
Algebraic structures

1. | Groups
Groups and subgroups
Definition 1 (Group). A group is a non-empty set G
together with a binary operation

· : G×G −→ G
(g1, g2) 7−→ g1 · g2

satisfying the following properties:

1. Associativity:

(g1 · g2) · g3 = g1 · (g2 · g3) ∀g1, g2, g3 ∈ G

2. Identity element:

∃e ∈ G such that e · g = g · e = g ∀g ∈ G1

3. Inverse element:

∀g ∈ G, ∃h ∈ G such that g · h = h · g = e

We denote h by g−1.

In this context we say (G·) is a group. If, moreover, we
have g1 · g2 = g2 · g1 ∀g1, g2 ∈ G, we say that the group
(G, ·) is commutative or abelian2.

Lemma 2. Let (G, ·) be a group. Then:

1. The identity element is unique.

2. Given an element g ∈ G, ∃!h ∈ G such that g · h =
h · g = e.

3. Given g, h ∈ G such that g ·h = e, we have h = g−1.

Definition 3 (Subgroup). Let (G, ·) be a group and H
be a subset of G. (H, ·) is called a subgroup of (G, ·)3 if
satisfies:

1. If h1, h2 ∈ H, then h1 · h2 ∈ H.

2. e ∈ H.

3. If h ∈ H, then h−1 ∈ H.

Definition 4. Let (G, ·) be a group and (H, ·) be a sub-
group of (G, ·). We say that (H, ·) is proper if H ̸= {e}, G.
Otherwise we say that (H, ·) is improper.

Proposition 5. Let (G, ·) be a group and H ̸= ∅ be a
subset of G. Then:

(H, ·) is a subgroup ⇐⇒ h1 · h−1
2 ∈ H ∀h1, h2 ∈ H

Proposition 6. If (H,+) is a subgroup of (Z,+), then
∃n ∈ Z such that H = nZ = {nk : k ∈ Z}.

Proposition 7. Let (Gi, ∗i), i = 1, . . . , n, be groups.
Then, the product

(G1, ∗1) × · · · × (Gn, ∗n)

induces a group with the operation · defined as

(g1, . . . , gn) · (g′
1, . . . , g

′
n) = (g1 ∗1 g

′
1, . . . , gn ∗n g

′
n)

where gi, g
′
i ∈ Gi.

Definition 8. The order of a group (G, ·) is the number
of elements in its set, that is, |G|.

Lemma 9. Let (G, ·) be a group and {(Hi, ·) : i ∈ I} be
a set of subgroups of (G, ·). Then, if

H =
⋂
i∈I

Hi

we have that (H, ·) is also a subgroup of (G, ·).

Definition 10. Let (G, ·) be a group and X ⊆ G be a
subset of G. The subgroup generated by X, (⟨X⟩, ·), is the
smallest subgroup of (G, ·) containing X, that is,

⟨X⟩ =
⋂

X⊆H≤G

H

Definition 11. Let (G, ∗) be a group, g ∈ G and n ∈ Z.
We define gn as:

gn =


g ∗

(n)
· · · ∗ g if n > 0

1 if n = 0

(g−1) ∗
(|n|)
· · · ∗ (g−1) if n < 0

Lemma 12. Let (G, ·) be a group and g ∈ G. Then, for
all n,m ∈ Z we have:

1. gn · gm = gn+m = gm · gn.

2. (gn)m = gnm = (gm)n.

Proposition 13. Let (G, ∗) be a group and X ⊆ G be a
subset of G. Then:

⟨X⟩ = {e} ∪ {gα1
1 ∗ · · · ∗ gαn

n : n ∈ N, αi ∈ Z, gi ∈ X}

Corollary 14. Let (G, ·) be a group and g ∈ G. Then:

⟨g⟩ = {gi : i ∈ Z}

Definition 15. Let (G, ·) be a group and g ∈ G. A sub-
group (⟨g⟩, ·) of (G, ·) generated by a single element g is
called a cyclic group.

Definition 16. Let (G, ·) be a group and g ∈ G. The
order of g is ord(g) := |⟨g⟩|.

1From now on, we will denote e or eG the identity element of the group (G, ·).
2Sometimes to simplify the notation and if the context is clear, we will refer to G directly as the group as well as the set.
3Sometimes we will denote that (H, ·) is a subgroup of (G, ·) by H ≤ G.
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Proposition 17. Let (G, ·) be a group and g ∈ G. Then:

ord(g) = min{i ∈ N : gi = e}

If no such i exists, we say ord(g) = ∞.

Corollary 18. Let n ∈ N such that n > 1 and a ∈ Z/nZ.
Then:

ord(a) = n

gcd(a, n)

Lemma 19. Let (G, ·) be a group and g ∈ G such that
ord(g) = n. Then:

1. gm = e ⇐⇒ n | m.

2. gm = gm′ ⇐⇒ m = m′ mod n.

3. If 0 ≤ i ≤ n, then g−i = (gi)−1 = gn−i.

Corollary 20. Let (Gi, ∗i), i = 1, . . . , n, be groups.
For i = 1, . . . , n, let gi ∈ Gi and consider the element
g = (g1, . . . , gn) ∈ (G1, ∗1) × · · · × (Gn, ∗n). Then:

ord(g) = lcm(ord(g1), . . . , ord(gn))

Group morphisms
Definition 21 (Group morphism). Let (G, ∗), (H, ·)
be two groups. A group morphism from (G, ∗) to (H, ·) is
a function ϕ : (G, ∗) → (H, ·) such that:

ϕ(g1 ∗ g2) = ϕ(g1) · ϕ(g2) ∀g1, g2 ∈ G

Lemma 22. Let ϕ : (G1, ∗) → (G2, ·) be a morphism
between (G1, ∗) and (G2, ·). Then,

1. ϕ(e1) = e2.

2. ϕ(g−1) = ϕ(g)−1 ∀g ∈ G1.

3. ϕ(gn) = ϕ(g)n ∀g ∈ G1 and ∀n ∈ Z.

Definition 23. We say a subgroup (H, ·) of a group (G, ·)
is normal, H ⊴ G, if and only if ∀h ∈ H and ∀g ∈ G, we
have g · h · g−1 ∈ H.

Definition 24. Let (G1, ∗), (G2, ·) be two groups and
ϕ : (G1, ∗) → (G2, ·) be a group morphism. The kernel of
ϕ is:

kerϕ = {g ∈ G1 : ϕ(g) = e2}

The image of ϕ is:

imϕ = {h ∈ G2 : ϕ(g) = h for some g ∈ G1}

Proposition 25. Let (G1, ∗), (G2, ·) be two groups and
ϕ : (G1, ∗) → (G2, ·) be a group morphism. Then:

1. (kerϕ, ∗) is a normal subgroup of (G1, ∗) and (imϕ, ·)
is a subgroup of (G2, ·).

2. Let g, g′ ∈ G1. The following statements are equiv-
alent:

i) ϕ(g) = ϕ(g′).
ii) g ∗ g′−1 ∈ kerϕ.

iii) g′−1 ∗ g ∈ kerϕ.

3. ϕ is injective if and only if kerϕ = {e1}.

4. ϕ is surjective if and only if imϕ = G2.

Definition 26. Let (G, ∗), (H, ·) be two groups. An iso-
morphism between (G, ∗) and (H, ·) is a bijective mor-
phism between these groups. In this case, we say that
(G, ∗), (H, ·) are isomorphic and we denote it by (G, ∗) ∼=
(H, ·).

Proposition 27. Let (G1, ⋆), (G2, ∗), (G3, ·) be three
groups and ϕ : (G1, ⋆) → (G2, ∗), ψ : (G2, ∗) → (G3, ·)
be two group morphisms. Then, the composition ψ ◦ ϕ is
also a group morphism.

Proposition 28. Let (G1, ∗), (G2, ·) be groups and let
ϕ : (G1, ∗) → (G2, ·) be an isomorphism. Then, ϕ−1 :
G2 → G1 is also an isomorphism.

Theorem 29 (Classification of cyclic groups). Let
(G, ·) be a group and g ∈ G be an element such that
⟨g⟩ = G.

• If |G| = ∞, then (G, ·) ∼= (Z,+). We can define the
isomorphism as follows:

ϕ : (Z,+) −→ (G, ·)
k 7−→ gk

• If |G| = n, then (G, ·) ∼= (Z/nZ,+). We can define
the isomorphism as follows:

ϕ :
(
Z
/
nZ,+

)
−→ (G, ·)

k 7−→ gk

Corollary 30. Let (G, ·) be a group and g ∈ G be such
that ⟨g⟩ = G. Then, all subgroups of (G, ·) are cyclic.
Moreover:

• If |G| = ∞, subgroups of (G, ·) are of the form ⟨gn⟩,
n ∈ N ∪ {0}.

• If |G| = n, then there is a unique subgroup (H, ·) of
(G, ·) for every divisor d > 0 of n. In fact, if n = dq,
then H = ⟨gq⟩ and |H| = d.

Definition 31. Let X be a set. We define the symmetric
group (S(X), ◦) as:

S(X) = {f : X → X : f is bijective}4

Definition 32. Let (G, ·) be a group. We define the func-
tions:

ℓg : G −→ G
x 7−→ g · r

rg : G −→ G
x 7−→ x · g

Lemma 33. Let (G, ·) be a group. The functions ℓg, rg

are bijective and its inverses are ℓg−1 , rg−1 , respectively.
4Observe that if X = {1, . . . , n}, then S(X) = Sn.
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Proposition 34. Let (G, ·) be a group. We define the
functions:

ϕ : (G, ·) −→ (S(G), ◦)
g 7−→ ℓg

ψ : (G, ·) −→ (S(G), ◦)
g 7−→ rg−1

Then, ϕ and ψ are injective group morphisms.

Theorem 35 (Cayley’s theorem). Let (G, ·) be a
group. Then, there is an injective morphism:

ϕ : (G, ·) −→ (S(G), ◦)

Corollary 36. If (G, ·) is a group with |G| = n, then
(G, ·) is isomorphic to a subgroup of (Sn, ◦).

Cosets
Definition 37. Let (G, ·) be a finite group, (H, ·) be a
subgroup of (G, ·) and g1, g2 ∈ G.

• We say g1 ∼ g2 ⇐⇒ g1 · g−1
2 ∈ H.

• We say g1 ≈ g2 ⇐⇒ g−1
2 · g1 ∈ H.

Lemma 38. Let (G, ·) be a finite group and (H, ·) be a
subgroup of (G, ·). Then:

1. ∼ and ≈ are equivalence relations.

2. If g ∈ G, then:

[g]∼ = H · g = {h · g : h ∈ H}
[g]≈ = g ·H = {g · h′ : h′ ∈ H}

Usually we say that H · g are the right cosets in G
and g ·H, the left cosets in G.

Definition 39. Let (G, ·) be a finite group and (H, ·) be
a subgroup of (G, ·). We define the set of right cosets and
the set of left cosets, respectively, as follows:

G
/

∼ = {H · g : g ∈ G} G
/

≈ = {g ·H : g ∈ G}

Proposition 40. Let (G, ·) be a group and (H, ·) be a
subgroup of (G, ·). The following statements are equiva-
lent:

1. H ⊴G.

2. g ·H = H · g ∀g ∈ G.

Theorem 41 (Lagrange’s theorem). Let (G, ·) be a
finite group and (H, ·) be a subgroup of (G, ·). Then:

|H| | |G|

Definition 42. Let (G, ·) be a finite group and (H, ·) be
a subgroup of (G, ·). We define the index of (H, ·) in (G, ·)
as:

[G : H] := |G|
|H|

Corollary 43. Let (G, ·) be a finite group and (H, ·) be
a subgroup of (G, ·). Then:

[G : H] =
∣∣∣G/

∼
∣∣∣ =

∣∣∣G/
≈

∣∣∣

Corollary 44. Let (G, ·) be a finite group.
1. If g ∈ G, then ord(g) | |G|.

2. If |G| is prime, then (G, ·) is cyclic.

3. If (H, ·) and (K, ·) are subgroups of (G, ·) and
gcd(|H|, |K|) = 1, then H ∩K = {e}.

Definition 45 (Quotient group). Let (G, ·) be a finite
group and (H, ·) be a subgroup of (G, ·) such that H ⊴G.
We define the quotient group (G/H, ∗) as

G
/
H := G

/
∼ = G

/
≈

and
∗ : G

/
H ×G

/
H −→ G

/
H

(g1 ·H, g2 ·H) 7−→ (g1 · g2) ·H

Lemma 46. Let (G, ·) be a finite group and (H, ·) be a
subgroup of (G, ·) such that H ⊴G. The projection

π : (G, ·) −→
(
G

/
H, ∗

)
g 7−→ [g] = g ·H

is a group morphism.

Isomorphism theorems
Theorem 47 (First isomorphism theorem). Let
(G1, ⋆), (G2, ·) be groups, ϕ : (G1, ⋆) → (G2, ·) be a group
morphism and (H, ⋆) be a subgroup of (G1, ∗) such that
H ⊴ G1. If (H, ⋆) is a subgroup of (kerϕ, ⋆), then there
exists a unique group morphism ψ : (G1/H, ∗) → (G2, ·)
such that the diagram of Fig. 1 is commutative, that is,
ϕ = ψ ◦ π.

(G1, ⋆) (G2, ·)

(
G1

/
H, ∗

)

ϕ

ψπ

Figure 1
The definition of ψ is ψ([g]) = ϕ(g) ∀g ∈ G1. In particu-
lar, if H = kerϕ, then ψ is injective and therefore there is
an isomorphism ψ : (G1/H, ∗) → (imϕ, ·).
Theorem 48. Let

ϕ : (Z,+) −→
(
Z
/
nZ,+

)
×

(
Z
/
mZ,+

)
1 7−→ (1, 1)

be a group morphism. Then, ϕ induces a morphism
ψ : (Z/nmZ,+) → (Z/nZ,+) × (Z/mZ,+). Moreover,
ψ is injective if and only if gcd(n,m) = 1 and in this case
ψ is an isomorphism.
Corollary 49. Let n,m ∈ Z be two coprime integers and
a, b ∈ Z. The system of congruences{

x ≡ a mod n

x ≡ b mod m

has solutions and these are of the form x ≡ c mod nm,
where c ≡ a mod n and c ≡ b mod m.
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Definition 50. Let (G, ·) be a group and (H, ·), (K, ·)
be subgroups of (G, ·). We define the products of group
subsets K, H as the sets:

H ·K = {h · k : h ∈ H, k ∈ K}
K ·H = {k · h : k ∈ K,h ∈ H}

Proposition 51. Let (G, ·) be a group and (H, ·), (K, ·)
be subgroups of (G, ·) such that H ⊴ G. Then, (H · K, ·)
is a subgroup of (G, ·) and H ·K = K ·H.

Proposition 52. Let (G, ·) be a group and (H, ·), (K, ·)
be subgroups of (G, ·) such that H∩K = {e}. If H,K⊴G,
then the function

(H ×K, ∗) −→ (H ·K, ·)
(h, k) 7−→ h · k

is an isomorphism. In particular, ∀h ∈ H and ∀k ∈ K,
h · k = k · h.

Theorem 53 (Second isomorphism theorem). Let
(G, ·) be a group and (H, ·), (K, ·) be subgroups of (G, ·)
such that H ⊴G. Then, H ∩K ⊴K and:

K
/
H ∩K

∼= H ·K/
H

Corollary 54. Let (G, ·) be a group and (H, ·), (K, ·) be
subgroups of (G, ·). Then:

|H||K| = |H ∩K||H ·K|

Lemma 55. Let (G, ·) be a group and (H, ·), (K, ·) be
subgroups of (G, ·) such that H ⊴ G and H ⊆ K. Then,
H⊴K, (K/H, ∗) is a subgroup of (G/H, ∗) and moreover:

K
/
H ⊴G

/
H ⇐⇒ K ⊴G

Theorem 56 (Correspondence theorem). Let (G, ·)
be a group and (H, ·) be a subgroup of (G, ·) such that
H ⊴ G. Then, there is a bijection ϕ from the set G of all
subgroups (K, ·) of (G, ·) such that H ⊆ K onto the set
H of all subgroups (K/H, ∗) of (G/H, ∗). More precisely,
the bijection is:

ϕ : G −→ H
K 7−→ K

/
H

Theorem 57 (Third isomorphism theorem). Let
(G, ·) be a group and (H, ·), (K, ·) be subgroups of (G, ·)
such that H,K⊴G and H ⊆ K. Then, K/H⊴G/H and:(

G
/
H

)/(
K

/
H

) ∼= G
/
K

Group actions
Definition 58. Let X be a set and (G, ·) be a group. A
(left) group action of (G, ·) on X is a function

∗ : (G, ·) ×X −→ X
(g, x) 7−→ g ∗ x

satisfying the following properties:

1. e ∗ x = x, ∀x ∈ X.

2. (g1 · g2) ∗ x = g1 ∗ (g2 ∗ x), ∀x ∈ X and ∀g1, g2 ∈ G.

A set X together with an action ∗ of (G, ·) is usually called
a (left) G-set.

Lemma 59. Let (G, ·) be a group and X be a G-set. For
all g ∈ G the function

ℓg : X −→ X
x 7−→ g ∗ x

is bijective and its inverse is ℓg−1 .

Definition 60. Let (G, ·) be a group and X be a G-set.
For all x, y ∈ X, we say x ∽ y ⇐⇒ ∃g ∈ G : y = g ∗ x.

Lemma 61. The relation ∽ is an equivalence relation.

Definition 62. Let (G, ·) be a group and X be a G-set.
If x ∈ X, we define the orbit of x as:

Ox = [x]∽ = {g ∗ x : g ∈ G}

Definition 63. Let (G, ·) be a group and X be a G-set.
For x ∈ X, we define the stabilizer of (G, ·) with respect
to x as the set:

Gx = {g ∈ G : g ∗ x = x}

Proposition 64. Let (G, ·) be a group and X be a G-set.
For all x ∈ X, (Gx, ·) is a subgroup of (G, ·).

Theorem 65 (Orbit-stabilizer theorem). Let (G, ·)
be a group, X be a G-set and x ∈ X. The surjective
function

ϕ : (G, ·) −→ Ox

g 7−→ g ∗ x

induces a bijective function ψ : G/ ≈ → Ox, where ≈
is the equivalence relation g1 ≈ g2 ⇐⇒ g−1

2 · g1 ∈ Gx

∀g1, g2 ∈ G5. In particular, if G is finite:

|Ox| = |[G : Gx]|

Corollary 66 (Orbits formula). Let (G, ·) be a finite
group and X be a finite G-set. If x1, . . . , xm are the ele-
ments of X and |Oxi

| = 1 for i = 1, . . . , r, then:

|X| = r +
m∑

i=r+1
|Oxi | = r +

m∑
i=r+1

|[G : Gxi ]| (1)

5Note that the notation ≈ for the equivalence relation correspond with the one defined in Theorem 37.
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Applications of orbits formula

Theorem 67 (Cauchy’s theorem). Let (G, ·) be a fi-
nite group of order n and p be a prime number. If p | n,
then (G, ·) has an element of order p.

Corollary 68. Let p be an odd prime number. Then,
the groups of order 2p are isomorphic to (Z/2pZ,+) or
(Dp, ◦)6.

Proposition 69. Let (G, ·) be a group. The function

(G, ·) ×G −→ G
(g, x) 7−→ g · x · g−1

is an action of (G, ·) over itself. It is called the conjugation
action.

Definition 70 (Center of a group). Let (G, ·) be a
group. We define the center of (G, ·) as:

Z(G) = {z ∈ G : z · g = g · z ∀g ∈ G}7

Proposition 71. Let p be a prime number and (G, ·) be a
finite group of order pn for some n ≥ 1. Then, |Z(G)| > 1.

Lemma 72. Let (G, ·) be a group and (H, ·) be a sub-
group of (G, ·). Consider the application

(H, ·) ×G/ ≈ −→ G/ ≈
(h, g ·H) 7−→ (h · g) ·H

This application defines an action of the subgroup (H, ·)
over the set G/≈.

Definition 73. Let (G, ·) be a group and (H, ·) be a sub-
group of (G, ·). The normalizer of (H, ·) in (G, ·) is

NG(H) = {g ∈ G : g · h · g−1 ∈ H ∀h ∈ H}

Lemma 74. Let (G, ·) be a group and (H, ·) be a sub-
group of (G, ·). Then, (NG(H), ·) is a subgroup of (G, ·)
containing H and, moreover, H ⊴NG(H).

Corollary 75. Let (G, ·) be a finite group and (H, ·) be
a subgroup of (G, ·). Then, by orbits formula applied to
action defined on Theorem 72, we have:

[G : H] = [NG(H) : H] +
∑

|Ox|>1

|Ox|

Proposition 76. Let (G, ·) be a group of order n ∈ N, p
be a prime number such that p | n and (H, ·) be a sub-
group of (G, ·) of order pi, i ≥ 1. Suppose p | [G : H].
Then, p | [NG(H) : H].

Sylow’s theorems
Corollary 77. Let (G, ·) be a group of order n ∈ N, p be a
prime number and (H, ·) be a subgroup of (G, ·) such that
|H| = pi, i ≥ 0. Suppose p | [G : H]. Then, there is a sub-
group (H ′, ·) of (G, ·) such that H ⊂ H ′ and |H ′| = pi+1.
Moreover, H ⊴H ′ and H ′/H ∼= Z/pZ.

Theorem 78 (First Sylow theorem). Let (G, ·) be a fi-
nite group and p be a prime number. Suppose |G| = prm,
where r ≥ 0 and gcd(p,m) = 1. Then, there is a subgroup
(K, ·) of (G, ·) of order pr. Moreover there is a chain of
subgroups (Hi, ·) satisfying

{e} = H0 ⊴H1 ⊴ · · · ⊴Hr = K

such that Hi+1/Hi
∼= Z/pZ for 0 ≤ i < r.

Definition 79. Let p be a prime number. A group (G, ·)
is a p-group if |G| = pr, for some r ∈ N.

Definition 80. Let p be a prime number and (G, ·) be
a group. A Sylow p-subgroup is a p-subgroup of (G, ·) of
maximum order.

Definition 81. Let (G, ·) be a finite group. We say (G, ·)
is solvable if there is a chain of subgroups (Hi, ·) of (G, ·)
satisfying

{e} = H0 ⊴H1 ⊴ · · · ⊴Hr = G

and such that the subgroups (Hi+1/Hi, ∗), 0 ≤ i < r, are
cyclic.

Theorem 82 (Second Sylow theorem). Let (G, ·) be a
finite group and p be a prime number. Suppose |G| = prm,
where r ≥ 0 and gcd(p,m) = 1. Let (K, ·) be a Sylow p-
subgroup of (G, ·). Then, if (H, ·) is a subgroup of (G, ·)
of order pi, ∃g ∈ G such that g · H · g−1 ⊆ K. In par-
ticular two different Sylow p-subgroups (K1, ·) and (K2, ·)
are conjugate, that is, there exists an element g ∈ G such
that g ·K1 · g−1 = K2.

Theorem 83 (Third Sylow theorem). Let (G, ·) be a
finite group and p be a prime number. Suppose |G| = prm,
where r ≥ 0 and gcd(p,m) = 1. Let (K, ·) be a Sylow p-
subgroup of (G, ·) and np be the number of different Sylow
p-subgroups of (G, ·). Then, np = [G : NG(K)], np | m
and np ≡ 1 mod p.

Corollary 84. Let p, q be prime numbers be such that
p < q and q ̸≡ 1 mod p. If (G, ·) is a group of order pq,
then G ∼= Z/pqZ.

Examples of groups
Let n ∈ N and p be a prime number.

• (Z,+), (Z/nZ,+), (Q,+), (R,+), (C,+)

• ((Z/pZ)∗, ·), (Q∗, ·), (R∗, ·), (C∗, ·)
6See the examples at the end of this section.
7Note that, by Eq. (1), if we consider the conjugation action we have:

|G| = |Z(G)| +
∑

|Ox|>1

|Ox|
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• (Sn, ◦)

• (An, ◦), where An = {σ ∈ Sn : sgn(σ) = 1}. This
group is called the alternating group. Note that
|An| = Sn

2 = n!
2 .

• (GLn(A), ·), where GLn(A) = {M ∈ Mn(A) :
M is invertible} and A = Z, Q, R or C.

• (SLn(A), ·), where SLn(A) = {M ∈ GLn(A) :
det M = 1} and A = Z, Q, R or C.

• (Dn, ◦), where Dn is the set of rotations and re-
flections that leave invariant the regular polygon of
n vertices centered at origin. It can be seen that
Dn = ⟨r, s : ord(r) = n, ord(s) = 2, r ◦ s = s ◦ r−1⟩.
This group is called the dihedral group. Note that
|Dn| = 2n.

• (Q8, ·), where Q8 = ⟨a, b : ord(a) = ord(b) = 4, b·a =
a−1 · b⟩. This group is called the quaternion group.
Note that |Q8| = 8.

• (Dicn, ·), where Dicn = ⟨a, b : ord(a) = 2n, b2 =
an, b−1 · a · b = a−1⟩. This group is called the di-
cyclic group. Note that |Dicn| = 4n.

Classification of groups of small order

|G| Non-isomorphic groups
1 {e}
2 Z/2Z
3 Z/3Z
4 Z/4Z, Z/2Z × Z/2Z
5 Z/5Z
6 Z/6Z, S3
7 Z/7Z
8 Z/8Z, Z/4Z × Z/2Z, (Z/2Z)3, D4, Q8
9 Z/9Z, Z/3Z × Z/3Z
10 Z/10Z, D5
11 Z/11Z
12 Z/12Z, Z/6Z × Z/2Z, D6, A4, Dic3
13 Z/13Z
14 Z/14Z, D7
15 Z/15Z

2. | Rings and fields
Rings, subrings and ring morphisms
Definition 85 (Ring). A ring is a set R equipped with
two binary operations (called addition and multiplication):

+ : R×R −→ R
(r1, r2) 7−→ r1 + r2

· : R×R −→ R
(r1, r2) 7−→ r1 · r2

satisfying the following properties:

1. (R,+) is an abelian group.

2. (R, ·) satisfies8:

i) Associativity:

(r1 · r2) · r3 = r1 · (r2 · r3) ∀r1, r2, r3 ∈ R

ii) Identity element9:

∃1 ∈ R such that 1 · r = r · 1 = r ∀r ∈ R

iii) Commutativity:

r1 · r2 = r2 · r1 ∀r1, r2 ∈ R

3. Multiplication is distributive with respect to addi-
tion:

(r1 + r2) · r3 = r1 · r3 + r2 · r3 ∀r1, r2, r3 ∈ R

In this context we say (R,+, ·) is a ring.

Definition 86. A noncommutative ring is a ring whose
multiplication is not commutative.

Definition 87 (Field). Let (R,+, ·) be a ring. If every
nonzero element of R has a multiplicative inverse (that is,
(R, ·) is an abelian group), we say that R is a field.

Proposition 88. Let (Ri,+i, ·i), i = 1, . . . , n, be rings.
Then, the product

(R1,+1, ·1) × · · · × (Rn,+n, ·n)

induces a ring with operations + and · defined as

(r1, . . . , rn) + (r′
1, . . . , r

′
n) = (r1 +1 r

′
1, . . . , rn +n r

′
n),

(r1, . . . , rn) · (r′
1, . . . , r

′
n) = (r1 ·1 r′

1, . . . , rn ·n r′
n),

where ri, r
′
i ∈ Ri.

Definition 89. Let (R,+, ·) be a ring. We define the set
of polynomials over the ring (R,+, ·) as:

R[x] := {r0 + r1 · x+ · · · + rn · xn : ri ∈ R ∀i and n ≥ 0}

Moreover, (R[x],+, ·) is a ring.

Definition 90. A ring (R,+, ·) is a Boolean ring if r2 = r
∀r ∈ R.

Lemma 91. Let (R,+, ·) be a ring. Then:

1. The multiplicative identity element is unique.

2. ∀r ∈ R, 0 · r = 0.

3. ∀r ∈ R, (−1) · r = −r, where −1 is the additive
inverse of 1.

4. ∀r, s ∈ R, (−r) · s = −(r · s) and (−r) · (−s) = r · s.

Definition 92 (Subring). Let (R,+, ·) be a ring and
S ⊆ R be a subset of R. (S,+, ·) is called a subring of
(R,+, ·) if satisfies:

1. (S,+) is a subgroup of (R,+).

2. ∀s1, s2 ∈ S, s1 · s2 ∈ S.
8Some definitions state that the commutative property is not necessary to define a ring. However, in these notes we will take the

definition given.
9It is common to denote the additive identity element as 0 and the multiplicative identity element as 1.
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3. 1 ∈ S.

Definition 93 (Ring morphism). Let (R,+, ·),
(S,⊕,⊙) be two rings. A ring morphism from (R,+, ·)
to (S,⊕,⊙) is a function ϕ : (R,+, ·) → (S,⊕,⊙) such
that:

1. ϕ(r1 + r2) = ϕ(r1) ⊕ ϕ(r2) ∀r1, r2 ∈ R10.

2. ϕ(r1 · r2) = ϕ(r1) ⊙ ϕ(r2) ∀r1, r2 ∈ R.

3. ϕ(1R) = 1S .

Lemma 94. Let (R,+, ·), (S,⊕,⊙) be two rings and
ϕ : R → S be a ring morphism. Then, knowing that
kerϕ = {r ∈ R : f(r) = 0}, then:

1. (kerϕ,+) is a subgroup of (R,+).

2. ∀k ∈ kerϕ and ∀r ∈ R, k · r ∈ kerϕ.

Proposition 95. Let (R,+, ·), (S,⊕,⊙) be two rings and
ϕ : R → S be a ring morphism. Then:

1. f(0) = 0.

2. f(−r) = −f(r) ∀r ∈ R.

3. If r ∈ R has a multiplicative inverse, then f(r) so it
has and, moreover, f(r−1) = f(r)−1.

Proposition 96. Let (R1,+, ·), (R2,⊕,⊙) and (R3,⊞,⊡)
be rings and ϕ : (R1,+, ·) → (R2,⊕,⊙), ψ : (R2,⊕,⊙) →
(R3,⊞,⊡) be two ring morphisms. Then, the composition
ψ ◦ ϕ is also a ring morphism.

Proposition 97. Let (R,+, ·), (S,⊕,⊙) be rings and
let ϕ : R → S be a bijective ring morphism. Then,
ϕ−1 : S → R is also a bijective ring morphism.

Ideals
Definition 98 (Ideal). Let (R,+, ·) be a ring. A sub-
group (I,+) of (R,+) is an ideal if ∀x ∈ I and ∀r ∈ R,
x · r ∈ I.

Lemma 99 (Principal ideal). Let (R,+, ·) be a ring
and a ∈ R. The set

(a) := a ·R = {a · r : r ∈ R}

is an ideal of (R,+, ·) and it is called principal ideal gen-
erated by a.

Proposition 100. Let (R,+, ·) be a nonzero ring. R is
a field if and only if (R,+, ·) has only two ideals: {0} and
R.

Definition 101. Let (R,+, ·) be a ring. An element r ∈ R
is a unit if it has a multiplicative inverse. The set of units
in (R,+, ·) is denoted by R∗ or U(R). Moreover, (R∗, ·) is
a group called multiplicative group of (R,+, ·).

Lemma 102. Let (R,+, ·), (S,⊕,⊙) be rings and u ∈ R∗.
Then:

1. If r ∈ R, then r ·R = r · u ·R.

2. If f : (R,+, ·) → (S,⊕,⊙) is a ring morphism, then
f : (R∗,+, ·) → (S∗,⊕,⊙) is a group morphism.

Proposition 103. Let K be a field. Then, all ideals of
K[x] are principal. Moreover if I ̸= {0} is an ideal of
K[x], there exists a monic polynomial p(x) ∈ K[x] such
that I = p(x) ·K[x].

Proposition 104. Let (R,+, ·) be a ring and I, J be
ideals of (R,+, ·). Then, the sets

I ∩ J := {x : x ∈ I, x ∈ J}
I + J := {x+ y : x ∈ I, y ∈ J}

I · J :=
{

n∑
i=1

xiyi : n ≥ 0, xi ∈ I, yi ∈ J

}

are all ideals. In particular I ∩ J is the largest ideal con-
tained in I and J , and I+J is the smallest ideal containing
I and J .

Definition 105. Let (R,+, ·) be a ring and I, J be ideals
of (R,+, ·). If I = (a) and J = (b) for some a, b ∈ R, then
we define (a, b) as:

(a, b) = (a) + (b)

Proposition 106. Let a, b ∈ Z, d = gcd(a, b) and
m = lcm(a, b). Then:

(a) + (b) = (d) (a) ∩ (b) = (m)

Definition 107. A ring is Noetherian if all its ideals are
finitely generated.

Theorem 108 (Hilbert’s basis theorem). If (R,+, ·)
is a Noetherian ring, then (R[x1, . . . , xn],+, ·) is a Noethe-
rian ring.

Lemma 109. Let (R,+, ·), (S,⊕,⊙) be two rings and
ϕ : (R,+, ·) → (S,⊕,⊙) be a ring morphism. Then:

1. kerϕ is an ideal of (R,+, ·).

2. imϕ is a subring of (S,⊕,⊙).

Ideal quotient

Definition 110. Let (R,+, ·) be a ring and I be an ideal
of (R,+, ·). For all r1, r2 ∈ R, we say r1 ∼ r2 ⇐⇒
r1 − r2 ∈ I. Since (I,+) is a subgroup of (R,+), ∼ is an
equivalence relation and we denote by

R
/
I := {x+ I : x ∈ R}

the set of equivalence classes.

Proposition 111. Let (R,+, ·) be a ring and I be an ideal
of (R,+, ·). Then, R/I is a ring with operations defined
as:

• ∀r1, r2 ∈ R, r1 ⊞ r2 = r1 + r2. 0 is the identity
element with respect to this operation.

10That is, ϕ is a group morphism between groups (R, +) and (S, ⊕).
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• ∀r1, r2 ∈ R, r1 ⊡ r2 = r1 · r2. 1 is the identity ele-
ment with respect to this operation.

Moreover the projection:

π : (R,+, ·) −→
(
R

/
I,⊞,⊡

)
r 7−→ r

is a surjective ring morphism with kerπ = I.

Corollary 112. Let (R,+, ·) be a ring and I be an ideal
of (R,+, ·). Ideals of R/I are of the form J/I, where J is
an ideal of (R,+, ·) containing I.

Isomorphism theorems

Theorem 113 (First isomorphism theorem). Let
(R,+, ·), (S,⊕,⊙) be two rings, ϕ : (R,+, ·) → (S,⊕,⊙)
be a ring morphism and I be an ideal such that I is a
subgroup of (kerϕ,+). Then, there exists a unique ring
morphism ψ : (R/I,⊞,⊡) → (S,⊕,⊙) such that the dia-
gram of Fig. 2 is commutative, that is, ϕ = ψ ◦ π.

(R,+, ·) (S,⊕,⊙)

(
R
/
I,⊞,⊡

)

ϕ

ψπ

Figure 2

The definition of ψ is ψ([r]) = ϕ(r) ∀r ∈ R. In particular,
if I = kerϕ, then ψ is injective and therefore there is an
isomorphism ψ : R/ kerϕ → imϕ.

Theorem 114 (Second isomorphism theorem). Let
(R,+, ·) be a ring and I, J be ideals of (R,+, ·). Then,
(I + J)/I is an ideal of R/I and there is a group isomor-
phism

ϕ : (I + J)/
I −→ J

/
(I ∩ J)

such that ϕ(a · b) = ϕ(a) · ϕ(b) ∀a, b ∈ J .

Theorem 115 (Third isomorphism theorem). Let
(R,+, ·) be a ring and I, J be ideals of (R,+, ·) such that
I ⊆ J . Then, there is a ring isomorphism:(

R
/
I

)/(
J
/
I

) ∼= R
/
J

Theorem 116 (Correspondence theorem). Let
(R,+, ·) be ring and I be an ideal of (R,+, ·). Then, there
is a bijection ϕ from the set R of all ideals J of (R,+, ·)
such that I ⊆ J onto the set I of all ideals J/I of R/I.
More precisely, the bijection is:

ϕ : R −→ I
J 7−→ J

/
I

Special rings and ideals

Definition 117. A ring R ̸= {0}11 is an integral domain
if the product of any two nonzero elements is nonzero.

Definition 118. Let R be a ring. We say r ∈ R is a zero
divisor if ∃s ∈ R \ {0} such that r · s = 0. We say r ∈ R
is not a zero divisor if r · s = 0 =⇒ s = 0.

Definition 119. Let R be an integral domain. We say
R is a principal ideal domain (PID) if every ideal of R is
principal.

Definition 120. Let R be a ring and P ̸= R be an
ideal of R. We say P is prime if ∀a, b ∈ R, we have
a · b ∈ P ⇐⇒ a ∈ P or b ∈ P .

Definition 121. Let R be a ring and M ̸= R be an ideal
of R. We say M is maximal if for any ideal I of R with
M ⊆ I, either I = R or I = M .

Proposition 122. Let R be a ring. Then:

1. An ideal P of R is prime if and only if R/P is an
integral domain.

2. An ideal M of R is maximal if and only if R/M is a
field.

In particular, all maximal ideals are prime.

Definition 123. Let R be an integral domain and a ∈
R \ {0} be a non-unit element. We say a is irreducible if
every factorization of a contains at least one unit.

Definition 124. Let R be an integral domain and a ∈
R \ {0} be a non-unit element. We say a is prime if and
only if (a) is a prime ideal or, equivalently, if b, c ∈ R are
such that a | b · c, then a | b or a | c.

Proposition 125. Let R be an integral domain and
a ∈ R \ {0} be a non-unit element.

1. If a is prime, then a is irreducible.

2. If R is a PID, the following statements are equiva-
lent:

i) a is irreducible.

ii) (a) is maximal.

iii) a is prime.

Theorem 126. Let R be a ring. All ideals I ̸= R are
contained in a maximal ideal.

11From now on, for simplicity, we will denote the ring (R, +, ·) as R.
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Polynomial ring

Definition 127. Let R be a ring and p(x) ∈ R[x]. If
p(x) = a0 + a1x + · · · + anx

n with an ̸= 0, we define the
degree of p(x) as:

deg p(x) =
{
n if p(x) ̸= 0
−∞ if p(x) = 0

Proposition 128. Let R be a ring and p(x), q(x) ∈ R[x]
be polynomials with leading coefficients pn and qn respec-
tively. Then:

1. deg(p(x) + q(x)) ≤ max{deg p(x), deg q(x)} and the
equality holds when deg p(x) ̸= deg q(x).

2. deg(p(x) · q(x)) ≤ deg p(x) + deg q(x) and the equal-
ity holds when either pn or qn is not a zero divisor.

Proposition 129. Let R be a ring and b(x), a(x) ∈ R[x]
such that the leading coefficient of b(x) is a unit. Then,
∃!q(x), r(x) ∈ R[x] such that a(x) = b(x)q(x) + r(x) with
deg r(x) < deg b(x).

Proposition 130 (Universal property of polynomi-
als). Let R, S be two rings, ϕ : R → S be a ring morphism
and s ∈ S. Then, ∃!ψ : R[x] → S such that ψ is a ring
morphism, ψ(r) = ϕ(r) ∀r ∈ R and ψ(x) = s. That is,
the diagram of Fig. 3 is commutative and ψ(x) = s.

R S

R[x]

ϕ

ψi

Figure 3

Proposition 131 (Universal property of polynomi-
als in several variables). LetR, S be two rings, ϕ : R →
S be a ring morphism and s1, . . . , sn ∈ S be not necessar-
ily distinct elements of S. Then, ∃!ψ : R[x1, . . . , xn] → S
such that ψ is a ring morphism, ψ(r) = ϕ(r) ∀r ∈ R and
ψ(xi) = si for i = 1, . . . , n.

Corollary 132. Let R be a ring and r ∈ R. Then, the
function

ϕr : R[x] −→ R
p(x) 7−→ p(r)

is a ring morphism. Moreover kerϕr = (x − r) · R[x] and
for all p(x) ∈ R[x] ∃q(x) ∈ R[x] such that:

p(x) = (x− r) · q(x) + p(r)

Corollary 133. Let R be a ring and r1, . . . , rn ∈ R.
Then, the function

ϕ : R[x1, . . . , xn] −→ R
p(x1, . . . , xn) 7−→ p(r1, . . . , rn)

is a ring morphism. Moreover for all p(x1, . . . , xn) ∈
R[x1, . . . , xn] ∃qi(x1, . . . , xn) ∈ R[x] for i = 1, . . . , n such
that:

p(x1, . . . , xn) = p(r1, . . . , rn) +
n∑

i=1
(xi − ri) · qi(x1, . . . , xn)

Therefore, kerϕ = (x1 −r1, . . . , xn −rn) and consequently:

R[x1, . . . , xn]/
(x1 − r1, . . . , xn − rn)

∼= R

Corollary 134. Let K be a field and r1, . . . , rn ∈ K.
Then, the ideal (x1 − r1, . . . , xn − rn) is maximal in
K[x1, . . . , xn] and

K[x1, . . . , xn]/
(x1 − r1, . . . , xn − rn)

∼= K

Theorem 135 (Fundamental theorem of algebra).
Ideals of C[x] are of the form (x− z), where z ∈ C. That
is, irreducible polynomials in C[x] have degree 1.

Theorem 136 (Hilbert’s Nullstellensatz). Maximal
ideals of C[x1, . . . , xn] are of the form (x1−z1, . . . , xn−zn),
where z1, . . . , zn ∈ C.

Theorem 137 (Eisenstein’s criterion). Let a(x) ∈
Z[x] \ {0} be such that a(x) =

∑n
i=0 aix

i with
gcd(a0, . . . , an) = 1. If there exists a primer number p
such that:

• p | ai, i = 0, 1, . . . , n− 1,

• p ∤ an,

• p2 ∤ a0,

then a(x) is irreducible in Z[x] and in Q[x].

Theorem 138 (General Eisenstein’s criterion). Let
R be an integral domain, a(x) =

∑n
i=0 aix

i ∈ R[x] \ {0}
and p be a prime element in R such that:

• p | ai, i = 0, 1, . . . , n− 1,

• p ∤ an,

• p2 ∤ a0.

Then, if a(x) = b(x)·c(x), either deg b(x) = 0 or deg c(x) =
0.

Unique factorization domains
Definition 139. Let R be an integral domain. We say
that two elements a, b ∈ R \ {0} are associated if ∃u ∈ R∗

such that a = b · u.

Definition 140. Let R be an integral domain. We
say that R is a unique factorization domain (UFD) if
∀a ∈ R \ {0}:

1.
a = upα1

1 · · · pαr
r

where u ∈ R∗, pi are irreducible elements of R and
αi ∈ N ∀i.
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2. Such representation is unique in the sense that if
a = vqβ1

1 · · · qβs
s , where v ∈ R∗, qi are irreducible el-

ements of R and βi ∈ N ∀i, then r = s and ∃σ ∈ Sn

such that pi and qσ(i) are associated and αi = βσ(i)
for i = 1, . . . , r12.

Definition 141. LetR be an integral domain and a, b ∈ R
be such that at least one of them is nonzero. A greatest
common divisor of a and b is an element d ∈ R such that:

1. d | a and d | b.

2. If d′ is a common divisor of a and b, then d′ | d.
Proposition 142. Let R be a UFD. Then, ∀a, b ∈ R\{0}
there exists a greatest common divisor of a and b. More-
over such element is unique.
Proposition 143. Let R be an integral domain. Then:

1. If R is a UFD, all irreducible elements are prime.

2. If
up1 · · · pr = vq1 · · · qs

where u, v ∈ R∗ and both pi and qi are prime ele-
ments ∀i, then r = s and ∃σ ∈ Sr such that pi is
associated with qσ(i) for i = 1, . . . , r.

Proposition 144. Let R be an integral domain.
1. If R is a UFD, then R satisfies the ascending chain

condition on principal ideals (ACCP):
If

a1 ·R ⊆ · · · ⊆ an ·R
is an ascending chain of principal ideals, then ∃n0 ∈
N such that an0 ·R = ai ·R for i ≥ n0.

2. If R satisfies the ACCP, then all elements in R are
product of irreducible factors.

Theorem 145. Let R be an integral domain. Then, R is
UFD if and only if:

1. All irreducible elements in R are prime.

2. ACCP is satisfied.
Lemma 146. Let R be an integral domain. Let

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

be a chain of ideals of R. Then,⋃
n∈N

In

is an ideal of R.
Theorem 147. Let R be a PID. Then, R is a UFD.
Corollary 148. Let d ∈ Z\{0} such that d is square-free.
Then, Z[

√
d] satisfies the ACCP.

Proposition 149. Let R be an integral domain. If R
satisfies the ACCP, then R[x] also satisfies the ACCP.
Corollary 150. Let R be a UFD. Then, ∀n ≥ 0, all
nonzero elements of R[x1, . . . , xn] are product of irre-
ducible elements.

Field of fractions

Definition 151. Let R be an integral domain. Consider
the set:

R× (R \ {0}) = {(a, b) : a, b ∈ R, b ̸= 0}

We define the relation ∼ in the following way:

(a1, b1) ∼ (a2, b2) ⇐⇒ a1b2 = a2b1

for all (a1, b1), (a2, b2) ∈ R× (R \ {0}).

Lemma 152. The relation ∼ is an equivalence rela-
tion. We denote by Q(R) the set of equivalence classes
R × (R \ {0})/ ∼ and by a

b the equivalence class (a, b) ∈
Q(R). Q(R) is called field of fractions of R.

Definition 153. Let R be an integral domain. We define
the sum and multiplication in Q(R) as follows:

1. a1

b1
+ a2

b2
= a1b2 + a2b1

b1b2
, ∀a1

b1
,
a2

b2
∈ Q(R)

2. a1

b1
· a2

b2
= a1a2

b1b2
, ∀a1

b1
,
a2

b2
∈ Q(R)

Theorem 154. Let R be an integral domain and consider
(Q(R),+, ·) with the operations + and · defined above.
Then:

1. (Q(R),+, ·) is a field.

2. The function

i : R −→ Q(R)
r 7−→ r

1

is an injective ring morphism and satisfies the fol-
lowing property: If K is a field and ϕ : R → K is
an injective ring morphism, then ∃!ψ : Q(R) → K
such that ψ is a ring morphism, and the diagram of
Fig. 4 is commutative.

R K

Q(R)

ϕ

ψi

Figure 4
12Equivalently, such representation is unique in the sense that if a = up1 · · · pr = vq1 · · · qs, where u, v ∈ R∗ and pi, qi are irreducible

elements of R ∀i, then r = s and ∃σ ∈ Sn such that pi and qσ(i) are associated for i = 1, . . . , r.
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Irreducible and prime elements in R[x]
Proposition 155. Let R be a UFD and p ∈ R. The
following statements are equivalent:

1. p is irreducible in R.

2. p is irreducible in R[x].

3. p is prime in R.

4. p is prime in R[x].

Definition 156. Let R be a UFD and a(x) =
∑n

i=0 aix
i ∈

R[x] \ {0}. We say p(x) is a primitive polynomial if 1 is a
greatest common divisor of a0, . . . , an.

Lemma 157 (Gauß’ lemma). Let R be a UFD and
a(x), b(x) ∈ R[x] \ {0} be primitive polynomials. Then,
a(x) · b(x) is primitive.

Lemma 158. Let R be a UFD. Then:

1. If c1 · a(x) = c2 · b(x), where c1, c2 ∈ R, a(x), b(x) ∈
R[x] and b(x) is primitive, then c1 | c2.

2. If moreover a(x) is also primitive, then ∃u ∈ R∗ such
that c1 = u · c2.

Proposition 159. Let R be a UFD and p(x) ∈ R[x] be a
primitive polynomial. The following statements are equiv-
alent:

1. p(x) is irreducible in R[x].

2. p(x) is irreducible in Q(R[x]).

3. p(x) is prime in R[x].

4. p(x) is prime in Q(R[x]).

Corollary 160 (Eisenstein’s criterion). Let R be a
UFD, a(x) =

∑n
i=0 aix

i ∈ R[x] \ {0} and p be a prime
element in R such that:

• p | ai, i = 0, 1, . . . , n− 1,

• p ∤ an,

• p2 ∤ a0.

Then, a(x) is irreducible in Q(R)[x].

Theorem 161. Let R be a UFD. Then, R[x] is a UFD.

Corollary 162. Z[x1, . . . , xn] and K[x1, . . . , xn], where
K is a field, are both UFD.

Examples of rings

Let n ∈ N and d ∈ Z such that d is square-free.

• Z, Z/nZ, Q, R, C

• R[x], where R is a ring13.

• Mn(K), where K is a field. Note that this is a non-
commutative ring.

• Z[
√
d], where Z[

√
d] = {a + b

√
d : a, b ∈ Z}. In

particular, the set Z[
√

−1] = Z[i] is called the set of
Gaußian integers.

• Q(
√
d), where Q(

√
d) = {a+ b

√
d : a, b ∈ Q}.

Algebraically
closed fields

Fields

Principal ideal domains

Unique factorization domains

Integral domains

Rings

{0}

Z
/
nZ

Mn(R)

R× S

Z[
√
−5]

Z[
√
−7]

T [x]

Z[x1, . . . , xn]
K[x1, . . . , xn]

Z
Z[i]

Z[
√
2]
K[x]

Z
/
pZ

R

QQ(
√
d)

C

Figure 5: Inclusions of algebraic structures. Here R and
S are nonzero rings, T is a UFD, K is a field, d ∈ Z such
that d is square-free, n ∈ N and p is a primer number.

13Note that if R = R[y], then R[x] = (R[y])[x] = R[x, y]. So the set of polynomials with several variables over a ring R is also a ring
with the same operations as R.
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