Mathematical analysis

Numeric series

Series convergence

Definition 1. Let (a_n) be a sequence of real numbers. A numeric series is an expression of the form

$$\sum_{n=1}^{\infty} a_n$$

We call a_n general term of the series and $S_N = \sum_{n=1}^{N} a_n$, for all $N \in \mathbb{N}$, N-th partial sum of the series¹.

Definition 2. We say the series $\sum a_n$ is convergent if the sequence of partial sums is convergent, that is, if $S = \lim_{N \to \infty} S_N$ exists and it is finite. In that case, S is called the sum of the series. If the previous limit doesn't exist or it is infinite, we say the series is $divergent^2$.

Proposition 3. Let (a_n) be a sequence such that $\sum a_n < a_n$ ∞ . Then, $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \text{ such that }$

$$\left| \sum_{n=1}^{N} a_n - \sum_{n=1}^{\infty} a_n \right| < \varepsilon$$

if $N \geq n_0$.

Theorem 4 (Cauchy's test). Let (a_n) be a sequence. $\sum a_n < \infty$ if and only if $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}$ such that

$$\left| \sum_{n=N}^{M} a_n \right| < \varepsilon$$

if $M > N > n_0$.

Corollary 5. Changing a finite number of terms in a series has no effect on the convergence or divergence of the series.

Corollary 6. If $\sum a_n < \infty$, then $\lim_{n \to \infty} a_n = 0$.

Theorem 7 (Linearity). Let $\sum a_n, \sum b_n$ be two convergent series with sums A and B respectively and let λ be a real number. The series

$$\sum_{n=1}^{\infty} (a_n + \lambda b_n)$$

is convergent and has sum $A + \lambda B$.

Theorem 8 (Associative property). Let $\sum a_n$ be a convergent series with sum A. Suppose (n_k) is a strictly increasing sequence of natural numbers. The series $\sum b_n$, with $b_k = a_{n_{k-1}+1} + \cdots + a_{n_k}$ for all $i \in \mathbb{N}$, is convergent and its sum is A.

Theorem 9. Let $\sum a_n$ be a series of non-negative terms $a_n \geq 0^3$. The series converges if and only if the sequence (S_N) of partial sums is bounded.

Theorem 10 (Comparison test). Let $(a_n), (b_n) \geq 0$ be two sequences of real numbers. Suppose that exists a constant C > 0 and a number $n_0 \in \mathbb{N}$ such that $a_n \leq Cb_n$ for all $n \geq n_0$.

1. If
$$\sum b_n < \infty \implies \sum a_n < \infty$$

2. If
$$\sum a_n = +\infty \implies \sum b_n = +\infty$$

Theorem 11 (Limit comparison test). Let (a_n) , $(b_n) \ge 0$ be two sequences of real numbers. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists.

1. If
$$0 < \ell < \infty \implies \sum a_n < \infty \iff \sum b_n < \infty$$

2. If
$$\ell = 0$$
 and $\sum b_n < \infty \implies \sum a_n < \infty$

3. If
$$\ell = \infty$$
 and $\sum a_n < \infty \implies \sum b_n < \infty$

Theorem 12 (Root test). Let $(a_n) \ge 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \sqrt[n]{a_n}$ exists.

1. If
$$\ell < 1 \implies \sum a_n < \infty$$

2. If
$$\ell > 1 \implies \sum a_n = +\infty$$

Theorem 13 (Ratio test). Let $(a_n) \ge 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ exists.

1. If
$$\ell < 1 \implies \sum a_n < \infty$$

2. If
$$\ell > 1 \implies \sum a_n = +\infty$$

Theorem 14 (Raabe's test). Let $(a_n) \geq 0$. Suppose that the limit $\ell = \lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right)$ exists.

1. If
$$\ell > 1 \implies \sum a_n < \infty$$

2. If
$$\ell < 1 \implies \sum a_n = +\infty$$

Theorem 15 (Condensation test). Let $(a_n) \geq 0$ be a decreasing sequence. Then:

$$\sum a_n < \infty \iff \sum 2^n a_{2^n} < \infty$$

Theorem 16 (Logarithmic test). Let $(a_n) \geq 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{\log \frac{1}{a_n}}{\log n}$ exists.

1. If
$$\ell > 1 \implies \sum a_n < \infty$$

Non-negative terms series

¹From now on we will write $\sum a_n$ to refer $\sum_{n=0}^{\infty} a_n$.

²We will use the notation $\sum a_n < \infty$ or $\sum_{n=1}^{n=1} + \infty$ to express that the series converges or diverges, respectively. ³Obviously the following results are also valid if the series is of non-positive terms or has a finite number of negative or positive terms.

2. If
$$\ell < 1 \implies \sum a_n = +\infty$$

Theorem 17 (Integral test). Let $f:[1,\infty)\to (0,\infty)$ be a decreasing function. Then:

$$\sum f(n) < \infty \iff$$
 $\iff \exists C > 0 \text{ such that } \int_{1}^{n} f(x) \, \mathrm{d}x \le C \, \forall n$

Alternating series

Definition 18. An alternating series is a series of the form $\sum (-1)^n a_n$, with $(a_n) \geq 0$.

Theorem 19 (Leibnitz's test). Let $(a_n) \geq 0$ be a decreasing sequence such that $\lim_{n\to\infty} a_n = 0$. Then, $\sum (-1)^n a_n$ is convergent.

Theorem 20 (Abel's summation formula). Let $(a_n), (b_n)$ be two sequences of real numbers. Then:

$$\sum_{n=N}^{M} a_n (b_{n+1} - b_n) = a_{M+1} b_{M+1} - a_N b_N -$$

$$- \sum_{n=N}^{M} b_{n+1} (a_{n+1} - a_n)$$

Theorem 21 (Dirichlet's test). Let $(a_n), (b_n)$ be two sequences of real numbers such that:

- 1. $\exists C > 0$ such that $\left| \sum_{n=1}^{N} a_n \right| \leq C$ for all $N \in \mathbb{N}$.
- 2. (b_n) is monotone and $\lim_{n\to\infty} b_n = 0$.

Then, $\sum a_n b_n$ is convergent.

Theorem 22 (Abel's test). Let $(a_n), (b_n)$ be two sequences of real numbers such that:

- 1. The series $\sum a_n$ is convergent.
- 2. (b_n) is monotone and bounded.

Then, $\sum a_n b_n$ is convergent.

Absolute convergence and rearrangement of series

Definition 23. We say a series $\sum a_n$ is absolutely convergent if $\sum |a_n|$ is convergent.

Theorem 24. If a series converges absolutely, it converges.

Definition 25. We say a sequence (b_n) is a rearrangement of the sequence (a_n) if exists a bijective map $\sigma: \mathbb{N} \to \mathbb{N}$ such that $b_n = a_{\sigma(n)}$. A rearrangement of the series $\sum a_n$ is the series $\sum a_{\sigma(n)}$ for some bijection $\sigma: \mathbb{N} \to \mathbb{N}$.

Definition 26. Let $x \in \mathbb{R}$. We define the *positive part* of

$$x^+ = \begin{cases} x & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

Analogously, we define the *negative part* of x as

$$x^{-} = \begin{cases} 0 & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Note that we can write $x = x^+ - x^-$ and $|x| = x^+ + x^-$.

Theorem 27. A series $\sum a_n$ is absolutely convergent if and only if positive and negative terms series, $\sum a_n^+$ and $\sum a_n^-$, converge. In this case,

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-$$

Theorem 28. Let $\sum a_n$ be an absolutely convergent series. Then, for all bijection $\sigma : \mathbb{N} \to \mathbb{N}$, the rearranged series $\sum a_{\sigma(n)}$ is absolutely convergent and $\sum a_n = \sum a_{\sigma(n)}$.

Theorem 29 (Riemann's theorem). Let $\sum a_n$ be a convergent series but not absolutely convergent. Then, $\forall \alpha \in \mathbb{R} \cup \{\infty\}$, there exists a bijective map $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum a_{\sigma(n)}$ converges and $\sum a_{\sigma(n)} = \alpha$.

Theorem 30. A series $\sum a_n$ is absolutely convergent if and only if any rearranged series converges to the same value of $\sum a_n$.

2. | Sequences and series of functions

Sequences of functions

Definition 31. Let $D \subseteq \mathbb{R}$. A set

$$(f_n(x)) = \{f_1(x), f_2(x), \dots, f_n(x), \dots\}$$

is a sequence of real functions if $f_i: D \to \mathbb{R}$ is a real-valued function. In this case we say the sequence $(f_n(x))$, or simply (f_n) , is well-defined on D.

Definition 32. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. We say (f_n) converges pointwise to f on D if $\forall x \in D$, $\lim_{n \to \infty} f_n(x) = f(x)$

Definition 33. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. We say (f_n) converges uniformly to f on D if $\forall \varepsilon > 0$, $\exists n_0 : |f_n(x) - f(x)| < \varepsilon \ \forall n \geq n_0$ and $\forall x \in D$.

Lemma 34. Let (f_n) be an uniform convergent sequence of functions defined on $D \subseteq \mathbb{R}$ and let f be a function such that (f_n) converges pointwise to f. Then, (f_n) converges uniformly f on D.

Lemma 35. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$. (f_n) converges uniformly to f on D if and only if $\lim_{n\to\infty} \sup \{|f_n(x) - f(x)| : x \in D\} = 0$.

Corollary 36. A sequence of functions (f_n) converges uniformly to f on $D \subseteq \mathbb{R}$ if and only if there is a sequence (a_n) , with $a_n \geq 0$ and $\lim_{n \to \infty} a_n = 0$, and a number $n_0 \in \mathbb{N}$ such that $\sup \{|f_n(x) - f(x)| : x \in D\} \leq a_n, \forall n \geq n_0$.

Theorem 37 (Cauchy's test). A sequence of functions (f_n) converges uniformly to f on $D \subseteq \mathbb{R}$ if and only if $\forall \varepsilon > 0 \ \exists n_0 : \sup\{|f_n(x) - f_m(x)| : x \in D\} < \varepsilon$ if $n, m \ge n_0$.

Theorem 38. Let (f_n) be a sequence of continuous functions defined on $D \subseteq \mathbb{R}$. If (f_n) converges uniformly to f on D, then f is continuous on D, that is, for any $x_0 \in D$, it satisfies:

$$\lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} f(x)$$

Theorem 39. Let (f_n) be a sequence of functions defined on $I = [a, b] \subseteq \mathbb{R}$. If (f_n) are Riemann-integrable on I and (f_n) converges uniformly to f on I, then f is Riemann-integrable on I and

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

Theorem 40. Let (f_n) be a sequence of functions defined on $I = (a,b) \subset \mathbb{R}$. If (f_n) are derivable on I, $(f'_n(x))$ converges uniformly on I and $\exists x_0 \in I$ such that $\lim_{n\to\infty} f_n(x_0) \in \mathbb{R}$, then there is a function f such that (f_n) converges uniformly to f on I, f is derivable on I and $(f'_n(x))$ converges uniformly to f' on I.

Series of functions

Definition 41. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$. The expression

$$\sum_{n=1}^{\infty} f_n(x)$$

is the series of functions associated with (f_n) .

Definition 42. A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges pointwise on D if the sequence of partials sums

$$F_N(x) = \sum_{n=1}^{N} f_n(x)$$

converges pointwise. If the pointwise limit of (F_N) is F(x), we say F is the sum of the series in a pointwise sense.

Definition 43. A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges uniformly on D if the sequence of partials sums

$$F_N(x) = \sum_{n=1}^{N} f_n(x)$$

converges uniformly. If the uniform limit of (F_N) is F(x), we say F is the sum of the series in an uniform sense.

Theorem 44 (Cauchy's test). A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges uniformly if and only if $\forall \varepsilon > 0 \ \exists n_0$ such that

$$\sup \left\{ \left| \sum_{n=N}^{M} f_n(x) \right| : x \in D \right\} < \varepsilon$$

if $M \geq N \geq n_0$.

Corollary 45. If $\sum f_n(x)$ is an uniformly convergent series of functions on $D \subseteq \mathbb{R}$, then (f_n) converges uniformly to zero on D.

Theorem 46. If $\sum f_n(x)$ is an uniformly convergent series of continuous functions on $D \subseteq \mathbb{R}$, then its sum function is also continuous on D.

Theorem 47. Let (f_n) be a sequence of functions defined on $I = [a, b] \subseteq \mathbb{R}$. If (f_n) are Riemann-integrable on I and $\sum f_n(x)$ converges uniformly on I, then $\sum f_n(x)$ is Riemann-integrable on I and

$$\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx$$

Theorem 48. Let (f_n) be a sequence of functions defined on $I = (a, b) \subset \mathbb{R}$. If (f_n) are derivable on $I, \sum f'_n(x)$ converges uniformly on I and $\exists c \in I : \sum f_n(c) < \infty$, then $\sum f_n(x)$ converges uniformly on I, $\sum f_n(x)$ is derivable on I and

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x)$$

Theorem 49 (Weierstraß M-test). Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ such that $|f_n(x)| \le M_n \ \forall x \in D$ and suppose that $\sum M_n$ is a convergent numeric series. Then, $\sum f_n(x)$ converges uniformly on D.

Theorem 50 (Dirichlet's test). Let $(f_n), (g_n)$ be two sequences of functions defined on $D \subseteq \mathbb{R}$. Suppose:

1.
$$\exists C > 0 : \sup \left\{ \left| \sum_{n=1}^{N} f_n(x) \right| : x \in D \right\} \le C, \forall N.$$

2. $(g_n(x))$ is a monotone sequence for all $x \in D$ and $\lim_{n \to \infty} \sup\{|g_n(x)| : x \in D\} = 0$.

Then, $\sum f_n(x)g_n(x)$ converges uniformly on D.

Theorem 51 (Abel's test). Let $(f_n), (g_n)$ be two sequences of functions defined on $D \subseteq \mathbb{R}$. Suppose:

- 1. The series $\sum f_n(x)$ converges uniformly on D.
- 2. $(g_n(x))$ is a monotone and bounded sequence for all $x \in D$.

Then, $\sum f_n(x)g_n(x)$ converges uniformly on D.

Power series

Definition 52. Let (a_n) be a sequence of real numbers and $x_0 \in \mathbb{R}$. A *power series* centred on x_0 is a series of functions of the form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Proposition 53. Let $\sum a_n(x-x_0)^n$ be a power series. Suppose there exists an $x_1 \in \mathbb{R}$ such that $\sum a_n(x_1-x_0)^n < \infty$. Then, $\sum a_n(x-x_0)^n$ converges uniformly on any closed interval $I \subset A = \{x \in \mathbb{R} : |x-x_0| < |x_1-x_0|\}$.

Theorem 54. Let $\sum a_n(x-x_0)^n$ be a power series and consider

$$R = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} \in [0, \infty]$$

Then:

- 1. If $|x x_0| < R \implies \sum a_n (x x_0)^n$ converges absolutely.
- 2. If $0 \le r < R \Longrightarrow \sum a_n (x x_0)^n$ converges uniformly on $[x_0 r, x_0 + r]$.
- 3. If $|x-x_0| > R \implies \sum a_n(x-x_0)^n$ diverges.

The number R is called radius of convergence of the power series.

Theorem 55 (Abel's theorem). Let $\sum a_n x^n$ be a power series⁴ with radius of convergence R satisfying $\sum a_n R^n < \infty$. Then, the series $\sum a_n x^n$ converges uniformly on [0, R]. In particular, if $f(x) = \sum a_n x^n$,

$$\lim_{x \to R^{-}} f(x) = \sum_{n=0}^{\infty} a_n R^n$$

Corollary 56. Let f be the sum function of a power series $\sum a_n x^n$. Then, f is continuous on the domain of convergence of the series.

Corollary 57. If the series $\sum a_n x^n$ has radius of convergence $R \neq 0$ and f is its sum function, then f is Riemann-integrable on any closed subinterval on the domain of convergence of the series. In particular, for |x| < R,

$$\int_{0}^{x} f(t) dt = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}^{5}$$

Corollary 58. Let f be the sum function of the power series $\sum a_n x^n$. Then, f is derivable within the domain of convergence of the series and

$$f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}$$

Corollary 59. Any function f defined as a sum of a power series $\sum a_n x^n$ is indefinitely derivable within the domain of convergence of the series and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k}$$

for all $k \in \mathbb{N} \cup \{0\}$. In particular $f^{(k)}(0) = k!a_k$.

Definition 60. A function is *analytic* if it can be expressed locally as a power series.

Definition 61. Let f be a real-valued function. We say f has compact support⁶ if exists M > 0 such that f(x) = 0 for all $x \in \mathbb{R} \setminus [-M, M]$.

Definition 62. Let f, g be real-valued functions with compact support. We define the *convolution* of f with g as

$$(f * g)(x) = \int_{\mathbb{R}} f(t)g(x-t) dt = \int_{\mathbb{R}} f(x-t)g(t) dt$$

Remark. The idea behind the convolution is to "blend" one function with the other one. In Fourier Analysis, g represents an input signal and f a *kernel function* for our purpose. This results in a new function that averages both functions.

Definition 63. We say that a sequence of functions (ϕ_{ε}) with compact support is an approximation of identity if

- 1. $\phi_{\varepsilon} \geq 0$.
- $2. \int_{\mathbb{R}} \phi_{\varepsilon} = 1.$
- 3. For all $\delta > 0$, $\phi_{\varepsilon}(t)$ converges uniformly to zero when $\varepsilon \to 0$ if $|t| > \delta$.

Lemma 64. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with compact support. Let (ϕ_{ε}) be an approximation of identity. Then, $(f * \phi_{\varepsilon})$ converges uniformly to f on \mathbb{R} as $\varepsilon \to 0$.

Theorem 65 (Weierstraß approximation theorem). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then, there exists polynomials $p_n \in \mathbb{R}[x]$ such that the sequence (p_n) converge uniformly to f on [a,b].

3. Improper integrals

Locally integrable functions

Definition 66. Let $f:[a,b) \to \mathbb{R}$, with $b \in \mathbb{R} \cup \{\infty\}$. We say f is *locally integrable* on [a,b) if f is Riemann-integrable on [a,x] for all $a \le x < b$.

Definition 67. Let $f:[a,b)\to\mathbb{R}$ be a locally integrable function. If there exists

$$\lim_{x \to b^{-}} \int_{a}^{x} f$$

and it's finite, we say that the $improper\ integral$ of f on

$$[a,b), \int_{a}^{b} f$$
, is convergent.

Stone-Weierstraß approximation theorem

⁴From now on we will suppose, for simplicity, $x_0 = 0$.

⁵The formula is also valid for |x| = R if the series $\sum a_n R^n$ (or $\sum a_n (-R)^n$) is convergent.

⁶In general, the *support* of a function is the closure of the set of points which are not mapped to zero.

Theorem 68 (Cauchy's test). Let $f:[a,b) \to \mathbb{R}$ be a locally integrable function. The improper integral $\int_a^b f$ is convergent if and only if $\forall \varepsilon > 0 \; \exists b_0, \; a < b_0 < b$, such that

$$\left| \int_{x_1}^{x_2} f \right| < \varepsilon$$

if $b_0 < x_1 < x_2 < b$.

Improper integrals of non-negative functions

Theorem 69. Let $f:[a,b)\to\mathbb{R}$ be a locally integrable non-negative function. A necessary and sufficient condition for $\int_{-b}^{b} f$ to be convergent is that the function

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

must be bounded for all x < b.

Theorem 70 (Comparison test). Let $f,g:[a,b)\to [0,+\infty)$ be two locally integrable non-negative functions. Then:

- 1. If $\exists C>0$ such that $f(x)\leq Cg(x) \ \forall x$ on a neighbourhood of b and $\int\limits_{a}^{b}g<\infty \implies \int\limits_{a}^{b}f<\infty.$
- 2. Suppose the limit $\ell = \lim_{x \to b} \frac{f(x)}{g(x)}$ exists.

$$\mathrm{i)} \ \ \mathrm{If} \ \ell \in (0,\infty) \ \Longrightarrow \ \int^b f < \infty \ \Longleftrightarrow \ \int^b g < \infty.$$

ii) If
$$\ell = 0$$
 and $\int_a^b g < \infty \implies \int_a^b f < \infty$.

iii) If
$$\ell = \infty$$
 and $\int_{a}^{b} f < \infty \implies \int_{a}^{b} g < \infty$.

Theorem 71 (Integral test). Let $f:[1,\infty)\to (0,\infty)$ be a locally integrable decreasing function. Then:

$$\sum f(n) < \infty \iff \int_{1}^{\infty} f(x) \, \mathrm{d}x < \infty^{7}$$

Absolute convergence of improper integrals

Definition 72. Let $f:[a,b)\to (0,\infty)$ be a locally integrable function. We say $\int\limits_a^b f$ converges absolutely if $\int\limits_a^b |f|$ is convergent.

Theorem 73 (Dirichlet's test). Let $f, g : [a, b) \to \mathbb{R}$ be two locally integrable functions Suppose:

- 1. $\exists C > 0$ such that $\left| \int_a^x f(t) dt \right| \leq C$ for all $x \in [a, b)$.
- 2. g is monotone and $\lim_{x\to b} g(x) = 0$.

Then, $\int_{a}^{b} fg$ is convergent.

Theorem 74 (Abel's test). Let $f, g : [a, b) \to \mathbb{R}$ be two locally integrable functions. Suppose:

- 1. $\int_{a}^{b} f$ is convergent.
- 2. g is monotone and bounded.

Then, $\int_{a}^{b} fg$ is convergent.

Differentiation under integral sign

Theorem 75. Let $f: [a,b] \times [c,d] \to \mathbb{R}$ be a continuous function on $[a,b] \times [c,d]$. Consider the function $F(y) = \int_a^b f(x,y) dx$ defined on [c,d]. Then, F is continuous, that is, if $c < y_0 < d$,

$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) \, dx = \int_a^b \lim_{y \to y_0} f(x, y) \, dx =$$

$$= \int_a^b f(x, y_0) \, dx = F(y_0)$$

Theorem 76. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be a Riemann-integrable function and let $F(y)=\int\limits_{-b}^{b}f(x,y)\,\mathrm{d}x$. If f is

differentiable with respect to y and $\partial f/\partial y$ is continuous on $[a,b]\times [c,d]$, then F(y) is derivable on (c,d) and its derivative is

$$F'(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx$$

for all $y \in (c, d)$.

Theorem 77. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be a continuous function on $[a,b]\times[c,d]$. Let $a,b:[c,d]\to\mathbb{R}$ be to differentiable functions satisfying $a\leq a(y)\leq b(y)\leq b$ for every $y\in[c,d]$. Suppose that $\partial f/\partial y$ is continuous on $\{(x,y)\in\mathbb{R}^2:a(y)\leq x\leq b(y),\ c\leq y\leq d\}$. Then,

 $F(y) = \int_{a(y)}^{\infty} f(x, y) dx$ is derivable on (c, d) and its derivative is

⁷This is another way of formulating Theorem 17.

$$F'(y) = b'(y)f(b(y), y) - a'(y)f(a(y), y) +$$

$$+ \int_{a(y)}^{b(y)} \frac{\partial f}{\partial y}(x, y) \, \mathrm{d}x$$

for all $y \in (c, d)$.

Theorem 78. Let $f:[a,b)\times[c,d]\to\mathbb{R}$ be a continuous function on $[a,b)\times[c,d]$. We consider $F(y)=\int\limits_a^bf(x,y)\,\mathrm{d}x$.

Suppose that:

- 1. $\frac{\partial f}{\partial y}$ is continuous on $[a, b) \times [c, d]$.
- 2. Given $y_0 \in [c, d]$, $\exists \delta > 0$ such that the integral

$$\int_{a}^{b} \sup \left\{ \left| \frac{\partial f}{\partial y}(x, y) \right| : y \in (y_0 - \delta, y_0 + \delta) \right\} dx$$

exists and it's finite on [a, b).

Then, F(y) is derivable at y_0 and

$$F'(y_0) = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y_0) dx$$

Theorem 79. Let $f:[a,b)\times [c,d]\to \mathbb{R}$ be a continuous function on $[a,b)\times [c,d]$. Let $a,b:[c,d]\to \mathbb{R}$ be two differentiable functions satisfying $a\leq a(y)\leq b(y)\leq b$ for every

 $y \in [c,d]$. We consider $F(y) = \int_{a(y)}^{b(y)} f(x,y) dx$. Suppose

that:

- 1. $\frac{\partial f}{\partial y}$ is continuous on $\{(x,y)\in\mathbb{R}^2:a(y)\leq x\leq b(y),\ c\leq y\leq d\}.$
- 2. Given $y_0 \in [c, d], \exists \delta > 0$ such that the integral

$$\int_{a(y)}^{b(y)} \sup \left\{ \left| \frac{\partial f}{\partial y}(x,y) \right| : y \in (y_0 - \delta, y_0 + \delta) \right\} dx$$

exists and it's finite on [a, b).

Then, F(y) is derivable at y_0 and

$$F'(y_0) = b'(y_0)f(b(y_0), y_0) - a'(y_0)f(a(y_0), y_0) +$$

$$+ \int_{a(y_0)}^{b(y_0)} \frac{\partial f}{\partial y}(x, y_0) \, \mathrm{d}x$$

Gamma function

Definition 80. For x > 0, Gamma function is defined as

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$

Theorem 81. Gamma function is a generalization of the factorial. In fact, for x > 0 we have

$$\Gamma(x+1) = x\Gamma(x)$$

In particular, $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}$.

Theorem 82. Gamma function satisfies:

$$\lim_{x \to \infty} \frac{\Gamma(x+1)}{(x/e)^x \sqrt{2\pi x}} = 1$$

Corollary 83 (Stirling's formula).

$$\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1$$

4. Fourier series

Periodic functions

Definition 84. Let $f: \mathbb{R} \to \mathbb{C}$ be a function. We say that f is T-periodic, or is periodic with period T, being T > 0, if f(x+T) = f(x) for all $x \in \mathbb{R}$.

Remark. In general we take T to be the least positive constant satisfying that property.

Lemma 85. Let $f: \mathbb{R} \to \mathbb{C}$ be a T-periodic function. Then, f(x+T') = f(x) for all $x \in \mathbb{R}$ if and only if T' = kT for some $k \in \mathbb{Z}$.

Sketch of the proof.

 \Longrightarrow)

$$f(x + kT) = f(x + (k-1)T) = \dots = f(x)$$

 \iff Assume $T' = kT + \alpha$, $\alpha \in [0, T)$. Then:

$$f(x) = f(x + T') = f(x + \alpha) \quad \forall x \in \mathbb{R}$$

which implies $\alpha = 0$ because otherwise f would be α -periodic with $\alpha < T$.

Proposition 86. Let $f : \mathbb{R} \to \mathbb{C}$ be a T-periodic function. Then:

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$$

where $a \in \mathbb{R}$. In particular,

$$\int_{0}^{a+kT} f(x) dx = k \int_{0}^{T} f(x) dx$$

Lemma 87. Let $f: \mathbb{R} \to \mathbb{C}$ be a *T*-periodic continuous function. Then, |f| is bounded.

Sketch of the proof. Use ?? ?? on the interval [0,T] and the periodicity of f.

Proposition 88. Given a T-periodic function f, there are no power series uniformly convergent to f on \mathbb{R} .

Proof. Suppose $\sum a_n x^n$ converges uniformly to f. By *Proof.* First suppose that $||f||_2 = ||g||_2 = 1$. Then: Theorem 46, f is continuous and by Theorem 87, |f| is bounded. Therefore

$$\sup_{x \in \mathbb{R}} \left| \sum_{n=1}^{N} a_n x^n - f(x) \right|$$

cannot be arbitrarily small as $N \to \infty$ because $\sum_{n=1}^{N} a_n x^n$ is a polynomial, and therefore, unbounded.

Orthogonal systems

Definition 89. Let $f: \mathbb{R} \to \mathbb{C}$ be a function. We say that $f \in L^p(I), p \ge 1$, if:

$$||f||_p := \left(\int_I |f(t)|^p dt\right)^{1/p} < \infty$$

Definition 90. Let $f, g : [a, b] \rightarrow \mathbb{C}$ be Riemannintegrable functions. We define the $inner\ product$ of fand g as

$$\langle f, g \rangle := \int_{-b}^{b} f(x) \overline{g(x)} \, \mathrm{d}x$$

where \overline{g} denotes the complex conjugate of g. The norm associated with this inner product is the L^2 norm:

$$||f||_2 = \langle f, f \rangle^{1/2} = \left(\int_a^b |f(x)|^2 dx \right)^{1/2} = ||f||_2$$

The distance between f and g is:

$$d(f,g) := ||f - g||_2$$

Proposition 91. Let $f,g:[a,b]\to\mathbb{C}$ be Riemannintegrable functions and let $\alpha \in \mathbb{C}$. Then, we have:

- 1. $\langle f, f \rangle \geq 0$.
- 2. $\langle f + h, g \rangle = \langle f, g \rangle + \langle h, g \rangle$ and $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, g \rangle$
- 3. $\langle f, g \rangle = \overline{\langle g, f \rangle}$.
- 4. $\langle \alpha f, q \rangle = \alpha \langle f, q \rangle$ and $\langle f, \alpha q \rangle = \overline{\alpha} \langle f, q \rangle$.

Sketch of the proof. They follow from the linearity of the integral. For Item 91-3, write f = Re f + i Im f and $g = \operatorname{Re} g + i \operatorname{Im} g$ and expand the products of both sides of the equation.

Theorem 92 (Cauchy-Schwarz inequality). Let f, g: $[a,b] \to \mathbb{C}$ be Riemann-integrable functions. Then:

$$|\langle f, g \rangle| \le ||f||_2 \cdot ||g||_2$$

which can be written as:

$$\int_{a}^{b} f\overline{g} \le \left(\int_{a}^{b} |f|^{2}\right)^{1/2} \left(\int_{a}^{b} |g|^{2}\right)^{1/2}$$

$$|\langle f, g \rangle| \le \int_{a}^{b} |fg| \le \int_{a}^{b} \frac{|f|^2 + |g|^2}{2} = 1$$

because $|ab| \leq \frac{a^2 + b^2}{2} \ \forall a, b \in \mathbb{R}$.

For the general case, note that $\frac{f}{\|f\|_2}$ and $\frac{g}{\|g\|_2}$ have norm

$$\left|\left\langle \frac{f}{\|f\|_2}, \frac{g}{\|g\|_2} \right\rangle\right| \leq 1 \implies |\langle f, g \rangle| \leq \|f\|_2 \|g\|_2$$

Theorem 93 (Minkowski inequality). Let f, g: $[a,b] \to \mathbb{C}$ be Riemann-integrable functions. Then:

$$\|f+g\|_2 \leq \|f\|_2 + \|g\|_2$$

Proof. Using 92 Cauchy-Schwarz inequality we have:

$$\begin{split} \left\| f + g \right\|_2^{\ 2} &= \left\| f \right\|_2^{\ 2} + \left\| g \right\|_2^{\ 2} + 2 \langle f, g \rangle \\ &\leq \left\| f \right\|_2^{\ 2} + \left\| g \right\|_2^{\ 2} + \left\| f \right\|_2 \cdot \left\| g \right\|_2 \\ &= \left(\left\| f \right\|_2 + \left\| g \right\|_2 \right)^2 \end{split}$$

Definition 94. Let $f,g:[a,b]\to\mathbb{C}$ be Riemannintegrable functions with $f \neq g$. We say f and g are orthogonal if $\langle f, g \rangle = 0$. We say f and g are orthonormal if they are orthogonal and $||f||_2 = ||g||_2 = 1$.

Definition 95. Let $S = \{\phi_0, \phi_1, \ldots\}$ be a collection of Riemann-integrable functions on [a, b]. We say S is an orthonormal system if $\|\phi_n\|_2 = 1 \ \forall n \ \text{and} \ \langle \phi_n, \phi_m \rangle = 0$

Proposition 96. Let T > 0 and:

$$S_1 = \left\{ \frac{1}{\sqrt{T}} e^{\frac{2\pi i n x}{T}} : n \in \mathbb{Z} \right\}$$

$$S_2 = \left\{ \frac{1}{\sqrt{T}}, \frac{\cos\left(\frac{2\pi n x}{T}\right)}{\sqrt{T/2}}, \frac{\sin\left(\frac{2\pi m x}{T}\right)}{\sqrt{T/2}} : n, m \in \mathbb{N} \right\}$$

Then, S_1 and S_2 orthonormal systems on [-T/2, T/2].

 \ldots, ϕ_n is linearly dependent on [a, b] if there exist $c_0, c_1, \ldots, c_n \in \mathbb{R}$ not all zero, such that

$$c_0\phi_0 + c_1\phi_1 + \dots + c_n\phi_n = 0, \quad \forall x \in [a, b]$$

Otherwise we say S is linearly independent. If the collection S has an infinity number of functions, we say S is linearly independent on [a, b] if any finite subset of S is linearly independent on [a, b].

Theorem 98. Let $S = \{\phi_0, \phi_1, \ldots\}$ be an orthonormal system on [a, b]. Suppose that $\sum c_n \phi_n(x)$ converges uniformly to a function f on [a, b]. Then, f is Riemannintegrable on [a,b] and, moreover:

$$c_n = \langle f, \phi_n \rangle = \int_a^b f(x) \overline{\phi_n(x)} \, dx, \quad \forall n \ge 0$$

Proof. Using Theorem 47 we have that f is Riemann-integrable and that $\forall m \in \mathbb{N}$:

$$\langle f, \phi_m \rangle = \sum_{n=0}^{\infty} c_n \langle \phi_n, \phi_m \rangle = c_n$$

by the orthonormality of S.

Fourier coefficients and Fourier series

Definition 99. Let $S = \left\{\frac{1}{\sqrt{T}}e^{\frac{2\pi i n x}{T}}, n \in \mathbb{Z}\right\}$ be an orthonormal system on [-T/2, T/2] and let $f \in L^1([-T/2, T/2])^8$ be a T-periodic function 9. We define the n-th Fourier coefficient of f as

$$\widehat{f}(n) = \frac{1}{T} \left\langle f, e^{\frac{2\pi i n x}{T}} \right\rangle = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-\frac{2\pi i n x}{T}} dx$$

for all $n \in \mathbb{Z}$.

Proposition 100. Let $f, g \in L^1([-T/2, T/2])$. The following properties are satisfied:

1. For all $\lambda, \mu \in \mathbb{C}$:

$$(\lambda \widehat{f + \mu g})(n) = \lambda \widehat{f}(n) + \mu \widehat{g}(n)$$

2. Let $\tau \in \mathbb{R}$. We define $f_{\tau}(x) = f(x - \tau)$. Then:

$$\widehat{f}_{\tau}(n) = e^{-\frac{2\pi i n \tau}{T}} \widehat{f}(n)$$

- 3. If f is even, then $\widehat{f}(n) = \widehat{f}(-n), \forall n \in \mathbb{Z}$. If f is odd, then $\widehat{f}(n) = -\widehat{f}(-n), \forall n \in \mathbb{Z}$.
- 4. If $f \in \mathcal{C}^k$ such that $f^{(r)}(-T/2) = f^{(r)}(T/2) \ \forall r = 0, \dots, k-1$, then

$$\widehat{f^{(k)}}(n) = \left(\frac{2\pi i n}{T}\right)^k \widehat{f}(n)$$

5. $\widehat{(f * g)}(n) = \widehat{f}(n)\widehat{g}(n)$.

Proof.

1. It follows from the linearity of the integral.

2.

$$\widehat{f_{\tau}}(n) = \frac{1}{T} \int_{-T/2}^{T/2} f(x - \tau) e^{-\frac{2\pi i n x}{T}} dx$$

$$= \frac{1}{T} \int_{-T/2 - \tau}^{T/2 - \tau} f(u) e^{-\frac{2\pi i n (u + \tau)}{T}} dx$$

$$= e^{-\frac{2\pi i n \tau}{T}} \widehat{f}(n)$$

where we have done the change of variable $u = x - \tau$ and we have used Theorem 86.

- 3. Make the change of variable u = -x.
- 4. We will use induction. The case k=0 is clear. For the other ones:

$$\widehat{f^{(k)}}(n) = \frac{1}{T} \int_{-T/2}^{T/2} f^{(k)}(x) e^{-\frac{2\pi i n x}{T}} dx$$

$$= \frac{2\pi i n}{T} \int_{-T/2}^{T/2} f^{(k-1)}(x) e^{-\frac{2\pi i n x}{T}} dx$$

$$= \left(\frac{2\pi i n}{T}\right) \widehat{f^{(k-1)}}(n)$$

$$= \left(\frac{2\pi i n}{T}\right)^k \widehat{f}(n)$$

where we have used integration by parts.

5. Using ?? ?? we have that:

$$\widehat{(f * g)}(n) = \int_{-T/2}^{T/2} \int_{-T/2}^{T/2} f(t)g(x - t)e^{-\frac{2\pi i n x}{T}} dt dx$$

$$= \int_{-T/2}^{T/2} f(t) \left(\int_{-T/2}^{T/2} g(x - t)e^{-\frac{2\pi i n x}{T}} dx \right) dt$$

$$= \int_{-T/2}^{T/2} f(t)e^{-\frac{2\pi i n t}{T}} \widehat{g}(n) dt$$

$$= \widehat{f}(n)\widehat{g}(n)$$

where we have used Item 100-2.

Definition 101. Let $f \in L^1([-T/2, T/2])$. We define the Fourier series of f as:

$$Sf(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{\frac{2\pi i nx}{T}}$$

Definition 102. Let $f \in L^1([-T/2, T/2])$ and Sf be the Fourier series of f. We define N-th partial sum of Sf as:

$$S_N f(x) = \sum_{n=-N}^{N} \widehat{f}(n) e^{\frac{2\pi i n x}{T}}$$

Proposition 103. Let $f \in L^1([-T/2, T/2])$. Then:

$$Sf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right)$$

where

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos\left(\frac{2\pi nx}{T}\right) dx$$

⁸Saying that $f \in L^1([-T/2, T/2])$ is equivalent to say that f is integrable on [-T/2, T/2].

⁹From now on, we will work only with functions defined on [-T/2, T/2] and extended periodically on \mathbb{R} .

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin\left(\frac{2\pi nx}{T}\right) dx,$$

for $n \ge 0^{10}$. In particular, if f is even we have:

$$Sf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right)$$

and if f is odd we have:

$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nx}{T}\right)$$

Sketch of the proof. Remember that:

$$e^{\frac{2\pi inx}{T}} = \cos\left(\frac{2\pi nx}{T}\right) + i\sin\left(\frac{2\pi nx}{T}\right)$$

Definition 104. Let $f:(0,L)\to\mathbb{C}$ be a function. We define the even extension of f as

$$f_{e}(x) = \begin{cases} f(x) & \text{if } x \in (0, L) \\ f(-x) & \text{if } x \in (-L, 0) \end{cases}$$

Analogously, we define the *odd extension* of f as

$$f_{o}(x) = \begin{cases} f(x) & \text{if } x \in (0, L) \\ -f(-x) & \text{if } x \in (-L, 0) \end{cases}$$

Proposition 105. Let $f \in L^1([0,T/2])$. If we make the even extension of f^{11} , then

$$Sf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right)$$

where $a_n = \frac{4}{T} \int_{-T}^{T} f(x) \cos\left(\frac{2\pi nx}{T}\right) dx$ for $n \geq 0$. If we **Proposition 109.** Let $f \in L^1([-T/2, T/2])$. Then:

make the odd extension of f, then

$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nx}{T}\right)$$

where
$$b_n = \frac{4}{T} \int_{0}^{T/2} f(x) \sin\left(\frac{2\pi nx}{T}\right) dx$$
 for $n \ge 1$.

Pointwise convergence

Definition 106 (Dirichlet kernel). We define the Dirichlet kernel of order $N \in \mathbb{N}$ as:

$$D_N(t) = \sum_{n=-N}^{N} e^{\frac{2\pi i n t}{T}}$$

$$a_n = \widehat{f}(n) + \widehat{f}(-n)$$
 and $b_n = i \left[\widehat{f}(n) - \widehat{f}(-n) \right], \forall n \in \mathbb{N} \cup \{0\}$

Lemma 107. Let $N \in \mathbb{N}$. Then, $\forall t \in (0,T)$ we have:

$$D_N(t) = \frac{\sin\left(\frac{(2N+1)\pi t}{T}\right)}{\sin\left(\frac{\pi t}{T}\right)}$$

Proof. Using the geometric sum formula we have:

$$\begin{split} D_N(t) &= \frac{\mathrm{e}^{-\frac{2\pi \mathrm{i} Nt}{T}} - \mathrm{e}^{\frac{2\pi \mathrm{i} (N+1)t}{T}}}{1 - \mathrm{e}^{\frac{2\pi \mathrm{i} T}{T}}} \\ &= \frac{\mathrm{e}^{-\frac{\pi \mathrm{i} (2N+1)t}{T}} - \mathrm{e}^{\frac{\pi \mathrm{i} (2N+1)t}{T}}}{\mathrm{e}^{-\frac{\pi \mathrm{i} t}{T}} - \mathrm{e}^{\frac{\pi \mathrm{i} t}{T}}} \\ &= \frac{\sin\left(\frac{(2N+1)\pi t}{T}\right)}{\sin\left(\frac{\pi t}{T}\right)} \end{split}$$

Proposition 108. The Dirichlet kernel has the following properties:

1. D_N is a T-periodic and even function.

2.
$$\frac{1}{T} \int_{-T/2}^{T/2} D_N(t) dt = 1, \ \forall N \in \mathbb{N}.$$

Sketch of the proof.

1. Use the characterization of Theorem 107.

2. Note that if
$$n \neq 0$$
,
$$\int\limits_{-T/2}^{T/2} \mathrm{e}^{\frac{2\pi \mathrm{i} n t}{T}} \, \mathrm{d}t = 0$$

$$S_N f(x) = \frac{1}{T} (f * D_N)(x)$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} f(x-t) D_N(t) dt$$

$$= \frac{1}{T} \int_{0}^{T/2} [f(x+t) + f(x-t)] D_N(t) dt$$

Sketch of the proof. The first equality follows from expandind the Fourier coefficients inside $S_N f$. The second one, making the change of variables u = x - t and noting that both integrant functions are T-periodic. For the last one, make the change of variables u = -t and use that $D_N(t)$ is even.

¹⁰The relation between a_n, b_n and $\widehat{f}(n)$ is given by:

¹¹For simplicity, when we have a function f and make its even or odd extension, we will still call its even or odd extension f instead of \tilde{f} or \hat{f} .

Lemma 110 (Riemann-Lebesgue lemma). Let $f \in L^1([-T/2, T/2])$ and $\lambda \in \mathbb{R}$. Then:

$$\lim_{\lambda \to \infty} \int_{-T/2}^{T/2} f(t) \sin(\lambda t) dt = \lim_{\lambda \to \infty} \int_{-T/2}^{T/2} f(t) \cos(\lambda t) dt = 0$$

In particular, $\lim_{|n|\to\infty} \widehat{f}(n) = 0$.

Proof. We first proof the statement for indicators functions $f(x) = \mathbf{1}_{[a,b]}(x)$, $[a,b] \subseteq [-T/2,T/2]$. We have that:

$$\lim_{\lambda \to \infty} \int_{-T/2}^{T/2} \mathbf{1}_{[a,b]}(t) \sin(\lambda t) dt = \lim_{\lambda \to \infty} \frac{\cos(\lambda a) - \cos(\lambda b)}{\lambda} = 0$$

From the linearity of the integral the statement remains true for f being linear combination of indicator functions. Finally note that taking an upper sum g_{ε} of f (see ??) such that $\int_{-T/2}^{T/2} |f - g_{\varepsilon}| < \varepsilon$, we have:

$$\left| \int_{-T/2}^{T/2} f(t) \sin(\lambda t) dt \right| \leq \int_{-T/2}^{T/2} |f(t) - g_{\varepsilon}(t)| dt + \left| \int_{-T/2}^{T/2} g_{\varepsilon}(t) \sin(\lambda t) dt \right| \xrightarrow{\varepsilon \to 0} 0$$

The same proof applies for the $\cos(\lambda t)$.

Theorem 111 (Dini's theorem). Let

 $f \in L^1([-T/2,T/2]), \, x_0 \in (-T/2,T/2)$ and $\ell \in \mathbb{R}$ such that

$$\int_{0}^{\delta} \frac{|f(x_0+t) + f(x_0-t) - 2\ell|}{t} \, \mathrm{d}t < \infty$$

for some $\delta > 0$. Then, $\lim_{N \to \infty} S_N f(x_0) = \ell$.

Proof. Note that $-\ell = -2\ell \int_0^{T/2} D_N(t) dt$. So:

$$S_N f(x_0) - \ell = \frac{1}{T} \int_0^{T/2} [f(x_0 + t) + f(x_0 - t) - 2\ell] D_N(t) dt$$
$$= \frac{1}{T} \int_0^{T/2} \frac{f(x_0 + t) + f(x_0 - t) - 2\ell}{t} \frac{t}{\sin(\frac{\pi t}{T})} \cdot \sin(\frac{(2N + 1)\pi t}{T}) dt$$

Since the first terms form an integrable function, we can use now the 110 Riemann-Lebesgue lemma. \Box

Corollary 112. Let $f \in L^1([-T/2, T/2])$ be a function left and right differentiable at x_0 , that is, there exists the following limits

$$f'(x_0^+) = \lim_{t \to 0^+} \frac{f(x_0 + t) - f(x_0^+)}{t}$$

$$f'(x_0^-) = \lim_{t \to 0^-} \frac{f(x_0 + t) - f(x_0^-)}{t}$$

(supposing the existence of left- and right-sided limits). Then:

$$\lim_{N \to \infty} S_N f(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}$$

Sketch of the proof. Use 111 Dini's theorem with $\ell = \frac{f(x_0^+) + f(x_0^-)}{2}$.

Theorem 113 (Lipschitz's theorem). Let $f \in L^1([-T/2, T/2])$ such that at a point $x_0 \in (-T/2, T/2)$ it satisfies

$$|f(x_0+t) - f(x_0)| \le k|t|$$

for some constant $k \in \mathbb{R}$ and for $|t| < \delta$. Then, $\lim_{N \to \infty} S_N f(x_0) = f(x_0)$.

Sketch of the proof. Note that

$$S_N f(x_0) - f(x_0) = \frac{1}{T} \int_{-T/2}^{T/2} [f(x_0 + t) - f(x_0)] D_N(t) dt$$

and proceed as in the proof of 111 Dini's theorem.

Remark. Note that only the continuity is not sufficient to ensure the pointwise convergence of $S_N f$ towards f.

Uniform convergence

Definition 114. Let $\sum a_n$ be a series with partial sums S_k . The series $\sum a_n$ is called *Cesàro summable* with sum S if

$$\lim_{N \to \infty} \frac{S_1 + \dots + S_N}{N} = S$$

Remark. Note that if $(a_n) \in \mathbb{R}$ has limit ℓ , by ?? ?? we have that (a_n) is Cesàro summable and $\lim_{n\to\infty} \frac{a_1+\cdots+a_n}{n} = \ell$. The other inclusion is false though. For example by taking $a_n = (-1)^n$.

Definition 115 (Fejér kernel). We define the Fejér kernel of order N as

$$F_N(t) = \frac{1}{N+1} \sum_{k=0}^{N} D_k(t)$$

being $D_k(t)$ the Dirichlet kernel of order $k, 0 \le k \le N$.

Lemma 116. Let $N \in \mathbb{N}$. Then, $\forall t \in (0,T)$ we have:

$$F_N(t) = \frac{1}{N+1} \frac{\sin^2\left(\frac{(N+1)\pi t}{T}\right)}{\sin^2\left(\frac{\pi t}{T}\right)}$$

Proof. Multiplying the expression of Theorem 107 by $\sin(\frac{\pi t}{T})$ and using the trigonometry identity $\sin(x)\sin(y) = \frac{\cos(x-y)-\cos(x+y)}{2}$ we have that F_N is a telescopic sum that simplifies to:

$$F_N(t) = \frac{1 - \cos\left(\frac{2(N+1)\pi t}{T}\right)}{2(N+1)\sin^2\left(\frac{\pi t}{T}\right)} = \frac{1}{N+1} \frac{\sin^2\left(\frac{(N+1)\pi t}{T}\right)}{\sin^2\left(\frac{\pi t}{T}\right)}$$

Proposition 117. The Fejér kernel has the following properties:

1. F_N is a T-periodic, even and non-negative function.

$$2. \ \frac{1}{T} \int_{-T/2}^{T/2} F_N(t) \, \mathrm{d}t = 1 \quad \forall N.$$

3.
$$\forall \delta > 0$$
, $\lim_{N \to \infty} \sup\{|F_N(t)| : \delta \le |t| \le T/2\} = 0$

Proof. The first two properties are consequence of the definition of Fejér kernel and the reexpression of Theorem 116. For the last one, note that:

$$|F_N(t)| \le \frac{1}{N+1} \frac{1}{\sin^2\left(\frac{\pi\delta}{T}\right)} \stackrel{N \to \infty}{\longrightarrow} 0$$

Definition 118. Let $f \in L^1([-T/2, T/2])$. We define the Fejér means $\sigma_N f$, for all $N \in \mathbb{N}$, as:

$$\sigma_N f(x) = \frac{S_0 f(x) + \dots + S_N f(x)}{N+1} \tag{1}$$

Proposition 119. Let $f \in L^1([-T/2, T/2])$. Then:

$$\sigma_N f(x) = \frac{1}{T} (f * F_N)(x)$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} f(x - t) F_N(t) dt$$

$$= \frac{1}{T} \int_{0}^{T/2} [f(x + t) + f(x - t)] F_N(t) dt$$

Proof. Consequence of Theorem 109 and the linearity of the convolution. $\hfill\Box$

Theorem 120 (Fejér's theorem). Let

 $f \in L^1([-T/2, T/2])$ be a function having left- and right-sided limits at point x_0 . Then:

$$\lim_{N \to \infty} \sigma_N f(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}$$

In particular, if f is continuous at x_0 , $\lim_{N\to\infty} \sigma_N f(x_0) = f(x_0)$.

Sketch of the proof. Let $\delta > 0$ be small enough. Then:

$$\left| \sigma_N f(x_0) - \frac{f(x_0^+) + f(x_0^-)}{2} \right| =$$

$$= \left| \int_0^{T/2} [f(x+t) - f(x_0^+) + f(x-t) - f(x_0^-)] F_N(t) dt \right|$$

$$\leq \int_0^{T/2} |f(x+t) - f(x_0^+)| F_N(t) dt +$$

$$+ \int_0^{T/2} |f(x-t) - f(x_0^-)| F_N(t) dt$$

In order to bound the to intervals, divide the interval $[0, T/2] = [0, \delta] \cup [\delta, T/2]$. The first part is bounded by the right- (or left-) sided limit at x_0 , and the second one is due to the uniform convergence (see Theorem 117).

Theorem 121 (Fejér's theorem). Let f be a continuous function on [-T/2, T/2]. Then, $\sigma_N f$ converges uniformly to f on [-T/2, T/2].

Proof. Let $\delta > 0$ be small enough. Then:

$$|\sigma_N f(x) - f(x)| = \left| \int_0^{T/2} [f(x - t) - f(x)] F_N(t) dt \right|$$

$$\leq \int_0^{\delta} |f(x - t) - f(x)| F_N(t) dt + \int_{\delta}^{T/2} |f(x - t) - f(x)| F_N(t) dt$$

To bound the first integral use the uniform continuity of f in $[0, \delta]$ and for the second one use Theorem 117.

Corollary 122. Let f be a continuous function on [-T/2, T/2]. Then, there exists a sequence of trigonometric polynomials that converge uniformly to f on [-T/2, T/2]. In fact:

$$\sigma_N f(x) = \sum_{k=-N}^{N} \left(1 - \frac{|k|}{N+1} \right) \widehat{f}(k) e^{\frac{2\pi i k x}{T}}$$

Sketch of the proof. Observe that the term $\widehat{f}(k)e^{\frac{2\pi ikx}{T}}$ appears N+1-|k| times on the numerator of the fraction of Eq. (1). Hence

$$\sigma_N f(x) = \sum_{k=-N}^{N} \left(1 - \frac{|k|}{N+1} \right) \widehat{f}(k) e^{\frac{2\pi i kx}{T}}$$

which is a trigonometric polynomial.

Corollary 123. Let f and g be continuous functions on [-T/2, T/2] such that Sf(x) = Sg(x). Then, f = g.

Proof. h := f - g satisfies that $\widehat{h}(n) = 0 \ \forall n \in \mathbb{Z}$. So $\sigma_N h = 0 \ \forall N \in \mathbb{N}$. 121 Fejér's theorem implies h = 0.

Convergence in norm

Definition 124. We say a sequence (f_N) converge in norm L^p to f if $\lim_{N\to\infty} ||f_N - f||_p = 0$.

Theorem 125. Let $f \in L^2([-T/2, T/2])$. Then:

$$\lim_{N \to \infty} \|\sigma_N f - f\|_2 = 0$$

Sketch of the proof. Use \ref{loop} and the scheme of the proof of 121 Fejér's theorem.

Corollary 126. Let $f \in L^1([-T/2, T/2])$. Then:

$$\lim_{N \to \infty} \|\sigma_N f - f\|_1 = 0$$

Sketch of the proof. Note that $\|\sigma_N f - f\|_1 \le \|\sigma_N f - f\|_2$ by the 92 Cauchy-Schwarz inequality.

Corollary 127. Let $f,g\in L^1([-T/2,T/2])$ be functions such that Sf(x)=Sg(x). Then, $\lim_{N\to\infty}\|g-f\|_1=0$.

Proof. h:=f-g satisfies that $\widehat{h}(n)=0 \ \forall n\in\mathbb{Z}$. So $\sigma_N h=0 \ \forall N\in\mathbb{N}$. Thus:

$$\lim_{N \to \infty} \|h\|_1 = \lim_{N \to \infty} \|\sigma_N h - h\|_1 = 0$$

Theorem 128. $S_N f$ is the trigonometric polynomial of degree N that best approximates f in norm L^2 .

Proof. Let $P(x) = \sum_{n=-N}^{N} c_n e^{\frac{2\pi i n x}{T}}$ be a trigonometric polynomial. Expanding the norm $\|f - P\|^2$ we have:

$$||f - P||_2^2 = ||f||_2^2 + ||P||_2^2 - 2\operatorname{Re}\left(\int_{-T/2}^{T/2} f(x)\overline{P(x)}\,\mathrm{d}x\right)$$

One the one hand:

$$||P||_{2}^{2} = \int_{-T/2}^{T/2} \left(\sum_{n=-N}^{N} c_{n} e^{\frac{2\pi i n x}{T}} \right) \left(\sum_{m=-N}^{N} \overline{c_{m}} e^{-\frac{2\pi i m x}{T}} \right) dx$$
$$= T \sum_{n=-N}^{N} |c_{n}|^{2}$$

by the orthogonality of the system. On the other hand:

$$\int_{-T/2}^{T/2} f(x)\overline{P(x)} \, \mathrm{d}x = T \sum_{n=-N}^{N} \overline{c_n} \widehat{f}(n)$$

Finally using that $|z-w|^2-|z|^2=|w|^2-2\operatorname{Re}(z\overline{w}),$ $z,w\in\mathbb{C},$ we have:

$$||f - P||_2^2 = ||f||_2^2 + T \sum_{n=-N}^N |c_n - \hat{f}(n)|^2 - T \sum_{n=-N}^N |\hat{f}(n)|^2$$

which is minimum if $c_n = \widehat{f}(n) \ \forall n = -N, \dots, N$. That is, $P = S_N f$.

Corollary 129 (Bessel's inequality). Let $f \in L^2([-T/2, T/2])$. Then:

$$T \sum_{n=-N}^{N} \left| \widehat{f}(n) \right|^{2} \le \|f\|_{2}^{2}$$

$$\frac{T}{2} \left(\frac{|a_{0}|^{2}}{2} + \sum_{n=1}^{N} |a_{n}|^{2} + |b_{n}|^{2} \right) \le \|f\|_{2}^{2}$$

for all $N \in \mathbb{N}$.

Sketch of the proof. If follows from Eq. (2) with $P=S_Nf$.

Corollary 130. Let $f \in L^2([-T/2, T/2])$. Then, $\lim_{N \to \infty} ||S_N f - f||_2 = 0$.

Theorem 131 (Parseval's identity). Let $f, g \in L^2([-T/2, T/2])$. Then:

$$\langle f, g \rangle = T \sum_{n \in \mathbb{Z}} \widehat{f}(n) \overline{\widehat{g}(n)}$$

In particular, if f = g:

$$\begin{split} T \sum_{n \in \mathbb{Z}} \left| \widehat{f}(n) \right|^2 &= \left\| f \right\|_2^2 \\ \frac{T}{2} \left(\frac{\left| a_0 \right|^2}{2} + \sum_{n=1}^{\infty} \left| a_n \right|^2 + \left| b_n \right|^2 \right) &= \left\| f \right\|_2^2 \end{split}$$

Proof. Note that $\langle f, g \rangle = \lim_{N \to \infty} \langle f, S_N g \rangle$. Indeed:

$$|\langle f, g \rangle - \langle f, S_N g \rangle| = |\langle f, g - S_N g \rangle| \le ||f||_2 ||g - S_N g||_2$$

where we have applied 92 Cauchy-Schwarz inequality. Now use Theorem 130 to conclude that the right side of the equation tends to 0 as $N \to \infty$. Thus:

$$\langle f, g \rangle = \lim_{N \to \infty} \langle f, S_N g \rangle$$

$$= \lim_{N \to \infty} \sum_{n = -N}^{N} \overline{\widehat{g}(n)} \left\langle f, e^{\frac{2\pi i n x}{T}} \right\rangle$$

$$= T \sum_{n \in \mathbb{Z}} \widehat{f}(n) \overline{\widehat{g}(n)}$$

Applications of Fourier series

Theorem 132 (Wirtinger's inequality). Let f be a function such that f(0) = f(T), $f' \in L^2([0,T])$ and $\int_{-T}^{T} f(t) dt = 0$. Then:

$$\int_{0}^{T} |f(x)|^{2} dx \le \frac{T^{2}}{4\pi^{2}} \int_{0}^{T} |f'(x)|^{2} dx$$

And the inequality holds if and only if

$$f(x) = A\cos\left(\frac{2\pi x}{T}\right) + B\sin\left(\frac{2\pi x}{T}\right)$$

Proof. The continuity of f and f(0) = f(T), implies that $f \in L^2([0,T])$ and that $\widehat{f'}(n) = \frac{2\pi i n}{T}\widehat{f}(n)$. Moreover, note that $\widehat{f'}(0) = 0$ and by hypothesis $\widehat{f}(0) = 0$. By 131 Parseval's identity we have:

$$\int_{0}^{T} |f(x)|^{2} dx = T \sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^{2} \le T \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} n^{2} |\widehat{f}(n)|^{2} =$$

$$= T \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \frac{T^{2}}{4\pi^{2}} |\widehat{f}'(n)|^{2} = \frac{T^{2}}{4\pi^{2}} \int_{0}^{T} |f'(x)|^{2} dx$$

The equality holds if and only if $|\widehat{f}(n)|^2(n^2-1)=0$ $\forall n\in\mathbb{Z}\setminus\{0\}$. That is, if and only if

$$f(x) = c_{-1}e^{\frac{-2\pi ix}{T}} + c_{1}e^{\frac{2\pi ix}{T}}$$

 $C^{1}([a,b])$ with f(a) = f(b) = 0. Then:

$$\int_{a}^{b} |f(x)|^{2} dx \le \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx$$

with equality if and only if

$$f(x) = A \sin\left(\frac{\pi}{b-a}(x-a)\right)$$

Sketch of the proof. Let $\tilde{f}:[a,2b-a]\to\mathbb{R}$ be the odd extension of f centered at b:

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \in [a, b] \\ -f(2b - x) & \text{if } x \in [b, 2b - a] \end{cases}$$

Now use 132 Wirtinger's inequality to the function \tilde{f} .

Theorem 134 (Isoperimetric inequality). Let c be a planar simple and closed curve of class \mathcal{C}^1 whose length is ℓ . If A_c is the area enclosed by c, then

$$A_{\rm c} \le \frac{\ell^2}{4\pi}$$

and the equality holds if and only if c is a circle.

Theorem 133 (Wirtinger's inequality). Let $f \in Proof$. Let $\gamma(s) = (x(s), y(s))$ be the arc-length parametrization of c (see ??). Thus:

$$s = \int_{0}^{s} \sqrt{x'(t)^2 + y'(t)^2} dt$$

which implies $x'(s)^2 + y'(s)^2 = 1$, by the ?? ??. Now, by ?? we have that:

$$A_{c} = \int_{0}^{\ell} x(s)y'(s) ds \le \frac{2\pi}{\ell} \int_{0}^{\ell} \frac{x(s)^{2} + \frac{\ell^{2}}{4\pi^{2}}y'(s)^{2}}{2} ds =$$

$$= \frac{2\pi}{\ell} \int_{0}^{\ell} \left(\frac{\ell^{2}}{8\pi^{2}} + \frac{x(s)^{2} - \frac{\ell^{2}}{4\pi^{2}}x'(s)^{2}}{2} \right) ds \le \frac{\ell^{2}}{4\pi}$$

by the 132 Wirtinger's inequality (with a translation we can suppose $x(0) = x(\ell) = 0$ and $\int_0^\ell x(s) ds = 0$). Clearly if c is a circle, the equality is hold. Moreover if we have equality, by 132 Wirtinger's inequality we have that implies b=a, we have that $\frac{2\pi s}{\ell}$ and since $2ab=a^2+b^2$ implies b=a, we have that $\frac{\ell}{2\pi}y'(s)=x(s)$. So $y(s)=A\sin\left(\frac{2\pi s}{\ell}\right)-B\cos\left(\frac{2\pi s}{\ell}\right)+C$ and therefore c is a circle.