Real-valued functions

1. | The real line

Definition 1. Let (K,+,-) be a field. We say that K,
together with a total order relation <', is an ordered field
if the following properties are satisfied:

1. If z,y,z € K are such that z < y, then x4+ 2 < y+ 2.

2. If x,y € K are such that z > 0 and y > 0, then
z-y>0.

Definition 2. Let K be an ordered field and A C K. We
say that A is bounded from above if AM € K (called upper
bound of A) such that x < M Vax € A. Analogously, we
say that A is bounded from below if Im € K (called lower
bound of A) such that x > m Vz € A.

Definition 3. Let K be an ordered field and A C K be a
set bounded from above. We say that an upper bound «
of A is the supremum of A, denoted by sup A, if any other
upper bound o/ satisfies ’ > «. Analogously if B C K is
a set bounded from below, we say that a lower bound [
of B is the infimum of B, denoted by inf B, if any other
lower bound 3’ satisfies 8’ < .

Proposition 4. Let K be an ordered field and A C K.
If M is an upper bound of A, then —M is a lower bound
of —A. Similarly, if m is a lower bound of A, then —m is
a upper bound of —A

Proposition 5. Let K be an ordered field and A, B C K.
If « =sup A and § = inf B, then:
—a = inf(—A) — p =sup(—B)

Proposition 6. The supremum of a set, if exists, is
unique.

Theorem 7 (Supremum axiom). There exists a unique
field with the property that any bounded set from above
has a supremum: the field of real numbers R.

Proposition 8. Natural numbers are not bounded from
above in R.

Corollary 9 (Archimedean property). Let a € R.
Then, dn € N such that a < n.

Corollary 10. Let a € Ryg. Then, I3n € N such that
0< % <a.

Proposition 11. Let z,y € R such that x < y. Then,
there exist numbers z € R\ Q and ¢ € Q such that
r<z<yand x <q<y.

Definition 12. Given z,y € R such that x < y we define:
o Open interval: (z,y) ={z€R:z <z <y}

o Right-open interval: [z,y) ={z € R:z <z <y}
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o Left-open interval: (x,y]={z€R:z <z <y}.

o Closed interval: [x,y] ={z€R:2x <z <y}
Lemma 13. Let K be an ordered field and A C K be
a set. If & = sup A, then Ve > 0 the interval (o — ¢, o

contains points of A.

Definition 14. Let x € R. We define the absolute value

|z| of x as:
2] = {x
—x

Lemma 15. Let z,y € R. Then:

ifz>0
ifx<O

1. |z| >0

2. || =0 <= =0

w

- Nyl = [=|[y]

S

Nz +yl < |z + |y| (Triangular inequality)
Definition 16. Let x € R. A neighbourhood of = is any
open interval containing x.

Infinite and countable sets

Definition 17. A X # @ is infinite if there exist @ #
A C X and ¢ : X — A such that ¢ is a bijection. If no
such A and ¢ exist, X is finite.

Proposition 18. Let X, Y be sets such that X C Y. If
X is infinite, Y is infinite.

Proposition 19. Let X C N. X is finite if and only if X
is bounded.

Definition 20. Let A be a set. We say that A is count-
able if there exists a bijective function from A to N. We
say that A is uncountable if there is no such bijection.

Proposition 21. Any infinite subset of N is countable.

Corollary 22. Any subset of a countable set is either
finite or countable.

Corollary 23. Let A be an infinite set. A is countable if
and only if there exists an injective function from A to N.

Proposition 24. If A and B are countable sets, then
A x B is also countable.

Theorem 25. Q is countable.

Theorem 26. R is uncountable.



2. | Sequences

Limit notion

Definition 27. A sequence of real numbers is an enumer-
ated collection of real numbers. More formally, a sequence
is a function a : N — R. The number a(n) is usually de-
noted by a,, and the whole sequence by (a,).

Definition 28. A sequence (a,) is bounded from above
if there is a real number M such that a, < M Vn € N.
Analogously, (a,,) is bounded from below if there is a real
number m such that a, > m Vn € N. Finally, we say
that (a,) is bounded if there exist m, M € R such that
m<a, <MVVYneN.

Definition 29 (Limit). Let (a,) be a sequence of real
numbers and ¢ € R. We say that lim a, if Ve > 0 dng
n—oo
such that |a, —£| < e Vn > ng. We say that lim a, = +oc0
n—oo
if VM > 0 dng such that +a,, > M VYn > ng.

Definition 30. We say a sequence is convergent if it has
a limit, and divergent otherwise.

Lemma 31. The limit of a convergent sequence is unique.

Lemma 32. Let (a,) be a convergent sequence. Then,
(ay) is bounded. Moreover, if m < a, < M Vn € N, then
m < lim a, < M.

n—oo
Lemma 33. Let (a,) and (b,) be convergent sequences
with respective limits a and 5. Then:

1. The sequences (a, +b,) and (a,b,) are convergents
and

lim a, +b, =a+f

lim a, b, =a-f
n— o0 n— oo

2. If @ # 0, then a,, # 0 for n sufficiently large, the

sequence | — | is convergent and
Qn
by B
lim — =—
n—00 Ay, o

Definition 34. Let (a,) be a sequence. We say (a,) is
monotonically increasing if a,, < an+1 Vn € N. Analo-
gously, we say (a,) is monotonically decreasing if a, >
an+1 Vn € N°. Finally, we say (a,) is monotonic if it is
either monotonically increasing or monotonically decreas-
ing.

Theorem 35. All monotonic and bounded sequences are
convergent.

Lemma 36. Let (a,) and (b,,) be two sequences verifying
an < by, ¥n € N. Then, lim a, < lim b,.

n—oo n—oo
Proposition 37 (Squeeze theorem). Let (ay), (b,)
and (¢, ) be three sequences verifying a,, < b, < ¢, Vn € N
and such that (a,) and (¢,,) are convergent. Suppose that

lim a, = lim ¢, = ¢. Then, (b,) is convergent and
n—r 00 n—oo

lim b, = ¢.

n— 00

Lemma 38. Let p € Ry and a,z € R. Then:

1. lim i =0.
n—oo NP
2. lim ¢/p=1

4 Tz >1, lim = =o0.

n—oo "

5. If x < 1, lim 2™ = 0.

n—roo

Theorem 39 (Root test). Let (a,) > 0 be a sequence.
Suppose that the limit £ = lim /a,, exists.

n— 00

1. If{<1 = lim a, =0.
n—oo

2. If{>1 = lim a, = +oo.
n— oo

Theorem 40 (Ratio test). Let (a,,) > 0 be a sequence.
. . a
Suppose that the limit £ = lim

n—oo Gy

L exists.
1. If /<1 = lim a, =0.
n—roo
2. If¢{>1 = lim a, = +oo.
n—oo
Theorem 41. Let (a,) > 0 be a sequence. If

e £, then lim a, = /.

n—00  (Qy n— 00

The number e

Definition 42. We define the sequences (S,) and (T7,)
as:

11 1 1\"
Sp=1+41l+—+—+-d4— Ty=[(14=

LTI (+n)
Proposition 43. The sequences (S,) and (7),) are con-

vergent and have the same limit. This limit is denoted by
e and it’s equal to e = 2.71828...

Theorem 44. The number e is irrational.

Subsequences

Definition 45 (Subsequence). Let (a,) be a sequence
of real numbers and (k,) be an increasing sequence of nat-
ural numbers. The sequence (ay, ) is called a subsequence
of (ap).

Lemma 46. Let (a,) be a sequence. If lim a, = ¢, then
n—oo

any subsequence of (a,) has limit £.

Definition 47. Let (a,) be a sequence. We say p is an
accumulation point of (ay,) if Ve > 0 and Vng € N In > ng
such that |a, —p| < e.

Proposition 48. Let (a,) be a sequence. p is an accu-
mulation point of (a,,) if and only if there is a subsequence
(ak,) of (an) with lim ap, = p.

n—roo

2If the inequalities are strict, we say that (an) is strictly increasing or strictly decreasing, respectively.



Corollary 49. A convergent sequence has its limit as the
unique accumulation point.

Proposition 50. All sequences have a monotonic subse-
quence.

Theorem 51 (Bolzano-Weierstra3 theorem). All
bounded sequences have a convergent subsequence.

Proposition 52. Let (a,) be a bounded sequence. Then,
(ay) is convergent if and only if it has a unique accumu-
lation point.

Definition 53. Let (a,) be a sequence. We define the
limit superior of (a,) as:

lim sup a,, := inf{sup{x,, : m > n}:n >0}

n—oQ

We define the limit inferior of (a,) as:
liminf a,, := sup{inf{x,, : m > n}:n >0}
n—oo

Proposition 54. Let (a,) be a sequence. Then lim sup a,,
n—oo

and lim inf a,, always exist and
n—roo

liminf a, < limsupa,
n—oo n—oo

If, moreover, (a,) is bounded, then for all accumulation
point p € R of (a,) we have:

liminf a,, < p < limsup a,,
n—oo n—o0o

Proposition 55. Let (a,,) be a bounded sequence. Then:

(ay) is convergent <= liminf a,, = limsupa,
n—o0 n—o00

In this case we have:

lim a, = limsupa, = liminfa,
n—00 n—00 n—00

Cauchy condition

Definition 56 (Cauchy sequence). We say that a se-
quence (a,) is a Cauchy sequence if Ve > 0 Ing such that

|an — am| < € Vn,m > ng.

Theorem 57. A sequence is convergent if and only if it’s
a Cauchy sequence.

Theorem 58 (Stolz-Cesaro theorem). Let (a,) be
a strictly increasing sequence and (b,) be any other se-
quence. Suppose that

by — by

lim ——"=1 — /e RU {+o0}

Nn—>00 Uy — Ap—1

Then:
. . by
1. If lim a, = +o0, lim — =/.
n—oo n—r oo an
. . . by
2. If lim b, = lim a, =0, lim — = /.
n—o0 n—oo n—00 (U,

3. | Continuity

Limit of a function

Definition 59. Let f : [a,0] — R be a function and

xo € (a,b). We say that ¢ is the limit of the function

f at the point xg, denoted by lim f(z) = ¢, if Ve > 0
r—rTo

36 > 0 such that |f(z) — ¢| < e whenever |z — | < 4.
Lemma 60. Let f : (a,b) — R be a function and
xo € (a,b). Then, lim f(z) = ¢ if and only if for any
x xo
sequence (a,) C (a,b) \ {zo} with lim a, = z¢ we have
n—oo
lim f(a,)="¢.

n—oo

Lemma 61. The limit of a function at a point, if exists,
is unique.

Proposition 62. Let f,g : (a,b) = R, z¢ € (a,b) and
suppose that lim f(z) = ¢; and lim g(z) = ¢3. Then,
T—Tg T—To

the following properties are satisfied:

L lim (f 4+ g)(z) = & + Lo

Tr—rT0o

2. lim (f-g)(z) =41 - Lo
Tr—To
3. If ¢ > 0, then f(x) > 0 on a neighbourhood of .
And if ¢; < 0, then f(x) < 0 on a neighbourhood of
1 1
xg. Moreover in both cases lim <> () = —.
T—rTo f él
Definition 63. Let I C R be an interval and f : I — R.
We say that f is bounded on I if there are m, M € R such
that
m< fx) <M Veel

Lemma 64. Let I C R be an interval, f : I — R and
xg € I. If the limit of f at zy exists, then f is bounded
on a neighbourhood of z.

Definition 65. Let I C R be an interval, f : I — R and

o € I. We say that the limit of f at x is infinite, denoted

by lim f(z) = £oo, if Ve > 03§ > 0 such that +f(z) > ¢
T—rT0o

whenever |z — zo| < 4.

Lemma 66. Let f : (a,b) — R be a function and
xo € (a,b). Then, lim f(x) = oo if and only if for
r—rxo

all sequence (a,) C (a,b) \ {zo} with li_)m an, = o, we

have lim f(a,) = too.
n—oo

Definition 67. Let I C R be an interval, f : I — R
and zo € I. We say that ¢ is the right-sided limit of f
at xg, denoted by lim+ f(z) = £, if Ve > 0 36 > 0 such

w—)wo
that |f(z) — ¢| < & whenever x — zy < §. Analogously,
we say that £ is the left-sided limit of f at xq, denoted by
lim f(z) =¢,if Ve > 0 36 > 0 such that |f(z) —{¢| < ¢

T—Ty
whenever xg — z < 0.

Lemma 68. Let f: (a,b) = R and z¢ € (a,b). Then:

lim f(z) =4 <

Tr—rxo

lim f(z)=1¢

IA)IO

lim f(x) =

CE*)ID



Definition 69. Let f : (a,00) — R. We say that ¢ is the
limit of f at infinity, denoted by ILm fl@)=1¢,ifVe >0

JK > a such that |f(x) — (] < e for all x > K.

Definition 70. Let f : (a,00) — R. We say that the limit
of f at infinity is infinity, denoted by lim f(z) = %00, if
Tr—r 00

VK >0 3M > a such that £f(z) > K for all x > M.

Continuity

Definition 71. Let I C R be an interval, f : I — R and
zo € 1. We say that f is continuous at xg if the limit of
f at xq exists and it’s equal to f(xg)’. We say that f is
continuous on I if it’s continuous at all points of I.

Lemma 72. Let I C R be an interval and f: I — R. fis
continuous at xg € I if and only if for all sequence (a,) C T
with lim a, = x¢ we have that lim f(a,) = f(xo).

n— 00 n—oo
Proposition 73. Let I C R be an interval and f,g: I —
R be continuous functions at xg € I. Then:

1. f+ g and f - g are continuous at xg.

2. If f(zg) > 0, then f(z) > 0 on a neighbourhood of
xo. And if f(x0) < 0, then f(x) < 0 on a neighbour-
hood of xg. Moreover, in both cases, % is continuous
at zg.

Proposition 74. Let I,J C R be intervals, f : I — R
and g : J — R. Let 2 € I with f(z¢) € J and suppose
that f is continuous at zp and ¢ is continuous at f(xg).
Then, g o f is continuous at xzg.

Theorem 75 (Weierstrafl theorem). Let f : [a,0] = R
be a continuous function. Then, f is bounded on [a,b].
Moreover, 3m, M € [a, b] such that:

f(m) < f(z) < f(M)

Theorem 76 (Bolzano’s theorem). Let f : [a,b] = R
be a continuous function. If f(a)- f(b) < 0, then 3¢ € (a, d)
such that f(c) = 0.

Yz € [a,b]

Corollary 77 (Intermediate value theorem). Let f :
[a,b] — R be a continuous function and ¢ € (f(a), f(b))".
Then, 3z € (a,b) such that f(z) = c.

Corollary 78. All real numbers have a unique positive
n-th root.

Continuity of inverse function

Definition 79. Let I C R be an interval and f: I — R.
We say that f is increasing on I if f(z) < f(y) whenever
x < y. We say that f is decreasing on I if f(x) > f(y)
whenever z < y°. We say that f is monotonic if it is either
increasing or decreasing.

Theorem 80. Let f : (a,b) — R be a continuous func-
tion. If f is injective and continuous, then f is monotonic.
Moreover, f~! is also continuous on f((a,b)).

Classification of discontinuities

Definition 81. Let I C R be an interval and f : I — R.
Suppose f is not continuous at xg € I. There are mainly
four types of discontinuities:

1. Remowable discontinuity: The limit lim f(z) exists
Tr—>T0o
but

lim f(x) # f(zo)

T—rTo

2. Jump discontinuity: The one-sided limits lim+ f(x)
(1}'*)(130

and lim f(x) exist but

ZE*}CL‘O

lim+ f(z) # lim f(x)

ZL’*)IO JIJ—)ZEO

3. Discontinuity of the first kind:

Either lim f(z) =4ooor lim f(z) = +o0

+ —
ZL’*)CEO CEA)(EO

4. Discontinuity of the second kind: One one-sided
limit does not exist.

08| 1 o8l .
0.6 1 06| /
.
0.4 4 04l 8
0.2 4 o02f .
0 1 1 1 1 O 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 1

Removable discontinuity

Jump discontinuity
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O[J 0.2 0.4 0.6 0.8 1 O() 0.2 0.4 0.6 0.8 1

Discontinuity of the second
kind

Discontinuity of the first
kind

Figure 1: Types of discontinuities

3If I contains one of its endpoints, the continuity in these points must be defined with the notion of one-sided limit.

4The interval (a, b) is defined as (a,b) := (min(a, b), max(a, b)).

5If the inequalities are strict, we say that f is strictly increasing or strictly decreasing, respectively.



4. | Exponential and logarithmic func-
tions

Lemma 82. Let a € Ry and f : Q — R defined by
f(z) = a®. The function f has the following properties:

L flz+y) = f(2)f(y).

2. If a > 1, f is increasing. If a < 1, f is decreasing.

3. If (an,) C Q is a sequence with lim a, = 0, then

. n—oo
nth;O flan) =1.
Lemma 83. Let a,z € Rbesuch thata > 0and (z,) C Q

be a sequence with lim z, = x. Then, lim a”" exists
n—oo n—

oo
and does not depend on the sequence (z,). That is, if

(yn) C Q is another sequence with lim z, = lim y, = z,
n— oo n— 00

then lim a®™ = lim a¥".
n—oo n—oo
Definition 84. Let a € Rso. We define the exponential
Junction with base a as the function f: R — R defined by
f(x) = lim o™, where (x,) is any sequence of rational
n—oo

numbers lim z, = x.
n— oo

Proposition 85. The function g has the following prop-
erties:

1. Ifz €Q, f(z) = a®.

2. flx+y) = f=)fy).

If a > 1, f is increasing. If a < 1, f is decreasing.

f(z) >0Vr eR.

f is continuous.

BN e

Ifa>1, lim f(z)=ocoand lim f(z)=0.
r—r00 Tr—r—00
Ifa <1, lim f(z) =0and lim f(z) =00
r—00 T—r—00
Proposition 86. Let a,xz,y € R be such that a > 0.
Then, (a®)? = a™V.

Definition 87. Let a € Rsg. Since a” is continuous and
monotonic and its image is (0,00), it has an associated
inverse defined in (0,00). This function is denoted by
log, (z) and it is called logarithm with base a'.

Proposition 88. The logarithm with base a € Ry has
the following properties:

1. log, is continuous.

2. If a > 1, log,, is increasing. If a < 1, log, is decreas-

ing.
3. Ifa>1, :}g% log,(z) = —oo and mlgrrolo log,(z) = 0.
If a < 1, lim log,(z) = co and lim log,(z) = —oc.
r—0 T—00

4. log,(wy) = log,(x) + log,(y).
5. log,(2¥) = ylog,(z).

6From now on, we will denote f(z) simply as a* Vz € R.

Proposition 89. Let (a,) be a sequence such that
lim a, = co. Then:

n—oo
) 1 Qn,
e = lim (1 + )
n—o0 a,n

Corollary 90. Let (a,) be a sequence such that
lim a, = oo and x € R. Then:

n—oo
Qn
. T
e’ = lim (14+ —
n—o0 an

Proposition 91. For all z € Rx¢ we have:

14+z<e® <1+ ze”

5. | Differentiation

Definition of derivative and elementary prop-
erties

Definition 92. Let f : (a,b) — R. We say that f is
differentiable at xo € (a,b) if the following limit exists:

f(x) — f(z0) — lim f(xzo+h) — f(z0)

lim
T — Xg h—0 h

Tr—xo

In this case, we denote this limit by f’(z¢) and we refer to
it as the derivative of f at xo. We say f is differentiable
on (a,b) if it is differentiable at each point of (a,b).

Proposition 93. Let I C R be an interval and f: I - R
be a differentiable function at xg € I. The tangent line to
the graph at the point (xq, f(xg)) is:

y(x) = f(wo) + ['(wo)(z — o)

That is, the derivative of f at xq is precisely the slope of
the tangent line at the point xy.

Lemma 94. Let I C R be an interval and f : I — R be
a differentiable function at o € I. Then, f is continuous
at Zg-

Differentiation rules

Proposition 95. Let f,g be two functions defined on a
neighbourhood of a and differentiable at a. Then, f + g
and fg are differentiable at a and

L (f +a)(a) = f'(a) + ¢'(a).

2. (f-9)(a) = f'(a)g(a) + f(a)g'(a).

If, moreover, f(a) # 0, then 1 is defined on a neighbour-
hood of a, it is differentiable at a and

1\’ f(a
3. (> (a) =— ()2
f fla)
Proposition 96 (Chain rule). Let g : (a,b) — (¢, d)
and f : (¢,d) — R. Suppose that ¢ is differentiable at

x € (a,b) and f is differentiable at g(z) € (¢,d). Then,
f o g is differentiable at x and

(fog)(z) = f'(9(x))d (x)

7If the base of the logarithm is the number e, it is common to denote log,(z) by In(z).



Proposition 97 (Inverse function rule). Let f :
(a,b) — R be an injective and continuous function on
(@, b) and differentiable at ¢ € (a,b) with f'(c) # 0. Then,
f~ 1! is differentiable at f(c) and

~1yr _ b
f(x) f'(x)
¢ ar®~!
a® a*Ina
1
log,, =
zlna
sin(z) cos(z)
cos(z) —sin(x)
tan(x) 1+ tan?(z) = ﬁ(w)
cot(z) —-1- cotz(x)1 = Sn?(2)
arcsin(x) Wi
arccos(r) —\/1117
arctan(z) 722
arccot(z) 1 +1:172

Table 1: Table of derivatives of elementary functions

Basic differentiation theorems

Definition 98. Let I C R be an interval, f : I — R and
¢ € 1. We say that c is a local maximum of f if exists
an open interval J C I with ¢ € J such that f(z) < f(c)
Vo € J. We say that ¢ is a local minimum of f if exists
an open interval J C I with ¢ € J such that f(x) > f(c)
Vx € J. Finally, a local extremum is either a local maxi-
mum or a local minimum.

Proposition 99. Let I C R be an interval, f : I - R
and ¢ € I be a local extremum of f. If f is differentiable
at ¢, then f'(¢) = 0.

Theorem 100 (Rolle’s theorem). Let f : [a,b] — R be
a continuous and differentiable function on (a, b). Suppose
f(a) = f(b). Then, there exists a point ¢ € (a, b) such that

7'(0) <.
Theorem 101 (Mean value theorem). Let f : [a,b] —

R be a continuous function on [a, b] and differentiable on
(a,b). Then, there exists a point ¢ € (a,b) such that

f®) = fla) = f'(e)(b—a)

Corollary 102. Let f be a differentiable function on (a, b)
verifying that f'(z) = 0 Vx € (a,b). Then, f is constant
in (a,b).

Corollary 103. Let f be a differentiable function on
(a,b). If f'(x) > 0 Vz € (a,b), then f is strictly increasing
on (a,b). Similarly, if f'(x) < 0 Va € (a,b), then f is
strictly decreasing on (a,b).

Corollary 104. Let f be a differentiable function on a
neighbourhood of @ and such that f’ is continuous on this
neighbourhood. Suppose that f’(a) # 0. Then, exists
another neighbourhood of a on which f is invertible.

Theorem 105 (Cauchy’s mean value theorem). Let
fyg : [a,b] = R be continuous functions on [a, b] and dif-
ferentiable on (a,b). Then, there exists a point ¢ € (a,b)
such that

Theorem 106 (L’Hopital’s rule). Let f, g be two func-

tions defined on a neighbourhood of a € R U {£o0} and

such that either lim f(z) = lim g(x) = 0 or lim g(x) =
Tr—a r—a r—ra

/
T
oo. Suppose, moreover, that the limit lim f'(z)

Jm g’(x) exists.

Then, the limit lim /(@) exists too and

v—a g(x)
lim 1) = lim (@)
z—a g(x z—a g’(x

Theorem 107 (Darboux’s theorem). Let f : (a,b) —
R be a differentiable function and suppose that there ex-
ist ,y € (a,b), x <y, with f'(z)f'(y) < 0. Then, there
exists z € (z,y) such that f'(z) = 0.

6. | Convexity and concavity

Definition 108. We say that f : I — R is convex if
given any two points a,b € I, a < b, the segment between
(a, f(a)) and (b, f(b)) lies above the graph on (a,b). That
is:

fOt+ (1 —t)a) <tf(b)+ (1—1t)f(a) Vtel0,1]

We say that f is concave if given any two points a,b € I,
a < b, the segment between (a, f(a)) and (b, f(b)) lies be-
low the graph on (a,b). That is:

Fbt+ (1 —t)a) > tf(b)+ (1 —t)f(a) Vte 0,1}
2 2
15} 1 15k |
1 11 |
0.5 4 051 N
0—1 —(‘).5 (‘) 015 1 0—1 —(‘) 5 (‘] 015 1

Convex function Concave function

Figure 2

Lemma 109. A function f is convex on an interval I is
and only if —f if concave on I.

8If the inequalities are strict, we say that f is strictly convex or strictly concave, respectively.



Lemma 110. Let f: I — R. fis convex on [ if and only
if Va,z,b € I with a < z < b we have:

f@)~ (@) _ )~ f(a)
r—a - b—a
Or, equivalently:
£~ fla) _ 1) - (@)
b—a - b—=x

Similarly, f is concave on [ if and only if Va,x,b € I with
a < x < b we have:

fx) = fla) _ f(b) = fla)
r—a - b—a
Or, equivalently:
f) = fla) _ F(b) = f(2)
b—a - b—=x

Proposition 111. Let f be a convex or concave function
on an interval I. Then, f is continuous on I.

Lemma 112. Let f be a differentiable function and a < b
be such that f(a) = f(b). Then:

o If f/ is increasing, f(z) < f(a) Vz € (a,b).
o If f/ is decreasing, f(z) > f(a) Vx € (a,b).

Theorem 113. Let f be a differentiable function on an
interval /. Then:

e f is (strictly) convex if and only if f’ is (strictly)
increasing.

o f is (strictly) concave if and only if f/ is (strictly)
decreasing.

Theorem 114. Let f be a differentiable function on an
interval I. Then, f is convex if and only if the graph lies
above all its tangent lines. And similarly, f is concave if
and only if the graph lies below all its tangent lines.

Definition 115. Let f be a differentiable function on an
interval I. If the function f’ : I — R is differentiable at
a € I, we say that f is two times differentiable at a. If
this happens in all points of I, we say that f is two times
differentiable on I. In this case we denote the derivative
of f at the point a, (f')'(a), by f(a) and we refer to it
as second derivative of f at a.

Theorem 116. Let f be a function two times differen-
tiable on I. Then:

1. fis convex on I if and only if f”(z) >0 Vz € I.
2. fis concave on [ if and only if f/(x) <0 Vx € I.

Definition 117. Let f: I — R. We say that f is convex
at « € I if exists a neighbourhood J C I of x on which f is
convex. Analogously, we say that f is concave at = € I if
exists a neighbourhood J C I of x on which f is concave.

Definition 118. Let f be a continuous function on I. We
say x € I is an inflection point if exists § > 0 such that f is
convex (or concave) on (z — §,z] and concave (or convex)
on [z,x +9).

Proposition 119. Let f be a function two times differ-
entiable on I. Then:

1. If a is an inflection point, f”(a) = 0.
2. Suppose that f” is continuous at a € I. Then:

o If f"(a) >0, f is convex at a.
o If f(a) <0, f is concave at a.

7. | Polynomial approximation

Definition 120. Let f, g be two functions defined on a
neighbourhood of a € R. We say that f and g have contact
of order > n at a if

o 1) = 9@)
(z —a)
Definition 121. Let f be a function. Iterating the pro-

cess in Theorem 115, one can define the notion of the n-th
derivative of f at the point a € R, denoted by f(™)(a).

=0

T—ra

Definition 122. We say that a function f is of class C"
at a point a € R, n € N, if f is n times differentiable at a
neighbourhood of a and f(™ is continuous in this neigh-
bourhood. We say that f is of class C*° at a if f is of class
C™ at a Yn € N. Finally, if p € NU {oo}, we say that f is
of class CP, or CP(I), on an interval I it it is of class CP at
all points of I.

Lemma 123. Let f, g be functions n times differentiable
at a € R. Then:

1. If fO(a) = g)(a),i=0,1,...,n, and O and g(™
are continuous at a, then f and g have contact of
order > n.

2. If f and g have contact of order > n, then f()(a) =
gD(a),i=0,1,...,n.

Theorem 124. Let f be a function n times differentiable
at a € R. Then, the polynomial

f// a
Pusal®) = (@) + @) —a) + T 0 — oy
3)
9@
3!
has contact with f of order > n at a. This polynomial is
called Taylor polynomial of order n of f centered at a.

a)+
f"(a)

n!

n

(x—a)’ +---+ (x — a)

Proposition 125. Let P and @ be polynomials of degree
< n with order of contact > n at a point a € R. Then
P=qQ"°.

Theorem 126. Let f be a function n times differentiable
at a € R. If f'(a) = f"(a) = --- = f®Y(a) = 0 and
f™(a) # 0 then:

1. If n is odd, a isn’t a local extremum of f.

9This means that the Taylor polynomial P, ¢.q(z) is the unique polynomial which has contact with a function f of order > n at a point

a.



2. If n is even and £ (a) > 0, a is a local minimum

of f.
3. If n is even and f(")(a) < 0, a is a local maximum
of f.

Theorem 127. Let f be a function n + 1 times differen-
tiable on a neighbourhood I of a € R. Let P = P, ¢4,
R, :=f—Pandz € I. Then:

1. Cauchy’s formula:

A9

Ro@) = — - - a)

for some & € (a,x).

2. Lagrange’s formula:

SO ()

(n+1)! )

R, (z) = (x—a

for some n € (a,x).

3. Integral formula: If f(*+1) is integrable'” on [a, z]:

1)
Rn(z):/fT!(t)(x—t)"dt

Definition 128. We say that f is analytic at a if it’s of
class C* on a neighbourhood I of @ and lim R,(z) =0
n—oo

Vo e 1.

/(@) Taylor polynomials
x2 3 "
z? 3 z? +1$n
In(1 Ca?at et o
n(l+x) T + 3 0 b (—1) -
: 3 x5 2 gl
SlIl(iE) *§+a 7 + .. +(7 ) <2n+1)'
xQ -'LA $6 n xQn
coste) | m gt o D
1
1 l+ao+a?+a®+ 42"
-
o —]_ P — _1
(1+2) 1+ax+...+0‘(a ) 75? (n ))x"
2 25 2 - 22n+l
t - 5 _——— —ln
arctan(v) | @- g g -7t O g

Table 2: Taylor polynomials centered at 0 of some elemen-
tary functions

8. | Riemann integral

Construction of Riemann integral

Definition 129. Let I = [a,b] be an interval. A partition
P of I is a finite collection of points a = tg < t; < +-- <
t, = bof I. We denote by P(I) the set of all partitions of
the interval I.

108ee Theorem 134.

Definition 130. Let f : I — R be a bounded function
and P = {t;}1, € P(I). We define the respective lower
sum and upper sum of f associated with P as:

L(f,P) - Zml(tl — tifl) U(f,P) = ZM’L(tl — tifl)
i=1 =1

where m; = inf{f(z;) : x; € [ti—1,]} and M; =
sup{f(z;) : x; € [ti—1,t:]}

Definition 131. Let P, Q € P(I) be two partitions. We
say that P is finer than Q, Q < P, if Q C P.

m_ ik, ..

3 3

Jd7 | NN |

-1

-1

-2 -2 -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

Figure 3: Lower (blue) and upper (red) sums of a func-
tion with three different partitions, each one finer than the
previous one.

Proposition 132. Let f: I — R be a bounded function
and P, Q € P(I) with @ < P. Then:

L(f,Q) < L(f,P) <U(f,P) <U(f,Q)

Definition 133. Let I = [a,b] and f : I — R be a
bounded function. We define the lower integral of f on
I as:

b
/f(x) dz = sup{L(f,P): P P(I)}

Analogously, we define the upper integral of f on I as:

b
/f(x)d:c =inf{U(f,P): PeP)}

Definition 134. Let I = [a,b] and f : I — R be a
bounded function. We say that f is integrable on I if

In this case, we denote the integral of f on I by /f(x) dx.

Lemma 135. Let I = [a,b] and f : I — R be a bounded
function. Then, f is integrable on I if and only if Ve > 0
3P € P(I) such that:

U(f,P)—L(f,P)<ce¢



Theorem 136. Let I = [a,b] and f: I — R be a mono-
tonic and bounded function. Then, f is integrable on I.

Definition 137. Let f : I — R be a function. We say
that f is uniformly continuous on I if Ye > 0 3§ > 0 such
that | f(x) — f(y)| < € whenever |z — y| < 4.

Theorem 138. Let I = [a,b] and f : I — R be a contin-
uous function. Then, f is uniformly continuous at I.

Theorem 139. Let I = [a,b] and f : I — R be a contin-
uous function. Then, f is integrable on I.
Properties of the integral

Proposition 140. Let f, g be integrable functions on
[a,b] and ¢ € R. Then, f + g and cf are integrable on [
and

/b[f(w)Jrg(w)] dx:/bf(x) dx+/bg(w) dz

b ’ b
/cf(x)dx:c/f(ac)dx

Theorem 141. Let f be an integrable function on [a, b]
with f([a,b]) C [c,d] and g be a continuous function on

[c,d]. Then, go f is integrable on [a, b].

Corollary 142. Let f be an integrable function on [a, b].
Then, f? is integrable on [a,b]. And if there exists § > 0
with f(z) > ¢ Va € [a,b], then % is integrable on [a, b].

Corollary 143. Let f, g be integrable functions on [a, b].
Then, fg is integrable on [a, b].

Inequalities involving integrals

Proposition 144. Let f, g be integrable functions on
[a,b] with f(z) < g(z) Vz € [a,b]. Then:

b b
[ @< [ga)da

Corollary 145. Let f be an integrable function on [a, b]
with m < f(z) < M Vx € [a,b]. Then:

b
m(b—a) S/f(x)da:SM(b—a)

If, moreover, f is continuous, there exists ¢ € [a,b] such
that:

b
/ f(z)dz = F(O)(b— a)

Proposition 146. Let f be an integrable function on
[a,b]. Then, |f] is integrable on [a,b] and

b b

[ f@ds < [15@) o

a a

Proposition 147. Let f be an integrable function on
[a,b] and g be a function defined on [a, b] distinct to f on
a finite number points. Then, g is integrable on [a, b] and

b b
/g(x)dm:/f(x)dx

Fundamental theorem of calculus

Proposition 148. Let f : [a,b] = R and b € (a,c). fis
integrable on [a, ] if and only if f is integrable on [a, b]
and on [b, ¢]. Moreover:

/cf(x)dx_/bf(x)dx+/cf(x)dx
a a b

Theorem 149 (Fundamental theorem of calculus).
Let f be an integrable function on [a,b]. Then,

F(t) = /tf(@ do

is a continuous function on [a,b]. If, moreover, f is con-
tinuous at ¢ € [a,b], then F is differentiable at ¢ and
F'(c) = f(c). Finally, if f is continuous on [a,b], then
F is differentiable on [a,b] and F’ = f. In this last case,
the function F is called primitive function of f.

Theorem 150. Let f be an integrable function on [a, b]
which has primitives. Then, these primitives are of the
form:

F(t) = k+/f(a:) da

where k € R. Moreover they satisfy F’ = f and

b
/ f(x)de = F(b) — F(a)

Corollary 151 (Integration by parts). Let f, g be
integrable functions on [a, b] with primitives F' and G, re-
spectively. Then:

b
/ F(2)g(z) dz = F(B)G(b) — F(a)G(a) - / f(@)G(x) de

Corollary 152 (Integration by substitution). Let
¢ : [e,d] = [a,b] be a function of class C' such that
©(c) = a and ¢(d) = b and f be a continuous function
on [a,b]. Then:

b

[ s = / (f 0 ) (@)¢ () d

a



Riemann sums

Definition 153. Let P = {t;}, € P([a b]). A Riemann
sum of f associated with P, S(f,P), i

S(f,P) =

i —tic1)

where x; € [t;i—1,t;].

Theorem 154. Let f be a continuous function on [a, b].
Then, Ve > 0 30 > 0 such that if P = {¢;}7, € P([a,b])
with t; —t;_1 < 6, then:

b
/f(:c)dx—S(f,P) <e

for all Riemann sums associated with P.

Corollary 155. Let f be a continuous function on [a, b]
and let P,, = {t;}1o € P([a,b]) be a sequence of partitions
of [a,b] such that ¢; — t;_1 < 1/n. Then, for all Riemann
sums S(f,Py,) we have:

b
[ f@yde = tm s(7.P.)

Geometric applications

Definition 156. Let f : [a,b] = R and P = {t;}I, €
P([a,b]). We define the length of the polygonal approxi-
mating the arc length of f on [a,b] as:

- i \/(ti —ti1)’

Lemma 157. Let f : I — R and P,Q € P(I) with
Q < P. Then, {(f,P) = {(f,Q).

Definition 158. Let f: T — R. If the set £ := {{(f,P) :
P € P(la,b])} is bounded from above, we say that the
graph is rectifiable and we define its length ¢(f, [a,b]) as

+(ft) — f(tim)?

€(f[a,b]) = sup £

Proposition 159. Let f be a function of class C!([a
Then, f is rectifiable on [a,b] and

b))

b

0f, [0, b)) :/ |+ f(2)? de

a

Definition 160. Let ¢ : [a,b] — R? with ¢(t)
(x(t),y(t)) and P = {t;}1y € P([a,b]). We define the
length of the polygonal approximating the arc length of ¢
on [a,b] as:

=3 et -

)PP+ [y(ts) — y(tion))?

10

Proposition 161. Let ¢ : [a,b] — R? with () =
(x(t),y(t)). Suppose that the functions z(t), y(t) are of
class C!([a,b]). Then, the curve ¢ is rectifiable on [a, b]

and
b
o la) = [ i@l +

Lemma 162. Let f, g be continuous functions on [a, b].
Then, Ve > 0, 36 > 0 such that if P = {¢;}], with
t, —tio1 < 6, then:

)P da

b

/ f(@) + g(x)? dz -

a
n

- Z(tz —ti—1) f(Ci)2 + g(di)2

i=1

<e€

for any ¢;,d; € [ti—1,t;], i =1,.

Lemma 163. Let f, g be continuous functions on [a, b].
Then, Ve > 0, 3§ > 0 such that if P = {¢;}!, with
t, —ti—1 < 5, then:

/f

for any ¢;,d; € [ti—1,t;], i =1,.

n

r)dr — Z(ti —ti1)f(ci)g(di)| <e

=1

Proposition 164 (Surface of revolution). Let f :
[a,b] — Rsq be a function of class C'. Then, the sur-
face of the solid formed by rotating the area below the
function f(x) and between the lines x = a and = b
about the z-axis is given by:

S—27r/f

Proposition 165 (Surface of revolution). Let a > 0
and f : [a,b] — R be a function of class C'. Then, the
surface of the solid formed by rotating the area below the
function f(x) and between the lines x = @ and = b about
the y-axis is given by:

Sy = 27r/bx\/1+f’(x)2dm

Proposition 166 (Volume of revolution). Let f,g
[a,b] — R be bounded and integrable functions. Then,
the volume of the solid formed by rotating the area be-
tween the curves of f(z) and g(x) and the lines x = a and
x = b about the z-axis is given by:

b
Ve = 77/ ‘f(;v)2 —g(z)*|dw

Proposition 167 (Volume of revolution). Let a > 0
and f,g : [a,b] = R be bounded and integrable functions.
Then, the volume of the solid formed by rotating the area

1+ f'(2)*d



between the curves of f(z) and g(x) and the lines z = a
and x = b about the y-axis is given by:

b

n [alf@) - g do

a

Vy =

Proposition 168 (Center of masses). The center of
masses (xo,yo) of a thin plate with uniformly density p is:

[
i

Calculation of primitives

b

/fu>1+f@fm

a

i) Yo = b

/ 1+ f/(a)?da

a

Lemma 169. Let P(x),Q(z) € R[z] be polynomials with
deg P(x) < deg Q(z). Suppose Q(x) factorises as:

= H (x —a;)" H (2% + bz + ¢;)”
i=1 i=1

with b2 —4¢; < 0 for @ = 1,...,m. Then, the function

ggz; can be expressed as:
P(z) & N Mz + N/
O R BN

where A7, M/ N7 € R Vi, 7.

11

Proposition 170. Let P(x), Q(z) € R[z] be polynomials.
If P(z) = C(x)Q(x) + R(z), then:

:/C(x)dx+/R(x)

Q)

x
Q@
where deg R(x) < deg Q(x).

Lemma 171. Let P(x), Q(x) € R[z] be polynomials with
deg P(x) < deg Q(z). Suppose Q(z) factorises as:

n m
:H(x—al I_Ix—i—bac—i—cZ
i=1 i=1

with b2 — 4¢; < 0 for 4 = 1,...,m. Then, the function

gg; can be expressed as:
P(z) _ (Al(x)>/ N As(x)
Q(z) Q1(z) Qa(7)
“g(le])re Qa2(z) =L, (z —ai) [T (2 + biz + ¢;), Qu(z) =

and A; € R[z] with deg 4;(z) < deg Q;(x), i = 1,2.

Q2(x)

Theorem 172 (Hermite reduction method). Let
P(z),Q(z) € R[z] be polynomials. Suppose

P(z)  [(Ai(z)\ | As(2)
o~ (@) + 2k
for some polynomials Q;(z), A;(z) € R[z]. Then:
P(x) Ay (z) As(z)
a0 aw  aw®
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