
Linear geometry

1. | The foundations of geometry
In this section we will only study geometry in the plane.

Euclidean geometry
Axiom 1 (Euclid’s axioms).

1. It is possible to draw, from any point to any point,
a straight line.

2. It is possible to extend any segment by either of its
two ends.

3. With center at any point it is possible to draw a
circle that passes through any other point.

4. All right angles are equal.

5. If a line segment intersects two straight lines form-
ing two interior angles on the same side that sum
to less than two right angles, then the two lines, if
extended indefinitely, meet on the side on which the
angles sum to less than two right angles.

5′. (Playfair’s axiom) Given a line and a point not on
it, at most one line parallel to the given line can be
drawn through the point.

Hilbert’s axioms

Definition 2. In elementary plane geometry1, there are
two types of objects, points and lines, which can have three
types of relationships between them:

• An incidence relation. We say, for example, that a
point lies on a line or a line passes through a point.

• An order relation. We say, for example, that a point
lies between two other points.

• A congruence relation. We say, for example, that a
segment is congruent to another or an angle is con-
gruent to another2.

Axiom 3 (Incidence axioms).

1. For every two points there exists no more than one
line containing both.

2. There exist at least two points on a line.

3. There exist at least three points that do not lie on
the same line.

Axiom 4 (Order axioms).

1. If a point B lies between A and C, then B lies be-
tween C and A and there exists a line containing the
distinct points A, B, C.

2. If A and B are two points, there exists at least one
point C such that B lies between A and C.

3. Given three point on a line, there is no more than
one which lies between the other two.

4. (Pasch’s axiom) Let A, B, C be three points not-
lying in the same line and let r be a line not pass-
ing through any of the points A, B, C and passing
through a point of the segment AB. Then it also
passes through either a point of the segment BC or
a point of the segment AC.

Definition 5. A ray or half-line is a point A, called ver-
tex, and all the points of a line passing through A lying
on the same side with respect to A.
Definition 6. A half-plane is a straight line r and all the
points lying on the same side with respect to r.
Definition 7. An angle is a non-ordered pair of rays with
same vertices that belong to different straight lines.
Axiom 8 (Congruence axioms).

1. Congruence of angles and congruence of rays are
equivalence relations.

2. Let a and b be two lines not necessarily different, A
and B be points on a and A′ be a point on b. We fix
a side of the line b with respect to A′. Then, there
exists a point B′ lying on this side of b such that
AB ≡ A′B′.

3. Let a, a′ be two lines not necessarily different. Let
AB, BC be segments on a that intersect only in one
point and A′B′, B′C ′ be segments on a′ that also
intersect only in one point. If AB ≡ A′B′ and
BC ≡ B′C ′, then AC ≡ A′C ′.

4. Let ∠hk be an angle, k′ be a ray and H be one of
the two half-planes that k′ defines. Then, there is
one and only one angle ∠h′k′ such that ∠hk ≡ ∠h′k′

and h′ belongs to H.

5. (SAS criterion) Consider two triangles3 ABC and
A′B′C ′ (not necessarily different). If AC ≡ A′C ′,
AB ≡ A′B′ and α ≡ α′, then β ≡ β′.

Axiom 9 (Continuity axioms).
1. (Axiom of Archimedes) If AB and CD are any seg-

ments, then there exists a number n such that n seg-
ments CD constructed contiguously from A, along
the ray from A to B, will pass beyond the point B.

2. (Axiom of completeness) An extension of a set of
points on a line with order and congruence relations
that would preserve the relations existing among the
original elements as well as the rest of the axioms is
impossible.

1In this section we only study the geometry in the plane.
2We will use the notation ≡ to say that two angles or segments are congruent.
3We will use the following notation with respect to the angles of a triangle ABC: α = ∠CAB, β = ∠ABC and γ = ∠BCA.
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3. (RC) If a straight line passes through a point inside
a circle, it intersects the circle in two points.

4. (CC) If a circle passes through points inside and out-
side another circle, the two circle intersect in two
points.

Axiom 10 (Axiom of Parallels). Let a be any line and
A be a point not on it. Then there is at most one line that
passes through A and does not intersect a.

Definition 11. Different types of geometry:

• A Hilbert plane is a geometry where Theorems 3, 4
and 8 are satisfied.

• A Pythagorean plane is a Hilbert plane in which ax-
iom of Parallels is satisfied.

• An Euclidean plane is a Pythagorean plane in which
axioms RC and CC are satisfied.

• The Cartesian geometry of R2 is the unique geome-
try satisfying all Hilbert’s axioms.

Absolute geometry

Definition 12. Absolute geometry is the part of Euclidean
geometry that only uses Theorems 3, 4 and 8.

Theorem 13. In an isosceles triangles, the angles oppo-
site the congruent sides are congruent.

Theorem 14 (SAS criterion). If two sides of a triangle
and the angle between them are congruent to the corre-
sponding sides and angle of a second triangle, then the
two triangles are congruent.

Theorem 15. Adjacent angles of congruent angles are
congruent.

Theorem 16. Opposite angles4 are congruent.

Theorem 17. If A and B are each on one of the sides of
an angle with vertex O, any ray with vertex O that passes
through an interior point of the angle intersects the seg-
ment AB.

Theorem 18. There exist right angles.

Theorem 19. Let α, α′, β, β′ be angles. If α ≡ α′ and
β ≡ β′, then α + β ≡ α′ + β′.

Theorem 20 (SSS criterion). If two triangles have all
its sides congruent, they have all its angles congruent.

Theorem 21. Right angles are congruent.

Theorem 22 (Exterior angle theorem). An exterior
angle of a triangle is greater than any of the non-adjacent
interior angles.

Theorem 23. If ℓ is a line and P is a point not lying on
ℓ, there exists a line L passing through P and such that
not intersects ℓ.

Theorem 24 (ASA criterion). If two triangles have a
side and the two angles of this side congruent, the triangles
are congruent.

Theorem 25 (SAA criterion). If two triangles have a
side, an angle of this side and the angle opposite to this
side congruent, the triangles are congruent.

Theorem 26. In any triangle the greater side is opposite
to the greater angle.

Theorem 27. If a triangle has two congruent angles, it
is isosceles.

Theorem 28. Every segment has a midpoint.

Theorem 29. Every angle has an angle bisector.

Theorem 30. Every segment has a perpendicular bisec-
tor.

Theorem 31 (Saccheri-Legendre theorem). The sum
of the angles of a triangle is at most two right angles.

Cartesian geometry

Definition 32. An ordered field K is a field together with
a total order of its elements, satisfying:

• x ≤ y =⇒ x + z ≤ y + z ∀x, y, z ∈ K.

• x, y ≥ 0 =⇒ xy ≥ 0 ∀x, y ∈ K.

Definition 33. We say a field K is Pythagorean if ∀a ∈ K,
1 + a2 = b2 for some b ∈ K.

Theorem 34. K2 is a Pythagorean plane if and only if
K is an ordered Pythagorean field.

Definition 35. An ordered field K is Archimedean if ax-
iom of Archimedes is valid in K.

Definition 36. An ordered field K is Euclidean if ∀a ∈ K,
a > 0, there exists a b ∈ K such that b2 = a.

Theorem 37. K2 is an Euclidean plane if and only if K
is an ordered Euclidean field.

Definition 38. The smallest Pythagorean field is called
Hilbert field (Ω) and it can be defined as the intersection
of all Pythagorean fields of R. Alternatively, it can be
defined as the field whose elements are the real numbers
obtained from rational numbers with the operations of ad-
dition, subtraction, multiplication, multiplicative inverse
and the operation a 7→

√
1 + a2.

Definition 39. The smallest Euclidean field is called con-
structible field (K) and it can be defined as the intersection
of all Euclidean fields of R. Alternatively, it can be defined
as the field whose elements are the real numbers obtained
from rational numbers with the operations of addition,
subtraction, multiplication, multiplicative inverse and the
square root of positive numbers.

4Opposite angles are angles that are opposite each other when two lines intersect.
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Non-Euclidean geometries

Definition 40 (Hyperbolic geometry). Hyperbolic ge-
ometry is the non-Euclidean geometry where axiom of Par-
allels fails.

Proposition 41. Properties of hyperbolic geometry:

• There are infinity lines parallel to a given line ℓ that
pass through a point not lying on ℓ.

• There are lines inside an angle that do not intersect
the sides of the angle.

• The sum of the angles of any triangle is less than
two right angles.

Definition 42. Hyperbolic geometry models:

• Beltrami-Klein model:

– Points: K := {(x, y) ∈ R2 : x2 + y2 < 1}.
– Lines: Lines of R2 that intersect with K.
– Incidence and order relations are the same as

in ordinary Euclidean geometry of R2.
– Two segments AB, A′B′ ∈ K are congruent if

and only if there is an Euclidean motion5 f such
that f(A) = A′ and f(B) = B′. Two angles
hk, h′k′ ∈ K are congruent if and only if there
is an Euclidean motion f such that f(h) = h′

and f(k) = k′.

Figure 1: Beltrami-Klein model

• Poincaré disk model:

– Points: D := {(x, y) ∈ R2 : x2 + y2 < 1}.
– Lines:

1. Lines of R2 that pass through the origin.
2. Circles of R2 that intersect orthogonally

the circle C = {(x, y) ∈ R2 : x2 + y2 = 1}.
– Incidence and order relations are the same as

in ordinary Euclidean geometry of R2.
– Is a conformal model: The hyperbolic measure

of an angle coincides with the Euclidean mea-
sure of it whereas the distance between two

points A, B ∈ D is measured using the follow-
ing formula:

dh(A, B) := − ln d(A, P )d(B, Q)
d(A, Q)d(B, P )

where P, Q ∈ C are the boundary points of D
on the line passing through A and B so that A
lies between P and B.

Figure 2: Poincaré disk model

• Poincaré half-plane model:

– Points: H := {(x, y) ∈ R2 : y > 0}.
– Lines:

1. Vertical straight lines of R2.
2. Circles of R2 with center on the x-axis.

– Incidence and order relations are the same as
in ordinary Euclidean geometry of R2.

– Is a conformal model. The distance between
two points A, B ∈ D is measured using the fol-
lowing formula:

dh(A, B) := − ln d(A, P )d(B, Q)
d(A, Q)d(B, P )

where P, Q ∈ {(x, y) ∈ R2 : y = 0} are the
points where the semicircle meet the boundary
line y = 0.

Figure 3: Poincaré half-plane model

Definition 43 (Non-Paschian geometry). Non-
Paschian geometry is the non-Euclidean geometry where
axiom of Archimedes fails.
Proposition 44 (Construction of a non-Paschian
geometry). Suppose we have a total order relation ⊴
on R such that:

1. x ⊴ y =⇒ x + z ⊴ y + z ∀x, y, z ∈ R.

2. ∃a, b ∈ R such that a ⊵ 0, b ⊵ 1 and ab ⊴ 0.
Then, the ordinary affine geometry of R2 together with ⊴,
satisfy all Hilbert’s axioms except Pasch’s axiom.

5See Section .
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Definition 45 (Non-SAS geometry). Non-SAS geom-
etry is the non-Euclidean geometry where SAS criterion
fails.

Proposition 46 (Construction of a non-SAS geom-
etry).

• Points: S = {(x, y, z) ∈ R3 : x + z = 0} =
{(x, y, −x) ∈ R3}.

• Lines: Ordinary straight lines of R2 contained in S.

• Incidence and order relations are the same as in or-
dinary Euclidean geometry of R2.

• Congruence of angles is the same as in the ordinary
geometry of R3. Congruence of segments is based in
the following distance:

d′((x, y, −x), (x′, y′ − x′))2 = (x − x′)2 + (y − y′)2

That is, two segments are congruent if so are their
projections to the plane z = 0.

Definition 47 (Non-Archimedean geometry). Non-
Archimedean geometry is the non-Euclidean geometry
where SAS criterion fails.

Axiomatic projective space
Definition 48. An axiomatic projective space is a system
of points and lines with an incidence relation that satisfy:

1. Every line contains at least 3 points

2. Any two distinct points lie on a unique line.

3. Projective axiom If A, B, C, D are four different
points and lines AB and CD intersect, then lines
AC and BD also intersect.

Definition 49. Let X be a projective space. A projective
subvariety of X is a set Z ̸= ∅ of points of X such that if
x, y ∈ Z are different points, then all the points lying on
the line passing through x and y belong to Z. Thus, Z is
also a projective space.

Proposition 50. Let X be a projective space. The inter-
section of subvarieties of X is also a subvariety of X.

Proposition 51. If A and B are subvarieties of a projec-
tive space X, we define its sum A + B as the intersection
of all subvarieties containing A ∪ B. As a consequence,
A + B is a subvariety of X.

Definition 52. Let X, Y be a projective spaces. A
collineation between X and Y is a bijection map f : X →
Y such that A, B, C ∈ X are three collinear points if and
only if f(A), f(B), f(C) ∈ Y are also collinear.

Definition 53. If X is a projective space, the dimension
of X is the maximum n such that there is a chain of in-
clusions

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn

where each Xi is a non-empty subvariety of X. If this n
doesn’t exist, we say X has infinite dimension.

Definition 54. A projective plane is a projective space of
dimension 2 that satisfies the following axioms:

1. Any two distinct points lie on a unique line.

2. Any two distinct lines meet on a unique point.

3. There exist at least four points of which no three are
collinear.

Theorem 55. X is a projective space of dimension 2 if
and only if X satisfies the axioms of Theorem 54.

Theorem 56 (Duality principle). If a statement P
(which only involves points and lines) is true in any projec-
tive plane, then the statement obtained from P exchanging
points by lines (and correctly changing all the connectors
to make a consistent statement) is also true in any projec-
tive plane.

Affine and projective spaces

Definition 57. An affine plane is a set of points and lines
satisfying the following axioms:

1. Any two distinct points lie on a unique line.

2. If r is a line and P /∈ r is a point, there exists a
unique line s such that P ∈ s and r and s does not
intersect.

3. Any line has at least two distinct points.

4. There exist at least two distinct lines.

Proposition 58 (Passage from the projective plane
to the affine plane). Suppose X is a projective plane
and r ∈ X is an arbitrary line of X. Let A := X − r.
Then, A is an affine plane.

Proposition 59 (Passage from the affine plane to
the projective plane). Suppose A is an affine plane.
Let R be the set of all lines of A. We define:

L = R/
∼ where r ∼ s ⇐⇒ r ∥ s

Construction of a projective plane X:

1. The points of X are the points of A and L.

2. The lines of X are the lines of A an another line ℓ.

3. Incidence relation on X: Let P ∈ X be a point and
r ∈ X a line. Then:

• If P ∈ A and r ∈ A, then P ∈ r has the same
meaning on X and A.

• If P ∈ A and r = ℓ, then P /∈ r.
• If P ∈ X \ A = L, then P ∈ ℓ.
• If P ∈ X \ A ̸= L, then P is an equivalence

class of lines of A and, if r ∈ A, we say P ∈ r
if r ∈ X.
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2. | Projective geometry
Projective space
Definition 60. Let V be a n+1-dimensional vector space
over a field K. We define the n-dimensional projective
space P(V ) of V in either of these two equivalent ways:

• P(V ) := {1-dimensional vector subspaces of V }.

• P(V ) := (V \{0})/ ∼ where the relation ∼ is defined
∀v, u ∈ V as v ∼ u ⇐⇒ v = λu, λ ̸= 06.

Definition 61. Let V , W be two vector spaces over a
field K and P(V ), P(W ) be their associated projective
spaces. If ϕ : V → W is an isomorphism, we can consider
the map:

P(ϕ) : P(V ) −→ P(W )
[v] 7−→ [ϕ(v)]

We say P(ϕ) is an homography between P(V ) and P(W ).

Definition 62. Let V be a vector space over a field K
and W be a vector space over a field K ′. An semilinear
isomorphism ϕ : V → W is a bijective map associated
with a field isomorphism r : K → K ′ such that

ϕ(u + v) = ϕ(u) + ϕ(v) ∀u, v ∈ V.

ϕ(λv) = r(λ)ϕ(v) ∀v ∈ V, ∀λ ∈ K.

Definition 63. Let V be a vector space over a field K,
W be a vector space over a field K ′ and ϕ : V → W a
semilinear isomorphism. We say P(ϕ) : P(V ) → P(W )
is an isomorphism between projective spaces and we write
P(V ) ∼= P(W ) to denote that P(V ), P(W ) are isomorphic.

Proposition 64. Let V be a n + 1-dimensional vec-
tor space over a field K. Then there is a homography
P(V ) ∼= P(Kn+1)7.

Definition 65. Let V be a n+1-dimensional vector space
over a field K and E ⊆ V be a m + 1-dimensional vector
subspace. Consider the natural inclusion P(E) ⊆ P(V ).
We say P(E) is a m-dimensional projective subvariety
of P(V ). In particular, we call line of P(V ) any 1-
dimensional projective subvariety and we call hyperplane
of P(V ) any n − 1-dimensional projective subvariety.

Homogeneous coordinates and Graßmann for-
mula
Definition 66. Let V be a n+1-dimensional vector space
over a field K, (v0, . . . , vn) be a basis of V and P(V ) be
a projective space. Given x ∈ P(V ) such that x = [v]
for some v ∈ V , v = λ0v0 + · · · + λnvn, we define the
homogeneous coordinates of x as:

x = {λ0, . . . , λn}

Definition 67. Let P(V ) be a n-dimensional projective
space. A projective frame on P(V ) is a tuple of n + 2
points of P(V ), such that any n+1 points of the tuple are
not contained in a hyperplane.

Theorem 68. Let P(V ) be a n-dimensional projective
space. If U0, . . . , Un, U is a projective frame of P(V ), there
exists a basis (v0, . . . , vn) of V such that:

Ui = [vi] for i = 0, . . . , n and U = [v1 + · · · + vn]

If (u0, . . . , un) is another basis of V that satisfies the same
property, then ∃τ ̸= 0 : ui = τvi, for i = 0, . . . , n.

Definition 69. Let P(V ) be a n-dimensional projective
space and let H ⊂ P(V ) be a hyperplane. The equation
of the hyperplane is:

x0a0 + . . . + xnan = 0

Definition 70. Let P(V ) be a projective space and let
Y1 = P(E1) and Y2 = P(E2) be two projective subvari-
eties of P(V ). Then

• Y1 ∩ Y2 = P(E1 ∩ E2).

• Y1 + Y2 = P(E1 + E2).

Theorem 71 (Graßmann formula). Let P(V ) be a
projective space and Y1 = P(E1), Y2 = P(E2) be two
projective subvarieties of P(V ). Then:

dim(Y1 ∩ Y2) + dim(Y1 + Y2) = dim Y1 + dim Y2
8

Fano and Pappus configurations

Definition 72. A configuration is a finite set of points
and lines satisfying the following axioms:

1. There are four points such that no three of them are
collinear.

2. Two distinct points lie on at most one line.

Definition 73. Let X be a projective geometry and C be
a configuration. We say C ⊆ X if there exists injective
maps ip, iℓ from the points and lines of C to the points
and lines of X, respectively, such that if A is a point and
s is a line satisfying A ∈ s, then ip(A) ∈ iℓ(s).

Definition 74. Let X be a projective geometry and C be
a configuration. We say C is realizable on X if there is an
inclusion C ⊆ X.

Definition 75. Let X be a projective geometry and C be
a configuration. We say C is a theorem in X if satisfies
that for any line r ∈ C, the inclusion C − r ⊆ X can be
extended to an inclusion C ⊆ X.

Definition 76. Fano configuration is a configuration of 7
points and 7 lines defined in either of the following ways:

• It’s the configuration described in Fig. 4.
6Observe that ∼ is an equivalence relation.
7From now on we will use the notation Pn(K) := P(Kn+1).
8The formula is also valid for the case Y1 ∩ Y2 = ∅ if we consider, by agreement, dim∅ := −1.
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Figure 4: Fano configuration

• It’s the unique projective plane of order 29.

• It’s the projective plane P2(F2).

Theorem 77. If n ≥ 2, Fano configuration is a theorem
in Pn(K) if and only if char K = 2.

Definition 78. Pappus configuration is a configuration of
9 points and 9 lines defined in either of the following ways:

• It’s the configuration described in Fig. 5.

Figure 5: Pappus configuration

• It’s the configuration whose points are the elements
of the group (Z/9Z, +) and whose lines are triples
{i, j, k} such that i + j + k = 0 where i, j, k are dif-
ferent modulo 3.

• It’s the configuration obtained from the affine plane
over F3 eliminating three parallel lines.

Theorem 79. Let K be a division ring. Pappus configu-
ration is a theorem in Pn(K) if and only if K is a field.

Desargues configuration
Definition 80. Two triangles ABC and A′B′C ′ are said
to be in perspective with respect to a point if lines AA′,
BB′ and CC ′ intersect at the point P . This point is called
centre of perspectivity.

Definition 81. Two triangles ABC and A′B′C ′ of sides
a, b, c and a′, b′, c′ respectively are said to be in perspective
with respect to a line if points a ∩ a′, b ∩ b′ and c ∩ c′ lie on
the same line r. This line is called axis of perspectivity.

Theorem 82 (Desargues’ theorem). If two triangles
are in perspective with respect to a point, so are in per-
spective with respect to a line10.

Definition 83. Desargues configuration is a configuration
of 10 points and 10 lines defined in either of the following
ways:

• It’s the configuration described in Fig. 6.

Center of
perspectivity

Axis of perspectivity

Figure 6: Desargues configuration

• It’s the configuration whose points are the elements
of the set S = {1, 2, 3, 4, 5} and whose lines are the
subsets of cardinal 3 of S.

• It’s the configuration created from two triangles that
are simultaneously in perspective with respect to a
point and in perspective with respect to a line.

Definition 84. Projective planes in which Desargues’
theorem is not satisfied are called non-Desarguesian
planes.

Theorem 85 (Coordination theorem). Let X be an
axiomatic projective space of finite dimension n > 1 where
Pappus’ theorem is valid. Then there exist a field K and
an isomorphism X ∼= Pn(K)11.

Fundamental theorem of projective geometry
and cross ratio

Theorem 86 (Fundamental theorem of projective
geometry). Let f : P(V ) → P(W ) be a collineation be-
tween projective spaces of finite dimension greater than 1.
Then, there exists a semilinear isomorphism ϕ : V → W
such that f = P (ϕ).

Definition 87 (Cross ratio). Let A, B, C, D ∈ P(V )
be four collinear points lying on a line L ∈ P(V ) with
A, B, C different. As we have A = [v1], B = [v2],
C = [v3] and D = [v4] for some vectors v1, v2, v3, v4 ∈ V
then L = ⟨v1, v2⟩. Therefore, v3 = λ1v1 + λ2v2 and

9A finite projective plane of order n is a projective plane in which every line has n + 1 points and every point lies on n + 1 lines.
10Desargues’ theorem is valid in any axiomatic projective space of dimension 3 and, generally, in any axiomatic projective space that is

a subvariety of an axiomatic projective space of dimension 3. In particular, it is valid in Pn(K) for any division ring K and n ≥ 2.
11If Pappus theorem is not valid but Desargues’ theorem is, then X ∼= Pn(K) for some division ring K.
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v4 = µ1v1 + µ2v2, for some λ1, λ2, µ1, µ2 ∈ K. We define
the cross ratio between A, B, C, D as

(A, B, C, D) :=


λ2µ1

λ1µ2
if λ1µ2 ̸= 0,

∞ if λ1µ2 = 0.

Definition 88. Let A, B, C, D ∈ P(V ) be four collinear
points. If (A, B, C, D) = −1 we say the points A, B, C,
D form a harmonic ratio.
Definition 89. Let a, b, c, d be four lines on a plane
(with a, b, c different) intersecting at the point P . Let r
be a different line such that P /∈ r and let A := a ∩ r,
B := b ∩ r, C := c ∩ r, D := d ∩ r. We define the cross
ratio between a, b, c, d as:

(a, b, c, d) := (A, B, C, D)

Definition 90. Let X be a projective space such that
dim X ≥ 2. Let L1, L2 ∈ X be two lines intersecting at
the point P ∈ X and f : L1 → L2 be a function such
that f(A) = L2 ∩ PA. We say f is a perspectivity. The
composition of perspectivities is called a projectivity.
Theorem 91. If f : L1 → L2 is a projectivity, then f
preserves cross ratio, that is:

(f(A), f(B), f(C), f(D)) = (A, B, C, D)

Theorem 92. Let V be a 2-dimensional vector space and
f : P(V ) → P(V ) be a bijection. There exists linear func-
tion ϕ : V → V such that f = P (ϕ) if and only if f
preserves cross ratio.

Plücker coordinates
Proposition 93. Let r ∈ P3(K) be a line and A, B ∈ r
two points with coordinates A = {a0, a1, a2, a3} and B =
{b0, b1, b2, b3}. Consider the matrix:

A =
(

a0 a1 a2 a3
b0 b1 b2 b3

)
Now consider the six minors of A:

p01 =
∣∣∣∣a0 a1
b0 b1

∣∣∣∣ , p02 =
∣∣∣∣a0 a2
b0 b2

∣∣∣∣ , p03 =
∣∣∣∣a0 a3
b0 b3

∣∣∣∣ ,

p23 =
∣∣∣∣a2 a3
b2 b3

∣∣∣∣ , p31 =
∣∣∣∣a3 a1
b3 b1

∣∣∣∣ , p12 =
∣∣∣∣a1 a2
b1 b2

∣∣∣∣ .

The coordinates {p01, p02, p03, p23, p31, p12} doesn’t de-
pend on the points A, B on the line r. We de-
fine the Plücker coordinates of r as the coordinates
{p01, p02, p03, p23, p31, p12}
Proposition 94. Two lines are equal if and only if they
have the same Plücker coordinates.
Proposition 95. Let r be a line with Plücker coordi-
nates {p01, p02, p03, p23, p31, p12}. Then the points x =
{x0, x1, x2, x3} ∈ r satisfy:

p12 −p02 p01 0
−p31 −p03 0 p01
p23 0 −p03 p02
0 p23 p31 p12




x0
x1
x2
x3

 =


0
0
0
0



3. | Affine geometry

Affine space

Definition 96. Let V be a vector space over a field K.
An affine space over V is a set A together with a map:

A × V −→ A
(P, v) 7−→ 7→ P + v

such that:

1. P + 0 = P ∀P ∈ X.

2. P + (v + w) = (P + v) + w ∀P ∈ X and ∀v, w ∈ V .

3. For all P, Q ∈ X ∃!v ∈ V : Q = P + v. We denote
the vector v by −−⃗

PQ.

Definition 97. Let A be an affine space associated to a
vector space V over a field K12. We define the dimension
of A as dimA = dim V .

Proposition 98. Let A be an affine space, P, Q, R, S ∈ A.
Then, the following properties are satisfied:

1. −−⃗
PQ = 0 ⇐⇒ P = Q.

2. −−⃗
PQ = −

−−⃗
QP .

3. −−⃗
PQ + −−⃗

QR = −−⃗
PR.

4. −−⃗
PQ = −⃗

RS =⇒
−−⃗
PR = −⃗

QS.

Definition 99. Let A be an affine space, P1, . . . , Pn ∈ A
and λ1, . . . , λn ∈ K such that λ1 + · · · + λn = 1. Given an
arbitrary point O ∈ A, we define the affine combination
of P1, . . . , Pn as:

λ1P1 + · · · + λnPn := O + (λ1
−−⃗
OP1 + · · · + λn

−−⃗
OPn)

We say the points P1, . . . , Pn are affinely independents if
the vectors −−−⃗

P1P2, . . . ,
−−−⃗
P1Pn are linearly independent.

Definition 100. Let A be an affine space and
P1, . . . , Pr ∈ A. The barycenter of the points P1, . . . , Pr

is:

B := 1
r

(P1 + · · · + Pn)
12From now on, for simplicity, we will only refer to the affine space by mentioning the set A without mentioning the associated vector

space V over a field K.

7



Subvarieties and Graßmann formula
Definition 101. Let A be an affine space. If P ∈ A and
F is a vector subspace of V , then an affine subvariety of
A is the set:

P + F := {P + v ∈ A : v ∈ F} = {Q ∈ A : −−⃗
PQ ∈ F}

We say F is the director subspace of the subvariety P + F .
If dim F = m, then dim(P +F ) = m. If m = 1, we say the
subvariety is line. If m = dimA − 1, we say la subvariety
is a hyperplane.

Proposition 102. Let P +F be an affine subvariety of an
affine space A. Then if Q ∈ P +F , we have P +F = Q+F .

Definition 103. Two subvarieties P + F and Q + G are
said to be parallel if F ⊆ G or G ⊆ F .

Definition 104. Let Y , Z be two subvarieties of an affine
space A such that Y ∩Z ̸= ∅ and let F , G be their director
subspaces, respectively. Then if P ∈ Y ∩ Z, we have that
Y ∩ Z is a subvariety of A and Y ∩ Z = P + F ∩ G.

Definition 105. Let Y = P + F , Z = Q + G be two
subvarieties of an affine space A. We define its sum as the
subvariety:

Y + Z := P + (F + G + ⟨
−−⃗
PQ⟩) 13

Theorem 106 (Affine Graßmann formulas). Let
L1 = P1 + F1, L2 = P2 + F2 be two subvarieties of an
affine space A. Then:

• If L1 ∩ L2 ̸= ∅:

dim(L1 + L2) = dim L1 + dim L2 − dim(L1 ∩ L2)

• If L1 ∩ L2 = ∅:

dim(L1 + L2) = dim L1 + dim L2 − dim(F1 ∩ F2) + 1

Coordinates and equations
Definition 107. An affine frame in an affine space A is a
pair R = {P ; B} formed by a point P ∈ A and a basis B
of V . The point P is called the origin of this affine frame.

Definition 108. Let R = {P ; B}, B = (v1, . . . , vn), be
an affine frame in an affine space A and let Q ∈ A. We
define affine coordinates of Q as:

Q = (λ1, . . . , λn) ⇐⇒
−−⃗
PQ = λ1v1 + · · · + λnvn

Proposition 109. Let A be an affine space and
P0, . . . , Pn ∈ A be points satisfying the following equiv-
alent properties:

1. The points are affinely independent.

2. There is no proper subvariety14 containing all of
them.

3. P0 + · · · + Pn = A.

4. The vectors −−−⃗
P0P1, . . . ,

−−−⃗
P0Pn ∈ V are linearly inde-

pendent.

Then R = {P0; −−−⃗
P0P1, . . . ,

−−−⃗
P0Pn} is an affine frame in A.

Definition 110. Let {λ0, . . . , λn} be homogeneous coor-
dinates of a projective space P(V ) and (µ1, . . . , µn) affine
coordinates of an affine space A. We call homogenization
the transformation of affine coordinates to homogeneous
coordinates as follows:

(µ1, . . . , µn) 7−→ {µ1, . . . , µn, 1}

Similarly, we call dehomogenization the transformation of
homogeneous coordinates to affine coordinates as follows:

{λ0, . . . , λn} 7−→
(

λ0

λn
, . . . ,

λn−1

λn

)
Definition 111. Let R = {P ; B}, B = (u1, . . . , un), be
an affine frame in an affine space A and L = Q + F be a
subvariety of A. Let Q = (q1, . . . , qn) be a point of A and
(v1, . . . , vr) be a basis of F . We call parametric equations
of L the equations:

(x1, . . . , xn) = (q1, . . . , qn) +
r∑

i=1
λivi

If λ1, . . . , λr ∈ K we get the coordinates of (x1, . . . , xn).

If vj =
n∑

i=1
αijui, j = 1, . . . , r we can rearrange the para-

metric equations to get:x1 − q1
...

xn − qn

 =

α11 · · · α1r

...
...

αn1 · · · αnr


λ1

...
λr


The Cartesian equations of L are those obtained by equat-
ing to zero the minors of size (r + 1) × (r + 1) of the aug-
mented matrix (αij | xi − qi).

Affinities
Definition 112. A function f : A1 → A2 between two
affine space over vector spaces V1, V2 is an affinity if there
exists a linear function ϕ : V1 → V2 such that for all P ∈ X
and for all v ∈ V1 we have:

f(P + v) = f(P ) + ϕ(v)15

We call the differential of f , denoted by df , the function
ϕ.

Proposition 113. Let f : A1 → A2 and g : A2 → A3
be affinities. Then g ◦ f : A1 → A3 is an affinity and
d(g ◦ f) = dg ◦ df .

Proposition 114. Let f : A1 → A2 be an affinity and
P, Q ∈ A1. Then:

df(−−⃗PQ) =
−−−−−−−⃗
f(P )f(Q)

13As expected, Y + F is the smallest subvariety containing Y ∪ Z.
14A proper subvariety Y of A is a subvariety such that Y ̸= ∅ and Y ̸= A.
15If ϕ is a semilinear map, then we say f is a semiaffinity.
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Proposition 115. Let f, g : A1 → A2 be affinities such
that f(P ) = g(P ) for some P ∈ A1 and df = dg. Then,
f = g.

Proposition 116. Let f : A1 → A2 be an affinity and
λ1, . . . , λr such that λ1 + · · · + λr = 1. Then:

f(λ1P1 + · · · + λrPr) = λ1f(P1) + · · · + λrf(Pr)

Proposition 117. Let f : A1 → A2 be an affinity and
L = P + F be a subvariety of A. Then f(P + F ) is a
subvariety of A and:

f(P + F ) = f(P ) + df(F )

Proposition 118. Let f : A1 → A2 be an affinity and
R1 = {P1; (u1, . . . , un)}, R2 = {P2; (v1, . . . , vm)} be
affine frames of A1, A2, respectively. If x = (x1, . . . , xn) ∈
A1 and y = (y1, . . . , ym) ∈ A2 then y1

...
ym

 =

 ρ1
...

ρm

 + M

x1
...

xn


or, equivalently,

y1
...

ym

1

 =


ρ1

M
...

ρm

0 · · · 0 1




x1
...

xn

1

 = MR1,R2(f)


x1
...

xn

1


where M is the matrix associated with df and (ρ1, . . . , ρm)
are the coordinates of

−−−−−⃗
P2f(P1) in the basis (v1, . . . , vm).

Here, MR1,R2(f) denote the matrix of f with respect to
affine frames R1, R2.

Examples of affinities

Definition 119. Two affinities f, g : A → A are simi-
lar if there exist a bijective affinity h : A → A such that
h−1fh = g.

Proposition 120. Two affinities f , g are similar if there
exist affine frames R, R′ such that MR(f) = MR′(g).

Definition 121. A point P ∈ A is a fixed point of
f : A → A if f(P ) = P .

Definition 122. A linear subvariety L = P + F ⊂ A is
invariant under an affinity f : A → A if f(L) ⊂ L.

Proposition 123. A linear subvariety L = P + F ⊂ A is
invariant under an affinity f : A → A if and only if

1. df(F ) ⊂ F .

2.
−−−−⃗
Pf(P ) ∈ F .

In particular, a line r = P + ⟨v⟩ is invariant under f if
and only if

1. v is an eigenvector of df .

2.
−−−−⃗
Pf(P ) ∈ ⟨v⟩.

Proposition 124. If the set of fixed points of an affinity
f , Fix(f), is non-empty, then Fix(f) is a subvariety.
Definition 125. Let f be an affinity. We define the in-
variance level of f , ρ(f), as:

ρ(f) = min{dim L : f(L) ⊂ L ⊂ A} ∈ {0, . . . , dimA}

Definition 126 (Translations). Let A be an affine space
and v ̸= 0. A translation with translation vector v is an
affinity Tv : A → A defined by Tv = P + v.
Proposition 127 (Properties of translations). Let
Tv be a translation. Then:

1. Fix(Tv) = ∅.

2. Invariant lines are those with director subspace ⟨v⟩.

3. If R = {P ; (v1, . . . , vn)} is an affine frame, then:

MR(Tv) =



1 0 · · · 0 1

0 . . . . . . ... 0
... . . . 1 0

...
0 · · · 0 1 0
0 · · · 0 0 1


4. All translations are similar and ρ(Tv) = 1.

Definition 128 (Reflections). Let A be an affine space
and suppose char K ̸= 2. Let H = P + E be a hyperplane
of A and let v /∈ E. The reflection of v with respect to
H is the unique affinity f : A → A such that f(P ) = P
for all P ∈ H and df(v) = −v. Usually H is called the
mirror of the reflection and v the root of the reflection.
Proposition 129 (Properties of reflections). Let f
be a reflection with root v and mirror H = P + E. Then:

1. Fix(f) = H.

2. Invariant lines are those contained on H and those
with director subspace ⟨v⟩.

3. If R = {P ; (v1, . . . , vn−1, v)} is an affine frame such
that P ∈ H and v1, . . . , vn−1 ∈ E, then

MR(f) =



1 0 · · · 0 0

0 . . . . . . ... 0
... . . . 1 0

...
0 · · · 0 −1 0
0 · · · 0 0 1


4. All reflections are similar and ρ(f) = 0.

Definition 130 (Projections). Let A be an affine space
and H a hyperplane of A with director subspace E and
let v /∈ E. The projection over H in the direction of v is
the affinity f : A → A such that f(P ) = P for all P ∈ H
and df(v) = 0.
Proposition 131 (Properties of projections). Let f
be a projection over H = P + E in the direction of v.
Then:

1. Fix(f) = H.

2. Invariant lines are those contained on H.
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3. If R = {P ; (v1, . . . , vn−1, v)} is an affine frame such
that P ∈ H and v1, . . . , vn−1 ∈ E, then

MR(f) =



1 0 · · · 0 0

0 . . . . . . ... 0
... . . . 1 0

...
0 · · · 0 0 0
0 · · · 0 0 1


4. All projections are similar and ρ(f) = 0.

Definition 132 (Homotheties). An homothety is an
affinity f : A → A such that df = λid, λ ̸= 0, 1. This
λ is called the similitude ratio of the homothety.

Proposition 133 (Properties of homotheties). Let f
be a homothety of similitude ratio λ. Then:

1. f has a unique fixed.

2. If R = {P ; B} is an affine frame with P ∈ Fix(f)
and B an arbitrary basis, then

MR(f) =


0

λI
...
0

0 · · · 0 1


3. Two homotheties are similar if and only if they have

the same similitude ratio. Moreover, ρ(f) = 0.

Proposition 134. Let Tw be a translation and R a
reflection with root v with respect to the hyperplane
H = P + E. Let f = Tw ◦ R. We take an affine frame
R = {P ; (v1, . . . , vn−1, v)} such that v1, . . . , vn−1 ∈ E.
Then if w = (w1, . . . , wn) in this frame we have,

MR(f) =



1 0 · · · 0 w1

0 . . . . . . ... w2
... . . . 1 0

...
0 · · · 0 −1 wn

0 · · · 0 0 1


1. If w ∈ ⟨v⟩ =⇒ w1 = · · · = wn−1 = 0 and

therefore f is a reflection with mirror the hyperplane
2xn = wn.

2. If w /∈ ⟨v⟩ we say f is a glide reflection. In this
case, if w = wnv + u with u ∈ E and we take
R = (P + wn

2 v; (u, u2 . . . , un−1, v)), then:

MR(f) =



1 0 · · · 0 1

0 . . . . . . ... 0
... . . . 1 0

...
0 · · · 0 −1 0
0 · · · 0 0 1


The invariance level of glide reflections is ρ(f) = 1.

Fundamental theorem of affine geometry
Definition 135 (Simple ratio). Let A, B, C ∈ A be
three different collinear points. The simple ratio of A, B, C
is the unique scalar λ := (A, B, C) ∈ K such that:

−−⃗
AB = λ

−⃗
AC

Theorem 136 (Fundamental theorem of affine ge-
ometry). Let f : A → A be a collineation of an affine
space of dimension n ≥ 2 over the field K with more than
two elements. Then f is a semiaffinity.
Proposition 137. Two affinities f, g : A → A are similar
if and only if

1. df and dg are similar.

2. ρ(f) = ρ(g).
Theorem 138. Let f : A → A be an affinity and P ∈ A
a point. Let v :=

−−−−⃗
Pf(P ). Then:

ρ(f) = min{r : (df − id)r(v) ∈ im(df − id)r+1}

Corollary 139. If f is an affinity and 1 is not an eigen-
vector of df , then ρ(f) = 0.

Euclidean affine spaces
Definition 140. An Euclidean affine space is an affine
space such that the associated vector space is an Euclidean
vector space16.
Definition 141. Let A be an Euclidean affine space. We
define the distance between two points P, Q ∈ A as:

d(A, B) := ∥
−−⃗
AB∥

We define the segment delimited by A and B as:

{P ∈ A : P = λA + (1 − λ)B, λ ∈ [0, 1]}

Proposition 142. Let A be an Euclidean affine space.
Then the following properties are satisfied:

1. d(A, C) ≤ d(A, B) + d(B, C) (Triangular inequal-
ity).

If ABC is a right triangle with right angle at A, then:
2. d(B, C)2 = d(A, B)2 +d(A, C)2 (Pythagorean the-

orem).
Definition 143. Two subvarieties L1 = P1 + F1, L2 =
P2 + F2 of an Euclidean affine space A are orthogonal,
L1 ⊥ L2, if F1 ⊥ F2

17.
Definition 144. Let L1 = P1 + F1, L2 = P2 + F2 be two
subvarieties of an Euclidean affine space A. We define the
distance between two affine subvarieties as:

d(L1, L2) := inf{d(A1, A2) : A1 ∈ L1, A2 ∈ L2}

Theorem 145. Let L1 = P1 + F1, L2 = P2 + F2 be
two subvarieties of an Euclidean affine space A. Let
u = u1 + u2 ∈ F1 + F2, with ui ∈ Fi, and v ∈ (F1 + F2)⊥

such that −−−⃗
P1P2 = u + v. Then we have:

d(L1, L2) = ∥v∥ = d(P1 + u1, P2 − u2)
16Remember ??.
17Remember ??.
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Euclidean motions
Definition 146. Let A be an Euclidean affine space. A
function f : A → A is an Euclidean motion if:

d(f(A), f(B)) = d(A, B) ∀P, Q ∈ A

Proposition 147. Let A be an Euclidean affine space.
f : A → A is an Euclidean motion if and only if f is an
affinity and df is an isometry18.

Proposition 148 (Examples of Euclidean motions).

• Any translation Tv is an Euclidean motion. More-
over, Tu ∼ Tv (as Euclidean motions) if and only if
∥u∥ = ∥v∥.

• A homothety f of similitude ratio λ is an Euclidean
motion if and only if λ = −1. Moreover, all homo-
theties are similar as Euclidean motions.

• A reflection f of mirror H = Q + E and root v is
an Euclidean motion if and only if ⟨v⟩ ⊥ E. These
reflections are called orthogonal reflections. If n is a
unit normal vector to the mirror, then the orthogo-
nal reflection is given by:

f(P ) = P − 2⟨
−−⃗
QP, n⟩n

• Glide orthogonal reflections are Euclidean motions.

• A rotation on the affine plane is an Euclidean mo-
tion, whose differential is a rotation of an angle other
than zero. This affinity has a unique fixed point and
if we take this point as a reference, its matrix in this
frame will be: cos α − sin α 0

sin α cos α 0
0 0 1


Classification of Euclidean motions
Theorem 149 (Classification of isometries).

1. Two isometries are similar if and only if they have
the same characteristic polynomial.

2. For any isometry, there exists an orthonormal basis
in which the matrix associated with the isometry is
of the form 

Ir

−Is

R1
. . .

Rt


where r, s, t ≥ 0, Im denote the identity matrix of
size m × m and each Ri is a rotation with matrix

Ri =
(

cos αi − sin αi

sin αi cos αi

)
with αi ̸= 0, π for i = 1, . . . , t.

Definition 150. Let P ∈ A be a point of an Euclidean
affine space and f : A → A be an Euclidean motion. Ex-
press the vector

−−−−⃗
Pf(P ) as:

−−−−⃗
Pf(P ) = u + v u ∈ ker(df − id), v ∈ im(df − id)

We define the glide vector of f as uf := u.

Proposition 151. The glide vector uf has the following
properties:

• df(uf ) = uf .

• uf does not depend on the point P .

• If uf = 0 =⇒ ρ(f) = 0. Otherwise, ρ(f) = 1.

Theorem 152 (Classification of Euclidean mo-
tions). Two Euclidean motions f, g : A → A are similar
(as Euclidean motions) if and only if df ∼ dg (as isome-
tries) and ∥uf ∥ = ∥ug∥.

4. | Quadrics
Quadrics
Definition 153. Let A an affine space of dimension n
over a field K. A quadric in A is a polynomial of degree
2 with n variables, p(x1, . . . , xn), and coefficients in the
field K modulo the equivalence relation:

p(x1, . . . , xn) ∼ λp(x1, . . . , xn) if λ ∈ K, λ ̸= 0

The points of the quadric p(x1, . . . , xn) are:

{(a1, . . . , an) ∈ A : p(a1, . . . , an) = 0}

Definition 154. A conic is a quadric in a 2-dimensional
space.

Definition 155. Two quadrics p, q of an affine space A
are equivalent if there exists a bijective affinity f : A → A
such that f(p) = q.

Definition 156. Let Pn(K) be a projective space of di-
mension n over a field K. A quadric in Pn(K) is a ho-
mogeneous polynomial of degree 2 with n + 1 variables,
p(x1, . . . , xn+1), and coefficients in the field K modulo the
equivalence relation:

p(x1, . . . , xn+1) ∼ λp(x1, . . . , xn+1) if λ ∈ K, λ ̸= 0

The points of the quadric p(x1, . . . , xn+1) are:

{(a1, . . . , an+1) ∈ Pn(K) : p(a1, . . . , an+1) = 0}

Definition 157. Two quadrics p, q in Pn(K) are equiv-
alent if there exists a homography f : Pn(K) → Pn(K)
such that f(p) = q.

Theorem 158. There is a bijective correspondence be-
tween quadrics of Kn and quadrics of Pn(K) not divis-
ible by xn+1. Thus, the points of the affine quadric are
the points of the projective quadric that are in the affine
space19.

18Remember ??. From this we deduce that if A ∈ Mn(K) is the matrix associated with an isometry, then AAT = In.
19Nevertheless, observe that two equivalent projective quadrics as projective quadrics may not be equivalent as affine quadrics.
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Proposition 159. Let A be an affine space and Pn(K) a
projective space, both of dimension n and over a field K.
Let p be a quadric.

• Homogenization: If p(x1, . . . , xn) ∈ A, then:

p(x1, . . . , xn) 7→ x2
n+1p

(
x1

xn+1
, . . . ,

xn

xn+1

)
∈ Pn(K)

• Dehomogenization: If p(x1, . . . , xn+1) ∈ Pn(K),
then:

p(x1, . . . , xn+1) 7→ p(x1, . . . , xn, 1) ∈ A

Four points of view of quadrics
Definition 160. We say a bilinear form is anisotropic or
elliptic if the unique isotropic vector20 is the null vector.

Theorem 161. There is, expect for equivalence, only one
symmetric bilinear form of dimension 2 such that it is
non-singular21 and non-elliptic. We call this bilinear form
hyperbolic plane.

Definition 162. Let φ : V ×V → K a symmetric bilinear
form. We define the quadratic form associated with φ as

q : V −→ K
u 7−→ φ(u, u)

This function clearly satisfies:

1. q(λu) = λ2u.

2. φ(u, v) = 1
2 (q(u + v) − q(u) − q(v)).

Proposition 163. Two symmetric bilinear forms φ1,
φ2 over V are equivalent if there exists an isomorphism
ϕ : V → V such that φ1(u, v) = φ2(ϕ(u), ϕ(v)) ∀u, v ∈ V .
Two quadratic forms q1, q2 over V are equivalent if there
exists an isomorphism ϕ : V → V such that q1(u) =
q2(ϕ(u)) ∀u ∈ V .

Theorem 164. Symmetric bilinear forms, quadratic
forms, symmetric matrices and homogeneous polynomials
of degree 2 are equivalents ways to study quadrics.

Definition 165. A quadric is non-degenerate if its asso-
ciated quadratic form is non-singular.

Classification of quadratic forms and quadrics
Definition 166. A quadratic space is a pair (V, q) where
V is a vector space over a field K and q is a quadratic
form.

Definition 167. Let E1 = (V1, q1) and E2 = (V2, q2)
be two quadratic spaces. An isometry between E1 and
E2, E1 ∼= E2, is an isomorphism ϕ : V1 → V2 such that
q1(v) = q2(ϕ(v)) ∀v ∈ V .

Definition 168. Let (V, q) be a quadratic space. (V, q) is
totally isotropic if all its vectors are isotropic.

Definition 169. Let (V, q) be a quadratic space. We de-
fine the rank of (V, q) as:

ρ(V ) := dim V − dim Rad(V )22

Theorem 170 (Witt’s theorem). Let E be a quadratic
space and suppose that E = E1 ⊥ F1 = E2 ⊥ F2. If
E1 ∼= E2, then F1 ∼= F2.

Definition 171. Let (V, q) be a quadratic space. We de-
fine the index of (V, q) as:

ι(V ) := max{dim F : F ⊆ V and F is totally isotropic}

Theorem 172. Let E ⊆ V a totally isotropic subspace of
maximum dimension and (u1, . . . , ur) a basis of E (there-
fore, r = ι(V )). Then, there exist vectors v1, . . . , vr ∈ V
such that each Hi := ⟨ui, vi⟩ is a hyperbolic plane and
V = H1 ⊥ · · · ⊥ Hr ⊥ F , where F is anisotropic.

Proposition 173. Let (V, q) be a quadratic space and M
be the associated matrix of q. Then dim V , ρ(V ), ι(V ) and
det M modulo squares23 are invariant under isometries.

Theorem 174 (Classification of quadratic forms in
C). If K = C, two quadratic forms are equivalent if and
only if they have the same rank. All quadratic forms of
rank r are equivalent to:

x2
1 + · · · + x2

r

Theorem 175 (Classification of quadratic forms in
Fq). If K = Fq with q odd, all quadratic form of rank n
are equivalent to either of these two diagonal forms:

x2
1 + · · · + x2

n,

x2
1 + · · · + x2

n−1 + νx2
n,

where ν in not a square. Moreover, two quadratic forms
are equivalent if and only if they have the same rank and
determinant (modulo squares).

Theorem 176 (Classification of quadratic forms in
R). If K = R, all quadratic forms of rang r are equivalent
to the diagonal form:

±x2
1 ± · · · ± x2

r

If we denote by r+ the number of positive signs and by r−

the number of negative signs, then two quadratic forms
are equivalents if and only if they have the same values
(r+, r−).

Theorem 177 (Classification of projective quadrics
in C). If K = C, two projective quadrics are equivalents
if and only if they have the same rank.

Theorem 178 (Classification of projective quadrics
in Fq). If K = Fq, there are (except of equivalence) this
projective quadrics in each rank n:

20Recall ??.
21Recall ??.
22If A is the associated matrix of q, we have rank A = ρ(V ).
23That is, if (V1, q1), (V1, q1) are two quadratic spaces and Mi, i = 1, 2, are the associated matrices to q1, q2, respectively, we have

det M1 = a2 det M2, for some a ∈ K.
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• If n is odd:
x2

1 + · · · + x2
n

• If n is even:
x2

1 + · · · + x2
n

x2
1 + · · · + x2

n−1 + νx2
n

where ν in not a square.
Theorem 179 (Classification of projective quadrics
in R). If K = R, two projective quadrics are equivalents
if they have the same rank and index.

Theorem 180 (Classification of affine quadrics). Let
q1, q2 be two affine quadrics and for i = 1, 2 let q∞

i be the
quadric qi restricted to the hyperplane “at infinity” H,
that is, restricted to the hyperplane xn+1 = 0. In these
conditions, q1 ∼ q2 if and only if:

1. q1 ∼ q2 as projective quadrics, that is, in Pn(K).

2. q∞
1 ∼ q∞

2 as quadrics in H ∼= Pn−1(K).

13
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