
Mathematical analysis

1. | Numeric series
Series convergence
Definition 1. Let (an) be a sequence of real numbers. A
numeric series is an expression of the form

∞∑
n=1

an

We call an general term of the series and SN =
N∑

n=1
an, for

all N ∈ N, N -th partial sum of the series1.

Definition 2. We say the series
∑

an is convergent if
the sequence of partial sums is convergent, that is, if
S = lim

N→∞
SN exists and it is finite. In that case, S is

called the sum of the series. If the previous limit doesn’t
exist or it is infinite, we say the series is divergent2.

Proposition 3. Let (an) be a sequence such that
∑

an <
∞. Then, ∀ε > 0 ∃n0 ∈ N such that∣∣∣∣∣

N∑
n=1

an −
∞∑

n=1
an

∣∣∣∣∣ < ε

if N ≥ n0.

Theorem 4 (Cauchy’s test). Let (an) be a sequence.∑
an < ∞ if and only if ∀ε > 0 ∃n0 ∈ N such that∣∣∣∣∣

M∑
n=N

an

∣∣∣∣∣ < ε

if M ≥ N ≥ n0.

Corollary 5. Changing a finite number of terms in a se-
ries has no effect on the convergence or divergence of the
series.

Corollary 6. If
∑

an < ∞, then lim
n→∞

an = 0.

Theorem 7 (Linearity). Let
∑

an,
∑

bn be two conver-
gent series with sums A and B respectively and let λ be a
real number. The series

∞∑
n=1

(an + λbn)

is convergent and has sum A + λB.

Theorem 8 (Associative property). Let
∑

an be a
convergent series with sum A. Suppose (nk) is a strictly
increasing sequence of natural numbers. The series

∑
bn,

with bk = ank−1+1 + · · · + ank
for all i ∈ N, is convergent

and its sum is A.

Non-negative terms series

Theorem 9. Let
∑

an be a series of non-negative terms
an ≥ 03. The series converges if and only if the sequence
(SN ) of partial sums is bounded.

Theorem 10 (Comparison test). Let (an), (bn) ≥ 0
be two sequences of real numbers. Suppose that exists a
constant C > 0 and a number n0 ∈ N such that an ≤ Cbn

for all n ≥ n0.

1. If
∑

bn < ∞ =⇒
∑

an < ∞

2. If
∑

an = +∞ =⇒
∑

bn = +∞

Theorem 11 (Limit comparison test). Let (an),
(bn) ≥ 0 be two sequences of real numbers. Suppose that
the limit ℓ = lim

n→∞

an

bn
exists.

1. If 0 < ℓ < ∞ =⇒
∑

an < ∞ ⇐⇒
∑

bn < ∞

2. If ℓ = 0 and
∑

bn < ∞ =⇒
∑

an < ∞

3. If ℓ = ∞ and
∑

an < ∞ =⇒
∑

bn < ∞

Theorem 12 (Root test). Let (an) ≥ 0. Suppose that
the limit ℓ = lim

n→∞
n
√

an exists.

1. If ℓ < 1 =⇒
∑

an < ∞

2. If ℓ > 1 =⇒
∑

an = +∞

Theorem 13 (Ratio test). Let (an) ≥ 0. Suppose that
the limit ℓ = lim

n→∞

an+1

an
exists.

1. If ℓ < 1 =⇒
∑

an < ∞

2. If ℓ > 1 =⇒
∑

an = +∞

Theorem 14 (Raabe’s test). Let (an) ≥ 0. Suppose

that the limit ℓ = lim
n→∞

n

(
1 − an+1

an

)
exists.

1. If ℓ > 1 =⇒
∑

an < ∞

2. If ℓ < 1 =⇒
∑

an = +∞

Theorem 15 (Condensation test). Let (an) ≥ 0 be a
decreasing sequence. Then:∑

an < ∞ ⇐⇒
∑

2na2n < ∞

Theorem 16 (Logarithmic test). Let (an) ≥ 0. Sup-

pose that the limit ℓ = lim
n→∞

log 1
an

log n
exists.

1. If ℓ > 1 =⇒
∑

an < ∞

1From now on we will write
∑

an to refer
∞∑

n=1

an.

2We will use the notation
∑

an < ∞ or
∑

an = +∞ to express that the series converges or diverges, respectively.
3Obviously the following results are also valid if the series is of non-positive terms or has a finite number of negative or positive terms.
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2. If ℓ < 1 =⇒
∑

an = +∞

Theorem 17 (Integral test). Let f : [1, ∞) → (0, ∞)
be a decreasing function. Then:

∑
f(n) < ∞ ⇐⇒

⇐⇒ ∃C > 0 such that
n̂

1

f(x) dx ≤ C ∀n

Alternating series

Definition 18. An alternating series is a series of the
form

∑
(−1)nan, with (an) ≥ 0.

Theorem 19 (Leibnitz’s test). Let (an) ≥ 0 be a
decreasing sequence such that lim

n→∞
an = 0. Then,∑

(−1)nan is convergent.

Theorem 20 (Abel’s summation formula). Let
(an), (bn) be two sequences of real numbers. Then:

M∑
n=N

an(bn+1 − bn) = aM+1bM+1 − aN bN −

−
M∑

n=N

bn+1(an+1 − an)

Theorem 21 (Dirichlet’s test). Let (an), (bn) be two
sequences of real numbers such that:

1. ∃C > 0 such that

∣∣∣∣∣
N∑

n=1
an

∣∣∣∣∣ ≤ C for all N ∈ N.

2. (bn) is monotone and lim
n→∞

bn = 0.

Then,
∑

anbn is convergent.

Theorem 22 (Abel’s test). Let (an), (bn) be two se-
quences of real numbers such that:

1. The series
∑

an is convergent.

2. (bn) is monotone and bounded.

Then,
∑

anbn is convergent.

Absolute convergence and rearrangement of se-
ries

Definition 23. We say a series
∑

an is absolutely con-
vergent if

∑
|an| is convergent.

Theorem 24. If a series converges absolutely, it con-
verges.

Definition 25. We say a sequence (bn) is a rearrangement
of the sequence (an) if exists a bijective map σ : N → N
such that bn = aσ(n). A rearrangement of the series

∑
an

is the series
∑

aσ(n) for some bijection σ : N → N.

Definition 26. Let x ∈ R. We define the positive part of
x as

x+ =
{

x if x ≥ 0
0 if x < 0

Analogously, we define the negative part of x as

x− =
{

0 if x ≥ 0
−x if x < 0

Note that we can write x = x+ − x− and |x| = x+ + x−.

Theorem 27. A series
∑

an is absolutely convergent if
and only if positive and negative terms series,

∑
an

+ and∑
an

−, converge. In this case,
∞∑

n=1
an =

∞∑
n=1

an
+ −

∞∑
n=1

an
−

Theorem 28. Let
∑

an be an absolutely convergent se-
ries. Then, for all bijection σ : N → N, the rearranged se-
ries

∑
aσ(n) is absolutely convergent and

∑
an =

∑
aσ(n).

Theorem 29 (Riemann’s theorem). Let
∑

an be a
convergent series but not absolutely convergent. Then,
∀α ∈ R ∪ {∞}, there exists a bijective map σ : N → N
such that

∑
aσ(n) converges and

∑
aσ(n) = α.

Theorem 30. A series
∑

an is absolutely convergent if
and only if any rearranged series converges to the same
value of

∑
an.

2. | Sequences and series of functions
Sequences of functions
Definition 31. Let D ⊆ R. A set

(fn(x)) = {f1(x), f2(x), . . . , fn(x), . . .}

is a sequence of real functions if fi : D → R is a real-
valued function. In this case we say the sequence (fn(x)),
or simply (fn), is well-defined on D.

Definition 32. Let (fn) be a sequence of functions de-
fined on D ⊆ R and f : D → R. We say (fn) converges
pointwise to f on D if ∀x ∈ D, lim

n→∞
fn(x) = f(x)

Definition 33. Let (fn) be a sequence of functions de-
fined on D ⊆ R and f : D → R. We say (fn) converges
uniformly to f on D if ∀ε > 0, ∃n0 : |fn(x) − f(x)| < ε
∀n ≥ n0 and ∀x ∈ D.

Lemma 34. Let (fn) be an uniform convergent sequence
of functions defined on D ⊆ R and let f be a function such
that (fn) converges pointwise to f . Then, (fn) converges
uniformly f on D.

Lemma 35. Let (fn) be a sequence of functions defined
on D ⊆ R. (fn) converges uniformly to f on D if and only
if lim

n→∞
sup {|fn(x) − f(x)| : x ∈ D} = 0.

Corollary 36. A sequence of functions (fn) converges
uniformly to f on D ⊆ R if and only if there is a sequence
(an), with an ≥ 0 and lim

n→∞
an = 0, and a number n0 ∈ N

such that sup {|fn(x) − f(x)| : x ∈ D} ≤ an, ∀n ≥ n0.
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Theorem 37 (Cauchy’s test). A sequence of functions
(fn) converges uniformly to f on D ⊆ R if and only
if ∀ε > 0 ∃n0 : sup {|fn(x) − fm(x)| : x ∈ D} < ε if
n, m ≥ n0.

Theorem 38. Let (fn) be a sequence of continuous func-
tions defined on D ⊆ R. If (fn) converges uniformly to f
on D, then f is continuous on D, that is, for any x0 ∈ D,
it satisfies:

lim
n→∞

(
lim

x→x0
fn(x)

)
= lim

x→x0
f(x)

Theorem 39. Let (fn) be a sequence of functions de-
fined on I = [a, b] ⊆ R. If (fn) are Riemann-integrable
on I and (fn) converges uniformly to f on I, then f is
Riemann-integrable on I and

bˆ

a

lim
n→∞

fn(x) dx = lim
n→∞

bˆ

a

fn(x) dx

Theorem 40. Let (fn) be a sequence of functions de-
fined on I = (a, b) ⊂ R. If (fn) are derivable on I,
(f ′

n(x)) converges uniformly on I and ∃x0 ∈ I such that
lim

n→∞
fn(x0) ∈ R, then there is a function f such that (fn)

converges uniformly to f on I, f is derivable on I and
(f ′

n(x)) converges uniformly to f ′ on I.

Series of functions
Definition 41. Let (fn) be a sequence of functions de-
fined on D ⊆ R. The expression

∞∑
n=1

fn(x)

is the series of functions associated with (fn).

Definition 42. A series of functions
∑

fn(x) defined on
D ⊆ R converges pointwise on D if the sequence of partials
sums

FN (x) =
N∑

n=1
fn(x)

converges pointwise. If the pointwise limit of (FN ) is F (x),
we say F is the sum of the series in a pointwise sense.

Definition 43. A series of functions
∑

fn(x) defined on
D ⊆ R converges uniformly on D if the sequence of par-
tials sums

FN (x) =
N∑

n=1
fn(x)

converges uniformly. If the uniform limit of (FN ) is F (x),
we say F is the sum of the series in an uniform sense.

Theorem 44 (Cauchy’s test). A series of functions∑
fn(x) defined on D ⊆ R converges uniformly if and

only if ∀ε > 0 ∃n0 such that

sup
{∣∣∣∣∣

M∑
n=N

fn(x)

∣∣∣∣∣ : x ∈ D

}
< ε

if M ≥ N ≥ n0.

Corollary 45. If
∑

fn(x) is an uniformly convergent se-
ries of functions on D ⊆ R, then (fn) converges uniformly
to zero on D.

Theorem 46. If
∑

fn(x) is an uniformly convergent se-
ries of continuous functions on D ⊆ R, then its sum func-
tion is also continuous on D.

Theorem 47. Let (fn) be a sequence of functions de-
fined on I = [a, b] ⊆ R. If (fn) are Riemann-integrable on
I and

∑
fn(x) converges uniformly on I, then

∑
fn(x) is

Riemann-integrable on I and

bˆ

a

∞∑
n=1

fn(x) dx =
∞∑

n=1

bˆ

a

fn(x) dx

Theorem 48. Let (fn) be a sequence of functions defined
on I = (a, b) ⊂ R. If (fn) are derivable on I,

∑
f ′

n(x) con-
verges uniformly on I and ∃c ∈ I :

∑
fn(c) < ∞, then∑

fn(x) converges uniformly on I,
∑

fn(x) is derivable
on I and ( ∞∑

n=1
fn(x)

)′

=
∞∑

n=1
f ′

n(x)

Theorem 49 (Weierstraß M-test). Let (fn) be a se-
quence of functions defined on D ⊆ R such that |fn(x)| ≤
Mn ∀x ∈ D and suppose that

∑
Mn is a convergent nu-

meric series. Then,
∑

fn(x) converges uniformly on D.

Theorem 50 (Dirichlet’s test). Let (fn), (gn) be two
sequences of functions defined on D ⊆ R. Suppose:

1. ∃C > 0 : sup
{∣∣∣∣∣

N∑
n=1

fn(x)

∣∣∣∣∣ : x ∈ D

}
≤ C, ∀N .

2. (gn(x)) is a monotone sequence for all x ∈ D and
lim

n→∞
sup{|gn(x)| : x ∈ D} = 0.

Then,
∑

fn(x)gn(x) converges uniformly on D.

Theorem 51 (Abel’s test). Let (fn), (gn) be two se-
quences of functions defined on D ⊆ R. Suppose:

1. The series
∑

fn(x) converges uniformly on D.

2. (gn(x)) is a monotone and bounded sequence for all
x ∈ D.

Then,
∑

fn(x)gn(x) converges uniformly on D.

Power series
Definition 52. Let (an) be a sequence of real numbers
and x0 ∈ R. A power series centred on x0 is a series of
functions of the form

∞∑
n=0

an(x − x0)n

Proposition 53. Let
∑

an(x − x0)n be a power series.
Suppose there exists an x1 ∈ R such that

∑
an(x1−x0)n <

∞. Then,
∑

an(x − x0)n converges uniformly on any
closed interval I ⊂ A = {x ∈ R : |x − x0| < |x1 − x0|}.
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Theorem 54. Let
∑

an(x − x0)n be a power series and
consider

R =
(

lim sup
n→∞

n
√

|an|
)−1

∈ [0, ∞]

Then:

1. If |x − x0| < R =⇒
∑

an(x − x0)n converges abso-
lutely.

2. If 0 ≤ r < R =⇒
∑

an(x − x0)n converges uni-
formly on [x0 − r, x0 + r].

3. If |x − x0| > R =⇒
∑

an(x − x0)n diverges.

The number R is called radius of convergence of the power
series.

Theorem 55 (Abel’s theorem). Let
∑

anxn be a
power series4 with radius of convergence R satisfying∑

anRn < ∞. Then, the series
∑

anxn converges uni-
formly on [0, R]. In particular, if f(x) =

∑
anxn,

lim
x→R−

f(x) =
∞∑

n=0
anRn

Corollary 56. Let f be the sum function of a power
series

∑
anxn. Then, f is continuous on the domain of

convergence of the series.

Corollary 57. If the series
∑

anxn has radius of conver-
gence R ̸= 0 and f is its sum function, then f is Riemann-
integrable on any closed subinterval on the domain of con-
vergence of the series. In particular, for |x| < R,

xˆ

0

f(t) dt =
∞∑

n=0
an

xn+1

n + 1
5

Corollary 58. Let f be the sum function of the power
series

∑
anxn. Then, f is derivable within the domain of

convergence of the series and

f ′(x) =
∞∑

n=0
nanxn−1

Corollary 59. Any function f defined as a sum of a power
series

∑
anxn is indefinitely derivable within the domain

of convergence of the series and

f (k)(x) =
∞∑

n=k

n(n − 1) · · · (n − k + 1)anxn−k

for all k ∈ N ∪ {0}. In particular f (k)(0) = k!ak.

Definition 60. A function is analytic if it can be ex-
pressed locally as a power series.

Stone-Weierstraß approximation theorem

Definition 61. Let f be a real-valued function. We say
f has compact support6 if exists M > 0 such that f(x) = 0
for all x ∈ R \ [−M, M ].

Definition 62. Let f, g be real-valued functions with
compact support. We define the convolution of f with
g as

(f ∗ g)(x) =
ˆ

R

f(t)g(x − t) dt =
ˆ

R

f(x − t)g(t) dt

Remark. The idea behind the convolution is to “blend”
one function with the other one. In Fourier Analysis, g
represents an input signal and f a kernel function for our
purpose. This results in a new function that averages both
functions.

Definition 63. We say that a sequence of functions (ϕε)
with compact support is an approximation of identity if

1. ϕε ≥ 0.

2.
ˆ

R

ϕε = 1.

3. For all δ > 0, ϕε(t) converges uniformly to zero when
ε → 0 if |t| > δ.

Lemma 64. Let f : R → R be a continuous function
with compact support. Let (ϕε) be an approximation of
identity. Then, (f ∗ ϕε) converges uniformly to f on R as
ε → 0.

Theorem 65 (Weierstraß approximation theorem).
Let f : [a, b] → R be a continuous function. Then, there
exists polynomials pn ∈ R[x] such that the sequence (pn)
converge uniformly to f on [a, b].

3. | Improper integrals

Locally integrable functions

Definition 66. Let f : [a, b) → R, with b ∈ R ∪ {∞}.
We say f is locally integrable on [a, b) if f is Riemann-
integrable on [a, x] for all a ≤ x < b.

Definition 67. Let f : [a, b) → R be a locally integrable
function. If there exists

lim
x→b−

xˆ

a

f

and it’s finite, we say that the improper integral of f on

[a, b),
bˆ

a

f , is convergent.

4From now on we will suppose, for simplicity, x0 = 0.
5The formula is also valid for |x| = R if the series

∑
anRn (or

∑
an(−R)n) is convergent.

6In general, the support of a function is the closure of the set of points which are not mapped to zero.
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Theorem 68 (Cauchy’s test). Let f : [a, b) → R be a

locally integrable function. The improper integral
bˆ

a

f is

convergent if and only if ∀ε > 0 ∃b0, a < b0 < b, such that∣∣∣∣∣∣
x2ˆ

x1

f

∣∣∣∣∣∣ < ε

if b0 < x1 < x2 < b.

Improper integrals of non-negative functions
Theorem 69. Let f : [a, b) → R be a locally integrable
non-negative function. A necessary and sufficient condi-

tion for
bˆ

a

f to be convergent is that the function

F (x) =
xˆ

a

f(t) dt

must be bounded for all x < b.

Theorem 70 (Comparison test). Let f, g : [a, b) →
[0, +∞) be two locally integrable non-negative functions.
Then:

1. If ∃C > 0 such that f(x) ≤ Cg(x) ∀x on a neigh-

bourhood of b and
bˆ

a

g < ∞ =⇒
bˆ

a

f < ∞.

2. Suppose the limit ℓ = lim
x→b

f(x)
g(x) exists.

i) If ℓ ∈ (0, ∞) =⇒
bˆ

a

f < ∞ ⇐⇒
bˆ

a

g < ∞.

ii) If ℓ = 0 and
bˆ

a

g < ∞ =⇒
bˆ

a

f < ∞.

iii) If ℓ = ∞ and
bˆ

a

f < ∞ =⇒
bˆ

a

g < ∞.

Theorem 71 (Integral test). Let f : [1, ∞) → (0, ∞)
be a locally integrable decreasing function. Then:

∑
f(n) < ∞ ⇐⇒

∞̂

1

f(x) dx < ∞7

Absolute convergence of improper integrals
Definition 72. Let f : [a, b) → (0, ∞) be a locally inte-

grable function. We say
bˆ

a

f converges absolutely if
bˆ

a

|f |

is convergent.

Theorem 73 (Dirichlet’s test). Let f, g : [a, b) → R be
two locally integrable functions Suppose:

1. ∃C > 0 such that
∣∣´ x

a
f(t) dt

∣∣ ≤ C for all x ∈ [a, b).

2. g is monotone and lim
x→b

g(x) = 0.

Then,
bˆ

a

fg is convergent.

Theorem 74 (Abel’s test). Let f, g : [a, b) → R be two
locally integrable functions. Suppose:

1.
bˆ

a

f is convergent.

2. g is monotone and bounded.

Then,
bˆ

a

fg is convergent.

Differentiation under integral sign
Theorem 75. Let f : [a, b] × [c, d] → R be a contin-
uous function on [a, b] × [c, d]. Consider the function

F (y) =
bˆ

a

f(x, y) dx defined on [c, d]. Then, F is con-

tinuous, that is, if c < y0 < d,

lim
y→y0

F (y) = lim
y→y0

bˆ

a

f(x, y) dx =
bˆ

a

lim
y→y0

f(x, y) dx =

=
bˆ

a

f(x, y0) dx = F (y0)

Theorem 76. Let f : [a, b] × [c, d] → R be a Riemann-

integrable function and let F (y) =
bˆ

a

f(x, y) dx. If f is

differentiable with respect to y and ∂f/∂y is continuous
on [a, b] × [c, d], then F (y) is derivable on (c, d) and its
derivative is

F ′(y) =
bˆ

a

∂f

∂y
(x, y) dx

for all y ∈ (c, d).

Theorem 77. Let f : [a, b] × [c, d] → R be a continu-
ous function on [a, b] × [c, d]. Let a, b : [c, d] → R be to
differentiable functions satisfying a ≤ a(y) ≤ b(y) ≤ b
for every y ∈ [c, d]. Suppose that ∂f/∂y is continuous
on {(x, y) ∈ R2 : a(y) ≤ x ≤ b(y), c ≤ y ≤ d}. Then,

F (y) =
b(y)ˆ

a(y)

f(x, y) dx is derivable on (c, d) and its deriva-

tive is

7This is another way of formulating Theorem 17.
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F ′(y) = b′(y)f(b(y), y) − a′(y)f(a(y), y)+

+
b(y)ˆ

a(y)

∂f

∂y
(x, y) dx

for all y ∈ (c, d).

Theorem 78. Let f : [a, b) × [c, d] → R be a continuous

function on [a, b)×[c, d]. We consider F (y) =
bˆ

a

f(x, y) dx.

Suppose that:

1. ∂f

∂y
is continuous on [a, b) × [c, d].

2. Given y0 ∈ [c, d], ∃δ > 0 such that the integral

bˆ

a

sup
{∣∣∣∣∂f

∂y
(x, y)

∣∣∣∣ : y ∈ (y0 − δ, y0 + δ)
}

dx

exists and it’s finite on [a, b).

Then, F (y) is derivable at y0 and

F ′(y0) =
bˆ

a

∂f

∂y
(x, y0) dx

Theorem 79. Let f : [a, b) × [c, d] → R be a continuous
function on [a, b)× [c, d]. Let a, b : [c, d] → R be two differ-
entiable functions satisfying a ≤ a(y) ≤ b(y) ≤ b for every

y ∈ [c, d]. We consider F (y) =
b(y)ˆ

a(y)

f(x, y) dx. Suppose

that:

1. ∂f

∂y
is continuous on {(x, y) ∈ R2 : a(y) ≤ x ≤

b(y), c ≤ y ≤ d}.

2. Given y0 ∈ [c, d], ∃δ > 0 such that the integral

b(y)ˆ

a(y)

sup
{∣∣∣∣∂f

∂y
(x, y)

∣∣∣∣ : y ∈ (y0 − δ, y0 + δ)
}

dx

exists and it’s finite on [a, b).

Then, F (y) is derivable at y0 and

F ′(y0) = b′(y0)f(b(y0), y0) − a′(y0)f(a(y0), y0)+

+
b(y0)ˆ

a(y0)

∂f

∂y
(x, y0) dx

Gamma function
Definition 80. For x > 0, Gamma function is defined as

Γ(x) =
∞̂

0

tx−1e−t dt

Theorem 81. Gamma function is a generalization of the
factorial. In fact, for x > 0 we have

Γ(x + 1) = xΓ(x)

In particular, Γ(n + 1) = n! for all n ∈ N.

Theorem 82. Gamma function satisfies:

lim
x→∞

Γ(x + 1)
(x/e)x

√
2πx

= 1

Corollary 83 (Stirling’s formula).

lim
n→∞

n!
nne−n

√
2πn

= 1

4. | Fourier series
Periodic functions
Definition 84. Let f : R → C be a function. We say that
f is T -periodic, or is periodic with period T , being T > 0,
if f(x + T ) = f(x) for all x ∈ R.

Remark. In general we take T to be the least positive con-
stant satisfying that property.

Lemma 85. Let f : R → C be a T -periodic function.
Then, f(x+T ′) = f(x) for all x ∈ R if and only if T ′ = kT
for some k ∈ Z.

Sketch of the proof.

=⇒)

f(x + kT ) = f(x + (k − 1)T ) = · · · = f(x)

⇐=) Assume T ′ = kT + α, α ∈ [0, T ). Then:

f(x) = f(x + T ′) = f(x + α) ∀x ∈ R

which implies α = 0 because otherwise f would be
α-periodic with α < T .

□

Proposition 86. Let f : R → C be a T -periodic function.
Then:

a+Tˆ

a

f(x) dx =
T̂

0

f(x) dx

where a ∈ R. In particular,

a+kTˆ

a

f(x) dx = k

T̂

0

f(x) dx

Lemma 87. Let f : R → C be a T -periodic continuous
function. Then, |f | is bounded.

Sketch of the proof. Use ?? ?? on the interval [0, T ] and
the periodicity of f . □

Proposition 88. Given a T -periodic function f , there
are no power series uniformly convergent to f on R.
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Proof. Suppose
∑

anxn converges uniformly to f . By
Theorem 46, f is continuous and by Theorem 87, |f | is
bounded. Therefore

sup
x∈R

∣∣∣∣∣
N∑

n=1
anxn − f(x)

∣∣∣∣∣
cannot be arbitrarily small as N → ∞ because

∑N
n=1 anxn

is a polynomial, and therefore, unbounded. □

Orthogonal systems

Definition 89. Let f : R → C be a function. We say
that f ∈ Lp(I), p ≥ 1, if:

∥f∥p :=

ˆ
I

|f(t)|p dt

1/p

< ∞

Definition 90. Let f, g : [a, b] → C be Riemann-
integrable functions. We define the inner product of f
and g as

⟨f, g⟩ :=
bˆ

a

f(x)g(x) dx

where g denotes the complex conjugate of g. The norm
associated with this inner product is the L2 norm:

∥f∥2 = ⟨f, f⟩1/2 =

 bˆ

a

|f(x)|2 dx

1/2

= ∥f∥2

The distance between f and g is:

d(f, g) := ∥f − g∥2

Proposition 91. Let f, g : [a, b] → C be Riemann-
integrable functions and let α ∈ C. Then, we have:

1. ⟨f, f⟩ ≥ 0.

2. ⟨f + h, g⟩ = ⟨f, g⟩ + ⟨h, g⟩ and ⟨f, g + h⟩ = ⟨f, g⟩ +
⟨f, h⟩.

3. ⟨f, g⟩ = ⟨g, f⟩.

4. ⟨αf, g⟩ = α⟨f, g⟩ and ⟨f, αg⟩ = α⟨f, g⟩.

Sketch of the proof. They follow from the linearity of the
integral. For Item 91-3, write f = Re f + i Im f and
g = Re g + i Im g and expand the products of both sides of
the equation. □

Theorem 92 (Cauchy-Schwarz inequality). Let f, g :
[a, b] → C be Riemann-integrable functions. Then:

|⟨f, g⟩| ≤ ∥f∥2 · ∥g∥2

which can be written as:

bˆ

a

fg ≤

 bˆ

a

|f |2
1/2 bˆ

a

|g|2
1/2

Proof. First suppose that ∥f∥2 = ∥g∥2 = 1. Then:

|⟨f, g⟩| ≤
bˆ

a

|fg| ≤
bˆ

a

|f |2 + |g|2

2 = 1

because |ab| ≤ a2+b2

2 ∀a, b ∈ R.
For the general case, note that f

∥f∥2
and g

∥g∥2
have norm

1 and so:∣∣∣∣〈 f

∥f∥2
,

g

∥g∥2

〉∣∣∣∣ ≤ 1 =⇒ |⟨f, g⟩| ≤ ∥f∥2∥g∥2

□

Theorem 93 (Minkowski inequality). Let f, g :
[a, b] → C be Riemann-integrable functions. Then:

∥f + g∥2 ≤ ∥f∥2 + ∥g∥2

Proof. Using 92 Cauchy-Schwarz inequality we have:

∥f + g∥2
2 = ∥f∥2

2 + ∥g∥2
2 + 2⟨f, g⟩

≤ ∥f∥2
2 + ∥g∥2

2 + ∥f∥2 · ∥g∥2

= (∥f∥2 + ∥g∥2)2

□

Definition 94. Let f, g : [a, b] → C be Riemann-
integrable functions with f ̸= g. We say f and g are
orthogonal if ⟨f, g⟩ = 0. We say f and g are orthonormal
if they are orthogonal and ∥f∥2 = ∥g∥2 = 1.

Definition 95. Let S = {ϕ0, ϕ1, . . .} be a collection of
Riemann-integrable functions on [a, b]. We say S is an
orthonormal system if ∥ϕn∥2 = 1 ∀n and ⟨ϕn, ϕm⟩ = 0
∀n ̸= m.

Proposition 96. Let T > 0 and:

S1 =
{

1√
T

e 2πinx
T : n ∈ Z

}
S2 =

{
1√
T

,
cos
( 2πnx

T

)√
T/2

,
sin
( 2πmx

T

)√
T/2

: n, m ∈ N

}
Then, S1 and S2 orthonormal systems on [−T/2, T/2].

Definition 97. A collection of functions S = {ϕ0, ϕ1,
. . . , ϕn} is linearly dependent on [a, b] if there exist
c0, c1, . . . , cn ∈ R not all zero, such that

c0ϕ0 + c1ϕ1 + · · · + cnϕn = 0, ∀x ∈ [a, b]

Otherwise we say S is linearly independent. If the collec-
tion S has an infinity number of functions, we say S is
linearly independent on [a, b] if any finite subset of S is
linearly independent on [a, b].

Theorem 98. Let S = {ϕ0, ϕ1, . . .} be an orthonormal
system on [a, b]. Suppose that

∑
cnϕn(x) converges uni-

formly to a function f on [a, b]. Then, f is Riemann-
integrable on [a, b] and, moreover:

cn = ⟨f, ϕn⟩ =
bˆ

a

f(x)ϕn(x) dx , ∀n ≥ 0

7



Proof. Using Theorem 47 we have that f is Riemann-
integrable and that ∀m ∈ N:

⟨f, ϕm⟩ =
∞∑

n=0
cn⟨ϕn, ϕm⟩ = cn

by the orthonormality of S. □

Fourier coefficients and Fourier series

Definition 99. Let S =
{

1√
T

e 2πinx
T , n ∈ Z

}
be

an orthonormal system on [−T/2, T/2] and let f ∈
L1([−T/2, T/2])8 be a T -periodic function9. We define
the n-th Fourier coefficient of f as

f̂(n) = 1
T

〈
f, e 2πinx

T

〉
= 1

T

T/2ˆ

−T/2

f(x)e− 2πinx
T dx

for all n ∈ Z.

Proposition 100. Let f, g ∈ L1([−T/2, T/2]). The fol-
lowing properties are satisfied:

1. For all λ, µ ∈ C:

̂(λf + µg)(n) = λf̂(n) + µĝ(n)

2. Let τ ∈ R. We define fτ (x) = f(x − τ). Then:

f̂τ (n) = e− 2πinτ
T f̂(n)

3. If f is even, then f̂(n) = f̂(−n), ∀n ∈ Z.
If f is odd, then f̂(n) = −f̂(−n), ∀n ∈ Z.

4. If f ∈ Ck such that f (r)(−T/2) = f (r)(T/2) ∀r =
0, . . . , k − 1, then

f̂ (k)(n) =
(

2πin
T

)k

f̂(n)

5. (̂f ∗ g)(n) = f̂(n)ĝ(n).

Proof.

1. It follows from the linearity of the integral.

2.

f̂τ (n) = 1
T

T/2ˆ

−T/2

f(x − τ)e− 2πinx
T dx

= 1
T

T/2−τˆ

−T/2−τ

f(u)e− 2πin(u+τ)
T dx

= e− 2πinτ
T f̂(n)

where we have done the change of variable u = x−τ
and we have used Theorem 86.

3. Make the change of variable u = −x.

4. We will use induction. The case k = 0 is clear. For
the other ones:

f̂ (k)(n) = 1
T

T/2ˆ

−T/2

f (k)(x)e− 2πinx
T dx

= 2πin
T

T/2ˆ

−T/2

f (k−1)(x)e− 2πinx
T dx

=
(

2πin
T

)
f̂ (k−1)(n)

=
(

2πin
T

)k

f̂(n)

where we have used integration by parts.

5. Using ?? ?? we have that:

(̂f ∗ g)(n) =
T/2ˆ

−T/2

T/2ˆ

−T/2

f(t)g(x − t)e− 2πinx
T dt dx

=
T/2ˆ

−T/2

f(t)

 T/2ˆ

−T/2

g(x − t)e− 2πinx
T dx

 dt

=
T/2ˆ

−T/2

f(t)e− 2πint
T ĝ(n) dt

= f̂(n)ĝ(n)

where we have used Item 100-2.

□

Definition 101. Let f ∈ L1([−T/2, T/2]). We define the
Fourier series of f as:

Sf(x) =
∑
n∈Z

f̂(n)e 2πinx
T

Definition 102. Let f ∈ L1([−T/2, T/2]) and Sf be the
Fourier series of f . We define N -th partial sum of Sf as:

SN f(x) =
N∑

n=−N

f̂(n)e 2πinx
T

Proposition 103. Let f ∈ L1([−T/2, T/2]). Then:

Sf(x) = a0

2 +
∞∑

n=1
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

)
where

an = 2
T

T/2ˆ

−T/2

f(x) cos
(

2πnx

T

)
dx ,

8Saying that f ∈ L1([−T/2, T/2]) is equivalent to say that f is integrable on [−T/2, T/2].
9From now on, we will work only with functions defined on [−T/2, T/2] and extended periodically on R.
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bn = 2
T

T/2ˆ

−T/2

f(x) sin
(

2πnx

T

)
dx ,

for n ≥ 010. In particular, if f is even we have:

Sf(x) = a0

2 +
∞∑

n=1
an cos

(
2πnx

T

)
and if f is odd we have:

Sf(x) =
∞∑

n=1
bn sin

(
2πnx

T

)
Sketch of the proof. Remember that:

e 2πinx
T = cos

(
2πnx

T

)
+ i sin

(
2πnx

T

)
□

Definition 104. Let f : (0, L) → C be a function. We
define the even extension of f as

fe(x) =
{

f(x) if x ∈ (0, L)
f(−x) if x ∈ (−L, 0)

Analogously, we define the odd extension of f as

fo(x) =
{

f(x) if x ∈ (0, L)
−f(−x) if x ∈ (−L, 0)

Proposition 105. Let f ∈ L1([0, T/2]). If we make the
even extension of f11, then

Sf(x) = a0

2 +
∞∑

n=1
an cos

(
2πnx

T

)

where an = 4
T

T/2ˆ

0

f(x) cos
(

2πnx

T

)
dx for n ≥ 0. If we

make the odd extension of f , then

Sf(x) =
∞∑

n=1
bn sin

(
2πnx

T

)

where bn = 4
T

T/2ˆ

0

f(x) sin
(

2πnx

T

)
dx for n ≥ 1.

Pointwise convergence
Definition 106 (Dirichlet kernel). We define the
Dirichlet kernel of order N ∈ N as:

DN (t) =
N∑

n=−N

e 2πint
T

Lemma 107. Let N ∈ N. Then, ∀t ∈ (0, T ) we have:

DN (t) =
sin
(

(2N+1)πt
T

)
sin
(

πt
T

)
Proof. Using the geometric sum formula we have:

DN (t) = e− 2πiNt
T − e

2πi(N+1)t
T

1 − e 2πit
T

= e− πi(2N+1)t
T − e

πi(2N+1)t
T

e− πit
T − e πit

T

=
sin
(

(2N+1)πt
T

)
sin
(

πt
T

)
□

Proposition 108. The Dirichlet kernel has the following
properties:

1. DN is a T -periodic and even function.

2. 1
T

T/2ˆ

−T/2

DN (t) dt = 1, ∀N ∈ N.

Sketch of the proof.

1. Use the characterization of Theorem 107.

2. Note that if n ̸= 0,
T/2ˆ

−T/2

e 2πint
T dt = 0

□

Proposition 109. Let f ∈ L1([−T/2, T/2]). Then:

SN f(x) = 1
T

(f ∗ DN )(x)

= 1
T

T/2ˆ

−T/2

f(x − t)DN (t) dt

= 1
T

T/2ˆ

0

[f(x + t) + f(x − t)]DN (t) dt

Sketch of the proof. The first equality follows from ex-
pandind the Fourier coefficients inside SN f . The second
one, making the change of variables u = x − t and noting
that both integrant functions are T -periodic. For the last
one, make the change of variables u = −t and use that
DN (t) is even. □

10The relation between an, bn and f̂(n) is given by:

an = f̂(n) + f̂(−n) and bn = i
[
f̂(n) − f̂(−n)

]
, ∀n ∈ N ∪ {0}

11For simplicity, when we have a function f and make its even or odd extension, we will still call its even or odd extension f instead of
f̃ or f̂ .
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Lemma 110 (Riemann-Lebesgue lemma). Let f ∈
L1([−T/2, T/2]) and λ ∈ R. Then:

lim
λ→∞

T/2ˆ

−T/2

f(t) sin(λt) dt = lim
λ→∞

T/2ˆ

−T/2

f(t) cos(λt) dt = 0

In particular, lim
|n|→∞

f̂(n) = 0.

Proof. We first proof the statement for indicators func-
tions f(x) = 1[a,b](x), [a, b] ⊆ [−T/2, T/2]. We have that:

lim
λ→∞

T/2ˆ

−T/2

1[a,b](t) sin(λt) dt = lim
λ→∞

cos(λa) − cos(λb)
λ

= 0

From the linearity of the integral the statement remains
true for f being linear combination of indicator functions.
Finally note that taking an upper sum gε of f (see ??)
such that

´ T/2
−T/2 |f − gε| < ε, we have:

∣∣∣∣∣∣∣
T/2ˆ

−T/2

f(t) sin(λt) dt

∣∣∣∣∣∣∣ ≤
T/2ˆ

−T/2

|f(t) − gε(t)| dt +

+

∣∣∣∣∣∣∣
T/2ˆ

−T/2

gε(t) sin(λt) dt

∣∣∣∣∣∣∣
λ→∞
ε→0−→ 0

The same proof applies for the cos(λt). □

Theorem 111 (Dini’s theorem). Let
f ∈ L1([−T/2, T/2]), x0 ∈ (−T/2, T/2) and ℓ ∈ R such
that

δˆ

0

|f(x0 + t) + f(x0 − t) − 2ℓ|
t

dt < ∞

for some δ > 0. Then, lim
N→∞

SN f(x0) = ℓ.

Proof. Note that −ℓ = −2ℓ
´ T/2

0 DN (t) dt. So:

SN f(x0) − ℓ = 1
T

T/2ˆ

0

[f(x0 + t) + f(x0 − t) − 2ℓ]DN (t) dt

= 1
T

T/2ˆ

0

f(x0 + t) + f(x0 − t) − 2ℓ

t

t

sin
(

πt
T

) ·

· sin
(

(2N + 1)πt

T

)
dt

Since the first terms form an integrable function, we can
use now the 110 Riemann-Lebesgue lemma. □

Corollary 112. Let f ∈ L1([−T/2, T/2]) be a function
left and right differentiable at x0, that is, there exists the
following limits

f ′(x0
+) = lim

t→0+

f(x0 + t) − f(x0
+)

t

f ′(x0
−) = lim

t→0−

f(x0 + t) − f(x0
−)

t

(supposing the existence of left- and right-sided limits).
Then:

lim
N→∞

SN f(x0) = f(x0
+) + f(x0

−)
2

Sketch of the proof. Use 111 Dini’s theorem with ℓ =
f(x0

+)+f(x0
−)

2 . □

Theorem 113 (Lipschitz’s theorem). Let f ∈
L1([−T/2, T/2]) such that at a point x0 ∈ (−T/2, T/2)
it satisfies

|f(x0 + t) − f(x0)| ≤ k|t|

for some constant k ∈ R and for |t| < δ. Then,
lim

N→∞
SN f(x0) = f(x0).

Sketch of the proof. Note that

SN f(x0) − f(x0) = 1
T

T/2ˆ

−T/2

[f(x0 + t) − f(x0)]DN (t) dt

and proceed as in the proof of 111 Dini’s theorem. □

Remark. Note that only the continuity is not sufficient to
ensure the pointwise convergence of SN f towards f .

Uniform convergence
Definition 114. Let

∑
an be a series with partial sums

Sk. The series
∑

an is called Cesàro summable with sum
S if

lim
N→∞

S1 + · · · + SN

N
= S

Remark. Note that if (an) ∈ R has limit ℓ, by
?? ?? we have that (an) is Cesàro summable and
lim

n→∞

a1 + · · · + an

n
= ℓ. The other inclusion is false

though. For example by taking an = (−1)n.

Definition 115 (Fejér kernel). We define the Fejér ker-
nel of order N as

FN (t) = 1
N + 1

N∑
k=0

Dk(t)

being Dk(t) the Dirichlet kernel of order k, 0 ≤ k ≤ N .

Lemma 116. Let N ∈ N. Then, ∀t ∈ (0, T ) we have:

FN (t) = 1
N + 1

sin2
(

(N+1)πt
T

)
sin2 (πt

T

)
Proof. Multiplying the expression of Theorem 107
by sin

(
πt
T

)
and using the trigonometry identity

sin(x) sin(y) = cos(x−y)−cos(x+y)
2 we have that FN is a

telescopic sum that simplifies to:

FN (t) =
1 − cos

(
2(N+1)πt

T

)
2(N + 1) sin2 (πt

T

) = 1
N + 1

sin2
(

(N+1)πt
T

)
sin2 (πt

T

)
□
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Proposition 117. The Fejér kernel has the following
properties:

1. FN is a T -periodic, even and non-negative function.

2. 1
T

T/2ˆ

−T/2

FN (t) dt = 1 ∀N .

3. ∀δ > 0, lim
N→∞

sup{|FN (t)| : δ ≤ |t| ≤ T/2} = 0

Proof. The first two properties are consequence of the defi-
nition of Fejér kernel and the reexpression of Theorem 116.
For the last one, note that:

|FN (t)| ≤ 1
N + 1

1
sin2 (πδ

T

) N→∞−→ 0

□

Definition 118. Let f ∈ L1([−T/2, T/2]). We define the
Fejér means σN f , for all N ∈ N, as:

σN f(x) = S0f(x) + · · · + SN f(x)
N + 1 (1)

Proposition 119. Let f ∈ L1([−T/2, T/2]). Then:

σN f(x) = 1
T

(f ∗ FN )(x)

= 1
T

T/2ˆ

−T/2

f(x − t)FN (t) dt

= 1
T

T/2ˆ

0

[f(x + t) + f(x − t)]FN (t) dt

Proof. Consequence of Theorem 109 and the linearity of
the convolution. □

Theorem 120 (Fejér’s theorem). Let
f ∈ L1([−T/2, T/2]) be a function having left- and right-
sided limits at point x0. Then:

lim
N→∞

σN f(x0) = f(x0
+) + f(x0

−)
2

In particular, if f is continuous at x0, lim
N→∞

σN f(x0) =
f(x0).

Sketch of the proof. Let δ > 0 be small enough. Then:∣∣∣∣σN f(x0) − f(x0
+) + f(x0

−)
2

∣∣∣∣ =

=

∣∣∣∣∣∣∣
T/2ˆ

0

[f(x + t) − f(x0
+) + f(x − t) − f(x0

−)]FN (t) dt

∣∣∣∣∣∣∣
≤

T/2ˆ

0

∣∣f(x + t) − f(x0
+)
∣∣FN (t) dt +

+
T/2ˆ

0

∣∣f(x − t) − f(x0
−)
∣∣FN (t) dt

In order to bound the to intervals, divide the interval
[0, T/2] = [0, δ] ∪ [δ, T/2]. The first part is bounded by
the right- (or left-) sided limit at x0, and the second one is
due to the uniform convergence (see Theorem 117). □

Theorem 121 (Fejér’s theorem). Let f be a contin-
uous function on [−T/2, T/2]. Then, σN f converges uni-
formly to f on [−T/2, T/2].

Proof. Let δ > 0 be small enough. Then:

|σN f(x) − f(x)| =

∣∣∣∣∣∣∣
T/2ˆ

0

[f(x − t) − f(x)]FN (t) dt

∣∣∣∣∣∣∣
≤

δˆ

0

|f(x − t) − f(x)|FN (t) dt +

+
T/2ˆ

δ

|f(x − t) − f(x)|FN (t) dt

To bound the first integral use the uniform continuity of
f in [0, δ] and for the second one use Theorem 117. □

Corollary 122. Let f be a continuous function on
[−T/2, T/2]. Then, there exists a sequence of trigono-
metric polynomials that converge uniformly to f on
[−T/2, T/2]. In fact:

σN f(x) =
N∑

k=−N

(
1 − |k|

N + 1

)
f̂(k)e 2πikx

T

Sketch of the proof. Observe that the term f̂(k)e 2πikx
T ap-

pears N + 1 − |k| times on the numerator of the fraction
of Eq. (1). Hence

σN f(x) =
N∑

k=−N

(
1 − |k|

N + 1

)
f̂(k)e 2πikx

T

which is a trigonometric polynomial. □

Corollary 123. Let f and g be continuous functions on
[−T/2, T/2] such that Sf(x) = Sg(x). Then, f = g.

Proof. h := f − g satisfies that ĥ(n) = 0 ∀n ∈ Z. So
σN h = 0 ∀N ∈ N. 121 Fejér’s theorem implies h = 0. □

Convergence in norm
Definition 124. We say a sequence (fN ) converge in
norm Lp to f if lim

N→∞
∥fN − f∥p = 0.

Theorem 125. Let f ∈ L2([−T/2, T/2]). Then:

lim
N→∞

∥σN f − f∥2 = 0

Sketch of the proof. Use ?? ?? and the scheme of the proof
of 121 Fejér’s theorem. □

Corollary 126. Let f ∈ L1([−T/2, T/2]). Then:

lim
N→∞

∥σN f − f∥1 = 0

11



Sketch of the proof. Note that ∥σN f − f∥1 ≤ ∥σN f − f∥2
by the 92 Cauchy-Schwarz inequality. □

Corollary 127. Let f, g ∈ L1([−T/2, T/2]) be functions
such that Sf(x) = Sg(x). Then, lim

N→∞
∥g − f∥1 = 0.

Proof. h := f − g satisfies that ĥ(n) = 0 ∀n ∈ Z. So
σN h = 0 ∀N ∈ N. Thus:

lim
N→∞

∥h∥1 = lim
N→∞

∥σN h − h∥1 = 0

□

Theorem 128. SN f is the trigonometric polynomial of
degree N that best approximates f in norm L2.

Proof. Let P (x) =
∑N

n=−N cne 2πinx
T be a trigonometric

polynomial. Expanding the norm ∥f − P∥2 we have:

∥f − P∥2
2 = ∥f∥2

2 + ∥P∥2
2 − 2 Re

 T/2ˆ

−T/2

f(x)P (x) dx


One the one hand:

∥P∥2
2 =

T/2ˆ

−T/2

(
N∑

n=−N

cne 2πinx
T

)(
N∑

m=−N

cme− 2πimx
T

)
dx

= T

N∑
n=−N

|cn|2

by the orthogonality of the system. On the other hand:

T/2ˆ

−T/2

f(x)P (x) dx = T

N∑
n=−N

cnf̂(n)

Finally using that |z − w|2 − |z|2 = |w|2 − 2 Re(zw),
z, w ∈ C, we have:

∥f − P∥2
2 = ∥f∥2

2+T

N∑
n=−N

∣∣∣cn − f̂(n)
∣∣∣2−T

N∑
n=−N

∣∣∣f̂(n)
∣∣∣2

(2)
which is minimum if cn = f̂(n) ∀n = −N, . . . , N . That is,
P = SN f . □

Corollary 129 (Bessel’s inequality). Let f ∈
L2([−T/2, T/2]). Then:

T

N∑
n=−N

∣∣∣f̂(n)
∣∣∣2 ≤ ∥f∥2

2

T

2

(
|a0|2

2 +
N∑

n=1
|an|2 + |bn|2

)
≤ ∥f∥2

2

for all N ∈ N.

Sketch of the proof. If follows from Eq. (2) with P = SN f .
□

Corollary 130. Let f ∈ L2([−T/2, T/2]). Then,
lim

N→∞
∥SN f − f∥2 = 0.

Theorem 131 (Parseval’s identity). Let f, g ∈
L2([−T/2, T/2]). Then:

⟨f, g⟩ = T
∑
n∈Z

f̂(n)ĝ(n)

In particular, if f = g:

T
∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 = ∥f∥2

2

T

2

(
|a0|2

2 +
∞∑

n=1
|an|2 + |bn|2

)
= ∥f∥2

2

Proof. Note that ⟨f, g⟩ = lim
N→∞

⟨f, SN g⟩. Indeed:

|⟨f, g⟩ − ⟨f, SN g⟩| = |⟨f, g − SN g⟩| ≤ ∥f∥2 ∥g − SN g∥2

where we have applied 92 Cauchy-Schwarz inequality.
Now use Theorem 130 to conclude that the right side of
the equation tends to 0 as N → ∞. Thus:

⟨f, g⟩ = lim
N→∞

⟨f, SN g⟩

= lim
N→∞

N∑
n=−N

ĝ(n)
〈

f, e 2πinx
T

〉
= T

∑
n∈Z

f̂(n)ĝ(n)

□

Applications of Fourier series
Theorem 132 (Wirtinger’s inequality). Let f be a
function such that f(0) = f(T ), f ′ ∈ L2([0, T ]) and

T̂

0

f(t) dt = 0. Then:

T̂

0

|f(x)|2 dx ≤ T 2

4π2

T̂

0

|f ′(x)|2 dx

And the inequality holds if and only if

f(x) = A cos
(

2πx

T

)
+ B sin

(
2πx

T

)
Proof. The continuity of f and f(0) = f(T ), implies that
f ∈ L2([0, T ]) and that f̂ ′(n) = 2πin

T f̂(n). Moreover, note
that f̂ ′(0) = 0 and by hypothesis f̂(0) = 0. By 131 Parse-
val’s identity we have:

T̂

0

|f(x)|2 dx = T
∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 ≤ T

∑
n∈Z
n̸=0

n2
∣∣∣f̂(n)

∣∣∣2 =

= T
∑
n∈Z
n̸=0

T 2

4π2

∣∣∣f̂ ′(n)
∣∣∣2 = T 2

4π2

T̂

0

|f ′(x)|2 dx

The equality holds if and only if
∣∣∣f̂(n)

∣∣∣2(n2 − 1) = 0
∀n ∈ Z \ {0}. That is, if and only if

f(x) = c−1e
−2πix

T + c1e 2πix
T

□
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Theorem 133 (Wirtinger’s inequality). Let f ∈
C1([a, b]) with f(a) = f(b) = 0. Then:

bˆ

a

|f(x)|2 dx ≤ (b − a)2

π2

bˆ

a

|f ′(x)|2 dx

with equality if and only if

f(x) = A sin
(

π

b − a
(x − a)

)
Sketch of the proof. Let f̃ : [a, 2b − a] → R be the odd
extension of f centered at b:

f̃(x) =
{

f(x) if x ∈ [a, b]
−f(2b − x) if x ∈ [b, 2b − a]

Now use 132 Wirtinger’s inequality to the function f̃ . □

Theorem 134 (Isoperimetric inequality). Let c be a
planar simple and closed curve of class C1 whose length is
ℓ. If Ac is the area enclosed by c, then

Ac ≤ ℓ2

4π

and the equality holds if and only if c is a circle.

Proof. Let γ(s) = (x(s), y(s)) be the arc-length
parametrization of c (see ??). Thus:

s =
sˆ

0

√
x′(t)2 + y′(t)2 dt

which implies x′(s)2 + y′(s)2 = 1, by the ?? ??. Now, by
?? we have that:

Ac =
ℓˆ

0

x(s)y′(s) ds ≤ 2π

ℓ

ℓˆ

0

x(s)2 + ℓ2

4π2 y′(s)2

2 ds =

= 2π

ℓ

ℓˆ

0

(
ℓ2

8π2 +
x(s)2 − ℓ2

4π2 x′(s)2

2

)
ds ≤ ℓ2

4π

by the 132 Wirtinger’s inequality (with a translation we
can suppose x(0) = x(ℓ) = 0 and

´ ℓ

0 x(s) ds = 0). Clearly
if c is a circle, the equality is hold. Moreover if we
have equality, by 132 Wirtinger’s inequality we have that
x(s) = A cos

( 2πs
ℓ

)
+ B sin

( 2πs
ℓ

)
and since 2ab = a2 + b2

implies b = a, we have that ℓ
2π y′(s) = x(s). So y(s) =

A sin
( 2πs

ℓ

)
− B cos

( 2πs
ℓ

)
+ C and therefore c is a circle.

□
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