
Real-valued functions

1. | The real line
Definition 1. Let (K, +, ·) be a field. We say that K,
together with a total order relation ≤1, is an ordered field
if the following properties are satisfied:

1. If x, y, z ∈ K are such that x ≤ y, then x+z ≤ y+z.

2. If x, y ∈ K are such that x ≥ 0 and y ≥ 0, then
x · y ≥ 0.

Definition 2. Let K be an ordered field and A ⊂ K. We
say that A is bounded from above if ∃M ∈ K (called upper
bound of A) such that x ≤ M ∀x ∈ A. Analogously, we
say that A is bounded from below if ∃m ∈ K (called lower
bound of A) such that x ≥ m ∀x ∈ A.

Definition 3. Let K be an ordered field and A ⊂ K be a
set bounded from above. We say that an upper bound α
of A is the supremum of A, denoted by sup A, if any other
upper bound α′ satisfies α′ ≥ α. Analogously if B ⊂ K is
a set bounded from below, we say that a lower bound β
of B is the infimum of B, denoted by inf B, if any other
lower bound β′ satisfies β′ ≤ β.

Proposition 4. Let K be an ordered field and A ⊂ K.
If M is an upper bound of A, then −M is a lower bound
of −A. Similarly, if m is a lower bound of A, then −m is
a upper bound of −A

Proposition 5. Let K be an ordered field and A, B ⊂ K.
If α = sup A and β = inf B, then:

−α = inf(−A) − β = sup(−B)

Proposition 6. The supremum of a set, if exists, is
unique.

Theorem 7 (Supremum axiom). There exists a unique
field with the property that any bounded set from above
has a supremum: the field of real numbers R.

Proposition 8. Natural numbers are not bounded from
above in R.

Corollary 9 (Archimedean property). Let α ∈ R.
Then, ∃n ∈ N such that α < n.

Corollary 10. Let α ∈ R>0. Then, ∃n ∈ N such that
0 < 1

n < α.

Proposition 11. Let x, y ∈ R such that x < y. Then,
there exist numbers z ∈ R \ Q and q ∈ Q such that
x < z < y and x < q < y.

Definition 12. Given x, y ∈ R such that x < y we define:

• Open interval: (x, y) = {z ∈ R : x < z < y}.

• Right-open interval: [x, y) = {z ∈ R : x ≤ z < y}.

• Left-open interval: (x, y] = {z ∈ R : x < z ≤ y}.

• Closed interval: [x, y] = {z ∈ R : x ≤ z ≤ y}.

Lemma 13. Let K be an ordered field and A ⊂ K be
a set. If α = sup A, then ∀ε > 0 the interval (α − ε, α]
contains points of A.

Definition 14. Let x ∈ R. We define the absolute value
|x| of x as:

|x| =
{

x if x ≥ 0
−x if x < 0

Lemma 15. Let x, y ∈ R. Then:

1. |x| ≥ 0

2. |x| = 0 ⇐⇒ x = 0

3. |xy| = |x||y|

4. |x + y| ≤ |x| + |y| (Triangular inequality)

Definition 16. Let x ∈ R. A neighbourhood of x is any
open interval containing x.

Infinite and countable sets

Definition 17. A X ̸= ∅ is infinite if there exist ∅ ̸=
A ⊂ X and ϕ : X → A such that ϕ is a bijection. If no
such A and ϕ exist, X is finite.

Proposition 18. Let X, Y be sets such that X ⊆ Y . If
X is infinite, Y is infinite.

Proposition 19. Let X ⊂ N. X is finite if and only if X
is bounded.

Definition 20. Let A be a set. We say that A is count-
able if there exists a bijective function from A to N. We
say that A is uncountable if there is no such bijection.

Proposition 21. Any infinite subset of N is countable.

Corollary 22. Any subset of a countable set is either
finite or countable.

Corollary 23. Let A be an infinite set. A is countable if
and only if there exists an injective function from A to N.

Proposition 24. If A and B are countable sets, then
A × B is also countable.

Theorem 25. Q is countable.

Theorem 26. R is uncountable.
1See ??
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2. | Sequences
Limit notion
Definition 27. A sequence of real numbers is an enumer-
ated collection of real numbers. More formally, a sequence
is a function a : N → R. The number a(n) is usually de-
noted by an and the whole sequence by (an).

Definition 28. A sequence (an) is bounded from above
if there is a real number M such that an ≤ M ∀n ∈ N.
Analogously, (an) is bounded from below if there is a real
number m such that an ≥ m ∀n ∈ N. Finally, we say
that (an) is bounded if there exist m, M ∈ R such that
m ≤ an ≤ M ∀n ∈ N.

Definition 29 (Limit). Let (an) be a sequence of real
numbers and ℓ ∈ R. We say that lim

n→∞
an if ∀ε > 0 ∃n0

such that |an−ℓ| < ε ∀n > n0. We say that lim
n→∞

an = ±∞
if ∀M > 0 ∃n0 such that ±an > M ∀n > n0.

Definition 30. We say a sequence is convergent if it has
a limit, and divergent otherwise.

Lemma 31. The limit of a convergent sequence is unique.

Lemma 32. Let (an) be a convergent sequence. Then,
(an) is bounded. Moreover, if m ≤ an ≤ M ∀n ∈ N, then
m ≤ lim

n→∞
an ≤ M .

Lemma 33. Let (an) and (bn) be convergent sequences
with respective limits α and β. Then:

1. The sequences (an + bn) and (anbn) are convergents
and

lim
n→∞

an + bn = α + β lim
n→∞

an · bn = α · β

2. If α ̸= 0, then an ̸= 0 for n sufficiently large, the
sequence

(
bn

an

)
is convergent and

lim
n→∞

bn

an
= β

α

Definition 34. Let (an) be a sequence. We say (an) is
monotonically increasing if an ≤ an+1 ∀n ∈ N. Analo-
gously, we say (an) is monotonically decreasing if an ≥
an+1 ∀n ∈ N2. Finally, we say (an) is monotonic if it is
either monotonically increasing or monotonically decreas-
ing.

Theorem 35. All monotonic and bounded sequences are
convergent.

Lemma 36. Let (an) and (bn) be two sequences verifying
an ≤ bn ∀n ∈ N. Then, lim

n→∞
an ≤ lim

n→∞
bn.

Proposition 37 (Squeeze theorem). Let (an), (bn)
and (cn) be three sequences verifying an ≤ bn ≤ cn ∀n ∈ N
and such that (an) and (cn) are convergent. Suppose that
lim

n→∞
an = lim

n→∞
cn = ℓ. Then, (bn) is convergent and

lim
n→∞

bn = ℓ.

Lemma 38. Let p ∈ R>0 and α, x ∈ R. Then:

1. lim
n→∞

1
np

= 0.

2. lim
n→∞

n
√

p = 1.

3. lim
n→∞

n
√

n = 1.

4. If x > 1, lim
n→∞

nα

xn
= 0.

5. If x < 1, lim
n→∞

xn = 0.

Theorem 39 (Root test). Let (an) ≥ 0 be a sequence.
Suppose that the limit ℓ = lim

n→∞
n
√

an exists.

1. If ℓ < 1 =⇒ lim
n→∞

an = 0.

2. If ℓ > 1 =⇒ lim
n→∞

an = +∞.

Theorem 40 (Ratio test). Let (an) ≥ 0 be a sequence.
Suppose that the limit ℓ = lim

n→∞

an+1

an
exists.

1. If ℓ < 1 =⇒ lim
n→∞

an = 0.

2. If ℓ > 1 =⇒ lim
n→∞

an = +∞.

Theorem 41. Let (an) ≥ 0 be a sequence. If
lim

n→∞

an+1

an
= ℓ, then lim

n→∞
n
√

an = ℓ.

The number e
Definition 42. We define the sequences (Sn) and (Tn)
as:

Sn = 1 + 1 + 1
2! + 1

3! + · · · + 1
n! Tn =

(
1 + 1

n

)n

Proposition 43. The sequences (Sn) and (Tn) are con-
vergent and have the same limit. This limit is denoted by
e and it’s equal to e = 2.71828...

Theorem 44. The number e is irrational.

Subsequences

Definition 45 (Subsequence). Let (an) be a sequence
of real numbers and (kn) be an increasing sequence of nat-
ural numbers. The sequence (akn

) is called a subsequence
of (an).

Lemma 46. Let (an) be a sequence. If lim
n→∞

an = ℓ, then
any subsequence of (an) has limit ℓ.

Definition 47. Let (an) be a sequence. We say p is an
accumulation point of (an) if ∀ε > 0 and ∀n0 ∈ N ∃n > n0
such that |an − p| < ε.

Proposition 48. Let (an) be a sequence. p is an accu-
mulation point of (an) if and only if there is a subsequence
(akn

) of (an) with lim
n→∞

akn
= p.

2If the inequalities are strict, we say that (an) is strictly increasing or strictly decreasing, respectively.
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Corollary 49. A convergent sequence has its limit as the
unique accumulation point.

Proposition 50. All sequences have a monotonic subse-
quence.

Theorem 51 (Bolzano-Weierstraß theorem). All
bounded sequences have a convergent subsequence.

Proposition 52. Let (an) be a bounded sequence. Then,
(an) is convergent if and only if it has a unique accumu-
lation point.

Definition 53. Let (an) be a sequence. We define the
limit superior of (an) as:

lim sup
n→∞

an := inf{sup{xm : m ≥ n} : n ≥ 0}

We define the limit inferior of (an) as:

lim inf
n→∞

an := sup{inf{xm : m ≥ n} : n ≥ 0}

Proposition 54. Let (an) be a sequence. Then lim sup
n→∞

an

and lim inf
n→∞

an always exist and

lim inf
n→∞

an ≤ lim sup
n→∞

an

If, moreover, (an) is bounded, then for all accumulation
point p ∈ R of (an) we have:

lim inf
n→∞

an ≤ p ≤ lim sup
n→∞

an

Proposition 55. Let (an) be a bounded sequence. Then:

(an) is convergent ⇐⇒ lim inf
n→∞

an = lim sup
n→∞

an

In this case we have:

lim
n→∞

an = lim sup
n→∞

an = lim inf
n→∞

an

Cauchy condition

Definition 56 (Cauchy sequence). We say that a se-
quence (an) is a Cauchy sequence if ∀ε > 0 ∃n0 such that
|an − am| < ε ∀n, m > n0.

Theorem 57. A sequence is convergent if and only if it’s
a Cauchy sequence.

Theorem 58 (Stolz-Cesàro theorem). Let (an) be
a strictly increasing sequence and (bn) be any other se-
quence. Suppose that

lim
n→∞

bn − bn−1

an − an−1
= ℓ ∈ R ∪ {±∞}

Then:

1. If lim
n→∞

an = ±∞, lim
n→∞

bn

an
= ℓ.

2. If lim
n→∞

bn = lim
n→∞

an = 0, lim
n→∞

bn

an
= ℓ.

3. | Continuity
Limit of a function

Definition 59. Let f : [a, b] → R be a function and
x0 ∈ (a, b). We say that ℓ is the limit of the function
f at the point x0, denoted by lim

x→x0
f(x) = ℓ, if ∀ε > 0

∃δ > 0 such that |f(x) − ℓ| < ε whenever |x − x0| < δ.

Lemma 60. Let f : (a, b) → R be a function and
x0 ∈ (a, b). Then, lim

x→x0
f(x) = ℓ if and only if for any

sequence (an) ⊂ (a, b) \ {x0} with lim
n→∞

an = x0 we have
lim

n→∞
f(an) = ℓ.

Lemma 61. The limit of a function at a point, if exists,
is unique.

Proposition 62. Let f, g : (a, b) → R, x0 ∈ (a, b) and
suppose that lim

x→x0
f(x) = ℓ1 and lim

x→x0
g(x) = ℓ2. Then,

the following properties are satisfied:

1. lim
x→x0

(f + g)(x) = ℓ1 + ℓ2.

2. lim
x→x0

(f · g)(x) = ℓ1 · ℓ2.

3. If ℓ1 > 0, then f(x) > 0 on a neighbourhood of x0.
And if ℓ1 < 0, then f(x) < 0 on a neighbourhood of

x0. Moreover in both cases lim
x→x0

(
1
f

)
(x) = 1

ℓ1
.

Definition 63. Let I ⊂ R be an interval and f : I → R.
We say that f is bounded on I if there are m, M ∈ R such
that

m ≤ f(x) ≤ M ∀x ∈ I

Lemma 64. Let I ⊂ R be an interval, f : I → R and
x0 ∈ I. If the limit of f at x0 exists, then f is bounded
on a neighbourhood of x0.

Definition 65. Let I ⊂ R be an interval, f : I → R and
x0 ∈ I. We say that the limit of f at x0 is infinite, denoted
by lim

x→x0
f(x) = ±∞, if ∀ε > 0 ∃δ > 0 such that ±f(x) > ε

whenever |x − x0| < δ.

Lemma 66. Let f : (a, b) → R be a function and
x0 ∈ (a, b). Then, lim

x→x0
f(x) = ±∞ if and only if for

all sequence (an) ⊂ (a, b) \ {x0} with lim
n→∞

an = x0, we
have lim

n→∞
f(an) = ±∞.

Definition 67. Let I ⊂ R be an interval, f : I → R
and x0 ∈ I. We say that ℓ is the right-sided limit of f
at x0, denoted by lim

x→x+
0

f(x) = ℓ, if ∀ε > 0 ∃δ > 0 such

that |f(x) − ℓ| < ε whenever x − x0 < δ. Analogously,
we say that ℓ is the left-sided limit of f at x0, denoted by
lim

x→x−
0

f(x) = ℓ, if ∀ε > 0 ∃δ > 0 such that |f(x) − ℓ| < ε

whenever x0 − x < δ.

Lemma 68. Let f : (a, b) → R and x0 ∈ (a, b). Then:

lim
x→x0

f(x) = ℓ ⇐⇒ lim
x→x+

0

f(x) = lim
x→x−

0

f(x) = ℓ
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Definition 69. Let f : (a, ∞) → R. We say that ℓ is the
limit of f at infinity, denoted by lim

x→∞
f(x) = ℓ, if ∀ε > 0

∃K > a such that |f(x) − ℓ| < ε for all x > K.

Definition 70. Let f : (a, ∞) → R. We say that the limit
of f at infinity is infinity, denoted by lim

x→∞
f(x) = ±∞, if

∀K > 0 ∃M > a such that ±f(x) > K for all x > M .

Continuity
Definition 71. Let I ⊂ R be an interval, f : I → R and
x0 ∈ I. We say that f is continuous at x0 if the limit of
f at x0 exists and it’s equal to f(x0)3. We say that f is
continuous on I if it’s continuous at all points of I.

Lemma 72. Let I ⊂ R be an interval and f : I → R. f is
continuous at x0 ∈ I if and only if for all sequence (an) ⊂ I
with lim

n→∞
an = x0 we have that lim

n→∞
f(an) = f(x0).

Proposition 73. Let I ⊂ R be an interval and f, g : I →
R be continuous functions at x0 ∈ I. Then:

1. f + g and f · g are continuous at x0.

2. If f(x0) > 0, then f(x) > 0 on a neighbourhood of
x0. And if f(x0) < 0, then f(x) < 0 on a neighbour-
hood of x0. Moreover, in both cases, 1

f is continuous
at x0.

Proposition 74. Let I, J ⊂ R be intervals, f : I → R
and g : J → R. Let x0 ∈ I with f(x0) ∈ J and suppose
that f is continuous at x0 and g is continuous at f(x0).
Then, g ◦ f is continuous at x0.

Theorem 75 (Weierstraß theorem). Let f : [a, b] → R
be a continuous function. Then, f is bounded on [a, b].
Moreover, ∃m, M ∈ [a, b] such that:

f(m) ≤ f(x) ≤ f(M) ∀x ∈ [a, b]

Theorem 76 (Bolzano’s theorem). Let f : [a, b] → R
be a continuous function. If f(a)·f(b) < 0, then ∃c ∈ (a, b)
such that f(c) = 0.

Corollary 77 (Intermediate value theorem). Let f :
[a, b] → R be a continuous function and c ∈ ⟨f(a), f(b)⟩4.
Then, ∃z ∈ (a, b) such that f(z) = c.

Corollary 78. All real numbers have a unique positive
n-th root.

Continuity of inverse function
Definition 79. Let I ⊂ R be an interval and f : I → R.
We say that f is increasing on I if f(x) ≤ f(y) whenever
x ≤ y. We say that f is decreasing on I if f(x) ≥ f(y)
whenever x ≤ y5. We say that f is monotonic if it is either
increasing or decreasing.

Theorem 80. Let f : (a, b) → R be a continuous func-
tion. If f is injective and continuous, then f is monotonic.
Moreover, f−1 is also continuous on f((a, b)).

Classification of discontinuities

Definition 81. Let I ⊂ R be an interval and f : I → R.
Suppose f is not continuous at x0 ∈ I. There are mainly
four types of discontinuities:

1. Removable discontinuity: The limit lim
x→x0

f(x) exists
but

lim
x→x0

f(x) ̸= f(x0)

2. Jump discontinuity: The one-sided limits lim
x→x+

0

f(x)

and lim
x→x−

0

f(x) exist but

lim
x→x+

0

f(x) ̸= lim
x→x−

0

f(x)

3. Discontinuity of the first kind:

Either lim
x→x+

0

f(x) = ±∞ or lim
x→x−

0

f(x) = ±∞

4. Discontinuity of the second kind: One one-sided
limit does not exist.
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Removable discontinuity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Jump discontinuity
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0.8
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Discontinuity of the second
kind

Figure 1: Types of discontinuities
3If I contains one of its endpoints, the continuity in these points must be defined with the notion of one-sided limit.
4The interval ⟨a, b⟩ is defined as ⟨a, b⟩ := (min(a, b), max(a, b)).
5If the inequalities are strict, we say that f is strictly increasing or strictly decreasing, respectively.
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4. | Exponential and logarithmic func-
tions

Lemma 82. Let a ∈ R>0 and f : Q → R≥0 defined by
f(x) = ax. The function f has the following properties:

1. f(x + y) = f(x)f(y).

2. If a > 1, f is increasing. If a < 1, f is decreasing.

3. If (an) ⊂ Q is a sequence with lim
n→∞

an = 0, then
lim

n→∞
f(an) = 1.

Lemma 83. Let a, x ∈ R be such that a > 0 and (xn) ⊂ Q
be a sequence with lim

n→∞
xn = x. Then, lim

n→∞
axn exists

and does not depend on the sequence (xn). That is, if
(yn) ⊂ Q is another sequence with lim

n→∞
xn = lim

n→∞
yn = x,

then lim
n→∞

axn = lim
n→∞

ayn .

Definition 84. Let a ∈ R>0. We define the exponential
function with base a as the function f̃ : R → R defined by
f̃(x) = lim

n→∞
axn , where (xn) is any sequence of rational

numbers lim
n→∞

xn = x.

Proposition 85. The function g has the following prop-
erties:

1. If x ∈ Q, f̃(x) = ax.

2. f̃(x + y) = f̃(x)f̃(y).

3. If a > 1, f̃ is increasing. If a < 1, f̃ is decreasing.

4. f̃(x) > 0 ∀x ∈ R.

5. f̃ is continuous.

6. If a > 1, lim
x→∞

f̃(x) = ∞ and lim
x→−∞

f̃(x) = 0.

If a < 1, lim
x→∞

f̃(x) = 0 and lim
x→−∞

f̃(x) = ∞6.

Proposition 86. Let a, x, y ∈ R be such that a > 0.
Then, (ax)y = axy.

Definition 87. Let a ∈ R>0. Since ax is continuous and
monotonic and its image is (0, ∞), it has an associated
inverse defined in (0, ∞). This function is denoted by
loga(x) and it is called logarithm with base a7.

Proposition 88. The logarithm with base a ∈ R>0 has
the following properties:

1. loga is continuous.

2. If a > 1, loga is increasing. If a < 1, loga is decreas-
ing.

3. If a > 1, lim
x→0

loga(x) = −∞ and lim
x→∞

loga(x) = ∞.

If a < 1, lim
x→0

loga(x) = ∞ and lim
x→∞

loga(x) = −∞.

4. loga(xy) = loga(x) + loga(y).

5. loga(xy) = y loga(x).

Proposition 89. Let (an) be a sequence such that
lim

n→∞
an = ∞. Then:

e = lim
n→∞

(
1 + 1

an

)an

Corollary 90. Let (an) be a sequence such that
lim

n→∞
an = ∞ and x ∈ R. Then:

ex = lim
n→∞

(
1 + x

an

)an

Proposition 91. For all x ∈ R≥0 we have:

1 + x ≤ ex ≤ 1 + xex

5. | Differentiation
Definition of derivative and elementary prop-
erties
Definition 92. Let f : (a, b) → R. We say that f is
differentiable at x0 ∈ (a, b) if the following limit exists:

lim
x→x0

f(x) − f(x0)
x − x0

= lim
h→0

f(x0 + h) − f(x0)
h

In this case, we denote this limit by f ′(x0) and we refer to
it as the derivative of f at x0. We say f is differentiable
on (a, b) if it is differentiable at each point of (a, b).

Proposition 93. Let I ⊂ R be an interval and f : I → R
be a differentiable function at x0 ∈ I. The tangent line to
the graph at the point (x0, f(x0)) is:

y(x) = f(x0) + f ′(x0)(x − x0)

That is, the derivative of f at x0 is precisely the slope of
the tangent line at the point x0.

Lemma 94. Let I ⊂ R be an interval and f : I → R be
a differentiable function at x0 ∈ I. Then, f is continuous
at x0.

Differentiation rules
Proposition 95. Let f, g be two functions defined on a
neighbourhood of a and differentiable at a. Then, f + g
and fg are differentiable at a and

1. (f + a)′(a) = f ′(a) + g′(a).

2. (f · g)′(a) = f ′(a)g(a) + f(a)g′(a).

If, moreover, f(a) ̸= 0, then 1
f is defined on a neighbour-

hood of a, it is differentiable at a and

3.
(

1
f

)′

(a) = − f ′(a)
f(a)2 .

Proposition 96 (Chain rule). Let g : (a, b) → (c, d)
and f : (c, d) → R. Suppose that g is differentiable at
x ∈ (a, b) and f is differentiable at g(x) ∈ (c, d). Then,
f ◦ g is differentiable at x and

(f ◦ g)′(x) = f ′(g(x))g′(x)
6From now on, we will denote f̃(x) simply as ax ∀x ∈ R.
7If the base of the logarithm is the number e, it is common to denote loge(x) by ln(x).
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Proposition 97 (Inverse function rule). Let f :
(a, b) → R be an injective and continuous function on
(a, b) and differentiable at c ∈ (a, b) with f ′(c) ̸= 0. Then,
f−1 is differentiable at f(c) and

(f−1)′(f(c)) = 1
f ′(c)

f(x) f ′(x)

xα αxα−1

ax ax ln a

loga x
1

x ln a

sin(x) cos(x)

cos(x) − sin(x)

tan(x) 1 + tan2(x) = 1
cos2(x)

cot(x) −1 − cot2(x) = − 1
sin2(x)

arcsin(x) 1√
1 − x2

arccos(x) − 1√
1 − x2

arctan(x) 1
1 + x2

arccot(x) − 1
1 + x2

Table 1: Table of derivatives of elementary functions

Basic differentiation theorems
Definition 98. Let I ⊂ R be an interval, f : I → R and
c ∈ I. We say that c is a local maximum of f if exists
an open interval J ⊂ I with c ∈ J such that f(x) ≤ f(c)
∀x ∈ J . We say that c is a local minimum of f if exists
an open interval J ⊂ I with c ∈ J such that f(x) ≥ f(c)
∀x ∈ J . Finally, a local extremum is either a local maxi-
mum or a local minimum.
Proposition 99. Let I ⊂ R be an interval, f : I → R
and c ∈ I be a local extremum of f . If f is differentiable
at c, then f ′(c) = 0.
Theorem 100 (Rolle’s theorem). Let f : [a, b] → R be
a continuous and differentiable function on (a, b). Suppose
f(a) = f(b). Then, there exists a point c ∈ (a, b) such that
f ′(c) = 0.
Theorem 101 (Mean value theorem). Let f : [a, b] →
R be a continuous function on [a, b] and differentiable on
(a, b). Then, there exists a point c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a)

Corollary 102. Let f be a differentiable function on (a, b)
verifying that f ′(x) = 0 ∀x ∈ (a, b). Then, f is constant
in (a, b).
Corollary 103. Let f be a differentiable function on
(a, b). If f ′(x) > 0 ∀x ∈ (a, b), then f is strictly increasing
on (a, b). Similarly, if f ′(x) < 0 ∀x ∈ (a, b), then f is
strictly decreasing on (a, b).

Corollary 104. Let f be a differentiable function on a
neighbourhood of a and such that f ′ is continuous on this
neighbourhood. Suppose that f ′(a) ̸= 0. Then, exists
another neighbourhood of a on which f is invertible.

Theorem 105 (Cauchy’s mean value theorem). Let
f, g : [a, b] → R be continuous functions on [a, b] and dif-
ferentiable on (a, b). Then, there exists a point c ∈ (a, b)
such that

g′(c)(f(b) − f(a)) = f ′(c)(g(b) − g(a))

Theorem 106 (L’Hôpital’s rule). Let f , g be two func-
tions defined on a neighbourhood of a ∈ R ∪ {±∞} and
such that either lim

x→a
f(x) = lim

x→a
g(x) = 0 or lim

x→a
g(x) =

∞. Suppose, moreover, that the limit lim
x→a

f ′(x)
g′(x) exists.

Then, the limit lim
x→a

f(x)
g(x) exists too and

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x)

Theorem 107 (Darboux’s theorem). Let f : (a, b) →
R be a differentiable function and suppose that there ex-
ist x, y ∈ (a, b), x < y, with f ′(x)f ′(y) < 0. Then, there
exists z ∈ (x, y) such that f ′(z) = 0.

6. | Convexity and concavity
Definition 108. We say that f : I → R is convex if
given any two points a, b ∈ I, a < b, the segment between
(a, f(a)) and (b, f(b)) lies above the graph on (a, b). That
is:

f(bt + (1 − t)a) ≤ tf(b) + (1 − t)f(a) ∀t ∈ [0, 1]

We say that f is concave if given any two points a, b ∈ I,
a < b, the segment between (a, f(a)) and (b, f(b)) lies be-
low the graph on (a, b). That is:

f(bt + (1 − t)a) ≥ tf(b) + (1 − t)f(a) ∀t ∈ [0, 1]8

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

Convex function

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

Concave function

Figure 2

Lemma 109. A function f is convex on an interval I is
and only if −f if concave on I.

8If the inequalities are strict, we say that f is strictly convex or strictly concave, respectively.
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Lemma 110. Let f : I → R. f is convex on I if and only
if ∀a, x, b ∈ I with a < x < b we have:

f(x) − f(a)
x − a

≤ f(b) − f(a)
b − a

Or, equivalently:

f(b) − f(a)
b − a

≤ f(b) − f(x)
b − x

Similarly, f is concave on I if and only if ∀a, x, b ∈ I with
a < x < b we have:

f(x) − f(a)
x − a

≥ f(b) − f(a)
b − a

Or, equivalently:

f(b) − f(a)
b − a

≥ f(b) − f(x)
b − x

Proposition 111. Let f be a convex or concave function
on an interval I. Then, f is continuous on I.

Lemma 112. Let f be a differentiable function and a < b
be such that f(a) = f(b). Then:

• If f ′ is increasing, f(x) ≤ f(a) ∀x ∈ (a, b).

• If f ′ is decreasing, f(x) ≥ f(a) ∀x ∈ (a, b).

Theorem 113. Let f be a differentiable function on an
interval I. Then:

• f is (strictly) convex if and only if f ′ is (strictly)
increasing.

• f is (strictly) concave if and only if f ′ is (strictly)
decreasing.

Theorem 114. Let f be a differentiable function on an
interval I. Then, f is convex if and only if the graph lies
above all its tangent lines. And similarly, f is concave if
and only if the graph lies below all its tangent lines.

Definition 115. Let f be a differentiable function on an
interval I. If the function f ′ : I → R is differentiable at
a ∈ I, we say that f is two times differentiable at a. If
this happens in all points of I, we say that f is two times
differentiable on I. In this case we denote the derivative
of f ′ at the point a, (f ′)′(a), by f ′′(a) and we refer to it
as second derivative of f at a.

Theorem 116. Let f be a function two times differen-
tiable on I. Then:

1. f is convex on I if and only if f ′′(x) ≥ 0 ∀x ∈ I.

2. f is concave on I if and only if f ′′(x) ≤ 0 ∀x ∈ I.

Definition 117. Let f : I → R. We say that f is convex
at x ∈ I if exists a neighbourhood J ⊂ I of x on which f is
convex. Analogously, we say that f is concave at x ∈ I if
exists a neighbourhood J ⊂ I of x on which f is concave.

Definition 118. Let f be a continuous function on I. We
say x ∈ I is an inflection point if exists δ > 0 such that f is
convex (or concave) on (x − δ, x] and concave (or convex)
on [x, x + δ).

Proposition 119. Let f be a function two times differ-
entiable on I. Then:

1. If a is an inflection point, f ′′(a) = 0.

2. Suppose that f ′′ is continuous at a ∈ I. Then:

• If f ′′(a) ≥ 0, f is convex at a.
• If f ′′(a) ≤ 0, f is concave at a.

7. | Polynomial approximation
Definition 120. Let f , g be two functions defined on a
neighbourhood of a ∈ R. We say that f and g have contact
of order ≥ n at a if

lim
x→a

f(x) − g(x)
(x − a)n = 0

Definition 121. Let f be a function. Iterating the pro-
cess in Theorem 115, one can define the notion of the n-th
derivative of f at the point a ∈ R, denoted by f (n)(a).

Definition 122. We say that a function f is of class Cn

at a point a ∈ R, n ∈ N, if f is n times differentiable at a
neighbourhood of a and f (n) is continuous in this neigh-
bourhood. We say that f is of class C∞ at a if f is of class
Cn at a ∀n ∈ N. Finally, if p ∈ N ∪ {∞}, we say that f is
of class Cp, or Cp(I), on an interval I it it is of class Cp at
all points of I.

Lemma 123. Let f , g be functions n times differentiable
at a ∈ R. Then:

1. If f (i)(a) = g(i)(a), i = 0, 1, . . . , n, and f (n) and g(n)

are continuous at a, then f and g have contact of
order ≥ n.

2. If f and g have contact of order ≥ n, then f (i)(a) =
g(i)(a), i = 0, 1, . . . , n.

Theorem 124. Let f be a function n times differentiable
at a ∈ R. Then, the polynomial

Pn,f,a(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2! (x − a)2+

+ f (3)(a)
3! (x − a)3 + · · · + f (n)(a)

n! (x − a)n

has contact with f of order ≥ n at a. This polynomial is
called Taylor polynomial of order n of f centered at a.

Proposition 125. Let P and Q be polynomials of degree
≤ n with order of contact ≥ n at a point a ∈ R. Then
P = Q9.

Theorem 126. Let f be a function n times differentiable
at a ∈ R. If f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 and
f (n)(a) ̸= 0 then:

1. If n is odd, a isn’t a local extremum of f .
9This means that the Taylor polynomial Pn,f,a(x) is the unique polynomial which has contact with a function f of order ≥ n at a point

a.
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2. If n is even and f (n)(a) > 0, a is a local minimum
of f .

3. If n is even and f (n)(a) < 0, a is a local maximum
of f .

Theorem 127. Let f be a function n + 1 times differen-
tiable on a neighbourhood I of a ∈ R. Let P = Pn,f,a,
Rn := f − P and x ∈ I. Then:

1. Cauchy’s formula:

Rn(x) = f (n+1)(ξ)
n! (x − ξ)n(x − a)

for some ξ ∈ ⟨a, x⟩.

2. Lagrange’s formula:

Rn(x) = f (n+1)(η)
(n + 1)! (x − a)n+1

for some η ∈ ⟨a, x⟩.

3. Integral formula: If f (n+1) is integrable10 on [a, x]:

Rn(x) =
xˆ

a

f (n+1)(t)
n! (x − t)n dt

Definition 128. We say that f is analytic at a if it’s of
class C∞ on a neighbourhood I of a and lim

n→∞
Rn(x) = 0

∀x ∈ I.

f(x) Taylor polynomials

ex 1 + x + x2

2! + x3

3! + · · · + xn

n!
ln(1 + x) x − x2

2 + x3

3 − x4

4 + · · · + (−1)n+1 xn

n

sin(x) x − x3

3! + x5

5! − x7

7! + · · · + (−1)n x2n+1

(2n + 1)!

cos(x) 1 − x2

2! + x4

4! − x6

6! + · · · + (−1)n x2n

(2n)!
1

1 − x
1 + x + x2 + x3 + · · · + xn

(1 + x)α 1 + αx + · · · + α(α − 1) · · · (α − (n − 1))
n! xn

arctan(x) x − x3

3 + x5

5 − x7

7 + · · · + (−1)n x2n+1

2n + 1

Table 2: Taylor polynomials centered at 0 of some elemen-
tary functions

8. | Riemann integral
Construction of Riemann integral
Definition 129. Let I = [a, b] be an interval. A partition
P of I is a finite collection of points a = t0 < t1 < · · · <
tn = b of I. We denote by P(I) the set of all partitions of
the interval I.

Definition 130. Let f : I → R be a bounded function
and P = {ti}n

i=0 ∈ P(I). We define the respective lower
sum and upper sum of f associated with P as:

L(f, P) =
n∑

i=1
mi(ti − ti−1) U(f, P) =

n∑
i=1

Mi(ti − ti−1)

where mi = inf{f(xi) : xi ∈ [ti−1, ti]} and Mi =
sup{f(xi) : xi ∈ [ti−1, ti]}.

Definition 131. Let P, Q ∈ P(I) be two partitions. We
say that P is finer than Q, Q ≺ P, if Q ⊂ P.

−2 −1 0 1 2
−2

−1

0

1

2

3

−2 −1 0 1 2
−2

−1

0

1

2
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−2 −1 0 1 2
−2

−1

0

1

2

3

−2 −1 0 1 2
−2

−1

0

1

2

3

−2 −1 0 1 2
−2

−1

0

1

2

3

−2 −1 0 1 2
−2

−1

0

1

2

3

Figure 3: Lower (blue) and upper (red) sums of a func-
tion with three different partitions, each one finer than the
previous one.

Proposition 132. Let f : I → R be a bounded function
and P, Q ∈ P(I) with Q ≺ P. Then:

L(f, Q) ≤ L(f, P) ≤ U(f, P) ≤ U(f, Q)

Definition 133. Let I = [a, b] and f : I → R be a
bounded function. We define the lower integral of f on
I as:

bˆ

a

f(x) dx = sup{L(f, P) : P ∈ P(I)}

Analogously, we define the upper integral of f on I as:

bˆ

a

f(x) dx = inf{U(f, P) : P ∈ P(I)}

Definition 134. Let I = [a, b] and f : I → R be a
bounded function. We say that f is integrable on I if

bˆ

a

f(x) dx =
bˆ

a

f(x) dx

In this case, we denote the integral of f on I by
bˆ

a

f(x) dx.

Lemma 135. Let I = [a, b] and f : I → R be a bounded
function. Then, f is integrable on I if and only if ∀ε > 0
∃P ∈ P(I) such that:

U(f, P) − L(f, P) < ε

10See Theorem 134.
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Theorem 136. Let I = [a, b] and f : I → R be a mono-
tonic and bounded function. Then, f is integrable on I.

Definition 137. Let f : I → R be a function. We say
that f is uniformly continuous on I if ∀ε > 0 ∃δ > 0 such
that |f(x) − f(y)| < ε whenever |x − y| < δ.

Theorem 138. Let I = [a, b] and f : I → R be a contin-
uous function. Then, f is uniformly continuous at I.

Theorem 139. Let I = [a, b] and f : I → R be a contin-
uous function. Then, f is integrable on I.

Properties of the integral
Proposition 140. Let f , g be integrable functions on
[a, b] and c ∈ R. Then, f + g and cf are integrable on I
and

bˆ

a

[f(x) + g(x)] dx =
bˆ

a

f(x) dx +
bˆ

a

g(x) dx

bˆ

a

cf(x) dx = c

bˆ

a

f(x) dx

Theorem 141. Let f be an integrable function on [a, b]
with f([a, b]) ⊆ [c, d] and g be a continuous function on
[c, d]. Then, g ◦ f is integrable on [a, b].

Corollary 142. Let f be an integrable function on [a, b].
Then, f2 is integrable on [a, b]. And if there exists δ > 0
with f(x) > δ ∀x ∈ [a, b], then 1

f is integrable on [a, b].

Corollary 143. Let f , g be integrable functions on [a, b].
Then, fg is integrable on [a, b].

Inequalities involving integrals
Proposition 144. Let f , g be integrable functions on
[a, b] with f(x) ≤ g(x) ∀x ∈ [a, b]. Then:

bˆ

a

f(x) dx ≤
bˆ

a

g(x) dx

Corollary 145. Let f be an integrable function on [a, b]
with m ≤ f(x) ≤ M ∀x ∈ [a, b]. Then:

m(b − a) ≤
bˆ

a

f(x) dx ≤ M(b − a)

If, moreover, f is continuous, there exists c ∈ [a, b] such
that:

bˆ

a

f(x) dx = f(c)(b − a)

Proposition 146. Let f be an integrable function on
[a, b]. Then, |f | is integrable on [a, b] and∣∣∣∣∣∣

bˆ

a

f(x) dx

∣∣∣∣∣∣ ≤
bˆ

a

|f(x)| dx

Proposition 147. Let f be an integrable function on
[a, b] and g be a function defined on [a, b] distinct to f on
a finite number points. Then, g is integrable on [a, b] and

bˆ

a

g(x) dx =
bˆ

a

f(x) dx

Fundamental theorem of calculus

Proposition 148. Let f : [a, b] → R and b ∈ (a, c). f is
integrable on [a, c] if and only if f is integrable on [a, b]
and on [b, c]. Moreover:

cˆ

a

f(x) dx =
bˆ

a

f(x) dx +
cˆ

b

f(x) dx

Theorem 149 (Fundamental theorem of calculus).
Let f be an integrable function on [a, b]. Then,

F (t) =
tˆ

a

f(x) dx

is a continuous function on [a, b]. If, moreover, f is con-
tinuous at c ∈ [a, b], then F is differentiable at c and
F ′(c) = f(c). Finally, if f is continuous on [a, b], then
F is differentiable on [a, b] and F ′ = f . In this last case,
the function F is called primitive function of f .

Theorem 150. Let f be an integrable function on [a, b]
which has primitives. Then, these primitives are of the
form:

F (t) = k +
tˆ

a

f(x) dx

where k ∈ R. Moreover they satisfy F ′ = f and

bˆ

a

f(x) dx = F (b) − F (a)

Corollary 151 (Integration by parts). Let f , g be
integrable functions on [a, b] with primitives F and G, re-
spectively. Then:

bˆ

a

F (x)g(x) dx = F (b)G(b) − F (a)G(a) −
bˆ

a

f(x)G(x) dx

Corollary 152 (Integration by substitution). Let
φ : [c, d] → [a, b] be a function of class C1 such that
φ(c) = a and φ(d) = b and f be a continuous function
on [a, b]. Then:

bˆ

a

f(x) dx =
dˆ

c

(f ◦ φ)(x)φ′(x) dx
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Riemann sums

Definition 153. Let P = {ti}n
i=0 ∈ P([a, b]). A Riemann

sum of f associated with P, S(f, P), is:

S(f, P) =
n∑

i=1
f(xi)(ti − ti−1)

where xi ∈ [ti−1, ti].

Theorem 154. Let f be a continuous function on [a, b].
Then, ∀ε > 0 ∃δ > 0 such that if P = {ti}n

i=0 ∈ P([a, b])
with ti − ti−1 < δ, then:∣∣∣∣∣∣

bˆ

a

f(x) dx − S(f, P)

∣∣∣∣∣∣ < ε

for all Riemann sums associated with P.

Corollary 155. Let f be a continuous function on [a, b]
and let Pn = {ti}n

i=0 ∈ P([a, b]) be a sequence of partitions
of [a, b] such that ti − ti−1 < 1/n. Then, for all Riemann
sums S(f, Pn) we have:

bˆ

a

f(x) dx = lim
n→∞

S(f, Pn)

Geometric applications

Definition 156. Let f : [a, b] → R and P = {ti}n
i=0 ∈

P([a, b]). We define the length of the polygonal approxi-
mating the arc length of f on [a, b] as:

ℓ(f, P) =
n∑

i=1

√
(ti − ti−1)2 + (f(ti) − f(ti−1))2

Lemma 157. Let f : I → R and P, Q ∈ P(I) with
Q ≺ P. Then, ℓ(f, P) ≥ ℓ(f, Q).

Definition 158. Let f : I → R. If the set L := {ℓ(f, P) :
P ∈ P([a, b])} is bounded from above, we say that the
graph is rectifiable and we define its length ℓ(f, [a, b]) as:

ℓ(f, [a, b]) = sup L

Proposition 159. Let f be a function of class C1([a, b]).
Then, f is rectifiable on [a, b] and

ℓ(f, [a, b]) =
bˆ

a

√
1 + f ′(x)2 dx

Definition 160. Let φ : [a, b] → R2 with φ(t) =
(x(t), y(t)) and P = {ti}n

i=0 ∈ P([a, b]). We define the
length of the polygonal approximating the arc length of φ
on [a, b] as:

ℓ(φ, P) =
n∑

i=1

√
[x(ti) − x(ti−1)]2 + [y(ti) − y(ti−1)]2

Proposition 161. Let φ : [a, b] → R2 with φ(t) =
(x(t), y(t)). Suppose that the functions x(t), y(t) are of
class C1([a, b]). Then, the curve φ is rectifiable on [a, b]
and

ℓ(φ, [a, b]) =
bˆ

a

√
[x′(t)]2 + [y′(t)]2 dx

Lemma 162. Let f , g be continuous functions on [a, b].
Then, ∀ε > 0, ∃δ > 0 such that if P = {ti}n

i=0 with
ti − ti−1 < δ, then:∣∣∣∣∣∣

bˆ

a

√
f(x)2 + g(x)2 dx −

−
n∑

i=1
(ti − ti−1)

√
f(ci)2 + g(di)2

∣∣∣∣∣ < ε

for any ci, di ∈ [ti−1, ti], i = 1, . . . , n.

Lemma 163. Let f , g be continuous functions on [a, b].
Then, ∀ε > 0, ∃δ > 0 such that if P = {ti}n

i=0 with
ti − ti−1 < δ, then:∣∣∣∣∣∣

bˆ

a

f(x)g(x) dx −
n∑

i=1
(ti − ti−1)f(ci)g(di)

∣∣∣∣∣∣ < ε

for any ci, di ∈ [ti−1, ti], i = 1, . . . , n.

Proposition 164 (Surface of revolution). Let f :
[a, b] → R>0 be a function of class C1. Then, the sur-
face of the solid formed by rotating the area below the
function f(x) and between the lines x = a and x = b
about the x-axis is given by:

Sx = 2π

bˆ

a

f(x)
√

1 + f ′(x)2 dx

Proposition 165 (Surface of revolution). Let a > 0
and f : [a, b] → R be a function of class C1. Then, the
surface of the solid formed by rotating the area below the
function f(x) and between the lines x = a and x = b about
the y-axis is given by:

Sy = 2π

bˆ

a

x

√
1 + f ′(x)2 dx

Proposition 166 (Volume of revolution). Let f, g :
[a, b] → R>0 be bounded and integrable functions. Then,
the volume of the solid formed by rotating the area be-
tween the curves of f(x) and g(x) and the lines x = a and
x = b about the x-axis is given by:

Vx = π

bˆ

a

∣∣∣f(x)2 − g(x)2
∣∣∣ dx

Proposition 167 (Volume of revolution). Let a > 0
and f, g : [a, b] → R be bounded and integrable functions.
Then, the volume of the solid formed by rotating the area
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between the curves of f(x) and g(x) and the lines x = a
and x = b about the y-axis is given by:

Vy = π

bˆ

a

x |f(x) − g(x)| dx

Proposition 168 (Center of masses). The center of
masses (x0, y0) of a thin plate with uniformly density ρ is:

x0 =

bˆ

a

x

√
1 + f ′(x)2

dx

bˆ

a

√
1 + f ′(x)2

dx

y0 =

bˆ

a

f(x)
√

1 + f ′(x)2
dx

bˆ

a

√
1 + f ′(x)2

dx

Calculation of primitives
Lemma 169. Let P (x), Q(x) ∈ R[x] be polynomials with
deg P (x) < deg Q(x). Suppose Q(x) factorises as:

Q(x) =
n∏

i=1
(x − ai)ri

m∏
i=1

(x2 + bix + ci)
si

with b2
i − 4ci < 0 for i = 1, . . . , m. Then, the function

P (x)
Q(x) can be expressed as:

P (x)
Q(x) =

n∑
i=1

ri∑
j=1

Aj
i

(x − ai)j
+

m∑
i=1

si∑
j=1

M j
i x + N j

i

(x2 + bix + ci)j

where Aj
i , M j

i , N j
i ∈ R ∀i, j.

Proposition 170. Let P (x), Q(x) ∈ R[x] be polynomials.
If P (x) = C(x)Q(x) + R(x), then:

ˆ
P (x)
Q(x) dx =

ˆ
C(x) dx +

ˆ
R(x)
Q(x) dx

where deg R(x) < deg Q(x).

Lemma 171. Let P (x), Q(x) ∈ R[x] be polynomials with
deg P (x) < deg Q(x). Suppose Q(x) factorises as:

Q(x) =
n∏

i=1
(x − ai)ri

m∏
i=1

(x2 + bix + ci)
si

with b2
i − 4ci < 0 for i = 1, . . . , m. Then, the function

P (x)
Q(x) can be expressed as:

P (x)
Q(x) =

(
A1(x)
Q1(x)

)′

+ A2(x)
Q2(x)

where Q2(x) =
∏n

i=1(x − ai)
∏m

i=1(x2 + bix + ci), Q1(x) =
Q(x)
Q2(x) and Ai ∈ R[x] with deg Ai(x) < deg Qi(x), i = 1, 2.

Theorem 172 (Hermite reduction method). Let
P (x), Q(x) ∈ R[x] be polynomials. Suppose

P (x)
Q(x) =

(
A1(x)
Q1(x)

)′

+ A2(x)
Q2(x)

for some polynomials Qi(x), Ai(x) ∈ R[x]. Then:
ˆ

P (x)
Q(x) dx = A1(x)

Q1(x) +
ˆ

A2(x)
Q2(x) dx
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