
Discrete mathematics

1. | Generating functions and recur-
rence relations

Generating functions
Definition 1. Let (an) be a sequence of real numbers.
We define its ordinary generating function as the follow-
ing formal power series:

a0 + a1x + a2x2 + a3x3 + · · · =
∞∑

n=0
anxn

Proposition 2. Let
∞∑

n=0
anxn,

∞∑
n=0

bnxn be two formal

power series. Then:

•
∞∑

n=0
anxn +

∞∑
n=0

bnxn =
∞∑

n=0
(an + bn)xn

• λ

∞∑
n=0

anxn =
∞∑

n=0
λanxn

•
( ∞∑

n=0
anxn

)( ∞∑
n=0

bnxn

)
=

∞∑
n=0

(a0bn + a1bn−1 +

· · · + anb0)xn

•
( ∞∑

n=0
anxn

)′

=
∞∑

n=1
nanxn−1

Proposition 3 (Closed forms). We can write the fol-
lowing ordinary generating functions with their corre-
sponding closed forms:

•
N∑

n=0
xn = 1 − xN+1

1 − x

•
∞∑

n=0
xn = 1

1 − x

•
∞∑

n=0

(
n + k − 1

n

)
xn =

(
1

1 − x

)k

Proposition 4. Suppose A and B are two finite disjoint
sets. We set some restrictions for the non-ordered selection
of elements of A ∪ B. For every n ≥ 0, let:

• an be the number of non-ordered selection of n ele-
ments of A satisfying the restrictions.

• bn be the number of non-ordered selection of n ele-
ments of B satisfying the restrictions.

• cn be the number of non-ordered selection of n ele-
ments of A ∪ B satisfying the restrictions.

And let f(x), g(x), h(x) be the ordinary generating func-
tions of (an), (bn), (cn), respectively. Then we have:

h(x) = f(x)g(x)

Definition 5. Let (an) be a sequence of real numbers. We
define its exponential generating function as the following
formal power series:

a0 + a1x + a2
x2

2! + a3
x3

3! + · · · =
∞∑

n=0
an

xn

n!

Definition 6. Let (an) be a sequence of real numbers such
that ai = 1 ∀i. Then its exponential generating function
associated is the so called exponential series:

ex =
∞∑

n=0

xn

n!

Proposition 7. The exponential series has the following
properties:

1. ex+y = exey ∀x, y ∈ R.

2. (ex)n = enx ∀x, n ∈ R.

Proposition 8. Suppose A and B are two finite disjoint
sets. We set some restrictions for the ordered selection of
elements of A ∪ B. For every n ≥ 0, let:

• an be the number of ordered selection of n elements
of A satisfying the restrictions.

• bn be the number of ordered selection of n elements
of B satisfying the restrictions.

• cn be the number of ordered selection of n elements
of A ∪ B satisfying the restrictions.

And let f(x), g(x), h(x) be the exponential generating
functions of (an), (bn), (cn), respectively. Then we have:

h(x) = f(x)g(x)

Recurrence relations
Definition 9. Let (an) be a sequence of real numbers. A
recurrence relation of order k for (an) is an expression that
express an in terms of k consecutive terms of the sequence,
an−1, . . . , an−k, for k ≤ n. We say a sequence is recurrent
if it satisfies a recurrence relation or, equivalently, if it’s a
solution of the recurrence relation.

Definition 10. The initial values of a recurrence relation
of order k are the values of the first k terms for which
the recurrence relation is still not valid, that is, the values
a0, a1, . . . , ak−1.

Lemma 11. The solution of a recurrence relation of order
k with k initial conditions is unique.

Definition 12. A linear recurrence relation of order k is
a recurrence relation that can be written as the form:

an + c1an−1 + · · · ckan−k = g(n)

where c1, . . . ck ∈ R, ck ̸= 0 and g : N → N is an arbitrary
function.
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Definition 13. We say a linear recurrence relation is ho-
mogeneous if g(n) = 0, that is, if it’s of the form:

an + c1an−1 + · · · ckan−k = 0 with ck ̸= 0

Proposition 14. The general solution to a recurrence re-
lation

an + c1an−1 + · · · ckan−k = g(n)
can be expressed as:

(apart
n ) + (ahom

n )

where (apart
n ) is a particular solution of the recurrence re-

lation and (ahom
n ) is the general solution of its associated

homogeneous recurrence relation.
Proposition 15. Given c1, . . . , ck ∈ R, the set of se-
quences that are solution of the homogeneous linear re-
currence relation an + c1an−1 + · · · + ckan−k = 0 form a
real vector space.
Definition 16. Let an + c1an−1 + · · · + ckan−k = 0 be
a homogeneous linear recurrence relation of order k. The
characteristic polynomial of the recurrence is:

xk + c1xk−1 + · · · + ck = 0

Proposition 17. Consider a homogeneous linear recur-
rence relation with characteristic polynomial

(x − r1)(x − r2) · · · (x − rk) = 0

where r1, . . . , rk ∈ C are different complex numbers. Then
the general term of the sequences that satisfy the recur-
rence relation is:

an = λ1r1
n + · · · + λkrk

n

for arbitrary numbers λ1, . . . , λk ∈ C.

2. | Graph theory
Definition 18. A graph G is a structure based on a set
V (G) of vertices and a set E(G) of edges, which are non-
ordered pairs of vertices.
Definition 19. Let G be a graph. The order of G is
n = |V (G)| and the size of G is m = |E(G)|.
Definition 20. Let G be a graph. Two vertices a, b ∈
V (G) are said to be adjacent to one another if exists an
edge e ∈ E(G) that connects them. In this case we say
the edge e is incident on vertices a and b.
Definition 21. An edge that connects a vertex with itself
is called a loop.
Definition 22. Two or more edges incidents with the
same vertices are called multiple edges.

Figure 1: A graph of order 3 and size 5

Definition 23. A graph G is finite if V (G) and E(G) are
finite.

Definition 24. A graph is simple if it has neither multi-
ples edges nor loops.

Definition 25. A complete graph is a graph in which each
pair of different vertices is joined by an edge. We denote
by Kn the complete graph of order n.

Figure 2: K5

Definition 26. Let G be a finite graph. The degree of a
vertex is the number of edges that are incident to it. If
v ∈ V (G) we denote the degree of v by deg v or degG v1.

Lemma 27 (Handshaking lemma). For every graph
G we have: ∑

v∈V (G)

deg v = 2|E(G)|

Corollary 28. In any graph, the number of odd-degree
vertices is even.

Definition 29. Let G be a graph with V (G) =
{v1, . . . , vn}. The degree sequence of G is the decreasing
sequence:

(deg vi1 , . . . , deg vin
)

Definition 30. We say a graph G is k-regular if deg v = k
∀v ∈ V (G).

Definition 31. Let G be a graph. A graph F is an in-
duced subgraph of G if V (F ) ⊆ V (G) and E(F ) ⊆ E(G).

Definition 32. A walk of length k in a graph G is a se-
quence of vertices (u1, . . . , uk) where uiui+1 ∈ E(G) for
i = 1, . . . , k − 1.

Definition 33. A walk in a graph is closed if it starts and
ends in the same vertex.

Definition 34. A walk in a graph is a trail if all the edges
of the walk are distinct.

Definition 35. A walk in a graph is a path if all the ver-
tices (and therefore the edges) of the walk are distinct.

Definition 36. A closed walk in a graph is a closed trail
if all the edges of the closed walk are distinct.

Definition 37. A closed path is called a cycle.
1Observe that with this definition every loop counts as two edges.
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Proposition 38. Let G be a graph. Given u, v ∈ V (G),
there exists a walk between u and v if and only if there
exists a path between u and v.

Definition 39. Let G be a graph. Given u, v ∈ V (G),
we say that u and v are connected if there is a path in G
between u and v.

Proposition 40. The relation u ∼ v if and only if u and
v are connected is an equivalence relation. The equivalent
classes are the connected components of G.

Definition 41. A graph G is connected if ∀u, v ∈ V (G),
u and v are connected.

Definition 42. A graph G is bipartite if V (G) = X ⊔ Y ,
for some sets X, Y ⊆ V (G), and ∀e ∈ E(G) we have e = xy
with x ∈ X and y ∈ Y .

Figure 3: Bipartite graph

Definition 43. Let G be a graph such that E(G) ̸= ∅.
Take an edge e ∈ E(G). We denote by G − e the induced
graph of G such that:

V (G − e) = V (G) and E(G − e) = E(G) \ {e}

Definition 44. Given a connected graph G, we say that
e ∈ E(G) is a bridge of G if G − e is non-connected.

Proposition 45. Let G be a connected graph. e ∈ E(G)
is a bridge if and only if e doesn’t belong to any cycle of
G.

Definition 46. Let G be a connected graph. An Eule-
rian trail in G is a trail that contain all the edges of G.
An Eulerian circuit in G is a closed Eulerian trail. G is
called Eulerian if it admits an Eulerian circuit.

Theorem 47 (Euler theorem). Let G be a connected
graph. G is Eulerian ⇐⇒ deg v = 2k ∀v ∈ V (G), k ∈ N.

Definition 48. Let G be a graph of order n with
V (G) = {v1, . . . , vn}. We define the adjacency matrix of
G, A(G) ∈ Mn(R), as aij to be the number of edges inci-
dent with vi and vj .

Proposition 49. Let G be a graph of order n with
V (G) = {v1, . . . , vn} and let A(G) = (aij) be the adja-
cency matrix of G. Then:

1. A(G) is symmetric.

2.
n∑

j=1
ajk =

n∑
j=1

akj = deg vk, k = 1, . . . , n.

3. For k ∈ N, consider A(G)k = (bk
ij). Then bk

ij is equal
to the number of walks of length k between vertices
vi and vj .

Definition 50. A tree is an acyclic connected graph, that
is, a connected graph that has no cycles.

Figure 4: A tree

Definition 51. Let T be a tree. A leave of T is a vertex
of degree 1.

Definition 52. Let G be a graph. A generator tree is an
induced subgraph T of G such that |V (G)| = |V (T )| and
T is a tree.

Proposition 53. Let G be a graph such that |V (G)| =
n ≥ 2. The following are equivalent:

1. G is a tree.

2. G is connected and every edge of G is a bridge.

3. G is connected and |E(G)| = n − 1.

4. G is acyclic and |E(G)| = n − 1.

5. For vi, vj ∈ V (G), i ̸= j, there exists a unique path
between vi, vj .

6. G is acyclic but adding a new edge creates exactly
one cycle.

Proposition 54. Let T be a tree. Then, T is bipartite.

Definition 55. Let G be a connected graph. G is called
traversable if admits an Eulerian trail.

Theorem 56. Let G be a connected graph. G is
traversable if and only if G has exactly to odd-degree ver-
tices.

Definition 57. Two graphs G, H are said to be isomor-
phic if exists a bijective map f : V (G) → V (H) such that
vv′ ∈ E(G) ⇐⇒ f(v)f(v′) ∈ E(H).

Proposition 58. Two finite isomorphic graphs have the
same order, size and degree sequence.

Theorem 59. Two graphs G, H are isomorphic if and
only if exists a permutation matrix P such that:

PA(G)PT = A(H)

where A(G), A(H) are adjacency matrices of G, H, re-
spectively.

3



3. | Linear programming
Definition 60. Given vectors c, u, v ∈ Rn, b ∈ Rm and a
matrix A ∈ Mm×n(R), we define the linear programming
to maximize2 as:

LP =


max : z = cTx (objective function)
subject to : Ax ⋚ b (restrictions)

u ≤ x ≤ v

Definition 61. Given vectors c, u, v ∈ Rn, b ∈ Rm and
a matrix A ∈ Mm×n(R), we define the canonical form of
a linear programming to maximize as:

LP =


max : z = cTx (objective function)
subject to : Ax ≤ b (restrictions)

u ≤ x ≤ v

Analogously we define the canonical form of a linear pro-
gramming to minimize as:

LP =


min : z = cTx

subject to : Ax ≥ b
u ≤ x ≤ v

Definition 62. Given a linear program, the feasible re-
gion of the program is the set:

F = {x ∈ Rn : Ax ⋚ b, u ≤ x ≤ v}

That is, the set of the points that satisfy the conditions of
the problem.

Proposition 63. Given x ∈ Rn, x is a feasible solution
of the linear program if and only if x ∈ F.

Definition 64. A polyhedron P is a set of Rn that can be
expressed as an intersection of a finite collection of half-
spaces, that is:

P = {x ∈ Rn : Ax ≥ b, A ∈ Mm×n(R), b ∈ Rm}

A polytope is a non-empty and bounded polyhedron. The
feasible region of any linear program is a polyhedron.

Definition 65. Let P ⊂ Rn be a polyhedron. A point
x ∈ Rn is an extreme point of P if there is neither a
pair of points y, z ∈ P , nor a scalar λ ∈ [0, 1] such that
x = λy + (1 − λ)z.

Definition 66. Let LP be a linear program. We define
the standard form of LP as:

LP =


min : z = cTx

subject to : Ax = b
x ≥ 0

Definition 67. Let LP = min
x∈Rn

{cTx : Ax = b, x ≥ 0}.
Feasible solution in which free variables or non-basic vari-
able equal zero with respect to basis of basic variables are
called basic feasible solutions.

Proposition 68. If a linear program admits feasible so-
lutions, exists a basic feasible solution. If a linear program
admits an optimal solution, exists an optimal basic feasi-
ble solution.

Theorem 69. Let P be a non-empty polyhedron of a lin-
ear program in standard form with maximum rank and let
x ∈ P . Then x is an extreme point of P if and only if x is
a basic feasible solution.

Definition 70 (Simplex method: Phase I). Given a
linear program in standard form:

LP =


min : z = cTx

subject to : Ax = b
x ≥ 0

its associated problem in phase I (LP1) is:

LP1 =


min : w =

m∑
i=1

yi

subject to : Ax + Imy = b
x, y ≥ 0

A condition necessary for LP having basic feasible solu-
tions is that the optimal solution of LP1 must be w = 0.
In fact, if w ̸= 0, then the original linear program has no
feasible solutions3.

Proposition 71 (Simplex method: Phase II). Sup-
pose in a simplex table with positive pivots and there-
fore independent-terms vector d ≥ 0, there is a coefficient
cj < 0. (

∗ dT

c z − z0

)
To find a basic feasible solution with lower cost, we make
the following change of variable:

1. The variable in column j becomes a basic variable.

2. The variable in row i such that:

di

aij
= min

{
dk

akj
: akj > 0

}
becomes a non-basic variable. If this variable does
not exists, that is, akj ≤ 0 ∀k then the linear pro-
gram is not bounded.

Definition 72. Let LP = min
x∈Rn

{cTx : Ax ≥ b, x ≥ 0}.
We define the dual program of LP as:

LP∗ =


max : z = bTy

subject to : ATy ≤ c
y ≥ 0

The linear program LP is called primal.

Theorem 73 (Weak duality theorem). Let x be a fea-
sible solution of the primal linear program and y a feasible
solution of the dual linear program. Then we have:

2Analogously we can define a linear programming to minimize changing the objective function to a minimize function.
3This phase is useful to find, if there is, an initial basic feasible solution.
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• cTx ≤ dTy if the primal linear program is in canon-
ical form to maximize.

• cTx ≥ dTy if the primal linear program is in canon-
ical form to minimize.

Corollary 74. Let x, y be feasible solutions of the pri-
mal and dual linear programs respectively such that cTx =
dTy. Then x and y are optimal solutions.

Theorem 75 (Strong duality theorem). Any linear
program has an optimal solution if and only if its dual
linear program does, and in this case, the values coincide.

Theorem 76 (Complementary property). Suppose
that the optimal table of the primal linear program is of
the form: (

∗ dT

c z − z0

)
where c = (c1, . . . , cn+m) and d = (d1, . . . , dm) with
ci ≥ 0, i = 1, . . . , n + m. If (y1, . . . ym, t∗

1, . . . , t∗
n) is the

optimal solution of the dual linear program, expressed in
standard form, then:

c1 = t∗
1, . . . , cn = t∗

n, cn+1 = y1, . . . , cn+m = ym
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