Mathematical analysis

1. | Numeric series

Series convergence

Definition 1. Let (a,) be a sequence of real numbers. A
numeric series is an expression of the form

o0
>
n=1

N
We call a,, general term of the series and Sy = Z an, for
n=1

all N € N, N-th partial sum of the series'.

Definition 2. We say the series ) a, is convergent if
the sequence of partial sums is convergent, that is, if

S = lim Sy exists and it is finite. In that case, S is
N—o00

called the sum of the series. If the previous limit doesn’t
exist or it is infinite, we say the series is divergent”.

Proposition 3. Let (a,) be a sequence such that > a,, <
o0o. Then, Ve > 0 Ing € N such that

N 0o
D an = an
n=1 n=1

<e€

Theorem 4 (Cauchy’s test). Let (a,) be a sequence.
> apn < oo if and only if Ve > 0 Ing € N such that

M
>
n=N

<e

Corollary 5. Changing a finite number of terms in a se-
ries has no effect on the convergence or divergence of the
series.

Corollary 6. If ¥ a, < oo, then lim a, =0.
n—oo

Theorem 7 (Linearity). Let > an, > b, be two conver-
gent series with sums A and B respectively and let A be a
real number. The series

oo

> (an + Aby)

n=1
is convergent and has sum A + AB.

Theorem 8 (Associative property). Let > a, be a
convergent series with sum A. Suppose (ny) is a strictly
increasing sequence of natural numbers. The series Y by,
with by = apn,_,+1 + -+ ay, for all ¢ € N, is convergent
and its sum is A.

o]

1From now on we will write Z an to refer E A, .
=1

Non-negative terms series

Theorem 9. Let > a, be a series of non-negative terms
a, > 0°. The series converges if and only if the sequence
(Sn) of partial sums is bounded.

Theorem 10 (Comparison test). Let (ay),(b,) > 0
be two sequences of real numbers. Suppose that exists a
constant C > 0 and a number ng € N such that a,, < Cb,,
for all n > ng.

1LIEY by <oo = > a, <
2. IfY ap =400 = > b, =+

Theorem 11 (Limit comparison test). Let (a,),
(br) > 0 be two sequences of real numbers. Suppose that

the limit £ = lim " exists.
o0 by,

1. H0<tl<o0o = Y a, <0 <= > b, <0

2. If¢=0and Y b, <00 = > a, <

3. Ifl=00and Y a, <oo = > b, <
Theorem 12 (Root test). Let (a,) > 0. Suppose that
the limit ¢ = nl;rgo a, exists.

1. Ifl<1 = Y a, <o

2.If0>1 = > a, =+

Theorem 13 (Ratio test). Let (a,,) > 0. Suppose that

the limit ¢ = lim an
n—oco Q@

1 .
exists.

1. Ifl<]1 = Y a, <o
2. If0>1 = > a, =+

Theorem 14 (Raabe’s test). Let (a,) > 0. Suppose
that the limit £ = lim n <1 - a”“) exists.

n—00 Ay,

1. Ifl>1 = Y a, <o
2. Ift <1 = > a, =+

Theorem 15 (Condensation test). Let (a,) > 0 be a
decreasing sequence. Then:

dSap <00 = Y 2"agn < 0

Theorem 16 (Logarithmic test). Let (a,) > 0. Sup-
1
- exists.

pose that the limit / = lim
n—oo logn

1.Ifl>1 = > a, <o

n
2We will use the notation Z ap < 00 or Z ap = 400 to express that the series converges or diverges, respectively.
3Obviously the following results are also valid if the series is of non-positive terms or has a finite number of negative or positive terms.



2. Ifl<1l = > a, =4

Theorem 17 (Integral test). Let f : [1,00) — (0,00)
be a decreasing function. Then:

2. f(n) <oo =

n

<= 3C > 0 such that /f(:v)dngVn

1

Alternating series

Definition 18. An alternating series is a series of the
form Y (—1)"a,, with (a,) > 0.

Theorem 19 (Leibnitz’s test). Let (a,) > 0 be a

decreasing sequence such that lim a, = 0. Then,
n—oo

> (=1)"a,, is convergent.

Theorem 20 (Abel’s summation formula). Let
(an), (bn) be two sequences of real numbers. Then:

M

Z an(bpt1 — bn) = app1byr41 — anby—
n=N

M
- Z bn+1(an+l - an)
n=N

Theorem 21 (Dirichlet’s test). Let (a,), (b,) be two
sequences of real numbers such that:

N

>

n=1

1. 3C > 0 such that < (C for all N € N.

2. (b,) is monotone and le b, = 0.

Then, > apb, is convergent.

Theorem 22 (Abel’s test). Let (ay), (b,) be two se-
quences of real numbers such that:

1. The series Y a, is convergent.

2. (bn) is monotone and bounded.
Then, Y a,b, is convergent.
Absolute convergence and rearrangement of se-
ries

Definition 23. We say a series Y a, is absolutely con-
vergent if > |a,| is convergent.

Theorem 24. If a series converges absolutely, it con-
verges.

Definition 25. We say a sequence (b, ) is a rearrangement
of the sequence (ay) if exists a bijective map o : N - N
such that b, = a,(,). A rearrangement of the series ) ay
is the series > g (n) for some bijection o : N — N.

Definition 26. Let z € R. We define the positive part of

T as
T

rt =
0

Analogously, we define the negative part of x as

_ {0
€T =
-

Note that we can write x = 27 — 2~ and |z| = 2% + 2.

ifx>0
ifx <0

ifx>0
ifz <O

Theorem 27. A series Y a, is absolutely convergent if
and only if positive and negative terms series, >_ a, T and
> ap,~, converge. In this case,

0o 0o %S
D =) an =) an”
n=1 n=1 n=1

Theorem 28. Let Y a, be an absolutely convergent se-
ries. Then, for all bijection o : N — N, the rearranged se-
ries ) | G, () is absolutely convergent and ) an = ) ap(n)-

Theorem 29 (Riemann’s theorem). Let > a, be a
convergent series but not absolutely convergent. Then,
Va € R U {oo}, there exists a bijective map o : N — N
such that ) a,(,) converges and ) aq(n) = o

Theorem 30. A series Y a, is absolutely convergent if
and only if any rearranged series converges to the same
value of 3 ay,.

2. | Sequences and series of functions

Sequences of functions

Definition 31. Let D C R. A set
(fn(@)) = {fi(2), fo(2), ..., ful@),.. .}

is a sequence of real functions if f; : D — R is a real-
valued function. In this case we say the sequence (f,(z)),
or simply (f,), is well-defined on D.

Definition 32. Let (f,) be a sequence of functions de-
fined on D C R and f : D — R. We say (f,) converges
pointwise to f on D if Vo € D, lim f,(x) = f(z)

n—oo

Definition 33. Let (f,) be a sequence of functions de-
fined on D C R and f: D — R. We say (f,) converges
uniformly to f on D if Ve > 0, Ing : |fu(x) — f(z)| < €
Vn > ng and Vo € D.

Lemma 34. Let (f,) be an uniform convergent sequence
of functions defined on D C R and let f be a function such
that (f,) converges pointwise to f. Then, (f,) converges
uniformly f on D.

Lemma 35. Let (f,) be a sequence of functions defined
on D CR. (f,) converges uniformly to f on D if and only

if nlgngosup{\fn(x) — f(z)| :x € D} =0.

Corollary 36. A sequence of functions (f,) converges
uniformly to f on D C R if and only if there is a sequence

(an), with a,, > 0 and lim a, =0, and a number nyg € N
n—oo

such that sup {|fn(x) — f(x)| : © € D} < ayp, Yn > ny.



Theorem 37 (Cauchy’s test). A sequence of functions
(fn) converges uniformly to f on D C R if and only
if Ve > 0 3Ing : sup{|fu(x) — fm(x)|:x € D} < e if
n,m > ng.

Theorem 38. Let (f,,) be a sequence of continuous func-
tions defined on D C R. If (f,,) converges uniformly to f
on D, then f is continuous on D, that is, for any xzg € D,
it satisfies:

= lim
T—xT0

i (Jim f,(2)) = Jim f(2)

n—oo \ T—xo

Theorem 39. Let (f,) be a sequence of functions de-
fined on I = [a,b] C R. If (f,) are Riemann-integrable
on I and (f,) converges uniformly to f on I, then f is
Riemann-integrable on I and

b b

/ lim fo(z)dz = lim [ fu(z)da

n—oo n—oo
a a

Theorem 40. Let (f,) be a sequence of functions de-
fined on I = (a,b) C R. If (f,) are derivable on I,
(f!(z)) converges uniformly on I and 3z € I such that
nli)IIolo fn(xo) € R, then there is a function f such that (f,)

converges uniformly to f on I, f is derivable on I and
(f1(z)) converges uniformly to f’ on I.

Series of functions

Definition 41. Let (f,) be a sequence of functions de-
fined on D C R. The expression

is the series of functions associated with (fy,).

Definition 42. A series of functions ) f,(x) defined on
D C R converges pointwise on D if the sequence of partials
sums

N
Fy(z) =) fal@)
n=1
converges pointwise. If the pointwise limit of (Fy) is F'(z),
we say F' is the sum of the series in a pointwise sense.

Definition 43. A series of functions ) f,(x) defined on
D C R converges uniformly on D if the sequence of par-
tials sums

N
Fy() =3 ful@)
n=1

converges uniformly. If the uniform limit of (Fiy) is F(z),
we say I is the sum of the series in an uniform sense.

Theorem 44 (Cauchy’s test). A series of functions
> fn(z) defined on D C R converges uniformly if and
only if Ve > 0 Ing such that

M
sup{ Z fn(x)
n=N

:xED}<5

Corollary 45. If > f,(z) is an uniformly convergent se-
ries of functions on D C R, then (f,,) converges uniformly
to zero on D.

Theorem 46. If > f,(x) is an uniformly convergent se-
ries of continuous functions on D C R, then its sum func-
tion is also continuous on D.

Theorem 47. Let (f,) be a sequence of functions de-
fined on I = [a,b] C R. If (f,,) are Riemann-integrable on
I and ) f,,(x) converges uniformly on I, then 3 f,(z) is
Riemann-integrable on I and

[5 o= 3 [

Theorem 48. Let (f,,) be a sequence of functions defined
onl = (a,b) C R. If (f,,) are derivable on I, Y f/ (z) con-
verges uniformly on I and 3¢ € T : Y fn(c) < oo, then
> fn(x) converges uniformly on I, > f,(x) is derivable

on I and ,
(Z fn(x)> => i)

Theorem 49 (Weierstral M-test). Let (f,,) be a se-
quence of functions defined on D C R such that | f,,(x)| <
M, Vx € D and suppose that > M, is a convergent nu-
meric series. Then, Y f,(z) converges uniformly on D.

Theorem 50 (Dirichlet’s test). Let (f,), (gn) be two
sequences of functions defined on D C R. Suppose:

N

2. (gn(x)) is a monotone sequence for all x € D and
lim sup{|g,(z)|:x € D} =0.
n—oo

1. EC>0:sup{

:wED}gC,VN.

Then, > fn(2)gn(x) converges uniformly on D.

Theorem 51 (Abel’s test). Let (f.),(gn) be two se-
quences of functions defined on D C R. Suppose:

1. The series > fn(x) converges uniformly on D.

2. (gn(z)) is a monotone and bounded sequence for all
z€D.

Then, > fn(x)gn(x) converges uniformly on D.

Power series

Definition 52. Let (a,) be a sequence of real numbers
and g € R. A power series centred on x is a series of
functions of the form

oo
Z an(x —x0)"
n=0

Proposition 53. Let > a,(z —z0)" be a power series.
Suppose there exists an z; € R such that > a, (z1—x0)" <
oo. Then, Y an(z —x0)" converges uniformly on any
closed interval I C A={z € R: |z — z¢| < |21 — 0]}



Theorem 54. Let Y. an(z — z0)"
consider

be a power series and

-1
R= <limsup Vi an> € [0, o0]
n—oo

Then:

L Iflz—2zo| <R = > an(z—z0)"
lutely.

converges abso-

2.If0<r <R = Y an(z—z)"
formly on [rg — 7,z + 7].

converges uni-

3. If |z — x| > R = > an(z —x0)" diverges.

The number R is called radius of convergence of the power
series.

Theorem 55 (Abel’s theorem). Let > a,z" be a
power series’ with radius of convergence R satisfying
Y apR™ < oco. Then, the series Y a,z™ converges uni-
formly on [0, R]. In particular, if f(z) =>_ a,z™,

Z a, R"

Corollary 56. Let f be the sum function of a power
series Y anxz™. Then, f is continuous on the domain of
convergence of the series.

lim f(x

z— R~

Corollary 57. If the series ) a,z™ has radius of conver-
gence R # 0 and f is its sum function, then f is Riemann-
integrable on any closed subinterval on the domain of con-
vergence of the series. In particular, for |z| < R,

2 n+1
[ rae= Zan -
0

Corollary 58. Let f be the sum function of the power
series > apx™. Then, f is derivable within the domain of
convergence of the series and

oo
"(z) = g na,x"™"
n=0

Corollary 59. Any function f defined as a sum of a power
series Y a,a™ is indefinitely derivable within the domain
of convergence of the series and

oo

Z (n—1)

for all K € NU{0}. In particular f*)(0) = klay,.

(n—k+ 1apz"*

Definition 60. A function is analytic if it can be ex-
pressed locally as a power series.

4From now on we will suppose, for simplicity, ¢ = 0.
5The formula is also valid for |z| =

R if the series Z anR™ (or Z an(

Stone-Weierstrafl approximation theorem

Definition 61. Let f be a real-valued function. We say
f has compact support” if exists M > 0 such that f(z) =0
for all x € R\ [-M, M].

Definition 62. Let f,g be real-valued functions with
compact support. We define the convolution of f with
g as

(f*9)(z) = / (gl —tydt = / f(— gty dt
R R

Remark. The idea behind the convolution is to “blend”
one function with the other one. In Fourier Analysis, g
represents an input signal and f a kernel function for our
purpose. This results in a new function that averages both
functions.

Definition 63. We say that a sequence of functions (¢.)
with compact support is an approzimation of identity if

L. ¢ =2 0.

2.}!@:1.

3. Forall § > 0, ¢-(t) converges uniformly to zero when
e —0if |t| > 0.

Lemma 64. Let f : R — R be a continuous function
with compact support. Let (¢.) be an approximation of
identity. Then, (f * ¢.) converges uniformly to f on R as
e —0.

Theorem 65 (Weierstraf3 approximation theorem).
Let f : [a,b] — R be a continuous function. Then, there
exists polynomials p, € R[z] such that the sequence (p;,)
converge uniformly to f on [a, b].

3. | Improper integrals

Locally integrable functions

Definition 66. Let f : [a,b) — R, with b € RU {oo}.
We say f is locally integrable on [a,b) if f is Riemann-
integrable on [a,z] for all a <z < b.

Definition 67. Let f :
function. If there exists

[a,b) — R be a locally integrable

/s

and it’s finite, we say that the improper integral of f on

lim
Tz—b—

[a,b), /f, is convergent.

R)™) is convergent.

6In general, the support of a function is the closure of the set of pomts which are not mapped to zero.



Theorem 68 (Cauchy’s test). Let f : [a,b) — R be a

b

locally integrable function. The improper integral / fis

convergent if and only if Ve > 0 Jbg, a < by < b, such that

x2

/f<£

€1

if bg <21 < a0 <.

Improper integrals of non-negative functions

Theorem 69. Let f : [a,b) — R be a locally integrable

non-negative function. A necessary and sufficient condi-
b

tion for / f to be convergent is that the function

z) = / £(£) dt

must be bounded for all x < b.

a

Theorem 70 (Comparison test). Let f,g : [a,b) —
[0,4+00) be two locally integrable non-negative functions.
Then:

1. If 3C > 0 such that flz) < Cg(z ) Vz on a neigh-

bourhoodofband/g<oo == /f<oo

2. Suppose the limit £ = lim @ exists.
r—b g({l?)

b b
i) If £ € (0,00) = /f<oo — /g<oo.

a

b

b
ii) Ifﬁ:Oand/g<oo = /f<oo.

a
b

b
iii) Ifﬁzooand/f<oo = /g<oo.

a

Theorem 71 (Integral test). Let f : [1,00) —
be a locally integrable decreasing function. Then:

(0,00)

Zf(n)<oo — /f(x)dx<007
1

Absolute convergence of improper integrals

Definition 72. Let f : [a,b) — (0,00) be a locally inte-
b b
grable function. We say /f converges absolutely if / |f]

is convergent.

"This is another way of formulating Theorem 17.

Theorem 73 (Dirichlet’s test). Let f, g
two locally integrable functions Suppose:

1. 3C > 0 such that | [ f(t)dt| < C for all z € [a,b).

: [a,b) = R be

2. g is monotone and lim g(z) = 0.
z—b

Then, / fg is convergent.

Theorem 74 (Abel’s test). Let f, g
locally integrable functions. Suppose:

: la,b) = R be two

1. / f is convergent.
a

2. g is monotone and bounded.

Then, / fg is convergent.

Differentiation under integral sign

Theorem 75. Let f : [a,b] x
uous function on [a,b] X [c,d].

[c,d] — R be a contin-
Consider the function

F(y) = /f(x,y) dz defined on [¢,d]. Then, F is con-

a
tinuous, that is, if ¢ < yg < d,

b b

f(%y)dw:/

a a

lim F(y) = lim

Y—Yo Y—Yo

lim f(z,y)dx

—Yo

b
- / F (&, y0) dz = F(yo)

Theorem 76. Let f : [a,b] x [¢,d] —> R be a Riemann-

integrable function and let F(y / flx,y)de. If f is
differentiable with respect to y and 3 f/0y is continuous
on [a,b] X [¢,d], then F(y) is derivable on (c¢,d) and its
derivative is

for all y € (c,d).

Theorem 77. Let f : [a,b] X [¢,d] — R be a continu-
ous function on [a,b] X [¢,d]. Let a,b : [¢,d] — R be to
differentiable functions satisfying a < a(y) < b(y) < b
for every y 6 [c7 d]. Suppose that 9f/0y is continuous

on {(z,y) € R® : a(y) < = < by), ¢ <y < d}. Then,
b(y)
/ f(z,y) dx is derivable on (c¢,d) and its deriva-
a(y)
tive is



b(y)a
+ [ s
a(y)
for all y € (¢, d).

Theorem 78. Let f : [a,b) X [¢,d] — R be a continuous
b

function on [a, b) X [c, d]. We consider F'(y) = /f(:c, y) da.

a

Suppose that:
0
1. 8—f is continuous on [a,b) X [c, d].
Y

2. Given yg € [c,d], 30 > 0 such that the integral

b
/sup{‘%(w,y)‘ 2y € (Yo —57yo+5)}d90

a
exists and it’s finite on [a, b).
Then, F(y) is derivable at yo and

b

F'(yo) = /%(x,yo)dx
Theorem 79. Let f : [a,b) X [¢,d] — R be a continuous
function on [a, b) X [¢,d]. Let a,b : [c,d] — R be two differ-
entiable functions satisfying a < a(y) < b(y) < b for every

b(y)
y € [c,d]. We consider F(y) = / f(z,y)dx. Suppose
a(y)
that:
of . . 2
1. Sy B continuous on {(z,y) € R* : a(y) < z <

)
b(y), e <y < d}.
2. Given yg € [e,d], 36 > 0 such that the integral

b(y)
/sup{\gz(x,y)':ye(yo—a,yo+6>}dx

a(y)
exists and it’s finite on [a, b).

Then, F(y) is derivable at yo and

F'(yo) = 0'(y0) f(b(y0),y0) — &' (y0) f(alyo), yo)+
b(yo)
+ / g—i(a:,yo) dz
a(yo)

Gamma function

Definition 80. For z > 0, Gamma function is defined as

o0

I(z) = /t“’fle*t d¢

0

Theorem 81. Gamma function is a generalization of the
factorial. In fact, for z > 0 we have

Iz +1) =al(x)
In particular, T'(n 4+ 1) = n! for all n € N.

Theorem 82. Gamma function satisfies:

fim @D

Corollary 83 (Stirling’s formula).

. n!
lim

— =1
n—00 ne=N"\/21n

4. | Fourier series

Periodic functions

Definition 84. Let f : R — C be a function. We say that
f is T-periodic, or is periodic with period T', being T > 0,
if f(x+T)= f(z) for all z € R.

Remark. In general we take T" to be the least positive con-
stant satisfying that property.

Lemma 85. Let f : R — C be a T-periodic function.
Then, f(z+T") = f(z) for all z € R if and only if T" = kT
for some k € Z.

Sketch of the proof.
=)
fa+KT) = @+ (k= 1T) = - = f(2)
<=) Assume T = kT + a, o € [0,T). Then:
f@)=flz+T) = f(z+a)

which implies & = 0 because otherwise f would be
a-periodic with av < T'.

Vx € R

O

Proposition 86. Let f : R — C be a T-periodic function.

Then:
a+T

/f(x)d:zs:/Tf(x)dx

a

where a € R. In particular,

a+kT

fl@)dze =k Tf(x)dx
[ s

a

Lemma 87. Let f : R — C be a T-periodic continuous
function. Then, |f| is bounded.

Sketch of the proof. Use 7?7 77 on the interval [0,7] and
the periodicity of f. O

Proposition 88. Given a T-periodic function f, there
are no power series uniformly convergent to f on R.



Proof. Suppose Y apx™ converges uniformly to f. By

Theorem 46, f is continuous and by Theorem 87, |f] is
bounded. Therefore

E anpx™

sup
zeR

cannot be arbitrarily small as N — co because 25:1 anx™
is a polynomial, and therefore, unbounded.

Orthogonal systems

Definition 89. Let f : R — C be a function. We say
that f € LP(I), p > 1, if:

/ F@Par
I

Definition 90. Let f,g
integrable functions.
and g as

1/p

< 0

1Al =

[a,b] — C be Riemann-
We define the inner product of f

= /bf(w)g(w) dz

where g denotes the complex conjugate of g. The norm
associated with this inner product is the L? norm:

/lf )P do N

The distance between f and g is:

d(f,9) = IIf —all,

Proposition 91. Let f,g : [a,b] — C be Riemann-
integrable functions and let a € C. Then, we have:

1/2

1flly = (£ 1) = [I712

L {(f,f) >0

2. (f+h,g)=(f.9)+(h,g) and (f, g+ h) = (f,9) +
(f,h).

3. (f,9)=(9. f)

4. (af,g) = off,g) and (f,ag) =a(f,g).

Sketch of the proof. They follow from the linearity of the
integral. For Item 91-3, write f = Ref + ilm f and
g = Reg+ilm g and expand the products of both sides of
the equation. O

Theorem 92 (Cauchy-Schwarz inequality). Let f, g
[a,b] — C be Riemann-integrable functions. Then:

[(Fs | <INl - llgll,

which can be written as:

b

/ f3 < /|f| a/b|g|2

Proof. First suppose that || f||, =

b b ) )
\<f,g>|§/|fg\g/wz1

a

lgll; = 1. Then:

2 2
because |ab| < % Ya,b € R.

For the general case, note that W and HggH have norm
2 2

1 and so:

f 9>‘ )
<||f|2’llg||2 <1 = [{(£,9 < 1£12llgll

Theorem 93 (Minkowski inequality). Let f,g¢
[a,b] — C be Riemann-integrable functions. Then:

LF +glla < 1[fll2 + llglly

Proof. Using 92 Cauchy-Schwarz inequality we have:

I+ gll,> = 1£1l,° + llgll,* + 2(£ g)
<I£1% + llglly? + 1£1l; - gl
= (£l + llglly)?
O

Definition 94. Let f,g : [a,b] — C be Riemann-
integrable functions with f # g. We say f and g are
orthogonal if (f,g) = 0. We say f and g are orthonormal
if they are orthogonal and || f|, = [lg]l, = 1.

Definition 95. Let S = {¢o,¢1,...} be a collection of
Riemann-integrable functions on [a,b]. We say S is an
orthonormal system if ||¢,|, = 1 VYn and (¢pn, dm) = 0

Vn # m.
Proposition 96. Let T > 0 and:
n € Z}
SQ: L’COS<27¥L$),Sin(2ﬂ%nx) n mEN
VT \JT)2 VT/2

Then, S; and Sz orthonormal systems on [—1'/2,T'/2].

2minx
T .

51:{\/1Te

Definition 97. A collection of functions S = {¢g, ¢1,
.oy®n} is linearly dependent on [a,b] if there exist

€o,C1,---,Cn € R not all zero, such that

cogo +c1d1 + -+ cndp =0, VY € [a,b]

Otherwise we say S is linearly independent. If the collec-
tion S has an infinity number of functions, we say S is
linearly independent on [a,b] if any finite subset of S is
linearly independent on [a, b].

Theorem 98. Let S = {¢g, #1,...} be an orthonormal
system on [a,b]. Suppose that Y ¢, ¢, (z) converges uni-
formly to a function f on [a,b]. Then, f is Riemann-
integrable on [a, b] and, moreover:

b

en = (f, 6n) = / (@)@ de,

a

Vn >0



Proof. Using Theorem 47 we have that f is Riemann-
integrable and that ¥m € N:
(f,0m) = cnlbn: dm) = cn

n=0
by the orthonormality of S. O
Fourier coefficients and Fourier series
Definition 99. Let § = —e T neZy, be

VT

an orthonormal system on [-7/2,7/2] and let f €
LY([-T/2,T/2])" be a T-periodic function’. We define
the n-th Fourier coefficient of f as

T/2
]/[\( ) <f7 2mm / f 27r1na‘
—T/2
for all n € Z.

Proposition 100. Let f,g € LY([-T/2,T/2]). The fol-
lowing properties are satisfied:

1. For all A\, u € C:

(AT + ng)(n) = AF(n) + pig(n)
2. Let 7 € R. We define f,(z) = f(z — 7). Then:
Fr(n) = e 7 f(n)
3. 1 f is even, then f(n) = f(-n), ¥n € Z.
If f is odd, then f(n) = —f(—n), Vn € Z.

4. If f € C* such that f0)(=T/2) = f()
0,...,k—1, then

00 = (22 o

— ~

5. (f*g)(n) = f(n)g(n).
Proof.

(T/2) Vr =

1. Tt follows from the linearity of the integral.
2.

T/2

1 minx
=7 / flx— 7')67ZT dx

—T/2
T/2—T1

;[

—T/2 T

27nn(u+-r)

dx

2winT

= o= f(n)

where we have done the change of variable u = x — 7
and we have used Theorem 86.

3. Make the change of variable u = —x.

4. We will use induction. The case k = 0 is clear. For
the other ones:

T/2
O =7 [ 1@ @

—T/2
T2

:27;71 / FED (2)e™ * T da
—T/2
2rin ﬁ

= T f (n)

- (27;”)kf<n>

where we have used integration by parts.

5. Using 7?7 7?7 we have that:

T/2 T/2
T = [ [ 1wge - aras
—T/2-T/2
T/2 T/2
— / () /g(m—t)efwdx de
—-T/2 —T/2
T/2
= [ e g a
—T/2
— Fnyan)

where we have used Item 100-2.
O

Definition 101. Let f € LY ([-T/2,T/2]). We define the
Fourier series of f as:

27r1na:

=>"fn)

nez

Definition 102. Let f € LY([-T/2,T/2]) and Sf be the
Fourier series of f. We define N-th partial sum of Sf as:

Zf

Proposition 103. Let f € LY([-T/2,7/2)]). Then:

- 2 2
Sf(x) = (;)—FZancos( 7T;L$) —l—bnsin( ﬂ;w)
n=1

where

27r1n‘1.

Sn f(x

T/2

2 / fo (27rnx>dx’

—T/2

8Saying that f € LY([-T/2,T/2]) is equivalent to say that f is integrable on [—T/2,T/2].
9From now on, we will work only with functions defined on [~T/2,T/2] and extended periodically on R.



T/2

bn:% / f(x)sin<27;m) dz,

—T/2

for n > 0'°. In particular, if f is even we have:
a > 2mnz
= 20+le_:1ancos( T )
and if f is odd we have:
Sf(x) = ib sin 2mn
- n=1 ! T

Sketch of the proof. Remember that:
2mnx Lisi 2mnx
=cos| — isin
T T

Definition 104. Let f : (0,L) — C be a function.
define the even extension of f as

£(a) = {f(x)

Analogously, we define the odd extension of f as

IELE
= {1

Sf(x)

2winx

e T

if z € (0,L)
itx e (—L,0)

it x €(0,L)
if x e (—L,0)

Lemma 107. Let N € N. Then, V¢ € (0,T) we have:
. @N+1)rt
n (20
sin (%)

Proof. Using the geometric sum formula we have:

Dn(t) =

2miNt 27i(N+41)t
e T —e€ T
DN(t) = 2rit
1—eT
Ti(2N+ 1)t Ti(2N+1)¢
e T T
= _ mit mit
e T —eT
. [ (2N+1)nt
S1n ( T
= : 7t
Sin (T)

O

Proposition 108. The Dirichlet kernel has the following

We properties:
1. Dy is a T-periodic and even function.

T/2
1
2 o / Dn(t)dt =1, YN € N.

-T/2

Sketch of the proof.

Proposition 105. Let f € L([0,7/2]). If we make the

even extension of f'', then

Sf(x) = %—i—Zancos

n=1

()

1. Use the characterization of Theorem 107.
T/2
2. Note that if n #£ 0, / T At =0
—T/2

T/2
4 2
where a, = T / f(z) cos( 7;?:1:) dz for n > 0. If we Proposition 109. Let f € L*([-T/2,T/2]). Then:
0

make the odd extension of f, then

Sf(x) = ;bnsin (27;113)

T/2
4 2
where b, = T / f(z)sin ( 7;1:&:1@) dz for n > 1.
0

Pointwise convergence

Definition 106 (Dirichlet kernel). We define the

Dirichlet kernel of order N € N as:

N

2mint
Z e

n=—N

Dn(t) =

10The relation between an, by, and ]/C\(n) is given by:

Sn (@) = Z(f * Dx) (@)

T/2

:% / Fl@ =)Dy (t)dt
—T/2
T/2

7 [ 1fG+ 0+ e - 0Dy () ar
0

Sketch of the proof. The first equality follows from ex-
pandind the Fourier coefficients inside Sy f. The second
one, making the change of variables u = x — t and noting
that both integrant functions are T-periodic. For the last
one, make the change of variables © = —t¢ and use that
Dy (t) is even. O

~

an = f(n) + f(-n) and by =i[f(n)~ f(-n)], ¥neNU{0}

11F91‘ simplicity, when we have a function f and make its even or odd extension, we will still call its even or odd extension f instead of

forf.



Lemma 110 (Riemann-Lebesgue lemma). Let f €
LY([-T/2,T/2]) and A € R. Then:

T/2 T/2
lim / f(®)sin(At) dt = lim f(t)cos(At)dt =0
A—00 A—00
—T/2 —-T/2

In particular,

Jim fln) =

Proof. We first proof the statement for indicators func-
tions f(z) = 1(a4)(2), [a,b] C [=T/2,T/2]. We have that:

T/2
cos(Aa) — cos(AD)

A

=0

lim
A—00

lim
A— 00
—T/2

1[a7b] (t) sin()\t) dt =

From the linearity of the integral the statement remains
true for f being linear combination of indicator functions.
Finally note that taking an upper sum g. of f (see ?7?)

such that fT/2 |f — ge| < &, we have:

T/2
T/2 T/2
/f t)sin(At) dt| < / |7 () ()| dt +
T/2 —T/2
T/2
A—o0
+ /ga(t)sin(/\t)dt =90

T/2
The same proof applies for the cos(At). O
Theorem 111 (Dini’s theorem). Let
f e LY[-T1/2,T/2)), zo € (=T/2,T/2) and ¢ € R such

that 5
/ |f(xo + 1) +
0

dim Sy f(o) = L.

o —t) — 2

dt < oo

f=
t

for some 6 > 0. Then,

T/2

Proof. Note that —¢ = —2[[ Dy(t)dt. So:

T/2

S f(ro) — L= = / Fl@o+ 1)+ flao — 1) — 20Dy (1) dt

T/2

/f330+t

(JZO —t) — 2/

sin

<2N+1

t

-
(F)

Since the first terms form an integrable function, we can
use now the 110 Riemann-Lebesgue lemma. Ol

- sin

Corollary 112. Let f € LY[-T/2,T/2]) be a function
left and right differentiable at xq, that is, there exists the
following limits

f(xo +1) = flzo™)

t

lim

t—0+

f(x™) =

10

flxo+1t) —
t

f(@o™)

f/(x0_> = lim

t—0—

(supposing the existence of left- and right-sided limits).

Then:
) = f(@o™) + flxo™)
0/ 2

Sketch of the proof. Use 111 Dini’s theorem with ¢
zo ™)+ f(2z07)
5 .

i vl
f( (]
Theorem 113 (Lipschitz’s theorem). Let f €

LY([-T/2,T/2]) such that at a point zq € (=T/2,T/2)
it satisfies

|f(zo+ 1) = f(zo)| < Klt]
for some constant ¥ € R and for |t| < §. Then,
lim Sy f(20) = f(20).
N— 00
Sketch of the proof. Note that
/2
Swfa) = flao) = 7 [ UfGao+1) = Flao)lD(t) e
—T/2
and proceed as in the proof of 111 Dini’s theorem. O

Remark. Note that only the continuity is not sufficient to

ensure the pointwise convergence of Sy f towards f.

Uniform convergence

Definition 114. Let Y a, be a series with partial sums
Sk. The series Y a, is called Cesdaro summable with sum
S if

+ Sn _g

lim
N— 00
Remark. Note that if (a,) € R has limit ¢, by
?? ?? we have that (a,) is Cesdro summable and
.omFtan
lim = /.
n—oo

though. For example by taking a, = (—1)".

Sit-e
N

The other inclusion is false

Definition 115 (Fejér kernel). We define the Fejér ker-
nel of order N as

N

= > D)

k=0

being Dy (t) the Dirichlet kernel of order k, 0 < k < N.

Fyn(t)

Lemma 116. Let N € N. Then, V¢ € (0,T) we have:

1 Sin2 (M)
N+1 )

Proof. Multiplying the expression of Theorem 107

by sm(’rt) and wusing the trigonometry identity

T
sin(z) sin(y) = w

telescopic sum that snnphﬁes to:

Fn(t) =

Tt

sin? (72t

we have that Fy is a

1— COS<2(N;1)M> ) gin2 ((N+1)7rt>
Fn(t) = =
N () 2(N+1)sin® (%) N+1  sin® (%)



Proposition 117. The Fejér kernel has the following

properties:

1. Fy is a T-periodic, even and non-negative function.

T/2
2. % / Fy(t)dt=1 VN.
~T/2
3. V6 >0, Nlim sup{|Fn(t)|: 6 < |t| <T/2} =0
— 00

Proof. The first two properties are consequence of the defi-
nition of Fejér kernel and the reexpression of Theorem 116.
For the last one, note that:

1 1
N + 1gin? (7”5

7)

N—oco

— 0

[Fn ()] <

O

Definition 118. Let f € LY([-T/2,T/2]). We define the
Fejér means o f, for all N € N, as:

Sof(x)+ -+ Snf(x)
N+1

Proposition 119. Let f € LY([-7/2,7/2]). Then:

onf(z) =

(1)

onf(x) = 5= (f = Fn)(x)

T/2

— 7 [ 1fG 40+ o - 0)Es ) ar
0

109 and the linearity of
O

Proof. Consequence of Theorem
the convolution.

Theorem 120 (Fejér’s theorem). Let
f € LY ([-T/2,T/2]) be a function having left- and right-
sided limits at point xg. Then:

fl@o®) + flzo7)
2

i o o) =

In particular, if f is continuous at xg, lim oy f(xo)
N—o0

f(zo).
Sketch of the proof. Let § > 0 be small enough. Then:

on f(xo) — flao) 42— G ‘ -
T/2
= | [ 1+ = Fao®) + 5o 1)~ fao (o) de
0
T/2
< [ |fle+t)— )| F(t) dt +
/
T/2
+ [ |f(@—1t) = f(zo)|Fn(t)dt
0

11

In order to bound the to intervals, divide the interval
[0,7/2] = [0,6] U [4,T/2]. The first part is bounded by
the right- (or left-) sided limit at x, and the second one is
due to the uniform convergence (see Theorem 117). O

Theorem 121 (Fejér’s theorem). Let f be a contin-
uous function on [-7'/2,T/2]. Then, oy f converges uni-
formly to f on [—T/2,T/2].

Proof. Let 6 > 0 be small enough. Then:

T/2
ot e) = S =| [ 17 =0 = ) Fle) di
0
é
< [ 18— 1) = @I Fw(0 e+
[

+ 72f($—t)—
5

To bound the first integral use the uniform continuity of
f in [0,0] and for the second one use Theorem 117. O

f@)|Fy (t) dt

Corollary 122. Let f be a continuous function on
[-T/2,T/2]. Then, there exists a sequence of trigono-
metric polynomials that converge uniformly to f on
[-T/2,T/2]. In fact:

Sketch of the proof. Observe that the term f( )e ap-
pears N 4+ 1 — |k| times on the numerator of the fraction

of Eq. (1). Hence
(- 5)

which is a trigonometric polynomial.
Corollary 123. Let f and g be continuous functions on
[-T/2,T/2] such that Sf(z) = Sg(x). Then, f =g.

Proof. h := f — g satisfies that h(n) = 0 Vn € Z. So
onh =0VN € N. 121 Fejér’s theorem implies h = 0. [

N

onflx)= ) (1

k=—N

LI
N +1

~

(k)e

27nk:1

27r1k£

N

>

k=—N

K|
N+1

o~

(k)e

27rlkz

onf(z)=

O

Convergence in norm

Definition 124. We say a sequence (fy) converge in
norm LP to fif lim ||fy — f|l, = 0.
N—oco

Theorem 125. Let f € L3([-T/2,T/2]). Then:
T ot — =0

Sketch of the proof. Use 77 7?7 and the scheme of the proof
of 121 Fejér’s theorem. O

Corollary 126. Let f € LY([-T/2,T/2]). Then:

Jim flowf — £l =0



Sketch of the proof. Note that |lon f — fll; < llonf — fll5
by the 92 Cauchy-Schwarz inequality. Ol

Corollary 127. Let f,g € L'([-T/2,T/2]) be functions
such that Sf(z) = Sg(x). Then, I&im lg— fll, =0.
—00

Proof. h := f — g satisfies that E(n) =
onh =0VN € N. Thus:

0Vn € Z. So

Jim 1], = Jim_foxh ~ hl, =0

g

Theorem 128. Sy f is the trigonometric polynomial of
degree N that best approximates f in norm L2

Proof. Let P(x) = EnszN cpe T

polynomial. Expanding the norm | f — P||* we have:

be a trigonometric

T/2

I£ = Pll® = 11> + 1P1* = 2Re | [ fi@)

—T/2

P(z)dx
One the one hand:
T/2 N . N .
HP||22: / ( Z cne%%m) < Z cme_%]Tm>dx
7T/2 n=—N m=—N
N
2
=T > el
n=—N

by the orthogonality of the system. On the other hand:

T/2

/ f(@)P(x)dz =T Z enf(n
—T/2
Finally using that |z —w|® — |2]> = |w|® — 2Re(zw),
z,w € C, we have:
2 2 2 ANNPUINE
1 = Pll,* = Il w[ =1 > | Fm)
n=—N
A 2)
which is minimum if ¢, = f(n) ¥n = —N, ..., N. That is,
P=Sxf. 0
Corollary 129 (Bessel’s inequality). Let [ €

L2([-T/2,T/2]). Then:

!

'y 7o < 171,?

n=—N

2 2 2
+Z|an| + [bn ) < [1£1l
n=1

lao|®

for all N € N.

Sketch of the proof. If follows from Fq. (2) with P = Sy f.
O

Corollary 130. Let f € L*([~T7/2,7/2]). Then,

Jim [Sxf ], = 0.

12

Theorem 131 (Parseval’s €

L3([-T/2,T/2]). Then:

9 =T fn)jn)

neZ

identity). Let f,g

In particular, if f = g:

3 |F| = 11512
T
g

nez
2 2 2
+ 3 Janl® + [bn] ) =[£I,
n=1
Proof. Note that (f,g) = Nlim (f,Sng). Indeed:
— 00
[(f,9) = (f.Sna) = [(f,9 = Sng)| < I fll2 llg — Syl

where we have applied 92 Cauchy-Schwarz inequality.

Now use Theorem 130 to conclude that the right side of
the equation tends to 0 as N — oo. Thus:

N
. = 2mwinx
= Jim ZNg(n)<f,e T >

=T f(n)g(n)

nez

|ao|*

Applications of Fourier series

Theorem 132 (Wirtinger’s inequality). Let f be a
function such that f(0) = f(T), f € L3([0,T]) and

/f(t) dt = 0. Then:
0

/|f 2w < 4—/| f@)f dr

And the inequality holds if and only if
f(x)Acos( >+B n(

(0) = (

mTin )

)

= f(T), implies that
Moreover, note

Proof. The continuity of f and f
7 f(n

f € L*([0,T]) and that fl(n) =2
that f/( ) = 0 and by hypothesis f(

131 Parse-

val’s identity we have:
~ 2
/|f Pz =1 |fi| <73 ne|fm[ =
nez nez
n#0
T2 2 77 r
— I _ ’ 2
_TZE '(”)‘ —@/U(xﬂ dz
nez 0
n#0
2
The equality holds if and only if ‘f(n)‘ n>-1) =0
Vn € Z\ {0}. That is, if and only if
f(#) = e 1e™F 4 oo™
O



Theorem 133 (Wirtinger’s inequality). Let f €
C'([a,b]) with f(a) = f(b) = 0. Then:

b b
Jiser e < O 7@ as

with equality if and only if
(@-a)

[a,2b — a] — R be the odd

a)2
2

f(z) = Asin (bia

Sketch of the proof. Let f :
extension of f centered at b:

. f(x) if x € [a,b]
fz) = .
—f(2b—z) ifxe[b,2b—al
Now use 132 Wirtinger’s inequality to the function f. [

Theorem 134 (Isoperimetric inequality). Let ¢ be a
planar simple and closed curve of class C' whose length is
£. If A. is the area enclosed by ¢, then

62

<
Ac 4

and the equality holds if and only if ¢ is a circle.

Proof. Let ~(s) (x(s),y(s))
parametrization of ¢ (see ?77). Thus:

be the arc-length

)2 dt

= / Vo
0

/ 2r [ 0(s)’ + Loy (5)’
A, = /x(s)y'(s) ds < 7/ 3”2 ds =
0 0
2m Z — f—ix’( )2 02
= — T ds < —
{ / (87T2 2 ) 4
0

by the 132 Wirtinger’s inequality (With a translation we
can suppose z(0) = z(¢) = 0 and fo s)ds = 0). Clearly
if ¢ is a circle, the equality is hold. Moreover if we
have equality, by 132 Wirtinger’s inequality we have that
z(s) = Acos (%2) + Bsin (2“) and since 2ab = a? + b?

[
implies b = a, we have that -=y'(s) = z(s). So y(s) =
Asin (223) B cos (2“) +C and therefore ¢ is a circle.

O
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