
Functions of several variables

1. | Topology of Rn

Definition 1. Let M be a set. A distance in M is a func-
tion d : M × M → R such that ∀x, y, z ∈ M the following
properties are satisfied:

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

We define a metric space as a pair (M, d) that satisfy the
previous properties.

Definition 2. Let V be a real vector space. A norm on
V is a function ∥ · ∥ : V → R such that ∀u, v ∈ V and
∀λ ∈ R the following properties are satisfied:

1. ∥u∥ ≥ 0

2. ∥u∥ = 0 ⇐⇒ u = 0

3. ∥λu∥ = |λ|∥u∥

4. ∥u + v∥ ≤ ∥u∥ + ∥v∥ (triangular inequality)

We define a normed vector space as a pair (V, ∥ · ∥) that
satisfy the previous properties.

Proposition 3. Let (V, ∥ · ∥) be a normed vector space.
Then (V, d) is a metric space with associated distance
d(u, v) := ∥u − v∥, ∀u, v ∈ V .

Definition 4. Let V be a real vector space. A dot product
on V is a function ⟨·, ·⟩ : V ×V → R such that ∀u, v, w ∈ V
and ∀α, β ∈ R the following properties are satisfied:

1. ⟨αu + βw, v⟩ = α⟨u, v⟩ + β⟨u, v⟩
⟨u, αv + βw⟩ = α⟨u, v⟩ + β⟨u, w⟩

2. ⟨u, v⟩ = ⟨v, u⟩

3. ⟨u, u⟩ ≥ 0

4. ⟨u, u⟩ = 0 ⇐⇒ u = 0

We define an Euclidean space as a pair (V, ⟨·, ·⟩) that sat-
isfy the previous properties1.

Proposition 5. Let (V, ⟨·, ·⟩) be an Euclidean space.
Then (V, ∥ · ∥) is a normed space with associated norm
∥u∥ :=

√
⟨u, u⟩, ∀u ∈ V . .

Proposition 6. Let ⟨·, ·⟩2 : Rn × Rn → R be a map de-
fined by

⟨u, v⟩2 =
n∑

i=1
uivi

∀u, v ∈ Rn, being u = (u1, . . . , un) and v = (v1, . . . , vn).
Then, the pair (Rn, ⟨·, ·⟩2) is an Euclidean space.

Corollary 7. Consider the norm ∥ · ∥2 and distance d2 in
Rn defined as follows:

∥u∥2 =
√

⟨u, u⟩2 =

√√√√ n∑
i=1

u2
i

d2(u, v) = ∥u − v∥ =

√√√√ n∑
i=1

(ui − vi)2

Then, (Rn, ∥·∥2) is a normed space and (Rn, d2) is a metric
space.

Proposition 8. Let (V, ⟨·, ·⟩) be an Euclidean space with
the norm defined as ∥u∥ :=

√
⟨u, u⟩. Then for all u, v ∈ V

the following properties are satisfied:

1. ⟨u, v⟩ ≤ ∥u∥∥v∥ (Cauchy-Schwarz inequality)

2. ∥u − v∥ ≥ |∥u∥ − ∥v∥|

3. ∥u + v∥2 + ∥u − v∥2 = 2(∥u∥2 + ∥v∥2) (Parallel-
ogram law)

4. ∥u + v∥2 − ∥u − v∥2 = 4⟨u, v⟩

5. ⟨u, v⟩ = 1
2

(
∥u + v∥2 − ∥u∥2 − ∥v∥2

)
6. On (Rn, ⟨·, ·⟩2), if u = (u1, . . . , un), then:

|ui| ≤ ∥u∥ ≤
n∑

i=1
|ui|

Definition 9. Let L : Rn → Rm be a linear map. We
define the norm of L as

∥L∥ = sup{∥L(x)∥ : ∥x∥ = 1}

Lemma 10. Let Φ : L(Rn,Rm) → R be a map defined
as Φ(L) = ∥L∥. Then, Φ is a norm on the vector space
L(Rn,Rm).

Proposition 11. Let L ∈ L(Rn,Rm). Then:

∥L∥ = inf{C : ∥L(x)∥ ≤ C∥x∥}

Corollary 12. Let L, M ∈ L(Rn,Rm) be linear maps
with associated matrices L = (aij), M = (bij) respec-
tively. The following properties are satisfied:

1. ∥L(x)∥ ≤ ∥L∥∥x∥

2. ∥L∥ ≤

 m∑
i=1

n∑
j=1

a2
ij

1/2

3. |aij − bij | < ε, ∀i, j ⇐⇒ ∥L − M∥ < ε′

Definition 13. Let (M, d) be a metric space. The sphere
with center p and radius r ∈ R≥0 is the set S(p, r) = {x ∈
M : d(x, p) = r}.

1Sometimes the notation u · v is used, instead of ⟨u, v⟩, to denote the dot product between u and v.
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Definition 14. Let (M, d) be a metric space. The open
ball with center p and radius r ∈ R>0 is the set B(p, r) =
{x ∈ M : d(x, p) < r}.

Definition 15. Let (M, d) be a metric space. The closed
ball with center p and radius r ∈ R≥0 is the set B(p, r) =
{x ∈ M : d(x, p) ≤ r}.

Definition 16. Let (M, d) be a metric space and A ⊆ M
be a subset of M . A is a bounded set if exists a ball con-
taining it.

Definition 17. Let (M, d) be a metric space. A neigh-
bourhood of p is a bounded set E(p) ⊂ M such that
∃r ∈ R>0 satisfying B(p, r) ⊂ E(p).

Definition 18. Let (M, d) be a metric space and A ⊆ M
be a subset of M . p is an interior point of A if ∃r ∈ R>0
such that B(p, r) ⊂ A. The interior of A is the set Int A
containing all interior points of A.

Definition 19. Let (M, d) be a metric space and A ⊆ M
be a subset of M . p is an exterior point of A if ∃r ∈ R>0
such that B(p, r) ∩ A = ∅. The exterior of A is the set
Ext A containing all exterior points of A.

Definition 20. Let (M, d) be a metric space and A ⊆ M
be a subset of M . p is an adherent point of A if ∀r ∈ R>0,
B(p, r) ∩ A ̸= ∅. The adherence of A is the set A contain-
ing all adherent points of A.

Definition 21. Let (M, d) be a metric space and A ⊆ M
be a subset of M . p is a accumulation point of A if
∀r ∈ R>0, B(p, r) \ {p} ∩ A ̸= ∅. The limit set of A
is the set A′ containing all accumulation points of A.

Definition 22. Let (M, d) be a metric space and A ⊆ M
be a subset of M . p is an isolated point of A if it is an
adherent but not accumulation point, that is, if p ∈ A and
∃r ∈ R>0 such that B(p, r) \ {p} ∩ A = ∅.

Definition 23. Let (M, d) be a metric space and A ⊆ M
be a subset of M . p is a boundary point of A if ∀r ∈ R>0,
B(p, r) ∩ A ̸= ∅ and B(p, r) ∩ Ac ̸= ∅. The boundary of
A is the set ∂A containing all boundary points of A.

Proposition 24. Let (M, d) be a metric space and A ⊆
M be a subset of M . If p is an accumulation point of A,
then ∀r ∈ R>0, B(p, r) has infinity many points of A.

Theorem 25 (Bolzano-Weierstraß theorem). Let
B ⊂ Rn be a set. If B has infinity many points and it
is bounded, then it has at least an accumulation point.

Definition 26. Let (M, d) be a metric space and A ⊆ M
be a subset of M . A is open if ∀p ∈ A, ∃r ∈ R>0 such that
B(p, r) ⊂ A.

Definition 27. Let (M, d) be a metric space and A ⊆ M
be a subset of M . A is closed if its complementary Ac is
open.

Proposition 28. Let (M, d) be a metric space and A ⊆
M be a subset of M . A is closed ⇐⇒ A = A ⇐⇒ ∂A ⊂
A ⇐⇒ A′ ⊂ A.

Proposition 29. Let (M, d) be a metric space and A ⊆
M be a subset of M . A is open ⇐⇒ A = Int A.
Proposition 30. Let (M, d) be a metric space and A ⊆
M be a subset of M .

• Int A is the biggest open set contained in A. That
is, if B ⊂ A is open, B ⊂ Int A.

• A is the smallest set containing A. That is, if B ⊃ A
is closed, B ⊃ A.

Proposition 31.

• The union of open sets is open.

• The intersection of a finite number of open sets is
open.

• The union of a finite number of closed sets is closed.

• The intersection of closed sets is closed.
Definition 32. We say that a set A is connected if there
are no open sets U, V ̸= ∅ such that:

A ⊆ U ∪ V A ∩ U ∩ V = ∅ A ∩ U ̸= ∅ A ∩ V ̸= ∅

Sequences
Definition 33. Let (M, d) be a metric space. A sequence
in M is a map

x : N −→ M
n 7−→ x(n)

The sequence x(n) is usually represented as (xn).
Definition 34. Let (M, d) be a metric space. We say a
sequence (xn) ⊂ M is convergent to p ∈ M if

∀ε ∈ R>0, ∃n0 ∈ N : d(xn, p) < ε if n > n0

Definition 35. Let (M, d) be a metric space. We say a
sequence (xn) is a Cauchy sequence if ∀ε > 0 ∃n0 such
that d(xn, xm) < ε, for all m, n ≥ n0.
Definition 36. A metric space (M, d) is complete if every
Cauchy sequence in M converges in M .
Definition 37. A subset K ⊂ Rn is compact if it is closed
and bounded.
Theorem 38. Let K ⊂ Rn be an arbitrary set and
(xm) ∈ K be a sequence. Then K is compact if and only
if there exists a partial sequence (xmk

) and x ∈ K such
that lim

k→∞
xmk

= x.

2. | Continuity
Definition 39 (Graph of a function). Let f : U ⊆
Rn → R. We define the graph of f as the following subset
of Rn+1:

graph(f) = {(x, f(x)) ∈ Rn+1 : x ∈ U}

Definition 40. Given a function f : U ⊆ Rn → R, we
define the level set Ck(f) as Ck(f) = {x ∈ Rn : f(x) = k}.
Definition 41. Let f : U ⊆ Rn → Rm and p ∈ U ′. We say
lim
x→p

f(x) = L if ∀ε > 0, ∃δ > 0 such that ∥f(x) − L∥ < ε

if ∥x − p∥ < δ.
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Proposition 42. Let f : U ⊆ Rn → Rm, f =
(f1, . . . , fm), and p ∈ U ′.

1. The limit of f at point p, if exists, is unique.

2. Suppose L = (L1, . . . , Lm). Then:

lim
x→p

f(x) = L ⇐⇒ lim
x→p

fj(x) = Lj ∀j = 1, . . . , m

Lemma 43. Let f : U ⊆ Rn → Rm and p ∈ U ′.
∃ lim

x→p
f(x) = L ⇐⇒ ∀(xn) ∈ Rn : lim

n→∞
xn = p and

xn ̸= p for all n we have lim
n→∞

f(xn) = L.

Definition 44. We say that f : U ⊆ Rn → Rm is con-
tinuous at p ∈ U ′ if lim

x→p
f(x) = f(p). We say that f is

continuous on U , if so it is at each point p ∈ U .

Definition 45. We say that f : U ⊆ Rn → Rm is uni-
formly continuous on U if ∀ε > 0, ∃δ > 0 : ∥f(x)− f(y)∥ <
ε, ∀x, y ∈ U : ∥x − y∥ < δ.

Corollary 46. A uniformly continuous function is con-
tinuous.

Theorem 47 (Heine’s theorem). Let f : K ⊂ Rn →
Rm be continuous function and K be a compact set. Then,
f is uniformly continuous on K.

Theorem 48. Let f : U ⊆ Rn → Rm be an uniformly
continuous function and (xn) ∈ U be a Cauchy sequence.
Then (f(xn)) ∈ Rm is a Cauchy sequence.

Theorem 49. Let f : K ⊂ Rn → Rm be a continuous
function and K be a compact set. Then f(K) is a com-
pact set.

Theorem 50 (Weierstraß’ theorem). Let f : K ⊂
Rn → R be a continuous function and K a compact set.
Then f attains a maximum and a minimum on K.

Theorem 51 (Intermediate value theorem). Let f :
U ⊆ Rn → R be a continuous function and U be a con-
nected set. Then ∀x, y ∈ U and ∀c ∈ [f(x), f(y)], ∃z ∈ U
such that f(z) = c.

Definition 52. A function f : U ⊆ Rn → Rm is called
Lipschitz continuous if ∃k > 0 such that

∥f(x) − f(y)∥ ≤ k∥x − y∥

∀x, y ∈ U . If 0 ≤ k < 1, we say that f is a contraction.

Proposition 53. Let f : U ⊆ Rn → Rm be a locally Lip-
schitz continuous function at p ∈ U . Then f is continuous
at p.

Definition 54. Let (M, d) be a metric space and f : M →
R a function. We define the modulus of continuity of f as
the function ωf : (0, ∞) → [0, ∞] defined as:

ωf (δ) := sup{|f(x) − f(y)| : d(x, y) < δ, x, y ∈ M}

3. | Differential calculus
Differential of a function
Definition 55. Let f : U ⊆ Rn → Rm and a ∈ U . The
function f is differentiable at a if there exists a linear map
Df(a) : Rn → Rm such that:

lim
x→a

∥f(x) − f(a) − Df(a)(x − a)∥
∥x − a∥

=

= lim
h→0

∥f(a + h) − f(a) − Df(a)(h)∥
∥h∥

= 0

Df(a)2 is called the differential of f at point a. Further-
more, we say f is differentiable on B ⊆ U if it is differen-
tiable at each point of B.
Proposition 56. Let f : U ⊆ Rn → Rm and a ∈ U .
f = (f1, . . . , fm) is differentiable at a if and only if every
component function fj : U ⊆ Rn → R is differentiable at
a.
Definition 57. Let f : U ⊆ Rn → R, a ∈ U and v ∈ Rn

such that ∥v∥ = 1. The directional derivative of f at a in
the direction of v is:

Dvf(a) = lim
t→0

f(a + tv) − f(a)
t

Definition 58. Let U ⊆ Rn be an open set, f : U → R
and a ∈ U . If the following limit exists, we define the
partial derivative with respect to xj of f at a as:

∂f

∂xj
(a) = lim

h→0

f(a + hej) − f(a)
h

3

Definition 59. Let f : U ⊆ Rn → Rm and a ∈ U . If all
partial derivatives of f at a exist, we call Jacobian matrix
of f at a the matrix associated with Df(a) (with respect
to the canonical basis of Rn and Rm):

Df(a) =


∂f1

∂x1
(a) · · · ∂f1

∂xn
(a)

... . . . ...
∂fm

∂x1
(a) · · · ∂fm

∂xn
(a)


If n = m, we define the Jacobian determinant as Jf(a) =
det Df(a).
Definition 60. Let U ⊆ Rn be an open set, f : U → R
and a ∈ U such that f is differentiable at a ∈ U . The
gradient of f at a is:

∇f(a) := Df(a) =
(

∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
Proposition 61. Let U ⊆ Rn be an open set and
f : U → R be a differentiable function at a ∈ U . Then
there exists the tangent hyperplane to the graph of f at a
and has the equation:

xn+1 = f(a) + ∇f(a) · (x − a)4

2Other commonly used notations for the differential of a function f at a point a are Dfa, df(a) or dfa.
3Here ej is the j-th vector of the canonical basis of Rn, that is, ej = (0, . . . , 0,

(j)
1 , 0, . . . , 0).

4In general (not only the case of the graph of a function) the tangent hyperplane to function f at a point a is given by the equation

∇f(a) · (x − a) = 0

3



Theorem 62. Let U ⊆ Rn be an open set, f : U → R,
a ∈ U and v ∈ Rn such that ∥v∥ = 1. If f is differentiable
at a, the Dvf(a) exists and:

Dvf(a) = ∇f(a) · v

Proposition 63. Let U ⊆ Rn be an open set, f : U → R
be a differentiable function on U and Ck be the level set
of value k ∈ R. Then ∇f(a) ⊥ Ck at a ∈ Ck.

Proposition 64. Let U ⊆ Rn be an open set and
f : U → R a differentiable function at a ∈ U and v ∈ Rn.
Then:

• max{Dvf(a) : ∥v∥ = 1} = ∥∇f(a)∥ and it is at-

tained when v = ∇f(a)
∥∇f(a)∥ .

• min{Dvf(a) : ∥v∥ = 1} = −∥∇f(a)∥ and it is at-

tained when v = − ∇f(a)
∥∇f(a)∥ .

Theorem 65. Let f : U ⊆ Rn → Rm be a differentiable
function at a ∈ U . Then f is locally Lipschitz continuous
at a.

Theorem 66. Let f , g : U ⊆ Rn → Rm be two differen-
tiable functions at a point a ∈ U and let c ∈ R. Then:

1. f + g is differentiable at a and:

D(f + g)(a) = Df(a) + Dg(a)

2. cf is differentiable at a and:

D(cf)(a) = cDf(a)

3. If m = 1, then (fg)(x) = f(x)g(x) is differentiable
at a and:

D(fg)(a) = g(a)Df(a) + f(a)Dg(a)

4. If m = 1 and g(a) ̸= 0, then
(

f

g

)
(x) = f(x)

g(x) is
differentiable at a and:

D

(
f

g

)
(a) = g(a)Df(a) − f(a)Dg(a)

g(a)2

Theorem 67 (Chain rule). Let U ⊆ Rn and V ⊆ Rm

be open sets. Let f : U → Rm and g : V → Rp. Sup-
pose that f(U) ⊂ V , f is differentiable at a ∈ U and g is
differentiable at f(a). Then g ◦ f is differentiable at a and:

D(g ◦ f)(a) = Dg(f(a)) ◦ Df(a)

Definition 68. Let U ⊆ Rn be an open set and f : U →
Rm. We say that f is a function of class Ck(U), k ∈ N, if
all partial derivatives of order k exists and are continuous
on U . We say that f is function of class C∞(U) if it is of
class Ck(U), ∀k ∈ N.

Theorem 69 (Differentiability criterion). Let f : U ⊆
Rn → Rm, f(x) = (f1(x), . . . , fm(x)). If all partial deriva-

tives ∂fi(x)
∂xj

exist in a neighbourhood of a ∈ U and are
continuous at a, then f is differentiable at a ∈ U .
Proposition 70. Let f : U ⊆ Rn → Rm and A ⊆ U .
If all partial derivatives of f exist on A and are bounded
functions on A, then f is uniformly continuous on A.
Theorem 71 (Mean value theorem). Let f : B → R
be a function of class C1 in an open connected set B ⊆ Rn

and x, y ∈ B. Then:

f(x) − f(y) = ∇f(z) · (x − y)

for some z ∈ [x, y].
Theorem 72 (Mean value theorem for vector-val-
ued functions). Let f : B → Rm be a function of class
C1 in an open connected set B ⊆ Rn and x, y ∈ B. Then:

∥f(x) − f(y)∥ ≤ ∥Df(z)∥∥x − y∥

for some z ∈ [x, y].

Higher order derivatives
Definition 73. Let U ⊆ Rn be an open set and f : U →
R. We denote the partial derivative of order k of f with
respect to the variables xi1 , . . . , xik

at a point a ∈ U as:

∂kf

∂xik
· · · ∂xi1

(a)

Definition 74. Let U ⊆ Rn be an open set. If f : U → R
has second order partial derivatives at a ∈ U , we define
the Hessian matrix of f at a point a as:

Hf(a) =


∂2f

∂x1
2 (a) · · · ∂2f

∂xn∂x1
(a)

... . . . ...
∂2f

∂x1∂xn
(a) · · · ∂2f

∂xn
2 (a)

 5

Theorem 75 (Schwarz’s theorem). Let U ⊆ Rn be an
open set and f : U → R. If f has mixed partial derivatives
of order k and are continuous functions on A ⊆ U , then
for any permutation σ ∈ Sk we have:

∂kf

∂xik
· · · ∂xi1

(a) = ∂kf

∂xσ(ik) · · · ∂xσ(i1)
(a) ∀a ∈ A

Inverse and implicit function theorems
Lemma 76. Let U ⊆ Rn be an open set and f : U → Rm

with f ∈ C1(U). Given a ∈ U and ε > 0, ∃B(a, r) ⊂ U
such that:

∥f(x) − f(y)∥ ≤ (∥Df(a)∥ + ε)∥x − y∥ ∀x, y ∈ B(a, r)

Lemma 77. Let U ⊆ Rn be an open set and f : U → Rn

with f ∈ C1(U). Suppose that for some a ∈ U , Jf(a) ̸= 0.
Then ∃B(a, r) ⊂ U and c > 0 such that:

∥f(y) − f(x)∥ ≥ c∥x − y∥, ∀x, y ∈ B(a, r)

In particular, f is injective on B(a, r).
5Note that we can think Hf(a) to be the associated matrix of a bilinear form Hf(a).
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Theorem 78 (Inverse function theorem). Let U ⊆
Rn be an open set, f : U → Rn with f ∈ C1(U) and a ∈ U
such that Jf(a) ̸= 0. Then ∃B := B(a, r) ⊂ U such that:

1. f is injective on B.

2. f(B) = V is an open set of Rn.

3. f−1 : V → B is of class C1 on V .

Moreover, it is satisfied that Df−1(f(a)) = Df(a)−1

Definition 79. A function f : U ⊆ Rn → Rn is a diffeo-
morphism of class Ck if it is bijective and both f and f−1

are of class Ck6.

Theorem 80 (Implicit function theorem). Let U ⊆
Rn+m be an open set, f : U → Rm with f ∈ C1(U)
and (a, b) = (a1, . . . , an, b1, . . . , bm) ∈ U such that
f(a, b) = 0. If Df(x) = (Df1(x)|Df2(x)) with Df1(x) ∈
Mm×n(R), Df2(x) ∈ Mm(R) and det Df2(x) ̸= 0 (i.e.
rang Df(a, b) = m), then there exists an open set W ⊆ Rn

and a function g : W → Rm such that a ∈ W , g ∈ C1(W )
and:

g(a) = b and f(x, g(x)) = 0 ∀x ∈ W

Moreover, is is satisfied that:

Dg(a) = −Df2(a, g(a))−1 ◦ Df1(a, g(a))

Taylor’s polynomial and maxima and minima
Theorem 81 (Taylor’s theorem). Let U ⊆ Rn be an
open set, f : U → R, a ∈ U and f ∈ Ck+1(U). Then:

f(x) = f(a)+

+
k∑

m=1

1
m!

 n∑
im,...,i1=1

∂mf

∂xim · · · ∂xi1

(a)
m∏

j=1
(xij − aij )

 +

+ Rk(f, a)

where

Rk(f, a) =

= 1
(k + 1)!

n∑
ik+1,...,i1=1

∂k+1f

∂xik+1 · · · ∂xi1

(ξ)
k+1∏
j=1

(xij
− aij

) =

= o(∥x − a∥k)

for some ξ ∈ [a, x]. In particular, for k = 2 we have:

f(x) = f(a) + Df(a)(x − a) + 1
2Hf(a)(x − a, x − a)+

+ R2(f, a)

where R2(f, a) = o(∥x − a∥2).

Remark. In order to simplify the notation, we can make
use of the multi-index notation and write:

f(x) =
∑

|α|≤m

∂αf(a)
α! (x − a)α + Rm(f, a)

where

Rm(f, a) = 1
(m + 1)!

∑
|α|=m+1

∂αf(a + c(x − a))
α! (x − a)α

c ∈ (0, 1), and the multi-index α = (α1, . . . , αn) is a vector
of non-negative integers and |α| := α1 + · · · + αn. More-
over:

α! :=
n∏

i=1
αi!

(x − a)α :=
n∏

i=1
(xi − ai)αi

∂αf(a) := ∂αf

∂x1α1 · · · ∂xn
αn

(a)

Definition 82. Let U ⊆ Rn be an open set and f :
U → R. We say that f has a local maximum at a ∈ U if
∃B(a, r) ⊂ U such that f(x) ≤ f(a), ∀x ∈ B(a, r). Anal-
ogously, we say that f has a local minimum at a ∈ U if
∃B(a, r) ⊂ U such that f(x) ≥ f(a), ∀x ∈ B(a, r). A
local extremum is either a local maximum or a local min-
imum. Moreover, if f(x) ≤ f(a) ∀x ∈ U , we say that f
has a global maximum at a ∈ U . Similarly if f(x) ≥ f(a)
∀x ∈ U , we say that f has a global minimum at a ∈ U .

Proposition 83. Let U ⊆ Rn be an open set and
f : U → R be a differentiable function at a ∈ U . If f
has a local extremum at a, then ∇f(a) = 0.

Definition 84. Let U ⊆ Rn be an open set and f : U →
R. We say that a ∈ U is a critical point of f if ∇f(a) = 0.
We say that a ∈ U is a saddle point if a is a critical point
but not a local extremum.

Theorem 85. Let Q be a quadratic form. Then for all
x ̸= 0 we have:

Q is defined positive ⇐⇒ ∃λ ∈ R>0 : Q(x) ≥ λ∥x∥2.

Q is defined negative ⇐⇒ ∃λ ∈ R<0 : Q(x) ≤ λ∥x∥2.

Proposition 86 (Sylvester’s criterion). Let A =
(aij) ∈ Mn(R) be a symmetric matrix. A is defined posi-
tive if and only if all its principal minors are positive, that
is:

a11 > 0,

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ > 0, . . . ,

∣∣∣∣∣∣∣
a11 · · · a1n

... . . . ...
an1 · · · ann

∣∣∣∣∣∣∣ > 0

A is defined negative if and only if its principal minor of
order k have sign (−1)k, that is:

a11 < 0,

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ > 0, . . . , (−1)n

∣∣∣∣∣∣∣
a11 · · · a1n

... . . . ...
an1 · · · ann

∣∣∣∣∣∣∣ > 0

Theorem 87. Let U ⊆ R2 be an open set, f : U → R
a function of class C2(U) and a ∈ U : ∇f(a) = 0. Let
Hf(a) be the Hessian matrix of f at a. Then:

6By default, if we omit to say the class of the diffeomorphism, we will refer to a diffeomorphism of class C1.
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1. If Hf(a) is defined positive, then f has a local min-
imum at a.

2. If Hf(a) is defined negative, then f has a local max-
imum at a.

3. If Hf(a) is undefined, then f has a saddle point at
a.

Theorem 88 (Lagrange multipliers theorem). Let
f, gi : U ⊆ Rn → R be functions of class C1(U) for i =
1, . . . , k and 1 ≤ k < n. Let S = {x ∈ U : gi(x) = 0, ∀i}
and a ∈ S such that f |S(a) is a local extremum. If the
vectors ∇g1(a), . . . , ∇gk(a) are linearly independent, then
∃λ1, . . . , λk ∈ R such that:

∇f(a) =
k∑

i=1
λi∇gi(a)

4. | Integral calculus

Integration over compact rectangles

Definition 89. A rectangle R of Rn is a product R =
I1×· · ·×In where Ij ∈ R are bounded and non-degenerate7

intervals.

Definition 90. The n-dimensional volume (length if n =
1 and surface if n = 2) of a bounded rectangle R =
I1 × · · · × In, Ii = [ai, bi] is:

vol(R) =
n∏

i=1
(bi − ai)

Definition 91. Given a rectangle R = I1 × · · · × In, a
partition of R is the product P = P1 × · · · × Pn where Pj

is a partition of the interval Ij . A partition P is regular if
for all j, Pj is regular, that is, all subintervals in Pj have
the same size. We denote by P(R) the set of all partitions
of R.

Definition 92. Given two partitions P = P1 × · · · × Pn

and P ′ = P ′
1 × · · · × P ′

n of a rectangle R, we say that P ′

is finer than P if each P ′
j is finer than Pj .

Definition 93. Let R ⊂ Rn be a compact rectangle,
f : R → R be a bounded function and P ∈ P(R). For
each subrectangle Rj , j = 1, . . . , m, determined by P let

mj := inf{f(x) : x ∈ Rj} and Mj := sup{f(x) : x ∈ Rj}

We define the lower sum and the upper sum of f with
respect to P as:

L(f, P) =
m∑

j=1
mjvol(Rj) U(f, P) =

m∑
j=1

Mjvol(Rj)8

Definition 94. Let R ⊂ Rn be a compact rectangle and
f : R → R be a bounded function. We define the lower
integral and upper integral of f on R as

ˆ

R

f := sup{L(f, P) : P ∈ P}

ˆ

R

f := inf{U(f, P) : P ∈ P}

We say that f is Riemann-integrable on R if
ˆ

R

f =
ˆ

R

f .

Proposition 95. Let R ⊂ Rn be a compact rectan-
gle and f : R → R be a bounded function. f is
Riemann-integrable if and only if ∀ε ∃P ∈ P(R) such that
U(f, P) − L(f, P) < ε.

Definition 96. Let R ⊂ Rn be a compact rectangle,
f : R → R be a bounded function, P ∈ P(R) and ξj be an
arbitrary point of the subrectangle Rj for j = 1, . . . , m.
Then, we define the Riemann sum of f associated to P as:

S(f, P) =
m∑

j=1
f(ξj)vol(Rj)

Theorem 97. Let R ⊂ Rn be a compact rectangle and
f : R → R be a bounded function. f is Riemann-
integrable over R if and only if ∀ε > 0 ∃Pε ∈ P(R) such
that:∣∣∣∣∣∣S(f, P) −

ˆ

R

f

∣∣∣∣∣∣ =

∣∣∣∣∣∣
m∑

j=1
f(ξj)vol(Rj) −

ˆ

R

f

∣∣∣∣∣∣ < ε

for any P ∈ P(R) finer than Pε and for any ξj ∈ Rj .

Fubini’s theorem
Theorem 98 (Fubini’s theorem). Let R1 ⊂ Rn and
R2 ⊂ Rm be closed rectangles and f : R1 × R2 → R
be an integrable9 function. Suppose for every x0 ∈ R1,
f(x0, y) is integrable over R2. Then, the function g(x) =ˆ

R2

f(x, y) dy is integrable over R1 and

ˆ

R1×R2

f(x, y) =
ˆ

R1

dx

ˆ

R2

f(x, y) dy

Similarly if for every y0 ∈ R2, f(x, y0) is integrable over
R1, then the function h(y) =

ˆ

R1

f(x, y) dx is integrable

over R2 and
ˆ

R1×R2

f(x, y) =
ˆ

R2

dy

ˆ

R1

f(x, y) dx

7That is, non-empty intervals with more than one point.
8We will omit the results related to these definitions because of they are a natural extension of results of single-variable functions course

and can be deduced easily. That’s why we only expose the most important ones here.
9As we have only defined Riemann-integration, it goes without saying that an integrable function means a Riemann-integrable function.
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Corollary 99. Let R1 ⊂ Rn and R2 ⊂ Rm be closed rect-
angles and let f : R1 × R2 → R be a continuous function
on R1 × R2. Then:
ˆ

R1×R2

f =
ˆ

R1

dx

ˆ

R2

f(x, y) dy =

=
ˆ

R2

dy

ˆ

R1

f(x, y) dx

Corollary 100. Let R = [a1, b1] × · · · × [an, bn] ⊂ Rn be
a rectangle. If f : R → R is a continuous function, then

ˆ

R

f =
bnˆ

an

dxn

bn−1ˆ

an−1

dxn−1 · · ·
b1ˆ

a1

f(x1, . . . , xn) dx1

Definition 101. Let D ⊂ Rn−1 be a compact set and
φ1, φ2 : D → R be continuous functions such that φ1(x) ≤
φ2(x) ∀x ∈ D. The set

S = {(x, y) ⊂ Rn : x ∈ D, φ1(x) ≤ y ≤ φ2(x)}

is called an elementary region in Rn. In particular, if
n = 2, we say S is x-simple. An elementary region in
V ⊂ R3 is called xy-simple if it is of the form:

V = {(x, y, z) ∈ R3 : (x, y) ∈ U, ϕ1(x, y) ≤ z ≤ ϕ2(x, y)}

where U is an elementary region in R2 and ϕ1, ϕ2 are con-
tinuous functions on U10.

Theorem 102 (Fubini’s theorem for elementary re-
gions). Let D ⊂ Rn−1 be a compact set, φ1, φ2 : D → R
be continuous functions such that φ1(x) ≤ φ2(x) ∀x ∈ D,
S = {(x, y) ⊂ Rn : x ∈ D, φ1(x) ≤ y ≤ φ2(x)} be an
elementary region in Rn and f : S → R. If f is inte-
grable over S and for all x0 ∈ D the function f(x0, y) is
integrable over [−M, M ], M ∈ R, then:

ˆ

S

f =
ˆ

D

dx

φ2(x)ˆ

φ1(x)

f(x, y) dy

Definition 103. Let D ⊂ Rn−1 be a compact set, φ1, φ2 :
D → R be continuous functions such that φ1(x) ≤ φ2(x)
∀x ∈ D and S = {(x, y) ⊂ Rn : x ∈ D, φ1(x) ≤ y ≤
φ2(x)} an elementary region. We define the n-dimensional
volume of S as

vol(S) :=
ˆ

S

dx =
ˆ

D

dx

φ2(x)ˆ

φ1(x)

dy 11

Corollary 104 (Cavalieri’s principle). Let Ω ⊂ R ×
[a, b] be a set in Rn where R ⊂ Rn−1 is a rectangle. For
every t ∈ [a, b] let

Ωt = {(x, y) ∈ Ω : y = t} ⊂ Rn

be the section of Ω corresponding to the hyperplane y = t.
If ν(Ωt) is the (n−1)-dimensional volume (length if n = 2
and area if n = 3) of Ωt, then:

vol(Ω) =
bˆ

a

ν(Ωt) dt

Definition 105 (Center of mass). The center of mass
of an object with mass density ρ(x, y, z) occupying a re-
gion Ω ⊂ R3 is the point (x, y, z) ∈ R3 whose coordinates
are:

x = 1
m

ˆ

Ω

xρ(x, y, z) dx dy dz ,

y = 1
m

ˆ

Ω

yρ(x, y, z) dx dy dz ,

z = 1
m

ˆ

Ω

zρ(x, y, z) dx dy dz ,

where m =
ˆ

Ω

ρ(x, y, z) dx dy dz is the total mass of the

object.

Definition 106 (Moment of inertia). Given a body
with mass density ρ(x, y, z) occupying a region Ω ⊂ R3

and a line L ⊂ R3, the moment of inertia of the body
about the line L is:

IL =
ˆ

Ω

d(x, y, z)2ρ(x, y, z) dx dy dz

where d(x, y, z) denotes the distance from (x, y, z) to the
line L. In particular, when L is the z-axis, then:

Iz =
ˆ

Ω

(x2 + y2)ρ(x, y, z) dx dy dz

and similarly for Ix and Iy. The moment of inertia of the
body about the xy-plane is defined by:

Ixy =
ˆ

Ω

z2ρ(x, y, z) dx dy dz

and similarly for Iyz and Izx.

Change of variable

Theorem 107 (Change of variable theorem). Let
U ⊆ Rn be an open set and let φ : U → Rn be a dif-
feomorphism. If f : φ(U) → R is integrable on φ(U),
then: ˆ

φ(U)

f =
ˆ

U

(f ◦ φ)|Jφ|

10Analogously we define y-simple regions in R2 and yz-simple or xz-simple regions in R3.
11In particular, we define the area of a region S ⊂ R2 as area(S) =

ˆ

S

dx dy and the volume of a region Ω ⊂ R3 as vol(Ω) =
ˆ

Ω

dx dy dz.
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Corollary 108 (Integral in polar coordinates). Let
φ : U ⊆ [0, ∞) × [0, 2π) → R2 be such that:

φ(r, θ) 7−→ (r cos θ, r sin θ)

Then, we have |Jφ| = r and therefore:
ˆ

φ(U)

f(x, y) dx dy =
ˆ

U

f(r cos θ, r sin θ)r dr dθ

Corollary 109 (Integral in cylindrical coordinates).
Let φ : U ⊆ [0, ∞) × [0, 2π) × R → R3 be such that:

φ(r, θ, z) 7−→ (r cos θ, r sin θ, z)

Then, we have |Jφ| = r and therefore:
ˆ

φ(U)

f(x, y, z) dx dy dz =

=
ˆ

U

f(r cos θ, r sin θ, z)r dr dθ dz

Corollary 110 (Integral in spherical coordinates).
Let φ : U ⊆ [0, ∞) × [0, 2π) × [0, π] → R3 be such that:

φ(ρ, θ, ϕ) 7−→ (ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ)

Then, we have |Jφ| = ρ2 sin ϕ and therefore:
ˆ

φ(U)

f(x, y, z) dx dy dz =

ˆ

U

f(ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ)ρ2 sin ϕ dρ dθ dϕ

5. | Vector calculus
Arc-length and line integrals

Definition 111. Let γ : [a, b] → Rn be a parametriza-
tion of a curve and P = {t0, . . . , tn} be a partition of [a, b].
Then, the length of the polygonal created from the vertices
γ(ti), i = 1, . . . , n, is:

L(γ, P) =
n∑

i=1
∥γ(ti) − γ(ti−1)∥

Definition 112. Let γ : [a, b] → Rn be a parametrization
of a curve C. The arc length of C is

L(C) = sup{L(γ, P) : P ∈ P([a, b])} ∈ [0, ∞]

Definition 113. We say that a curve C is rectifiable if it
has a finite arc length, that is, if L(C) < ∞.

Proposition 114. Let γ : [a, b] → Rn be a parametriza-
tion of class C1 of a curve C. Then C is rectifiable and

L(C) =
bˆ

a

∥γ′(t)∥ dt 12

Definition 115. Let F : U ⊂ Rm → Rn be a vector
field13. If all its component functions Fi are integrable,
we define:

ˆ

U

F :=

ˆ
U

F1, . . . ,

ˆ

U

Fn

 ∈ Rn

Definition 116. Let C be a curve in R2 parametrized by
γ = (x(t), y(t)). The unit tangent vector to the curve at
time t is:

t = γ′(t)
∥γ′(t)∥

The normal vector to the curve is N(t) = (y′(t), −x′(t))
and the unit normal vector to the curve is:

n = N(t)
∥N(t)∥

14

Definition 117. Let C be a curve parametrized by
γ : [a, b] → Rn and φ : [c, d] → [a, b] be a diffeomor-
phism. The composition γ ◦ φ : [c, d] → Rn is called a
reparametrization of C.

Definition 118. Let C be a curve of class C1

parametrized by γ : [a, b] → Rn an L be its arc length.
We define the arc length parameter as:

s(t) =
tˆ

a

∥γ′(t)∥ dt

We reparametrize C by ρ(s) = γ(t(s)), 0 ≤ s ≤ L. Then
ρ′(s) is a unit tangent vector to C and ρ′′(s) is perpendic-
ular to C at the point ρ(s).

Definition 119. Let C be a curve of class C2 and s be
its arc length parameter. We define the curvature of C at
the point ρ(s) as

κ(ρ(s)) = ∥ρ′′(s)∥

Definition 120. Let C = {γ(t) : t ∈ [a, b]} ⊂ Rn be a
curve of class C1 and f : Rn → R be continuous function.
We define the line integral of f along C as:

ˆ

C

f ds =
bˆ

a

f(γ(t))∥γ′(t)∥ dt 15

12It can be seen that the arc length of a curve does not depend on its parametrization.
13A vector field is nothing more than a vector-valued function.
14Observe that −N(t) is also a normal vector to the curve but, by agreement, we take the one pointing to the right of the curve or, if

the curve is closed, the one pointing outwards from the curve.
15It can be seen that this integral is independent of the parametrization of C.
16It can be seen that the latter integral is independent of the parametrization of C except for a factor of −1 that depends on the

orientation of the parametrization.
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Definition 121. Let C = {γ(t) : t ∈ [a, b]} ⊂ Rn be a
curve of class C1 and F : Rn → Rn be a continuous vector
field. We define the line integral of F along C as

ˆ

C

F · ds =
ˆ

C

F · t ds =
bˆ

a

F(γ(t)) · γ′(t) dt

where t is the unit tangent vector to C16. If C is closed,
this integral is called the circulation of F around C.

Definition 122. A Jordan arc is the image of an injective
continuous map γ : [a, b] → Rn. A Jordan closed curve is
the image of an injective continuous map γ : [a, b] → Rn

such that γ(a) = γ(b).

Conservative vector fields
Definition 123. Let U ⊆ Rn be a domain and f : U → R
be a function of class C1. We say that F : U → Rn is a
conservative or a gradient vector field if

F(x) = ∇f(x) ∀x ∈ U

The function f is called the potential of F.

Theorem 124. Let F = ∇f be a conservative vector
field on U ⊆ Rn and C be a closed curve that admits a
parametrization γ(t) : [a, b] → Rn of class C1(U). Then:

ˆ

C

F · ds = f(γ(b)) − f(γ(a))

Corollary 125. Let F be a conservative vector field on
U and C be a closed curve that admits a parametrization
of class C1(U). Then

ˆ

C

F · ds = 0.

Divergence, curl and Laplacian
Definition 126. Let F = (F1, . . . , Fn) be a vector field
of class C1(U), U ⊆ Rn. The divergence of F is:

div F = ∇· F =
n∑

i=1

∂Fj

∂xj

Definition 127. Let F = (F1, F2, F3) be a vector field of
class C1(U), U ⊆ R3. The curl of F is:

rot F = ∇× F =

∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z

F1 F2 F3

∣∣∣∣∣∣ =

=
(

∂F3

∂y
− ∂F2

∂z
,

∂F1

∂z
− ∂F3

∂x
,

∂F2

∂x
− ∂F1

∂y

)
Definition 128. Let f : U ⊆ Rn → R be a function of
class C2(U), U ⊆ R3. The Laplacian of f is

∆f =
n∑

i=1

∂2f

∂x2
j

Proposition 129. Let U be an open set of R3 and
f : U → R, g : U → R3 be functions of class C2(U).
Then for all x ∈ U we have:

rot(∇f) = 0 div(rot g) = 0 and div(∇f) = ∆f

Surface area and surface integrals

Proposition 130. Let S be the graph of a function
z = f(x, y) of class C1(U), U ⊆ R2. Then

area(S) =
ˆ

U

√
1 +

(
∂f

∂x

)2
+

(
∂f

∂y

)2
dx dy

Definition 131. A parametrized surface S ⊂ R3 is the
image of a map Φ : U ⊆ R2 → R3 of class C1(U) defined
by Φ(u, v) = (x(u, v), y(u, v), z(u, v)).

Proposition 132. Let S = Φ(U) be a surface in R3

parametrized by Φ ∈ C1(U). Then the unit normal vector
to S at the point Φ(u, v) is

n(u, v) =
∂Φ
∂u × ∂Φ

∂v∥∥ ∂Φ
∂u × ∂Φ

∂v

∥∥
Proposition 133. Let S = Φ(U) be a surface in R3

parametrized by Φ ∈ C1(U). Then:

area(S) =
ˆ

U

∥∥∥∥∂Φ
∂u

× ∂Φ
∂v

∥∥∥∥ du dv

Definition 134. Let S = Φ(U) be a surface in R3

parametrized by Φ ∈ C1(U) and f : R3 → R be a con-
tinuous function whose domain contain S. We define the
surface integral f over S as:

ˆ

S

f dS =
ˆ

U

f(Φ(u, v))
∥∥∥∥∂Φ

∂u
× ∂Φ

∂v

∥∥∥∥ du dv 17

Definition 135. Let S = Φ(U) be a surface in R3

parametrized by Φ ∈ C1(U) and f : R3 → R3 be a contin-
uous vector field whose domain contain S. We define the
surface integral f over S or the flux of f across S as:

ˆ

S

f · dS =
ˆ

S

f · n dS =

=
ˆ

U

f(Φ(u, v)) ·
(

∂Φ
∂u

× ∂Φ
∂v

)
du dv

where n is the unit normal vector to S18.
17It can be seen that this integral is independent of the parametrization of S.
18It can be seen that the latter integral is independent of the parametrization of S except for a factor of −1 that depends on the

orientation of the normal vector n.
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Theorems of vector calculus on R2

Definition 136. Let U ⊆ R3 be an open set. A differen-
tial 1-form on U is an expression of the form

ω = f1 dx + f2 dy + f3 dz

where f1, f2, f3 are scalar functions defined on U19.
Theorem 137 (Green’s theorem). Let F = (F1, F2)
be a vector field of class C1(U), U ⊆ R2, and c = ∂U be
the curve formed from the boundary of U20. Then:ˆ

∂U

F · ds =
ˆ

U

rot F dx dy 21

Corollary 138. Let U be a region in R2 and ∂U be its
boundary. Then:

area(U) =
ˆ

∂U

x dy = −
ˆ

∂U

y dx = 1
2

ˆ

∂U

(x dy − y dx)

Theorem 139 (Divergence theorem on R2). Let
F = (F1, F2) be a vector field of class C1(U), U ⊆ R2

with boundary ∂U . Then:ˆ

∂U

F · n ds =
ˆ

U

div F dx dy 22

Theorems of vector calculus on R3

Theorem 140 (Stokes’ theorem). Let S be a
parametrized surface of class C1 and ∂S be its bound-
ary. Let F = (F1, F2, F3) be a vector field of class C1 in a
domain containing S ∪ ∂S. Then:ˆ

∂S

F · ds =
ˆ

S

rot F · n dS

Corollary 141. Let a ∈ R3 and n be a unit vector. Sup-
pose Dr = D(a, r) is a disk of radius r centered at a and
perpendicular to n. Let F be a vector field of class C1(Dr).
Then:

rot F(a) · n = lim
r→0

1
area(Dr)

ˆ

∂Dr

F · ds

Therefore, the n-th component of rot F(a) is the circula-
tion of F in a small circular surface perpendicular to n,
per unit of area.

Definition 142. A region of R3 is symmetric if is xy-
simple, yz-simple and xz-simple.

Theorem 143 (Divergence theorem on R3). Let
F = (F1, F2, F3) be a vector field of class C1 on a sym-
metric region V ⊂ R3 with boundary ∂V . Then:

ˆ

∂V

F · n dS =
ˆ

V

div F dx dy dz

Corollary 144. Let Br = B(a, r) be a ball of radius r
centered at a ∈ R3 and F be a vector field of class C1(Br).
Then:

div F(a) = lim
r→0

1
vol(Br)

ˆ

∂Br

F · n dS

Therefore, div F(a) is the flux of F outward form a, in the
normal direction across the surface of a small ball centered
on a, per unit of volume.

19Extending this notion, we can define 2-forms and 3-forms as:

ω = f1 dx dy + f2 dy dz + f3 dz dy 2-form
ω = f dx dy dz 3-form

20It goes without saying that the orientation is chosen positive, that is counterclockwise.
21Alternatively, using differential forms, we getˆ

∂U

(F1 dx + F2 dy) =
ˆ

U

(
∂F2

∂x
−

∂F1

∂y

)
dx dy

22The first integral represents the flux of F across the curve ∂U .
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