbers of the problem.

are called relative condition

Numerical stability of algorithms

Definition 11. An algorithm is said to be numerically
stable if errors in the input lessen in significance as the al-
gorithm executes, having little effect on the final output.
On the other hand, an algorithm is said to be numerically
unstable if errors in the input cause a considerably larger
error in the final output.

Definition 12. A problem with a low condition number
is said to be well-conditioned. Conversely, a problem with
a high condition number is said to be ill-conditioned.

2. | Zeros of functions

Definition 13. Let f : R — R be a function. We say « is
a zero or a solution to the equation f(z) =0 if f(«a) =0.

Definition 14. Let f : R — R be a sufficiently differen-
tiable function. We say « is a zero of multiplicity m € N
if

=f"(a)=0 and [ (a)#£0

If m = 1, the zero is called simple; if m = 2, double; if
m = 3, triple...

Root-finding methods

For the following methods consider a continuous function
f:I CR — R with an unknown zero a € I. Given € > 0,
we want to approximate a with & such that |a — &| < e.

Proposition 15 (Bisection method). Suppose I =
[ag,bo]. For each step n > 0 of the algorithm we will
approximate o by

c _an+b7L
T2

If f(en) =0 we are done. If not, let

if f(an)f(cn) <O
if f(an)f(cn) >0

[am cn]

[@nt1,bng1] = {[Cm bl

and iterate the process again®. The length of the interval

[@n, by] is 2222 and therefore:

by — ag log () 1

log 2

<eg <— n>

Proposition 16 (Regula falsi method). Suppose I =
[ag,bo]. For each step n > 0 of the algorithm we will
approximate « by

anf(b7L) - bnf(a'n)
f(n) — f(an)

bn — ap _
o) 5~ Flan) ~

cp =by, —

If f(¢n) = 0 we are done. If not, let

if f(an)f(cn) <0

_ [(In,Cn}
[ant1,bny1] = { if f(an)f(cn) >0

[cn, bn]
and iterate the process again.

Proposition 17 (Secant method). Suppose I =R and
that we have two different initial approximations xg, x.
Then, for each step n > 0 of the algorithm we obtain a
new approximation z, s, given by:

Tnto = o1 = f(@ni1) f(a:xi; : ?(Lx )

Proposition 18 (Newton-Raphson method). Sup-
pose I = R, f € C! and that we have an initial approx-
imation zg. Then, for each step n > 0 we obtain a new
approximation x, 41, given by:

Tn4+1 = Tn — f’(a: )
n

Proposition 19 (Newton-Raphson modified
method). Suppose I = R, f € C! and that we have
an initial approximation xq of a zero « of multiplicity m.
Then, for each step n > 0 we obtain a new approximation
Tp41, given by:

xT =Tp —M
n+1 n f/(xn)

Proposition 20 (Chebyshev method). Suppose I =
R, f € C? and that we have an initial approximation zg.
Then, for each step n > 0 we obtain a new approximation
Tp41, given by:

f(an) lf(xn)zf//(xn)
f/(xn)g

Tl = f'(xn) 2

Fixed-point iterations

Definition 21. Let g : [a,b] — [a,b] C R be a function.
A point a € [a, b] is n-periodic if g"(a) = a and ¢’ (a) # «
forj=1,...,n— 15

Definition 22. Let (X,d) and (Y,d’) be metric spaces
and f: X — Y be a function. We say that f is a contrac-
tion if there exists 0 < k < 1 such that:

d(f(z), f(y) < kd(z,y)

Theorem 23 (Fixed-point theorem). Let (X, d) be a
complete metric space and g : X — X be a contraction®.
Then, g has a unique fixed point @ € X and for every
x9 € X,

Ve X,yeY

lim z, =«, wherex, =g(x,—1) VneN

n—oo

2Note that bisection method only works for zeros of odd multiplicity.

3Note that 1-periodic points are the fixed points of f.



Proposition 24. Let (X,d) be a metric space and ¢ :
X — X be a contraction of constant k. Then, if we want to
approximate a fixed point a by the iteration x,, = g(zn—1),
we have:

kn
1—k

k
<
d(zy, ) < T %

d(xp,a) <

d(z1,x0) (a priori estimation)

d(Tpn, Tp—1) (a posteriori estimation)
Corollary 25. Let g : R — R be a function of class C!.
Suppose « is a fixed point of g and |¢'(«)| < 1. Then, there
exists € > 0 and I := [a — €, a + €] such that g(I.) C I,
and ¢ is a contraction on I.. In particular, if zg € I., the
iteration x,,41 = g(z,) converges to .

Definition 26. Let ¢ : R — R be a function of class
C! and a be a fixed point of g. We say « is an attrac-
tor fized point if |¢'(a)] < 1. In this case, any iteration
ZTnt1 = g(my) in I converges to a. If |¢'(a)| > 1, we
say « is a repulsor fixed point. In this case, Vo € I. the
iteration 41 = g(x,) doesn’t converge to «.
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Figure 1: Cobweb diagrams. In the figures at the top, o
is an attractor point, that is, |¢’(a)| < 1. More precisely,
the figure at the top left occurs when —1 < ¢'(a) < 0 and
the figure at the top right when 0 < ¢’(a) < 1. In the
figure at bottom left, « is a repulsor point. Finally, in the
figure at bottom right the iteration x,11 = g(z,) has no
limit. It is said to have a chaotic behavior.

Order of convergence

Definition 27 (Order of convergence). Let (z,,) be a
sequence of real numbers that converges to a € R. We
say (x,) has order of convergence p € R if exists C' > 0
such that:

lim 7‘33”“ —q =

n—oo |x, — alP
The constant C' is called asymptotic error constant. For
the case p = 1, we need C' < 1. In this case the con-
vergence is called linear convergence; for p = 2, is called

quadratic convergence; for p = 3, cubic convergence... 1f
it’s satisfied that
T -«
tim [P0l
n— 00 ‘xn — a|P
for some p € Ry, we say the sequence has order of con-
vergence at least p.

Theorem 28. Let g : R — R be a function of class CP
and let « be a fixed point of g. Suppose

g'(a)=g"(a)="-

with |¢'(e)] < 1if p = 1. Then, the iteration z,4; =
g(xy,), with zo sufficiently close to «, has order of con-
vergence at least p. If, moreover, g (a) # 0, then the

previous iteration has order of convergence p with asymp-
19 ()]
pl

— g(p—l)(a) =0

totic error constant C' =

Theorem 29. Let f : R — R be a function of class C3
and « be a simple zero of f. If f”(a) # 0, then Newton-
Raphson method for finding « has quadratic convergence
1|7
If f € C™*2, and « is a zero of multiplicity m > 1,
then Newton-Raphson method has linear convergence but
Newton-Raphson modified method has at least quadratic
convergence.

with asymptotic error constant C' =

Theorem 30. Let f : R — R be a function of class C3 and
let « be a simple zero of f. Then, Chebyshev’s method
for finding « has at least cubic convergence.

Definition 31. We define the computational efficiency of
an algorithm as a function E(p,t), where ¢ is the time
taken for each iteration of the method and p is the order
of convergence of the method. F(p,t) must satisfy the
following properties:

1. E(p,t) is increasing with respect to the variable p
and decreasing with respect to t.

2. E(p,t) = E(p™, mt) Vm € R.
Examples of such functions are the following:

B log p

E(p,t) = — E(p,t) =p'/*

Sequence acceleration

Proposition 32 (Aitken’s A? method). Let (z,,) be a
sequence of real numbers. We denote:

ALy 1= Tpt1 — T

2. . _
Ax, = Axpy1 — Axyy = Tpgo — 2Tp401 + X

Aitken’s A? method is the transformation of the sequence
(z,,) into a sequence y,,, defined as:

(A:Cn)2
A2z,

2
(xn+1 - xn)
n—
Tn+2 — 2xn+1 + xy

=T

Yn ‘= Tp —

with Yo = Zg-



Theorem 33. Let (z,) be a sequence of real numbers
such that lim z, = a, 2, # @ Vn € N and 3C, |C| < 1,
n—oo

satisfying
Tpt1 —a=(C+6,)(zy, — ) with lim §, =0
n—oo

Then, the sequence (y,) obtained from Aitken’s A? pro-
cess is well-defined and

1m

n—oo Ty — «

=(°

Proposition 34 (Steffensen’s method). Let g : R = R
be a continuous function and suppose we have an iterative
method 2,41 = g(x,). Then, for each step n we can con-
sider a new iteration y,11, with yo = z¢, given by:

(g(yn) - yn)2
9(9(Yn)) = 29(yn) + Yn

Yn+1 = Yn —

Proposition 35. Let f : R — R be a function of class C?
and « be a simple zero of f. Then, Steffensen’s method
for finding o has at least quadratic convergence®.

Zeros of polynomials

Lemma 36. Let p(z) = ap+a12+---+a,2" € Clz] with
an # 0. We define
ce,m = 1}

Then, if p(a) = 0 for some o € C, |of < A+ 1.

Qn

/\::max{ a4

Definition 37 (Strum’s sequence). Let (f;), i =
0,...,n, be a sequence of continuous functions defined on
[a,b] C R and f : [a,b] — R be a function of class C* such
that f(a)f(b) # 0. We say (f,) is a Sturm’s sequence if:

L fo=1f.
2. If a € [a,b] satisfies fo(a) =0 = fi(a)f1(a) > 0.

3. Fori =1,...,n—1, if o € [a,}] satisfies f;(a) =
0 = fifl(Oé)fiJrl(Ol) < 0.

4. fo(x) #0Vz € [a,b].

Definition 38. Let (a;), i =0,...,n, be a sequence. We
define v(a;) as the number of sign variations of the se-
quence

{ag,a1,...,an}

without taking into account null values.

Theorem 39 (Sturm’s theorem). Let f : [a,b] — R be
a function of class C! such that f(a)f(b) # 0 and with a
finite number of zeros. Let (f;), ¢ =0,...,n, be a Sturm
sequence defined on [a, b]. Then, the number of zeros of f
on [a,b] is

v(fi(a)) —v (fi(b))

Lemma 40. Let p € C[z] be a polynomial. Then, the

polynomial ¢ = has the same roots as p but all

ged(p, p')
of them are simple.
Proposition 41. Let p € R[z] be a polynomial with
———— and f1 = f}. If
ged(p, p') P

.,n — 2, we define f; ;o as:

degp = m. We define fy =
deg fo = n, then for i = 0,1, ..

fi(w) = qiy1(2) fiz1(z) — fire()

(similarly to the euclidean division between f; and f;1).
Then, f, is constant and hence the sequence (f;), i =
0,...,n,is a Sturm sequence.

Theorem 42 (Budan-Fourier theorem). Let p € R[z]
be a polynomial with degp = n. Consider the sequence
(p™),i=0,...,n. If p(a)p(b) # 0, the number of zeros of
p on [a,b] is:

v (p(i) (a)) —v (p(i)(b)> — 2k, for some k € NU {0}

Corollary 43 (Descartes’ rule of signs). Let p =
ap+ a1z +-- -+ a,x™ € R[z] be a polynomial. If p(0) # 0,
the number of zeros of p on [0, 00) is:

v(a;) — 2k, for some k € NU{0}”
Theorem 44 (Gershgorin circle theorem). Let A =

(a;;) € M, (C) be a complex matrix and A\ be an eigen-
value of A. For all 4,5 € {1,2,...,n} we define:

n

Ty = Z |aik\

k=1
ki

n

¢j = lax]

k=1
k#j

Rl:{z€C|z—a”|§rl}
Cj={2€C: [z —ayl < ¢}

Then, A € J;=; R; and A € Uj_, Cj. Moreover in each
connected component of J;_; R; or U?=1 C; there are as
many eigenvalues (taking into account the multiplicity) as
disks R; or C}, respectively.

Corollary 45. Let p(z) = ap+a1z+ -+ +a,z"+ 2" €
Clx]. We define

n—1
r= Z la;| ¢=max{|ao|,|a1] +1,...,|an-1]+ 1}
i=1

Then, if p(a)) = 0 for some a € C,

€ (B(0,1) U B(—ap,r)) N (B(—an,1) U B(0,c))

5This means that Aitken’s A2 method produces an acceleration of the convergence of the sequence (zn)-
6Note that the advantage of Steffensen’s method over Newton-Raphson method is that in the former we don’t need the differentiability

of the function whereas in the latter we do.

"Note that making the change of variable t = —z one can obtain the number of zeros on (—oo, 0] of p by considering the polynomial

p(t).



3. | Interpolation

Definition 46. We denote by II,, the vector space of poly-
nomials with real coefficients and degree less than or equal
to n.

Definition 47. Suppose we have a family of real valued
functions € and a set of points {(x;, )}y = {(xs,v:) €
R?:i=0,...,n and z; # 2, < j # k}. These points
{(x4s,y:) }1 are called support points. The interpolation
problem consists in finding a function f € € such that

flx;) =y; fori=0,...,n8%

Polynomial interpolation

Definition 48. Given a set of support points
{(zi,yi) }1—o, Lagrange’s interpolation problem consists
in finding a polynomial p,, € II,, such that p,(z;) = y; for
i=0,1,....n.

Definition 49. Let {(z;,y;)}", be a set of support
points. We define w, () € R[] as:

wp(x) = H(:c — x;)
i=0

We define Lagrange basis polynomials £;(x) € R[z] as:

wp ()
(x — ;) wn(z;)

Proposition 50. Let {(z;,v:)}", be a set of support
points. Then, Lagrange’s interpolation problem has a
unique solution and this is:

pu(z) = Z%&(x)
i=0

Proposition 51 (Neville’s  algorithm). Let
{(xs,y:)}—y be a set of support points, {ig,...,ix} C
{0,...,n} and P, ;. (x) € Il be such that

Pio,...,’ik(xij) = yij fOI‘j = 07...,k. Then, it is satis-

fied that:
Pilwwik (l’) T — T,
2. Py () = Pz‘o,..qik;k(:f)% T = |

Definition 52. Let f : R — R be a function and
{z;}7—y C R be pairwise distinct points. We define the di-
vided difference of order k of f applied to {z;}¥_,, denoted

by flzo,...,7s], as the coefficient of z* of the interpolat-
ing polynomial with support points {(z;, f(z:))}_,.

Proposition 53. Let f : R — R be a function and
{zi}7—o C R be pairwise distinct points. Lagrange inter-
polating polynomial with support points {(z;, f(x;))}q
is:

po(@) = flaol + D flwo, - 5w (@)

Proposition 54 (Newton’s divided differences
method). Let f : R — R be a function. For z € R, we
have f[z] = f(z). And if {z;} , C R are different points,

then
Sy — flxo, - -
flzon . -l

Theorem 55. Let f : [a,b] — R be a function of
class C"t1) {z;}", C R be pairwise distinct points and
prn € R[x] be the interpolating polynomial with support
points {(x;, f(x;))}1o. Then, Vx € [a, b],

_ )
f(z) —pn(z) = W

f[xl, ..

LX) zn—l]

,.Tn} =

Wn(x)

where &, € (20,...,Tn,2)".

Lemma 56. Let f : [a,b] — R be a function of class
C™and {z;}"_, C R be pairwise distinct points. Then:
3¢ € (xg,...,x,) such that:

_

n!

flos -

Proposition 57. Let f : R — R be a function of class
Cnt {z; 37, C R be pairwise distinct points and o € S,,.
Then,

’ mn]

f[x07 e ,.Tn] = f[xa(o)a R 7l‘0'(n)]
Definition 58. Let {(x;,v:)}, be support points. The
points {z;}*, are equally-spaced if
Tp — X0

fori=0,...,n and with h := ==
n

x; = x9 + 1h,

Proposition 59. Let {x;}", C R be equally-spaced

points such that z; = xq + th, where h = “nﬂ Then:
hntipl
max{|wn(2)] : @ € [0, 4]} < = r

Corollary 60. Let f : [a,b] — R be a function of class
et {a; o C R be equally-spaced points such that
r; = xo+ih, where h = #»—%¢ and p,, € R[z| be the inter-
polating polynomial with support points {(x;, f(x;))}7 -
Then:

max{|f(z) — pn(z)| : € [x0, 2]} <
hn+1
< -
~4(n+1)
Definition 61. Let f : [a,b] — R be a function and
{z:}1y C R be equally-spaced points. We define:
Af(z):= f(z+h)— f(x)
A" f(z) == A(A" f(x))
Lemma 62. Let f : [a,b] — R be a function and
{z:}1_y C R be equally-spaced points. Then:
Anf(x0> = n'h"f[xo, v ,.’L'n]
Corollary 63. Let f € R[z] with degf = n. Sup-

pose we interpolate f with equally-spaced nodes. Then,
A™f(z) = const.

max{|f" ) (z)| : @ € [0, 0]}

8Types of interpolation are for example polynomial interpolation, trigonometric interpolation, Padé interpolation, Hermite interpolation

and spline interpolation.

9The interval {(a1,...,ax) is defined as (a1, ...

,ak) := (min(aq,...

7ak)7 max(al, o 7ak))'



Hermite interpolation

Definition 64. Given sets of points {x;}7, C R,
{ni}2y € N and {ygk) ck=0,...,n;, —1}]2y C R, Her-
mite interpolation problem consists in finding a polynomial
hy, € 11, such that >"1" ;n; =n+ 1 and

hﬁ{”(xi):yﬁ’“) fore=0,....mand k=0,...,n; — 1

Proposition 65. Hermite interpolation problem has a
unique solution.

Definition 66. Let f : [a,b] — R be a function of class
C" and {z;}7_, C R be points. We define f[z;, "+, z;]
as:
Flas, 0t ) = L@
n!

Theorem 67. Let f : [a,b] — R be a function of
class C"*1) {x;}™, C R be pairwise distinct points and
{ni}"y C N be such that > ;* n; = n+ 1. Let h,
be the Hermite interpolating polynomial of f with nodes
{z:}2y C R, that is,

hg“)(xi) = f(k)(:ci) fori=0,...,mand k=0,...,n; — 1
Then, Vz € [a,b] 3¢, € (o, ..

Frt(&)
(n+ 1!

., Tn,x) such that:

f(x) = hn(z) = (. — x0)™ - (T — Tyy)"™™

Spline interpolation

A ]
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Figure 2: Runge’s phenomenon. In this case f(z) =
m. ps(xz) is the 5th-order Lagrange interpolat-
ing polynomial with equally-spaced interpolating points;
po(x), the 9th-order Lagrange interpolating polynomial
with equally-spaced interpolating points, and pis(z),
the 13th-order Lagrange interpolating polynomial with

equally-spaced interpolating points.

Definition 68 (Spline). Let {(z;,y:)}i, be support
points of an interval [a, b]. A spline of degree p is a function
s [a,b] — R of class CP~1 satisfying:

5\[%%“] € R[z] and deg(shzwi“]) =p

fori =0,...,n—1and s(x;) = y; for i = 0,...,n. The
most common case are splines of degree p = 3 or cubic
splines. In this case we can impose two more conditions
on their definition in one of the following ways:

1. Natural cubic spline:
s"(z0) = " (xn) =0
2. Cubic Hermite spline: Given yg,y, € R,
s'(zo) =yo,  s'(an) =y
3. Cubic periodic spline:

Sll(xo) — S//(xn)

Definition 69. Let f : [a,b] — R be a function of class
C?. We define the seminorm'® of f as:

s'(xo) = s'(n),

b

191 = [ (7 (@) s
a
Proposition 70. Let f : [a,b] — R be a function of class
C? interpolating the support points {(z;,y;)}", C R
a < xg < -+ < xp < b If s a spline associated with
{(i, yi) iz, then:

+ o

1£ =501 = II£I1* = lIsl|* —2(f' ~s5)s"

w"+2 _ )" r
. ;(f )s"|

—1

S

Theorem 71. Let f : [a,b] — R a function of class
C? interpolating the support points {(z;, )}, C R2,
a < xg < -+ <z, <b If sis the natural cubic spline
associated with {(z;,v;)},, then:

Isll < £

4. | Numerical differentiation and inte-
gration

Differentiation

Theorem 72 (Intermediate value theorem). Let f :
[a,b] — R be a continuous function, zy, ..., z, € [a,b] and
ag, ...,y > 0. Then, 3¢ € [a, b] such that:

(Z ai) f(f)

Theorem 73 (Forward and backward difference for-
mula of order 1). Let f: R — R be a function of class
C?. Then, the forward difference formula of order 1 is:

Pl = Lath =10 1@,

where £ € (a,a+h). Analogously, the backward difference
formula of order 1 is:

fay T = Ja=h) "),

h 2
where n € (a — h,a).

n

Zaif(%) =

=0

10The term seminorm has been used instead of norm to emphasize that not all properties of a norm are satisfied with this definition.
11We can interpret this result as the natural cubic spline being the configuration that require the least “energy” to be “constructed”.



Theorem 74 (Symmetric difference formula of or-
der 1). Let f : R — R be a function of class C3. Then,
the symmetric difference formula of order 1 is:

fla+h) —fa—1) _fOQ
2h 6

f'(a) =
where € € (a — h,a + h).

Theorem 75 (Symmetric difference formula of or-
der 2). Let f : R — R be a function of class C*. Then,
the symmetric difference formula of order 2 is:

a —2f(a a— )
(a) = fla+h) 2J;L(Q)Jrf( h)y _f 12(§)h2

where € € (a — h,a,a + h).

Richardson extrapolation

Theorem 76 (Richardson extrapolation). Suppose
we have a function f that approximate a value o« with an
error that depends on a small quantity h. That is:

a = f(h) + a h* + ayh*> +

with k1 < ko < ---
q > 0, we define:

and a; are unknown constants. Given

k D, (h/Q) - Dn(h)

q
d Dypyi(h) =
an +1( ) qk" _ 1

Dy(h) = f(h)

And we can observe that a = Dy, 41(h) + O (hFn+1).

Integration

Definition 77. Let f : [a,b] = R be a continuous func-
tion, {z;}1, C [a,b] be a set of nodes and p, be the
Lagrange interpolating polynomial with support points
{(@4, f(x))}y. We define the quadrature formula as:

b b
/f(w)dxm/pn(x)dx

Lemma 78. Let f : [a,b] — R be a continuous function
{z:}1 C [a,b] be a set of nodes. Then:

b n b
/f(x) dz ~ Zaif(xi) where a; := /El(x) dz
a i=1 a

Definition 79. The degree of precision of a quadrature
formula is the largest m € N such that the formula is exact
for z* VE =0,1,...,m

Lemma 80. Let p € II,, be a polynomial and {z;}*, C
[a,b] be a set of nodes. Then:

b n
[ pla)de = aipla)
a 1=0

for some a; € R.

Newton-Cotes formulas

Theorem 81 (Mean value theorem for integrals).
Let f,g : [a,b] = R be such that f is continuous and g
integrable. Suppose that g does not change the sign on
[a,b]. Then, 3¢ € [a, b] such that:

/b f(@)g(z)de =

Theorem 82 (Closed Newton-Cotes Formulas). Let
f :[a,b] — R be a function and {z;}I, C [a,b] be a set
)dz and h = =2,

#0) [ 9(a)da

a

of equally-spaced points. If I = f; flx
then 3¢ € [a, b] such that:

e Ifniseven and f € C"+2:

n hn+3fn+2

=0

/tH (t—1)
e Ifnis odd and f € C"t1:

I=> aif(x:)+
=0

hn+2 fn+1 dt .

/,” n
Corollary 83 (Trapezoidal rule). Let f : [a,b] — R be
a function of class C2. Then, 3¢ € [a, b] such that:

/f

where h = b — a. This is the case n = 1 of closed Newton-
Cotes formulas.

(n+1)!

2@+ o - T

Corollary 84 (Simpson’s rule). Let f : [a,b] — R be
a function of class C*. Then, 3¢ € [a, b] such that:

/f<x>dw=§(f< )+4f(a+b)+f(b)> _%,ﬁ

where h = %. This is the case n = 2 of closed Newton-
Cotes formulas.

Theorem 85 (Composite Trapezoidal rule). Let
f : la,b] — R be a function of class C*, h = =2 and
xj = a+ jh for each j =0,1,...,n. Then, 3¢ € [a, b] such
that:

W) +2Y 1)+ F0)] -
FOb—a),,
- 2"

We denote by T'(f, a, b, h) the approximation of I by trape-
zoidal rule.

12Note that when n is even, the degree of precision is n 4 1, although the interpolation polynomial is of degree at most n. When n is

odd, the degree of precision is only n.



Theorem 86 (Composite Simpson’s rule). Let f :
[a,b] — R be a function of class C*, n be an even number,

h = b_Ta and z; = a + jh for each j = 0,1,...,n. Then,
3¢ € [a, b] such that:
b n/2—1
I:/f(a:)dsc:f a)+2Zf($2j)+
a Jj=1
OB —a) 4
+ 4;f(502g—1) + f(b) 130

We denote by S(f,a, b, h) the approximation of I by Simp-
son’s rule.
Romberg method

Definition 87. We define Bernoulli polynomials By, (x)
as Bo(z) =1, By(z) = — 5 and

(k+1)By,
= B,,(0), ¥n > 0'%.

By = for k>1
Bernoulli numbers are B,

Theorem 88 (Euler-Maclaurin formula). Let f €
C?™+2([a,b]) be a function. Then:

T(f,a,b,h) = /f dt+ZBQkh (2’“*1)(13)_

b — a)Boy4oh*m Tt
(2m +2)!

_ f(2k—1)(a)) _"_( f(2m+2)(§)

where h =
[a, b].

Theorem 89 (Romberg method). Let f €
C?™*2([a, b)) be a function. Then, by Euler-Maclaurin for-
mula, we obtain:

T? B,, are the Bernoulli numbers and £ €

b
T(fabh) = [ £O)dt+ 5ub + ol +

where h = b*Ta. For n =1,2,... we define:

_Tnm

)

4an+1,m
4m — 1

b—a
Tn,l =T (fa a, b, 271) Tn,m-l—l =

for m < n. Then, we can observe that:

Tnym/bf(t)dt+0<(b2na>2m>

Orthogonal polynomials

Definition 90. Let f,g : [a,b] — R be continuous func-
tion and w(zx) : [a,b] — Rso be a weight function. The
expression

b

(fg) = / w(z) f(@)g(x) da

a

x
I3Exponential generating function of the sequence (By) of Bernoulli numbers is — =
T —

defines a positive semidefinite dot product in the vector
space of bounded functions on [a, b].

Definition 91 (Orthogonal polynomials). Let ¢ =
{¢i(z) € R[z] : deg ¢p;(x) =i, € NU{0}} be a family of
polynomials and w(z) : [a,b] — R~ be a weight function.
We say B is orthogonal with respect to the weight w(zx) on
an interval [a, b] if

b

(61,85 = / w(@)6s(x)d; (2) dz = 0 = i #

a

Note that (¢;, ¢;) > 0 for each i € NU {0}.

Lemma 92. We define B, as B, = {¢i(z) € II, :
deg ¢i(z) =i and (¢;,¢;) =0 <= i # j,i=0,...,n}.
Then, B, is an orthogonal basis of I1,,.

Lemma 93. Let ¢y € Py, and ¢ € II,,. Then, (g, dx) =0
for each k > n.

Lemma 94. Let ¢,, € PB,,. Then, Vn € NU {0}, all roots
of ¢, are real, simple and contained in the interval (a,b),
where the associated weight function w(x) is defined.

Theorem 95 (Existence of orthogonal polynomi-
als). For each n € NU {0} there exists a unique monic
orthogonal polynomial ¢, with deg¢, = n, associated
with the weight function w(z), defined by:

bpo=1 ¢i(z)=2—ao

Gni1(x) = (& — apn)dn(z) — Bndn—1(x)
with @, = {202 ¥n € NU {0} and 8, = if=fels

Vn € N.

Definition 96 (Chebyshev polynomials). Chebyshev
polynomials T,, are the orthogonal polynomials defined on

[—1,1] with the weight w(z) = \/1177 These can be de-
fined recursively as:
To(z)=1 Ti(z) ==
Th1(x) = 22T, (z) — T ()

for n = 1,2,... Moreover T, (x) = cos(narccos(x)) which
implies that the roots of T,,(x) are:

<2k -1
T = COS
2n

Definition 97 (Laguerre polynomials). Laguerre poly-
nomials L, are the orthogonal polynomials defined on
[0,00) with the weight w(x) = e™*. These can be defined
recursively as:

7T> fork=1,...,n

Lo(@) =1 Li(e)=1-2
2n+1—2)L,(z) —nL,_1(x)
n+1

Ln—H( )

for n =1,2,... The closed form of these polynomials is:

Lo(z) = z": (Z) (_kll)kmk




Definition 98 (Legendre polynomials). Legendre
polynomials P, are the orthogonal polynomials defined on
[—1,1] with the weight w(xz) = 1. These can be defined
recursively as:
Py(z)=1 Pi(z)==x

(2n+ 1)aP,(z) —nP,—_1(x)
P =

nt1() nt1

for n =1,2,... The closed form of these polynomials is:

Py(z) = 2in zn: (Z)Q(x )R 4 1)

k=0

Gauflian quadrature

Definition 99. Let f : [a,b] — R be a function and
w(z) : [a,b] = Rsp be a weight function. Given a set of
nodes {z;}_, C [a,b], the quadrature formula with weight
w(zx) of a function f is

b b

/w(z)f(z) dz ~ Zwif(x,-) with w; = /w(z)&(z) dz

a i=1 a

Lemma 100. Let f : [a,b] — R be a function and {x;}_,
be the zeros of the orthogonal polynomial ¢,, € 3,, with
weight w(x) on the interval [a, b]. Then, the formula

b b

/w(z)f(z) dz ~ Zwif(x,-) with w; = /w(z)&(z) dz

a i=1 a

is exact for all polynomials in I, _1.

Proposition 101. Let f : [a,b] — R be a function and
{z;}_, be the zeros of the orthogonal polynomial ¢,, € B,
with weight w(z) on the interval [a,b]. Then, in the for-

mula
b

@@ do~ 3w

a

the values w; are positive and real for i = 1,...,n.

Theorem 102. Let f : [a,b] — R be a function of class
C?" and {z;}™ , be the zeros of the orthogonal polynomial
¢n € Py, with weight w(x) on the interval [a, b]. Then:

b n 2n
[ a3 wsw) - L8
i=1

a

(Dn, Dn)
where € € [a, b].

5. | Numerical linear algebra

Triangular matrices

Definition 103. A matrix A = (a;;) € M, (C) is upper
triangular if a;; = 0 whenever ¢ > j. That is, A is of the
form:

ail a2 Q1n
0  az
A_ =
. A(n—1)n
0 ... 0 Anm,

14Gee 77.

Definition 104. A matrix A = (a;;) € M, (C) is lower
triangular if a;; = 0 whenever j > 4. That is, A is of the
form:

a1 0 e 0
a1  G22
A =
0
Gn1 an(nfl) Ann

Definition 105. A linear system with a triangular matrix
associated is called a triangular system.

Matrix norms

Definition 106. A matriz norm on the vector space
M, (R) is a function ||-]| : M, (R) — R satisfying all prop-
erties of a norm'* and that:

[AB|| < [[A[[|B] VAB € My (R)

This property is called sub-multiplicativity.

Remark. Some other definitions in the literature exclude
this property for a matrix norm.

Definition 107. Let ||-|[, be a vector norm. We say a
matrix norm ||| 5 is compatible with |-, if

IAV]. < JAll; [V, VYA € My(R) and ¥v € R”

Definition 108. Let ||-|| be a vector norm and A €
M, (R). We define a subordinated matriz norm ||-|| as:

|A] = max{||Av| : v € R" such that ||v| =1}

{12
= Sup

Vi : v € R™ such thatv#O}
v

Lemma 109. All subordinated matrix norms are com-
patible.

Proof. Let |||, [|]| 5 be vector and matrix norms respec-
tively, A € M,(R) and v € R™\ {0}. Then, from the
definition of subordinated matrix we have Hﬁ:‘llu" < [JA]l4.
For v = 0 the inequality clearly holds. [
Lemma 110. For all subordinated matrix norm ||-||, we
have ||I]] = 1.
Proof. T = max ||Iv|| = max ||v]| =1 O
vER™ vER™
llvl=1 llvl=1

Definition 111. Let A € M,,(C) be a matrix. We define
the spectrum o(A) of A as:

o(A):={A e C: A — \id is not invertible}
Proposition 112. Let A € M,,(C) be a matrix. Then:

o(A) ={X € C: X is an eigenvalue of A}



Proof. Let B := A — \id. If B is not invertible, then there
exist a non-trivial combination of its columns bq,..., b,
that is equal to the zero vector:

ciby+---+¢;,b,=0

Now consider v = ci;e1 + - -+ + cpe,, where e; is the i-th
vector of the canonical basis of R™. Then, v is an eigen-
vector of A with eigenvalue . O

Definition 113. Let A € M,,(C) be a matrix. We define
the spectral radius p(A) of A as:

p(A) :=max{|]A\| € C: A€ o(A)}

Proposition 114. Let v = (vq,...,v,) € R® and A =

(aij) € M,(R). Given the vector norms:

n
vl = il
i=1

V], = max{|v;| : i =1,...

;n}

their subordinated matrix norms are respectively:

n
Z|aij|:j:1,...,n}

i=1

[All, = maX{
IA]ly = +/p(ATA)
|A[,, = max Z la;j]:i=1,...,n
j=1
Proof. Let’s start with the ||-|[; and |||, norms. Let

Z la;;| and Ay := 1rgfm<xnz la;;| and sup-
i=1 ===

pose they are attained at j = jg and i = ig. Then, for all

Ay

max
1<j<n

v = (vj),u = (u;) € R" such that [|v||; = [Jul|,, =1 we
have:
n n n n
1AV, =0 1D aigos| < 3 logl D laigl <
i=1 |j=1 j=1 i=1
n
<D lvjldr = A
=1
n n
= | < Z Gl <
|Aullg = max |Daiju;| < max 3 ai|lu] <
j=1 j=1
n
< e Sl =
fgf‘é(n L laij] = Aco
j

And taking v = e;, and u = (sgnay1,...,5g0a;n) We
have that ||Av|, = A; and [|Aul|, = Ax. So [|A]|; = A1
and ||A|l, = As. Now, let’s do the [|-||, norm. Observe
that ATA is symmetric, and therefore it diagonalizes in an
orthonormal basis of eigenvectors vy, ..., v, with eigenval-
ues A,..., . Note that for each of these eigenvectors we
have:

||Avi||22 =v,TATAv;, = \v;Tv, = \;

10

So, [[Avill, = \/p(ATA) for some i. Now take v

S a;v; normalized to 1 (ie. 37 |a|* = 1). Then,
using the orthogonality of the eigenvectors:

n

|AV],* = vTATAV =) i *v;TATAv; < p(ATA)

i=1
(Il
Proposition 115. Consider the function:
- Mp(R) — R
(aij) = 327 =1 laijl
Then, |-|| is a matrix norm, but it isn’t the subordinated

matrix norm of any vector norm.

Proof. Clearly it is a matrix norm in the sense of 7?7, but it
doesn’t satisfy the sub-multiplicative (consider A = B =

10
(1 1
norm of any vector norm.

)) and so it cannot be the subordinated matrix
O

Proposition 116 (Properties of matrix norms).

1. Matrix norms are continuous functions.
2. Given two matrix norms ||-[|, and [[-[|5, there exist
l, L € Rsq such that:
ClAll; <Al < LAl VA € Ma(R)
3. For all subordinated matrix norm ||-|| and for all
A e M,(R):
p(A) < [|A]
4. Given a matrix A € M,,(R) and ¢ > 0, there exist

a matrix norm ||-|| 5 . such that:
p(A) < [Allac < p(A)+e

Definition 117. A matrix A € M, (R) is convergent if
Jim A* =0.
—00

Theorem 118. Let A € M, (R).
ments are equivalent:

The following state-

1. A is convergent.

2. klim |A¥| = 0 for some matrix norm ||-||.
— 00
3. p(A) < 1.
Corollary 119. Let A € M, (R). If there is a matrix

norm ||-|| satisfying ||A|| < 1, then A converges.
Theorem 120. Let A € M, (R).
1. The series Y po A" converges if and only if A con-

verge.

2. If A is convergent, then I,, — A is non-singular and
moreover:

(I, —A)'=> AF
k=0

Corollary 121. Let A € M, (R). If there is a subordi-
nated matrix norm ||-|| satisfying |A|| < 1, then I,, — A is
non-singular and moreover:

1
Ay < T -
L+ [[A]l

1

AV < ——
s Ty



Matrix condition number

Definition 122. Let A € GL,(R). We define the condi-
tion number k(A) of A as:

r(A) = g

Theorem 123. Let A € GL,(R), b € R", Ax = b be
a system of linear equations and ||-|| be a subordinated
matrix norm. Suppose we know A and b with absolute
errors AA and Ab, respectively. Therefore, we actually
have to solve the system:

Al A~

(A + AA)(x + Ax) = (b + Ab) (1)
1 .
If ||AAH < TA-T] > then:
|Ax|| K(A) (|Ab|| ||AA||)
Ix[l = 1= A7 JAA] \ bl A

Proof. Since ||[AT'AA|| < [[AT||AA| < 1, we have
that I, + A" AA is non-singular and moreover:

1
I, +A"AA)7| < —
| < ATl
Furthermore, from Eq. (1) we have:
AxXA(I+A7'AA) = Ab— AAx
Therefore:
IAx]| _ [|1Ab — AAx| [|(L, + A7'AA) | A
[BS] 1|l
(IIAbI L AA ) la—]]
AL L-[la”[1aa]
K(A) ( |Ab|| IIAAI>
1= [JATHIAA] N A A
K(A) (IIAbII IIAAH)
T 1 [JATaAl \ el JA]

because b < ||A|| [|x]. O

Theorem 124. Let A € GL,(R) and ||| be a subordi-
nated matrix norm. Then:

1. k(A) > p(A)p(A7).

2. If b,z € R™ are such that Az = b, then:

e
1A= = fop

3. If B € M, (R) is a singular matrix, then:

N
A)> 20
“A) 2 AT

Proof. The first two properties are easy For the third one,
if P € M, (R) is such that ||P| < HA A= then A+ P =
A(L,+A~'P) is non-singular. Equlvalently7 it B:= A—|—P
is singular, then we must have | =7
U

11

Iterative methods

Definition 125. Suppose we want to solve the system
Ax = b, where A € M, (R) and b € R™. We choose a
matrix N € GL,(R) and define P := N — A. Then:

Ax=b — x=N"'"Px+N b= Mx+N"'b

The matrix M is called the iteration matriz. This defines
a fixed-point iteration in the following way:

xF+1) = Mx*®) 4+ N~ 'b

x(®  (initial approximation)

Theorem 126. The iterative method x*+1) = Mx*) +
N~ 'b is convergent if and only if M is convergent and if
and only if p(M) < 1.

Corollary 127. If ||M| < 1 for some matrix norm, then
the iterative method x**+1 = Mx®* + N~'b is conver-
gent.

Definition 128. We define the rate of convergence R of
an iterative method x*+1) = Mx*) + N~!b as:

—log(p(M))

Proposition 129. Let x*+1) = Mx®) + N7'b be an
iterative method to approximate the solution x of a sys-
tem of equations Ax = b. Then, we have the following
estimations:

R:

IIMII

I
[l

Definition 130. Let A = (a;;) € M,(R). We say A is
strictly diagonally dominant by rows if

n
laiil > ]

j._ .
J#i

x® = x| < g lx® = x| (a priori)

[x®) — x| < = I | —x*E=D|| (a posteriori)

We say A is strictly diagonally dominant by columns if

|aj;| > Z |ai;]
17’5.7

Definition 131 (Jacobi method). Let A = (a;;) €
M, (R) be such that [, a; #0, b € R” and Ax = b
be a system of equations. Jacobi method consists in defin-
ing a matrix N (and consequently matrices P and M as
defined above) in the following way:

a1 0 0
N = 0 as9
; L0
0 0 apn
0 —ax2 —ain
P-N-A=| " !
—Q(n—1)n
—0n1 —An(n—1) 0



0 —ai2 —Qin
ail ail
—azi 0
—1 a
M=N"'P=|
—A(n—1)n
A(n—1)(n—1)
—ani —O0n(n-1)
Ann Ann 0

Note that the iterative method x*+1) = Mx®*) + N~'b
can also be written as:

ey _ Ll s w _

x; 76Tu‘ bl—é a;ijT; fori=1,...,n
Jj=1
J#i

Theorem 132. Let A € M,,(R) be such that []"_; a;; #
0 and b € R™. If A is strictly diagonally dominant by
rows or columns, then Jacobi method applied to solve the
system Ax = b is convergent.

Definition 133 (Gauf-Seidel method). Let A =
(a;j) € M, (R) be such that [ ;a; # 0, b € R™ and
Ax = b be a system of equations. Gaufs-Seidel method
consists in defining a matrix N (and consequently matri-
ces P and M as defined above) in the following way:

ail 0 0
N — a1 G22
: 0

an1 an(n—1) Oann

0 —aio —Qa1n
P=N-A-= 0 0
. B —Q(n—1)n
0 0 0
M=N"'P

Note that the iterative method x*+1) = Mx®*) + N~'b
can also be written as:

1 n i—1
(k+1) j : (k) } : (k+1)
Z; = bi — aijxj — aijxj
(2773 L ,7
j=i+1 Jj=1
fori=1,...,n.

Theorem 134. Let A € M,,(R) be such that [[, a;; #
0 and b € R™. If A is strictly diagonally dominant by
rows, then GauB-Seidel method applied to solve the sys-
tem Ax = b is convergent.

Proposition 135 (Over-relaxation methods). Let
A € M,(R), b € R", Ax = b be a system of equa-
tions and @ € R be a parameter (called relazation fac-
tor). Over-relaxation methods consist in defining matrices
N(«), P(a) and M(«) as follows:

Then, the iterative method can be written as:

x* ) = M(a)x™ + N(o) " 'b

12

Proposition 136 (Successive over-relaxation
method). Let A € M,(R), b € R", a € R be such
that & # —1 and x*+1) = N7'Px(*) + N~!'b be an it-
erative method. Successive over-relazation method (SOR)
consists in defining

N(a)=(14+a)N and P(a)=P+aN

because it must be true that A = N(a) — P(a).
the previous iteration becomes:

Then,

xFD) = N(a) "P(a)x™®™ + N(a) 'b

Definition 137. Let A € M, (R), b € R", a € R be such
that o # —1 and x*+) = N(a) 'P(a)x® + N(a) 'b
be a SOR method. Since M(a) = N(a) 'P(a), we have
that

);
e

M(a) = H—%(M +al,)

and therefore:

A
o(M(a)) = { - 12‘ Ne U(M)}
Theorem 138. Let A € M, (R), b € R"* and x**1) =
Mx*) + N~'b be an iterative method. Suppose that the

eigenvalues \;, © = 1,...,n, of M are all real and satisfy:
D<A < A<--- <A <1

Then, the associated SOR method given by N(a) =
(1+ a)N and P(a) = P + aN converges for a > —%.

Moreover, p(M(a)) is minimum whenever o = —2152a

Eigenvalues and eigenvectors

Definition 139. Let A € M,(R) be a matrix whose
eigenvalues are A\i,...,\,. A1 is called dominant eigen-
value of A if [\]| > |A;| for i = 2,...,n. The associated
eigenvector to A; is called dominant eigenvector of A.

Definition 140. We say a matrix A € M, (R) is reducible
if 3P € M,,(R) a permutation matrix, such that

)

for some square matrices E and G and for some other
matrix F. A matrix is érreducible if it is not reducible.

E O

-1 _
PAP " = (F G

Theorem 141 (Perron-Frobenius theorem). Let A €
M, (R) be a non-negative irreducible matrix. Then, p(A)
is a real number and it is the dominant eigenvalue.

Proposition 142 (Power method). Let A € M, (R).
For simplicity, suppose A is diagonalizable with eigen-
values A1,..., A, and eigenvectors vi,...,v,. Suppose
[A1] > [A2] > -+ > |A\u]- The power method consists in
finding an approximation of the dominant eigenvalue \;
starting from an initial approximation x(9) of v;. We de-
fine:

xFHD — Ax(F) k>0



Suppose x(©) = Z?:l o;v;. If we denote by v; ,, the m-

th component of the vector v; and choose ¢ such that

Or, equivalently,

v 0. Then: (k)
1,0 # y®) = % (A — uL)x®) — y®) for k>0
x (k) <D x|
lim —— =wv; lim =£ W= A1
k—oo AT k=oo x, Therefore, in each step we have to solve a system of equa-

provided that a; # 0. More precisely we have:

tions to obtain x(**1), Finally'®, if we choose £ such that
vy # 0, then:

(k+1) k
XZ )\2
(k) :M+O<A> (R o I 4
Xy 1 lim x\*) =v lim — = ——
ko0 k00 yé ) A—p

Proposition 143 (Normalized power method). Let
A € M,(R) and |-|| be a vector norm'®. For simplicity
suppose A is diagonalizable with eigenvalues Aj,..., A\,
and eigenvectors vi,...,v,. Suppose [A1] > [Ag] > -+ >
[An]. The normalized power method consists in defining

Exact methods

Proposition 146 (Gaussian elimination). Let A =
(ai;) € My (C). We define az(-jl.) = a;; fori,j =1,...,n

x (k)
yF) = xFD = Ay®) for k>0 and
[lx®]]
1 1 1
Suppose x(© = 3" a;v; such that a; # 0. If we choose a’gl) agz) o agn)
¢ such that vy ¢ # 0. Then: A agll) a%)
(k+1) o : : (1)
. (k) _ : X _ : : Ap—1)n
lim x'\* = vy lim = A1 ) 1) ( (1))
k—oo k—oco y[ anl “ e an(n—l) ann
More precisely we have: o
Fori=2,...,n we define m;; = “&; to transform the ma-

k)
k

vy M
Proposition 144 (Rayleigh quotient). Let A €
M., (R). Suppose we have a power method x(**+1) = Ax(¥)
to approximate the dominant eigenvalue \; of A. Then

(k+1)
)(4—)\14_0()\2

11
trix A into a matrix A defined by agj-) = ag;) —milaﬁ-)
for i = 2,...,n and by al(;) for ¢ = 1. That is, we obtain

a matrix of the form:

L @ (1) L (1)

Rayleigh quotient approximates A; as follows: 11 “g) a(123) a%;)
T 0 agy agy T Qgp,
M =\ AV~ 0 d o : —A®
T
k—o0 (x(k)) . x(k) . ) @)
: : . " a
(n—1)n
More precisely: 0 a%) . aff()n,l) agfrz

R\ | (k)
E—%fi——A+o 22
(x(k)) . X(k) )\1

)

If instead of a power method, we have a normalized power
o)

method y*) = T x(*+t1) = Ay(®)  then:

N R
) (X(k-irl))T -y (R 0 a%) a%) aéi) e a;i)
R T ok M 0 0 aff af) a§))
(y®)" -y A —
Proposition 145 (Inverse power method). Let A € 0 0 0
M, (R) and pu € C. The inverse power method consists in EZ:B(n—l) éZj;n
finding an approximation of the eigenvalue A closest to u 0 0 0 0 aggl

starting from an initial approximation x(®) of its associ-
ated eigenvector v. So we applied the power method to
the matrix (A — uI,,) "', That is, we have the recurrence:
k

*) x (k)

YT @]

15For power method it is recommended to use ||| -

xFHD — (A — L) 'y®) for k>0

Proceeding analogously creating multipliers m;;, i > j, to
echelon the matrix A, at the end we will obtain an upper
triangular matrix A™ of the form:

Proposition 147. Partial pivoting method in gaussian
elimination consists in selecting as the pivot element the
entry with largest absolute value from the column of the
matrix that is being considered.

16 Alternatively, here we could have applied the Rayleigh quotient.
17There’s another method that applies power method to the matrix A — pI,, with the same purpose as the inverse power method but
without having to solve a system of equations in each iteration. In this case, this method gives the farthest eigenvalue of A from u.
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Proposition 148. Complete pivoting method in gaussian 1. Solve the triangular system Ly = b.
elimination interchanges both rows and columns in order
to use the largest element (by absolute value) in the matrix

as the pivot. Proposition 151. Let A € GL,(R). Then:
Definition 149 (LU descompostion). Let A €

GL,(R) be a matrix. A LU decomposition of A is an 1. If LU decomposition exists, it is unique.
expression A = LU, where L = (¢;;), U = (u;;) € M, (R)
are matrices of the form:

2. Solve the triangular system Ux =y.

2. If we can make the gaussian elimination without piv-
oting rows, then'®:

1 0 0
1 0 . 0
L= loy 1 : @) ‘. :
: . . 0 L — m21 ]- . . U _ A(n)
Knl e fn(nil) 1 . T t. 0
Ul U2 v Uln Mp1 ' Mppo1) 1
U= 0w : (3) Definition 152. A permutation matriz is a square binary
: U(n—1)n matrix that has exactly one entry of 1 in each row and each
0o --- 0 Unn column and 0 elsewhere.

Lemma 150. Let A € GL,(R), b € R” and Ax = b be Proposition 153. Let A € GL,(R). Then, there exist
a system of linear equations. Suppose A = LU for some & permutation matrix P € M, (R) and matrices L, U €
matrices L, U € M, (R) of the form of Eqgs. (2) and (3), My (R) of the form of Eqs. (2) and (3), respectively, such
respectively. Then, to solve the system Ax = b we can that:

proceed in the following way: PA=LU

181n practice, LU decomposition is implemented making gaussian elimination and storing the values m;; in the position ¢j of the matrix
A®) | where there should be a 0.
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