Functions of several variables

1. | Topology of R"

Definition 1. Let M be a set. A distance in M is a func-
tion d : M x M — R such that Vz,y, z € M the following
properties are satisfied:

1. d(z,y) >0

2. d(z,y) =0 <= z=y

3. d(z,y) = d(y, z)

4. d(z,y) < d(z,z) +d(z,y) (triangular inequality)

We define a metric space as a pair (M, d) that satisfy the
previous properties.

Definition 2. Let V be a real vector space. A norm on
V is a function || - || : V' — R such that Yu,v € V and
VA € R the following properties are satisfied:

L fful[=0

2. uj=0 < u=0

3. [xull =

4. |ju+v| <|ul| +||v]] (triangular inequality)

We define a normed vector space as a pair (V|| - ||) that

satisfy the previous properties.

Proposition 3. Let (V,]| - ||) be a normed vector space.
Then (V,d) is a metric space with associated distance
d(u,v) :=|lu—-v|, Yu,veV.

Definition 4. Let V be a real vector space. A dot product
on V is afunction (-, ) : VxV — Rsuch that Vu,v,w € V
and Va, 5 € R the following properties are satisfied:

1. {au+ pw,v) = alu,v) + B{u,v)
(w,av + fw) = a(u,v) + f(u, w)

2. (u,v) = (v,u)

3. (u,u) >0

4. (u,u) =0 <= u=0

We define an Fuclidean space as a pair (V, (-,
isfy the previous properties'.

-)) that sat-

Proposition 5. Let (V,{-,-)) be an Euclidean space.
Then (V, || |) is a normed space with associated norm

lu]| := +/{(u,u), Va e V.

Proposition 6. Let (-, )9

fined by
(u,v)2 = Zuivi
i=1

Yu,v € R", being u = (u1,...,uy,) and v = (vq,...
Then, the pair (R™, (-, -)2) is an Euclidean space.

:R™ x R® — R be a map de-

7vn)'

Corollary 7. Consider the norm || - ||z and distance d3 in
R™ defined as follows:

lull2 = v/{u,u)2 =

dy(u,v) = [lu—v[| =

Then, (R™, ||-]|2) is a normed space and (R™, d3) is a metric
space.

Proposition 8. Let (V,(-,-)) be an Euclidean space with
the norm defined as ||u| := y/(u,u). Then forallu,v eV
the following properties are satisfied:

1. (u,v) <|ull||v]] (Cauchy-Schwarz inequality)

2. flu=v] > [[ju] - v]|
2 2 2 2
8.l v+ fu =i = 2(jall® + Iv]*)  (Paraliel
ogram law)
4+ v = = vl = 4(u,v)
2 2 2
5. (u,v) = & (I vl = [lufl® = [1v]*)

6. On (R™

,(y)2), if u=(u1,...,uy,), then:

n
Judl < flufl <> fuil
i=1

Definition 9. Let L : R"
define the norm of L as

L[ = sup{[[L(z)[| : [l=]| = 1}

Lemma 10. Let ® : L(R",R™) — R be a map defined
as ®(L) = |L||]. Then, ® is a norm on the vector space
LR™,R™).

Proposition 11. Let L € L(R™,R™). Then:

— R™ be a linear map. We

L[ = nf{C: [L()]| < Clle]}

Corollary 12. Let LM € L(R™ R™) be linear maps
with associated matrices L = (a;5), M = (b;;) respec-
tively. The following properties are satisfied:

L L(@)[| < (L)l
1/2

e

i=1j=1

3. \aij—b¢j| <eVi,j < ||L—M|| <€

Definition 13. Let (M, d) be a metric space. The sphere
with center p and radius r € R>q is the set S(p,r) = {x €
M :d(z,p) =r}.

1Sometimes the notation u - v is used, instead of (u, v}, to denote the dot product between u and v.



Definition 14. Let (M, d) be a metric space. The open
ball with center p and radius r € Ry is the set B(p,r) =
{zr € M :d(z,p) <r}.

Definition 15. Let (M,d) be a metric space. The closed
ball with center p and radius r € Rx>¢ is the set B(p,r) =
{r e M :d(z,p) <r}.

Definition 16. Let (M, d) be a metric space and A C M
be a subset of M. A is a bounded set if exists a ball con-
taining it.

Definition 17. Let (M,d) be a metric space. A neigh-
bourhood of p is a bounded set E(p) C M such that
Ir € Ry satisfying B(p,r) C E(p).

Definition 18. Let (M, d) be a metric space and A C M
be a subset of M. p is an interior point of A if Ir € R+
such that B(p,r) C A. The interior of A is the set Int A
containing all interior points of A.

Definition 19. Let (M, d) be a metric space and A C M
be a subset of M. p is an exterior point of A if Ir € R+
such that B(p,r) N A = @. The exterior of A is the set
Ext A containing all exterior points of A.

Definition 20. Let (M, d) be a metric space and A C M
be a subset of M. p is an adherent point of A if Vr € Ry,
B(p,r)N A # @. The adherence of A is the set A contain-
ing all adherent points of A.

Definition 21. Let (M, d) be a metric space and A C M
be a subset of M. p is a accumulation point of A if
Vr € Rso, B(p,7) \ {p} N A # @. The limit set of A
is the set A’ containing all accumulation points of A.

Definition 22. Let (M, d) be a metric space and A C M
be a subset of M. p is an isolated point of A if it is an
adherent but not accumulation point, that is, if p € A and
Ir € Ry such that B(p,r) \ {p} N A = 2.

Definition 23. Let (M, d) be a metric space and A C M
be a subset of M. p is a boundary point of A if Vr € R,
B(p,r) N A # @ and B(p,r) N A¢ # &. The boundary of
A is the set 0A containing all boundary points of A.

Proposition 24. Let (M, d) be a metric space and A C
M Dbe a subset of M. If p is an accumulation point of A,
then Vr € Rsg, B(p,r) has infinity many points of A.

Theorem 25 (Bolzano-Weierstra3 theorem). Let
B C R” be a set. If B has infinity many points and it
is bounded, then it has at least an accumulation point.

Definition 26. Let (M, d) be a metric space and A C M
be a subset of M. Ais openif Vp € A, Ir € R+ such that
B(p,r) C A.

Definition 27. Let (M, d) be a metric space and A C M
be a subset of M. A is closed if its complementary A€ is
open.

Proposition 28. Let (M,d) be a metric space and A C

M be asubset of M. Aisclosed — A=A < 0AC
A = A C A

Proposition 29. Let (M,d) be a metric space and A C
M be a subset of M. A is open <= A =Int A.

Proposition 30. Let (M,d) be a metric space and A C
M be a subset of M.

o Int A is the biggest open set contained in A. That
is, if B C A is open, B C Int A.

o Aisthe smallest set containing A. That is, if B D A
is closed, B D A.

Proposition 31.
e The union of open sets is open.

e The intersection of a finite number of open sets is
open.

e The union of a finite number of closed sets is closed.

e The intersection of closed sets is closed.

Definition 32. We say that a set A is connected if there
are no open sets U, V' # @ such that:

ACUUV ANUNV=0 ANU£2 ANV #£02

Sequences

Definition 33. Let (M, d) be a metric space. A sequence
in M is a map
z:N— M

The sequence x(n) is usually represented as (z,).

Definition 34. Let (M,d) be a metric space. We say a
sequence (x,,) C M is convergent to p € M if

Ve € Rsg, Ing € N:d(zp,p) <ceif n > ng

Definition 35. Let (M, d) be a metric space. We say a
sequence (x,,) is a Cauchy sequence if Ye > 0 Ing such
that d(z,,xm) < e, for all m,n > ng.

Definition 36. A metric space (M, d) is complete if every
Cauchy sequence in M converges in M.

Definition 37. A subset K C R™ is compact if it is closed
and bounded.

Theorem 38. Let K C R™ be an arbitrary set and
(m) € K be a sequence. Then K is compact if and only
if there exists a partial sequence (x,,,) and = € K such
that lim z,,, =z.

k—o0

2. | Continuity

Definition 39 (Graph of a function). Let f : U C
R™ — R. We define the graph of f as the following subset
of R*H1:

graph(f) = {(z, f(z)) e R"" 12 € U}

Definition 40. Given a function f : U C R® — R, we
define the level set Ci(f) as Cr(f) = {z e R™ : f(x) = k}.

Definition 41. Let f : U CR™ — R™and p € U'. We say
lim f(z) = L if Ve > 0, 36 > 0 such that ||f(z) — L|| <e

T—p

if |z —p| < 6.



Proposition 42. Let f
(fiy---y fm), and p € U’.

1. The limit of f at point p, if exists, is unique.

U C R — R™ f =

2. Suppose L = (L1,...,Ly,). Then:

}gréf(x):L = ;gl}ofj(x):Lj Vi=1,...,m
Lemma 43. Let f : U € R®™ — R™ and p € U'.
Ellig1 f(z) = L <= V(z,) € R": ILm xn, = p and

T—p n— o0

zp 7 p for all n we have ILm f(x,) = L.

Definition 44. We say that f : U C R™ — R™ is con-
tinuous at p € U’ if lim f(x) = f(p). We say that f is
T—p

continuous on U, if so it is at each point p € U.

Definition 45. We say that f : U C R" — R™ is uni-
formly continuouson U if Ve > 0,36 > 0 : [|f(x) —f(y)|| <
e, Ve,y e U : ||l —y|| <.

Corollary 46. A uniformly continuous function is con-
tinuous.

Theorem 47 (Heine’s theorem). Let f : K C R" —
R™ be continuous function and K be a compact set. Then,
f is uniformly continuous on K.

Theorem 48. Let f : U C R™ — R™ be an uniformly
continuous function and (z,) € U be a Cauchy sequence.
Then (f(z,)) € R™ is a Cauchy sequence.

Theorem 49. Let f : K € R® — R™ be a continuous
function and K be a compact set. Then f(K) is a com-
pact set.

Theorem 50 (Weierstraf3’ theorem). Let f : K C
R™ — R be a continuous function and K a compact set.
Then f attains a maximum and a minimum on K.

Theorem 51 (Intermediate value theorem). Let f:
U C R® — R be a continuous function and U be a con-
nected set. Then Vz,y € U and Ve € [f(z), f(y)], 3z € U
such that f(z) =c.

Definition 52. A function f : U C R™ — R™ is called
Lipschitz continuous if 3k > 0 such that

[£(x) = £(y)|| < kllz -yl
Ve,ye U. If 0 <k < 1, we say that f is a contraction.

Proposition 53. Let f : U CR™ — R™ be a locally Lip-
schitz continuous function at p € U. Then f is continuous
at p.

Definition 54. Let (M, d) be a metric space and f : M —
R a function. We define the modulus of continuity of f as
the function wy : (0,00) — [0, co] defined as:

w(0) :=sup{|f(z) = f(y)| : d(x,y) < 0,x,y € M}

3. | Differential calculus

Differential of a function

Definition 55. Let f : U C R™ — R™ and a € U. The
function f is differentiable at a if there exists a linear map
Df(a) : R" — R™ such that:

[f(2) — f(a) — Df(a)(z — o)

lim =
s e —al
o IR )~ () - DE@ G
h—0 12|l

Df(a)” is called the differential of f at point a. Further-
more, we say f is differentiable on B C U if it is differen-
tiable at each point of B.

Proposition 56. Let f : U C R" — R™ and a € U.
f = (f1,..., fm) is differentiable at a if and only if every
component function f; : U C R™ — R is differentiable at
a.

Definition 57. Let f: U CR” - R, a € U and v € R"”
such that ||v|| = 1. The directional derivative of f at a in
the direction of v is:

flattv) - f(a)
t

Definition 58. Let U C R™ be an open set, f : U — R
and a € U. If the following limit exists, we define the
partial derivative with respect to x; of f at a as:

Of 1y iy Hat ) = Fla),

a.’Ej h—0 h
Definition 59. Let f : U CR®™ - R™ and a € U. If all
partial derivatives of f at a exist, we call Jacobian matriz
of f at a the matrix associated with Df(a) (with respect
to the canonical basis of R™ and R™):

Duf(@) = i

of1 df1

8731(@) 875571 (a)
Df(a)= | :

O fm 0 fm

873:1 (a) oz, (a)

If n = m, we define the Jacobian determinant as Jf(a) =
det D (a).

Definition 60. Let U C R™ be an open set, f : U — R
and a € U such that f is differentiable at a € U. The
gradient of f at a is:

Vi) = Df(0) = (L@ p )

Proposition 61. Let U C R™ be an open set and
f U — R be a differentiable function at a € U. Then
there exists the tangent hyperplane to the graph of f at a
and has the equation:

Tni1 = fla) + Vf(a) (v —a)'

20ther commonly used notations for the differential of a function f at a point a are Df,, df(a) or df,.

J
3Here e; is the j-th vector of the canonical basis of R™, that is, e; = (0,...,0, 1,0,...,0).
4In general (not only the case of the graph of a function) the tangent hyperplane to function f at a point a is given by the equation

Vf(a)-(z—a)=0



Theorem 62. Let U C R™ be an open set, f: U — R,
a € U and v € R™ such that ||v| = 1. If f is differentiable
at a, the Dy f(a) exists and:

Dyf(a) = Vf(a)-v

Proposition 63. Let U C R™ be an open set, f : U — R
be a differentiable function on U and C} be the level set
of value k € R. Then V f(a) L Cy at a € Ck.

Proposition 64. Let U C R™ be an open set and
f:U — R a differentiable function at a € U and v € R™.
Then:

o max{Dyf(a) : ||v] = 1} = [|[Vf(a)| and it is at-

tained when v = HV;EG;H
o min{Dy f(a) : ||v|]| = 1} = —=||Vf(a)| and it is at-
in n Vf(a)
tained when v = va( M

Theorem 65. Let f : U C R™ — R™ be a differentiable
function at @ € U. Then f is locally Lipschitz continuous
at a.

Theorem 66. Let f,g: U C R" — R™ be two differen-
tiable functions at a point @ € U and let ¢ € R. Then:

1. f + g is differentiable at @ and:

D(f + g)(a) = Df(a) + Dg(a)

2. cf is differentiable at a and:

D(cf)(a) = ¢Df(a)

3. If m =1, then (fg)(z) = f(z)g(x) is differentiable

at a and:
D(fg)(a) = g(a)Df(a) + f(a)Dg(a)
4. If m = 1 and g(a) # 0, then <£> (x) = Jg[g)) is
differentiable at a and:
f(a)Dg(a)

B (f> (o) = S0DS@) S
9 9(a)

Theorem 67 (Chain rule). Let U C R® and V C R™

be open sets. Let f : U — R™ and g : V — RP. Sup-

pose that £(U) C V, f is differentiable at « € U and g is

differentiable at f(a). Then gof is differentiable at a and:

D(gof)(a)

Definition 68. Let U C R™ be an open set and f : U —
R™. We say that f is a function of class C*(U), k € N, if
all partial derivatives of order k exists and are continuous
on U. We say that f is function of class C*°(U) if it is of
class C*(U), Vk € N.

— Dg(£(a)) o Df(a)

Theorem 69 (Differentiability criterion). Letf : U C

R™ = R™, f(x) = (f1(x),..., fm(x)). If all partial deriva-
tives aixw exist in a neighbourhood of @ € U and are
J

continuous at a, then f is differentiable at a € U.

Proposition 70. Let f : U C R®™ — R™ and A C U.
If all partial derivatives of f exist on A and are bounded
functions on A, then f is uniformly continuous on A.

Theorem 71 (Mean value theorem). Let f: B — R
be a function of class C! in an open connected set B C R™
and z,y € B. Then:

flx) = fly) =

for some z € [z, y].

Vi) (z-y)

Theorem 72 (Mean value theorem for vector-val-
ued functions). Let f : B — R™ be a function of class
C! in an open connected set B C R” and x,y € B. Then:

[£(z) — £(y)ll < [DEE)[[l= - vll

for some z € [z, y].

Higher order derivatives

Definition 73. Let U C R"™ be an open set and f: U —
R. We denote the partial derivative of order k of f with
respect to the variables z;,,...,x;, at a point a € U as:

ok f
e @
xlk . ‘7/.1,1
Definition 74. Let U C R" be an open set. If f: U — R

has second order partial derivatives at a € U, we define
the Hessian matriz of f at a point a as:

o%f 0% f
9112 (a) 0x, 01 (a)
Hf(a) = : - : ’
0% f 0% f
0x10x, @ BTHQ(G)

Theorem 75 (Schwarz’s theorem). Let U C R™ be an
open set and f : U — R. If f has mixed partial derivatives
of order k and are continuous functions on A C U, then
for any permutation o € S we have:

ok f ok f

= A
0x;,, - -+ 0x;, “ 0T g(iy) - va <

(a)
8$U(il)
Inverse and implicit function theorems

Lemma 76. Let U C R™ be an open set and f : U — R™
with £ € C}(U). Given a € U and ¢ > 0, 3B(a,r) C U
such that:

[(z) = £(y)ll < (IDE(@)]| + e)ll= —yll Va,y € Bla,r)

Lemma 77. Let U C R" be an open set and f : U — R"
with f € C*(U). Suppose that for some a € U, Jf(a) # 0.
Then 3B(a,r) C U and ¢ > 0 such that:

£(y) — £(@)|| = clle —yll, Vz,y € Bla,r)

In particular, f is injective on B(a,r).

5Note that we can think Hf(a) to be the associated matrix of a bilinear form Hf(a).



Theorem 78 (Inverse function theorem). Let U C
R™ be an open set, f : U — R" with f € C1(U) and a € U
such that Jf(a) # 0. Then 3B := B(a,r) C U such that:

1. f is injective on B.
2. f(B) =V is an open set of R™.
3. f1:V = Bis of class C! on V.
Moreover, it is satisfied that Df ! (f(a)) = Df(a)"

Definition 79. A function f : U C R"™ — R" is a diffeo-
morphism of class C* if it is bijective and both f and £~!
are of class C*°.

Theorem 80 (Implicit function theorem). Let U C
R™*™ be an open set, f : U — R™ with f € C(U)
and (a,b) = (a1,...,an,b1,...,bpn) € U such that
f(a,b) = 0. If Df(z) = (Df;(z)|Dfy(z)) with Df(x) €
Mpmxn(R), Dfs(x) € M,,(R) and det Dfy(z) # 0 (i.e.
rang Df(a,b) = m), then there exists an open set W C R"
and a function g : W — R™ such that a € W, g € C1(W)
and:

gla)=b and f(z,g(z))=0 VeeW
Moreover, is is satisfied that:
Dg(a) = —Df2(a,g(a)) " o Dfi(a, g(a))

Taylor’s polynomial and maxima and minima

Theorem 81 (Taylor’s theorem). Let U C R™ be an
open set, f: U — R, a € U and f € C¥*1(U). Then:

f(x) = f(a)+
k 1 n a’mf "
’ 'mZZI ml i lel Oz -0z, (a)jll[l(xlj ai,) | +
+ Ri(f, a)
where
Rk (fa a) =

for some ¢ € [a,z]. In particular, for k = 2 we have:

f(a) = f(@) + Df(@)(w — a) + 3Hf(a)(x — a,7 — a)+
+ R2(fﬂ a’)
where Ry (f,a) = o(||lz — al?).

Remark. In order to simplify the notation, we can make
use of the multi-index notation and write:

= Y 0oy mara)

lo|<m

where

1 0%*fla+clx—a o
Rm(.ﬁa):m Z (+a!( ))(I*a)

" al=m+1

c € (0,1), and the multi-index a = (a1, . . ., oy, ) is a vector
of non-negative integers and || := a1 + - -+ + a,,. More-
over:

o f

axlﬂél .. axnan

9%f(a) : (a)

Definition 82. Let U C R”™ be an open set and f :
U — R. We say that f has a local mazimum at a € U if
dB(a,r) C U such that f(z) < f(a), Vx € B(a,r). Anal-
ogously, we say that f has a local minimum at a € U if
dB(a,r) C U such that f(z) > f(a), Vo € B(a,r). A
local extremum is either a local maximum or a local min-
imum. Moreover, if f(z) < f(a) Vx € U, we say that f
has a global mazimum at a € U. Similarly if f(z) > f(a)
Vo € U, we say that f has a global minimum at a € U.

Proposition 83. Let U C R™ be an open set and
f : U — R be a differentiable function at a € U. If f
has a local extremum at a, then V f(a) = 0.

Definition 84. Let U C R™ be an open set and f: U —
R. We say that a € U is a critical point of f if V f(a) = 0.
We say that a € U is a saddle point if a is a critical point
but not a local extremum.

Theorem 85. Let Q be a quadratic form. Then for all
x # 0 we have:

Q is defined positive <= I\ € R : Q(z) > A|z|*.
Q is defined negative <= I\ € Roo: Q(x) < A||z|>.

Proposition 86 (Sylvester’s criterion). Let A =
(ai;) € M, (R) be a symmetric matrix. A is defined posi-
tive if and only if all its principal minors are positive, that
is:

ail A1n

ay; >0, >0,..., >0

ailr a2
a1 a2

an1 Gpn

A is defined negative if and only if its principal minor of
order k have sign (—1), that is:

A1n
aip a2

a1  A22

>0,...,(=1)" >0

a1 < O,

Gn1 Ann

Theorem 87. Let U C R? be an open set, f : U — R
a function of class C2(U) and a € U : Vf(a) = 0. Let
Hf(a) be the Hessian matrix of f at a. Then:

6By default, if we omit to say the class of the diffeomorphism, we will refer to a diffeomorphism of class C1.



1. If Hf(a) is defined positive, then f has a local min-
imum at a.

2. If Hf(a) is defined negative, then f has a local max-
imum at a.

3. If Hf(a) is undefined, then f has a saddle point at
a.

Theorem 88 (Lagrange multipliers theorem). Let
f,9; : U C R®™ — R be functions of class C*(U) for i =
1,...,kand 1 <k <n. Let S={z € U:g(zx) =0, Vi}
and a € S such that f|s(a) is a local extremum. If the
vectors Vg1 (a),. .., Vgi(a) are linearly independent, then
dA1, ..., Ax € R such that:

k
Vf(a)= Z AiVygi(a)

4. | Integral calculus

Integration over compact rectangles

Definition 89. A rectangle R of R™ is a product R =
I x---xI, where I; € R are bounded and non-degenerate’
intervals.

Definition 90. The n-dimensional volume (length if n =
1 and surface if n = 2) of a bounded rectangle R =
Il X e X In, Iz = [ai,bi] is:

n

[T —a0)

i=1

vol(R) =

Definition 91. Given a rectangle R = I} X --- X I, a
partition of R is the product P = Py x --- x P,, where P;
is a partition of the interval I;. A partition P is regular if
for all j, P; is regular, that is, all subintervals in P; have
the same size. We denote by P(R) the set of all partitions
of R.

Definition 92. Given two partitions P = Py X --- X Py,
and P/ = P; x -+ X P/, of a rectangle R, we say that P’
is finer than P if each P} is finer than P;.

Definition 93. Let R C R™ be a compact rectangle,
f + R — R be a bounded function and P € P(R). For
each subrectangle R;, j =1,...,m, determined by P let

m; = inf{f(z) :z € R;} and M, :=sup{f(x):x € R,}

We define the lower sum and the upper sum of f with
respect to P as:

L(f,P) =Y _myvol(R;)  U(f,P)=>_ M;vol(R;)"
Jj=1 j=1

"That is, non-empty intervals with more than one point.

Definition 94. Let R C R™ be a compact rectangle and
f : R — R be a bounded function. We define the lower
integral and upper integral of f on R as

/f :=sup{L(f,P): PP}
R

/f =inf{U(f,P): P eP}
R

We say that f is Riemann-integrable on R if /f = /f
R R

Proposition 95. Let R C R"™ be a compact rectan-

gle and f : R — R be a bounded function. f is

Riemann-integrable if and only if Ve 3P € P(R) such that

Definition 96. Let R C R™ be a compact rectangle,
f+ R — R be abounded function, P € P(R) and {; be an
arbitrary point of the subrectangle R; for j = 1,...,m.
Then, we define the Riemann sum of f associated to P as:

m

S(f,P) =Y f(&)vol(R;)

Jj=1

Theorem 97. Let R C R™ be a compact rectangle and
f : R — R be a bounded function. f is Riemann-
integrable over R if and only if Ve > 0 IP. € P(R) such

that:
/f <eg

R

S(f.P) / 1 =3 e vol(ry)
j=1

R

for any P € P(R) finer than P, and for any §; € R;.

Fubini’s theorem

Theorem 98 (Fubini’s theorem). Let Ry C R™ and
Ry C R™ be closed rectangles and f : Ry x Ry — R
be an integrable’ function. Suppose for every zo € Ry,
f(zo,y) is integrable over Ry. Then, the function g(z) =

/f(x, y) dy is integrable over Ry and

|t = [ [ e

Rl X Rz Rl R2

Ry

Similarly if for every yo € Ra, f(x,yo0) is integrable over
Ry, then the function h(y) = /f(x,y) dx is integrable

Ry

| ta@n=[a R/ f(@,y) de

R] X R2 R2

over Ry and

8We will omit the results related to these definitions because of they are a natural extension of results of single-variable functions course
and can be deduced easily. That’s why we only expose the most important ones here.
9 As we have only defined Riemann-integration, it goes without saying that an integrable function means a Riemann-integrable function.



Corollary 99. Let Ry C R™ and Ry C R™ be closed rect-
angles and let f : Ry X Rs — R be a continuous function
on Ry x Ry. Then:

/ f:/dx/ﬂx,y)dy:

R1 X Rs Ry Ra

g,

Ro

dy [ f(z,y)dz
/

Corollary 100. Let R = [a1,b1] X -+ X [an,by] CR™ be
a rectangle. If f: R — R is a continuous function, then

b, bn—1
/f:/d:l:n / de,_1---
R an

An—1
Definition 101. Let D € R™ ! be a compact set and
1,2 : D — R be continuous functions such that ¢ (z) <
pa(z) Vo € D. The set

by
/f(x17"'7zn)dxl
ai

S={(z,y) CR":z € D,p1(x) <y < a(x)}

is called an elementary region in R™. In particular, if
n = 2, we say S is z-simple. An elementary region in
V c R? is called xy-simple if it is of the form:

V= {(a:,y,z) € R?: (x,y) evl, ¢1($,y) <z< ¢2(x,y)}

where U is an elementary region in R? and ¢y, ¢o are con-
tinuous functions on U'".

Theorem 102 (Fubini’s theorem for elementary re-
gions). Let D C R"~! be a compact set, p1,02 : D — R
be continuous functions such that ¢ (z) < po(x) Vo € D,
S=A{(zy) CR": 2 € D,pi(z) <y < ¢2(x)} be an
elementary region in R™ and f : S — R. If f is inte-
grable over S and for all zy € D the function f(zq,y) is
integrable over [—M, M], M € R, then:

[=[a w](z)ﬂx,y) dy
S D

#1(x)
Definition 103. Let D € R™~! be a compact set, ¢, o :
D — R be continuous functions such that ¢1(x) < po(x)
Ve € Dand S = {(z,y) CR" : 2z € D,pi(z) <y <
2(z)} an elementary region. We define the n-dimensional
volume of S as

p2(z)
vol(S) ::/dx:/dx / dy
5 D e

Corollary 104 (Cavalieri’s principle). Let Q C R x
[a,b] be a set in R™ where R C R"~! is a rectangle. For
every t € [a,b] let

O ={(z,y) eQ:y=t} CR"

be the section of 2 corresponding to the hyperplane y = t.
If v(€) is the (n — 1)-dimensional volume (length if n = 2
and area if n = 3) of Oy, then:

b

/ V() dt

a

vol(Q)

Definition 105 (Center of mass). The center of mass
of an object with mass density p(z,y,2) occupying a re-
gion Q C R? is the point (Z,7,%) € R? whose coordinates
are:

1
T = —/xp(x,y,z)dxdydz,
m
Q

<

1
f/yp(rmy, z)dzdydz,
m

Q

1
zZ= —/zp(gc,y,z)dxdydz7
m
Q

where m = /p(m,y,z)dx dy dz is the total mass of the
object.

Definition 106 (Moment of inertia). Given a body
with mass density p(x,y,2) occupying a region Q C R3
and a line L C R3, the moment of inertia of the body
about the line L is:

I = [ d(e.y.2P0(e.0.2) ds dyds
Q

where d(x,y, z) denotes the distance from (z,y, z) to the
line L. In particular, when L is the z-axis, then:

I. = /(952 +y)p(x,y,2) de dy dz
Q

and similarly for I, and . The moment of inertia of the
body about the xy-plane is defined by:

Iy = /zzp(x,y,z) dz dydz
Q

and similarly for I, and I,,.

Change of variable

Theorem 107 (Change of variable theorem). Let
U C R” be an open set and let ¢ : U — R" be a dif-
feomorphism. If f : ¢(U) — R is integrable on ¢(U),

then:

»(U)

f=/(fo<p>|Jso|
U

10 Analogously we define y-simple regions in R? and yz-simple or xz-simple regions in R3.

n particular, we define the area of a region S C R? as area(S) =

/dx dy and the volume of a region Q C R3 as vol(Q) = /da: dydz.
S Q

7



Corollary 108 (Integral in polar coordinates). Let
¢ :U C[0,00) x [0,27) — R? be such that:

o(r,0) — (rcosf,rsinf)

Then, we have |Jp| = r and therefore:

/ f(:n,y)dwdy:/f(rcos@,rsin@)rdrd@
U

p(U)

Corollary 109 (Integral in cylindrical coordinates).
Let ¢ : U C [0,00) x [0,27) x R — R? be such that:

o(r,0,z) — (rcosb,rsinb, z)

Then, we have |Jp| = r and therefore:

/Jv%wmww:

e (U)

= /f(r cos@,rsinf, z)rdrdfdz
U

Corollary 110 (Integral in spherical coordinates).
Let ¢ : U C [0,00) x [0,27) x [0, 7] — R3 be such that:

o(p, 0, ¢9) — (psinpcosb, psin ¢sin b, p cos ¢)

Then, we have |Jp| = p? sin ¢ and therefore:

[ fadsdya: -
p(U)
/f(psin $cosh, psin psin b, pcos ¢)p? sin ¢ dp df de

U

5. | Vector calculus

Arc-length and line integrals

Definition 111. Let ~ : [a,b] — R™ be a parametriza-
tion of a curve and P = {ty,...,t,} be a partition of [a, ].
Then, the length of the polygonal created from the vertices
~(t;),i=1,...,n, is:

L(v,P) = Z Iy (t:) —~(tiz1)ll

Definition 112. Let « : [a,b] — R" be a parametrization
of a curve C. The arc length of C is

L(C) = sup{L(v,P) : P € P([a,b])} € [0, <]

Definition 113. We say that a curve C is rectifiable if it
has a finite arc length, that is, if L(C) < cc.

Proposition 114. Let 7 : [a,b] — R™ be a parametriza-
tion of class C! of a curve C. Then C is rectifiable and

b
£(c) = [ v

Definition 115. Let F : U C R™ — R" be a vector
field'®. If all its component functions F; are integrable,

we define:
/F:: /F1/F cR"
U U U

Definition 116. Let C be a curve in R? parametrized by
v = (z(t),y(t)). The unit tangent vector to the curve at
time ¢ is:
_ @)
Iy @

The normal vector to the curve is N(t) = (y'(t), —2/(¢))
and the unit normal vector to the curve is:

L NG
Nl

Definition 117. Let C be a curve parametrized by
v : [a,b] = R™ and ¢ : [¢,d] — [a,b] be a diffeomor-
phism. The composition vy o ¢ : [¢,d] — R™ is called a
reparametrization of C.

Definition 118. Let C be a curve of class C!
parametrized by v : [a,b] = R™ an L be its arc length.
We define the arc length parameter as:

dﬂ=/hﬁwﬁ

We reparametrize C' by p(s) = y(¢(s)), 0 < s < L. Then
p'(s) is a unit tangent vector to C' and p’’(s) is perpendic-
ular to C' at the point p(s).

Definition 119. Let C be a curve of class C2 and s be
its arc length parameter. We define the curvature of C at
the point p(s) as

K(p(s)) = [lp" (s)]]
Definition 120. Let C' = {~(t) : ¢t € [a,b]} C R™ be a

curve of class C! and f : R” — R be continuous function.
We define the line integral of f along C' as:

b
/f@:/fwwmwaﬂ“
C a

121t can be seen that the arc length of a curve does not depend on its parametrization.

13 A wvector field is nothing more than a vector-valued function.

140bserve that —N(t) is also a normal vector to the curve but, by agreement, we take the one pointing to the right of the curve or, if

the curve is closed, the one pointing outwards from the curve.

151t can be seen that this integral is independent of the parametrization of C.
161t can be seen that the latter integral is independent of the parametrization of C' except for a factor of —1 that depends on the

orientation of the parametrization.



Definition 121. Let C' = {v(¢) : ¢t € [a,b]} C R™ be a
curve of class C' and F : R®” — R™ be a continuous vector
field. We define the line integral of F along C' as

b

/F-ds:/F-tds=/F(~y(t))-7’(t)dt

C C a

where t is the unit tangent vector to C'°. If C is closed,
this integral is called the circulation of F around C.

Definition 122. A Jordan arc is the image of an injective
continuous map 4 : [a,b] — R™. A Jordan closed curve is
the image of an injective continuous map = : [a,b] — R"
such that v(a) = v(b).

Comnservative vector fields

Definition 123. Let U C R™ beadomainand f: U — R
be a function of class C!. We say that F : U — R" is a
conservative or a gradient vector field if

F(z) = V [f(z)

The function f is called the potential of F.

Ve e U

Theorem 124. Let F = V f be a conservative vector
field on U € R™ and C be a closed curve that admits a
parametrization v(t) : [a,b] — R™ of class C1(U). Then:

/ Fds = f(v(b)) — f(7(a))

C

Corollary 125. Let F be a conservative vector field on
U and C be a closed curve that admits a parametrization

of class C1(U). Then /F -ds =0.
C

Divergence, curl and Laplacian

Definition 126. Let F = (F},..., F,) be a vector field
of class C}(U), U C R™. The divergence of F is:

Z am]

=1

Definition 127. Let F = (Fy, Fy, F3) be a vector field of
class Ct(U), U C R3. The curl of F is:

divF =V.F =

i j k
rotF=VxF=|£& £ &=
F F, F
_ (OFy OF, OF, 0F; 0F, OF
_<ay_az’az_ax ax_a>

Definition 128. Let f : U C R™ — R be a function of
class C?(U), U C R3. The Laplacian of f is

n 32f
AT=2 50
=1

Proposition 129. Let U be an open set of R?® and
f:U — R, g:U — R be functions of class C?(U).
Then for all x € U we have:

rot(Vf)=0 div(rotg) =0 and div(Vf)=Af

Surface area and surface integrals

Proposition 130. Let S be the graph of a function
z = f(z,y) of class C1(U), U C R% Then

area(S / \/ 8f <8f> dz dy

Definition 131. A parametrized surface S C R? is the
image of a map ® : U C R? — R3 of class C}(U) defined
by ®(u,v) = (z(u, v),y(u, v), 2(u,v)).

Proposition 132. Let S = ®(U) be a surface in R3
parametrized by ® € C(U). Then the unit normal vector
to S at the point ®(u,v) is

o® 0%

nln ) = oe 0w

Proposition 133. Let S = ®(U) be a surface in R3
parametrized by ® € C1(U). Then:

=[5~

Definition 134. Let S = ®(U) be a surface in R?
parametrized by ® € C1(U) and f : R® — R be a con-
tinuous function whose domain contain S. We define the
surface integral f over S as:

S/fd5=/f(¢> H

Definition 135. Let S = ®(U) be a surface in R?
parametrized by ® € C}(U) and f : R3 — R3 be a contin-
uous vector field whose domain contain S. We define the
surface integral £ over S or the fluz of f across S as:

5 5
:/f(@(u,v))~<gfx(g> dudv
U

where n is the unit normal vector to S'%.

area(S dudv

17Tt can be seen that this integral is independent of the parametrization of S.
18]t can be seen that the latter integral is independent of the parametrization of S except for a factor of —1 that depends on the

orientation of the normal vector n.



Theorems of vector calculus on R?

Definition 136. Let U C R? be an open set. A differen-
tial 1-form on U is an expression of the form

w= fidz+ fody + f3dz
where f1, f2, f3 are scalar functions defined on U'’.

Theorem 137 (Green’s theorem). Let F = (Fy, Fy)
be a vector field of class C*(U), U C R?, and ¢ = 9U be
the curve formed from the boundary of U?". Then:

/F-ds:/roth:cdy2l

oU U

Corollary 138. Let U be a region in R? and U be its
boundary. Then:

1
area(U):/xdy:—/yde5/($dy—ydx)
U U U

Theorem 139 (Divergence theorem on R?). Let
F = (Fy, F,) be a vector field of class C1(U), U C R?
with boundary OU. Then:

/Fonds:/didezdy'—’2

oU U

Theorems of vector calculus on R3

Theorem 140 (Stokes’ theorem). Let S be a
parametrized surface of class C! and 0S5 be its bound-
ary. Let F = (Fy, Fy, F3) be a vector field of class C! in a
domain containing S U dS. Then:

/F-ds:/rotF~ndS

oS S

19Extending this notion, we can define 2-forms and 3-forms as:

w= fidedy + fodydz + f3dzdy
w= fdxdydz

Corollary 141. Let a € R and n be a unit vector. Sup-
pose D, = D(a,r) is a disk of radius r centered at a and
perpendicular to n. Let F be a vector field of class C*(D,.).
Then:

. 1
oD,

Therefore, the n-th component of rot F(a) is the circula-
tion of F in a small circular surface perpendicular to n,
per unit of area.

Definition 142. A region of R? is symmetric if is xy-
simple, yz-simple and zz-simple.

Theorem 143 (Divergence theorem on R?). Let
F = (Fy, F,, F3) be a vector field of class C! on a sym-
metric region V C R3 with boundary dV. Then:

/F~ndS:/didexdydz
v v

Corollary 144. Let B, = B(a,r) be a ball of radius r
centered at a € R? and F be a vector field of class C!(B,.).
Then:

. . 1
leF(a)_}%W/F.ndS
9B,

Therefore, div F(a) is the flux of F outward form a, in the
normal direction across the surface of a small ball centered
on a, per unit of volume.

2-form
3-form

20Tt goes without saying that the orientation is chosen positive, that is counterclockwise.

21 Alternatively, using differential forms, we get

F P
/(Fldx-‘ngdy) :/(Q - Q) de dy
au U

22The first integral represents the flux of F across the curve oU.

ox oy
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