Discrete mathematics

1. Generating functions and recurrence relations

Generating functions

Definition 1. Let (a_n) be a sequence of real numbers. We define its *ordinary generating function* as the following formal power series:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots = \sum_{n=0}^{\infty} a_n x^n$$

Proposition 2. Let $\sum_{n=0}^{\infty} a_n x^n, \sum_{n=0}^{\infty} b_n x^n$ be two formal power series. Then:

•
$$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$

•
$$\lambda \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \lambda a_n x^n$$

$$\bullet \left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_n) x^n$$

•
$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

Proposition 3 (Closed forms). We can write the following ordinary generating functions with their corresponding closed forms:

•
$$\sum_{n=0}^{N} x^n = \frac{1 - x^{N+1}}{1 - x}$$

$$\bullet \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

•
$$\sum_{n=0}^{\infty} \binom{n+k-1}{n} x^n = \left(\frac{1}{1-x}\right)^k$$

Proposition 4. Suppose A and B are two finite disjoint sets. We set some restrictions for the non-ordered selection of elements of $A \cup B$. For every $n \ge 0$, let:

- a_n be the number of non-ordered selection of n elements of A satisfying the restrictions.
- b_n be the number of non-ordered selection of n elements of B satisfying the restrictions.
- c_n be the number of non-ordered selection of n elements of $A \cup B$ satisfying the restrictions.

And let f(x), g(x), h(x) be the ordinary generating functions of (a_n) , (b_n) , (c_n) , respectively. Then we have:

$$h(x) = f(x)g(x)$$

Definition 5. Let (a_n) be a sequence of real numbers. We define its *exponential generating function* as the following formal power series:

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$$

Definition 6. Let (a_n) be a sequence of real numbers such that $a_i = 1 \,\forall i$. Then its exponential generating function associated is the so called *exponential series*:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Proposition 7. The exponential series has the following properties:

1.
$$e^{x+y} = e^x e^y \ \forall x, y \in \mathbb{R}$$
.

2.
$$(e^x)^n = e^{nx} \ \forall x, n \in \mathbb{R}$$
.

Proposition 8. Suppose A and B are two finite disjoint sets. We set some restrictions for the ordered selection of elements of $A \cup B$. For every $n \ge 0$, let:

- a_n be the number of ordered selection of n elements of A satisfying the restrictions.
- b_n be the number of ordered selection of n elements of B satisfying the restrictions.
- c_n be the number of ordered selection of n elements of $A \cup B$ satisfying the restrictions.

And let f(x), g(x), h(x) be the exponential generating functions of (a_n) , (b_n) , (c_n) , respectively. Then we have:

$$h(x) = f(x)q(x)$$

Recurrence relations

Definition 9. Let (a_n) be a sequence of real numbers. A recurrence relation of order k for (a_n) is an expression that express a_n in terms of k consecutive terms of the sequence, a_{n-1}, \ldots, a_{n-k} , for $k \leq n$. We say a sequence is recurrent if it satisfies a recurrence relation or, equivalently, if it's a solution of the recurrence relation.

Definition 10. The *initial values* of a recurrence relation of order k are the values of the first k terms for which the recurrence relation is still not valid, that is, the values $a_0, a_1, \ldots, a_{k-1}$.

Lemma 11. The solution of a recurrence relation of order k with k initial conditions is unique.

Definition 12. A linear recurrence relation of order k is a recurrence relation that can be written as the form:

$$a_n + c_1 a_{n-1} + \cdots + c_k a_{n-k} = g(n)$$

where $c_1, \ldots c_k \in \mathbb{R}, c_k \neq 0$ and $g : \mathbb{N} \to \mathbb{N}$ is an arbitrary function.

Definition 13. We say a linear recurrence relation is *homogeneous* if q(n) = 0, that is, if it's of the form:

$$a_n + c_1 a_{n-1} + \cdots + c_k a_{n-k} = 0$$
 with $c_k \neq 0$

Proposition 14. The general solution to a recurrence relation

$$a_n + c_1 a_{n-1} + \cdots + c_k a_{n-k} = g(n)$$

can be expressed as:

$$(a_n^{\text{part}}) + (a_n^{\text{hom}})$$

where (a_n^{part}) is a particular solution of the recurrence relation and (a_n^{hom}) is the general solution of its associated homogeneous recurrence relation.

Proposition 15. Given $c_1, \ldots, c_k \in \mathbb{R}$, the set of sequences that are solution of the homogeneous linear recurrence relation $a_n + c_1 a_{n-1} + \cdots + c_k a_{n-k} = 0$ form a real vector space.

Definition 16. Let $a_n + c_1 a_{n-1} + \cdots + c_k a_{n-k} = 0$ be a homogeneous linear recurrence relation of order k. The *characteristic polynomial* of the recurrence is:

$$x^k + c_1 x^{k-1} + \dots + c_k = 0$$

Proposition 17. Consider a homogeneous linear recurrence relation with characteristic polynomial

$$(x-r_1)(x-r_2)\cdots(x-r_k)=0$$

where $r_1, \ldots, r_k \in \mathbb{C}$ are different complex numbers. Then the general term of the sequences that satisfy the recurrence relation is:

$$a_n = \lambda_1 r_1^n + \dots + \lambda_k r_k^n$$

for arbitrary numbers $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$.

2. | Graph theory

Definition 18. A graph G is a structure based on a set V(G) of vertices and a set E(G) of edges, which are non-ordered pairs of vertices.

Definition 19. Let G be a graph. The *order* of G is n = |V(G)| and the *size* of G is m = |E(G)|.

Definition 20. Let G be a graph. Two vertices $a, b \in V(G)$ are said to be *adjacent* to one another if exists an edge $e \in E(G)$ that connects them. In this case we say the edge e is *incident* on vertices a and b.

Definition 21. An edge that connects a vertex with itself is called a *loop*.

Definition 22. Two or more edges incidents with the same vertices are called *multiple edges*.

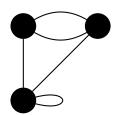


Figure 1: A graph of order 3 and size 5

Definition 23. A graph G is *finite* if V(G) and E(G) are finite.

Definition 24. A graph is *simple* if it has neither multiples edges nor loops.

Definition 25. A complete graph is a graph in which each pair of different vertices is joined by an edge. We denote by K_n the complete graph of order n.

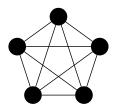


Figure 2: K_5

Definition 26. Let G be a finite graph. The degree of a vertex is the number of edges that are incident to it. If $v \in V(G)$ we denote the degree of v by deg v or deg v.

Lemma 27 (Handshaking lemma). For every graph G we have:

$$\sum_{v \in V(G)} \deg v = 2|E(G)|$$

Corollary 28. In any graph, the number of odd-degree vertices is even.

Definition 29. Let G be a graph with $V(G) = \{v_1, \ldots, v_n\}$. The *degree sequence* of G is the decreasing sequence:

$$(\deg v_{i_1},\ldots,\deg v_{i_n})$$

Definition 30. We say a graph G is k-regular if deg v = k $\forall v \in V(G)$.

Definition 31. Let G be a graph. A graph F is an *induced subgraph* of G if $V(F) \subseteq V(G)$ and $E(F) \subseteq E(G)$.

Definition 32. A walk of length k in a graph G is a sequence of vertices (u_1, \ldots, u_k) where $u_i u_{i+1} \in E(G)$ for $i = 1, \ldots, k-1$.

Definition 33. A walk in a graph is *closed* if it starts and ends in the same vertex.

Definition 34. A walk in a graph is a *trail* if all the edges of the walk are distinct.

Definition 35. A walk in a graph is a *path* if all the vertices (and therefore the edges) of the walk are distinct.

Definition 36. A closed walk in a graph is a *closed trail* if all the edges of the closed walk are distinct.

Definition 37. A closed path is called a *cycle*.

¹Observe that with this definition every loop counts as two edges.

Proposition 38. Let G be a graph. Given $u, v \in V(G)$, there exists a walk between u and v if and only if there exists a path between u and v.

Definition 39. Let G be a graph. Given $u, v \in V(G)$, we say that u and v are connected if there is a path in G between u and v.

Proposition 40. The relation $u \sim v$ if and only if u and v are connected is an equivalence relation. The equivalent classes are the *connected components* of G.

Definition 41. A graph G is connected if $\forall u, v \in V(G)$, u and v are connected.

Definition 42. A graph G is bipartite if $V(G) = X \sqcup Y$, for some sets $X, Y \subseteq V(G)$, and $\forall e \in E(G)$ we have e = xy with $x \in X$ and $y \in Y$.

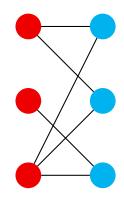


Figure 3: Bipartite graph

Definition 43. Let G be a graph such that $E(G) \neq \emptyset$. Take an edge $e \in E(G)$. We denote by G - e the induced graph of G such that:

$$V(G-e) = V(G)$$
 and $E(G-e) = E(G) \setminus \{e\}$

Definition 44. Given a connected graph G, we say that $e \in E(G)$ is a *bridge* of G if G - e is non-connected.

Proposition 45. Let G be a connected graph. $e \in E(G)$ is a bridge if and only if e doesn't belong to any cycle of G.

Definition 46. Let G be a connected graph. An *Eulerian trail* in G is a trail that contain all the edges of G. An *Eulerian circuit* in G is a closed Eulerian trail. G is called *Eulerian* if it admits an Eulerian circuit.

Theorem 47 (Euler theorem). Let G be a connected graph. G is Eulerian \iff deg $v = 2k \ \forall v \in V(G), k \in \mathbb{N}$.

Definition 48. Let G be a graph of order n with $V(G) = \{v_1, \ldots, v_n\}$. We define the *adjacency matrix* of $G, \mathbf{A}(G) \in \mathcal{M}_n(\mathbb{R})$, as a_{ij} to be the number of edges incident with v_i and v_j .

Proposition 49. Let G be a graph of order n with $V(G) = \{v_1, \ldots, v_n\}$ and let $\mathbf{A}(G) = (a_{ij})$ be the adjacency matrix of G. Then:

1. $\mathbf{A}(G)$ is symmetric.

2.
$$\sum_{j=1}^{n} a_{jk} = \sum_{j=1}^{n} a_{kj} = \deg v_k, \quad k = 1, \dots, n.$$

3. For $k \in \mathbb{N}$, consider $\mathbf{A}(G)^k = (b_{ij}^k)$. Then b_{ij}^k is equal to the number of walks of length k between vertices v_i and v_j .

Definition 50. A *tree* is an acyclic connected graph, that is, a connected graph that has no cycles.

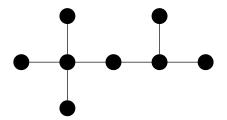


Figure 4: A tree

Definition 51. Let T be a tree. A *leave* of T is a vertex of degree 1.

Definition 52. Let G be a graph. A generator tree is an induced subgraph T of G such that |V(G)| = |V(T)| and T is a tree.

Proposition 53. Let G be a graph such that $|V(G)| = n \ge 2$. The following are equivalent:

- 1. G is a tree.
- 2. G is connected and every edge of G is a bridge.
- 3. G is connected and |E(G)| = n 1.
- 4. G is acyclic and |E(G)| = n 1.
- 5. For $v_i, v_j \in V(G)$, $i \neq j$, there exists a unique path between v_i, v_j .
- 6. G is acyclic but adding a new edge creates exactly one cycle.

Proposition 54. Let T be a tree. Then, T is bipartite.

Definition 55. Let G be a connected graph. G is called traversable if admits an Eulerian trail.

Theorem 56. Let G be a connected graph. G is traversable if and only if G has exactly to odd-degree vertices.

Definition 57. Two graphs G, H are said to be *isomorphic* if exists a bijective map $f: V(G) \to V(H)$ such that $vv' \in E(G) \iff f(v)f(v') \in E(H)$.

Proposition 58. Two finite isomorphic graphs have the same order, size and degree sequence.

Theorem 59. Two graphs G, H are isomorphic if and only if exists a permutation matrix \mathbf{P} such that:

$$\mathbf{P}\mathbf{A}(G)\mathbf{P}^{\mathrm{T}} = \mathbf{A}(H)$$

where $\mathbf{A}(G)$, $\mathbf{A}(H)$ are adjacency matrices of G, H, respectively.

3. | Linear programming

Definition 60. Given vectors $\mathbf{c}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ and a matrix $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$, we define the *linear programming to maximize*² as:

$$\text{LP} = \begin{cases} \text{max} : & z = \mathbf{c}^{\mathsf{T}} x & (\textit{objective function}) \\ \text{subject to} : & \mathbf{A} x \leq \mathbf{b} & (\textit{restrictions}) \\ & \mathbf{u} < x < \mathbf{v} \end{cases}$$

Definition 61. Given vectors $\mathbf{c}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ and a matrix $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R})$, we define the canonical form of a linear programming to maximize as:

$$LP = \begin{cases} \max : & z = \mathbf{c}^{T}x & (\textit{objective function}) \\ \text{subject to} : & \mathbf{A}x \leq \mathbf{b} & (\textit{restrictions}) \\ & \mathbf{u} \leq x \leq \mathbf{v} \end{cases}$$

Analogously we define the canonical form of a linear programming to minimize as:

$$LP = \begin{cases} \min : & z = \mathbf{c}^{T} x \\ \text{subject to} : & \mathbf{A} x \ge \mathbf{b} \\ & \mathbf{u} \le x \le \mathbf{v} \end{cases}$$

Definition 62. Given a linear program, the *feasible region* of the program is the set:

$$\mathfrak{F} = \{ x \in \mathbb{R}^n : \mathbf{A}x \leq \mathbf{b}, \mathbf{u} \leq x \leq \mathbf{v} \}$$

That is, the set of the points that satisfy the conditions of the problem.

Proposition 63. Given $x \in \mathbb{R}^n$, x is a feasible solution of the linear program if and only if $x \in \mathfrak{F}$.

Definition 64. A polyhedron P is a set of \mathbb{R}^n that can be expressed as an intersection of a finite collection of half-spaces, that is:

$$P = \{x \in \mathbb{R}^n : \mathbf{A}x \ge \mathbf{b}, \mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{R}), \mathbf{b} \in \mathbb{R}^m\}$$

A *polytope* is a non-empty and bounded polyhedron. The feasible region of any linear program is a polyhedron.

Definition 65. Let $P \subset \mathbb{R}^n$ be a polyhedron. A point $x \in \mathbb{R}^n$ is an extreme point of P if there is neither a pair of points $y, z \in P$, nor a scalar $\lambda \in [0, 1]$ such that $x = \lambda y + (1 - \lambda)z$.

Definition 66. Let LP be a linear program. We define the $standard\ form$ of LP as:

$$LP = \begin{cases} \min : & z = \mathbf{c}^{T} x \\ \text{subject to} : & \mathbf{A} x = \mathbf{b} \\ & x \ge 0 \end{cases}$$

Definition 67. Let $LP = \min_{x \in \mathbb{R}^n} \{ \mathbf{c}^T x : \mathbf{A}x = \mathbf{b}, x \geq 0 \}.$ Feasible solution in -1 . Let

Feasible solution in which free variables or non-basic variable equal zero with respect to basis of basic variables are called *basic feasible solutions*.

Proposition 68. If a linear program admits feasible solutions, exists a basic feasible solution. If a linear program admits an optimal solution, exists an optimal basic feasible solution.

Theorem 69. Let P be a non-empty polyhedron of a linear program in standard form with maximum rank and let $x \in P$. Then x is an extreme point of P if and only if x is a basic feasible solution.

Definition 70 (Simplex method: Phase I). Given a linear program in standard form:

$$LP = \begin{cases} \min : & z = \mathbf{c}^{T} x \\ \text{subject to} : & \mathbf{A}x = \mathbf{b} \\ & x \ge 0 \end{cases}$$

its associated problem in phase I (LP₁) is:

$$LP_1 = \begin{cases} \min : & w = \sum_{i=1}^m y_i \\ \text{subject to} : & \mathbf{A}x + \mathbf{I}_m y = \mathbf{b} \\ & x, y \ge 0 \end{cases}$$

A condition necessary for LP having basic feasible solutions is that the optimal solution of LP₁ must be w=0. In fact, if $w \neq 0$, then the original linear program has no feasible solutions³.

Proposition 71 (Simplex method: Phase II). Suppose in a simplex table with positive pivots and therefore independent-terms vector $\mathbf{d} \geq 0$, there is a coefficient $c_j < 0$.

$$\left(egin{array}{c|c} * & \mathbf{d}^{\mathrm{T}} \\ \hline \mathbf{c} & z - z_0 \end{array} \right)$$

To find a basic feasible solution with lower cost, we make the following change of variable:

- 1. The variable in column j becomes a basic variable.
- 2. The variable in row i such that:

$$\frac{d_i}{a_{ij}} = \min\left\{\frac{d_k}{a_{kj}} : a_{kj} > 0\right\}$$

becomes a non-basic variable. If this variable does not exists, that is, $a_{kj} \leq 0 \ \forall k$ then the linear program is not bounded.

Definition 72. Let $LP = \min_{x \in \mathbb{R}^n} \{ \mathbf{c}^T x : \mathbf{A}x \geq \mathbf{b}, x \geq 0 \}$. We define the *dual program* of LP as:

$$LP^* = \begin{cases} \max : & z = \mathbf{b}^T y \\ \text{subject to} : & \mathbf{A}^T y \le \mathbf{c} \\ & y \ge 0 \end{cases}$$

The linear program LP is called primal.

Theorem 73 (Weak duality theorem). Let x be a feasible solution of the primal linear program and y a feasible solution of the dual linear program. Then we have:

²Analogously we can define a *linear programming to minimize* changing the objective function to a minimize function.

³This phase is useful to find, if there is, an initial basic feasible solution.

- $\mathbf{c}^{\mathrm{T}}x \leq \mathbf{d}^{\mathrm{T}}y$ if the primal linear program is in canonical form to maximize.
- $\mathbf{c}^{\mathrm{T}}x \geq \mathbf{d}^{\mathrm{T}}y$ if the primal linear program is in canonical form to minimize.

Corollary 74. Let x, y be feasible solutions of the primal and dual linear programs respectively such that $\mathbf{c}^{\mathrm{T}}x = \mathbf{d}^{\mathrm{T}}y$. Then x and y are optimal solutions.

Theorem 75 (Strong duality theorem). Any linear program has an optimal solution if and only if its dual linear program does, and in this case, the values coincide.

Theorem 76 (Complementary property). Suppose that the optimal table of the primal linear program is of the form:

$$\left(egin{array}{c|c} * & \mathbf{d}^{\mathrm{T}} \ \hline \mathbf{c} & z - z_0 \end{array}
ight)$$

where $\mathbf{c} = (c_1, \dots, c_{n+m})$ and $\mathbf{d} = (d_1, \dots, d_m)$ with $c_i \geq 0$, $i = 1, \dots, n+m$. If $(y_1, \dots, y_m, t_1^*, \dots, t_n^*)$ is the optimal solution of the dual linear program, expressed in standard form, then:

$$c_1 = t_1^*, \dots, c_n = t_n^*, c_{n+1} = y_1, \dots, c_{n+m} = y_m$$