
Linear algebra

1. | Matrices
Linear systems
Definition 1. A linear equation is an equation of the form

a1x1 + · · · + anxn = b

where x1, . . . , xn are the variables or unknowns and ai, b ∈
R, i = 1, . . . , n, are the coefficients of the equation. The
term b is usually called constant term.

Definition 2. A system of linear equations is a collection
of one or more linear equations involving the same set of
variables.

Definition 3. Let
a11x1 + · · · + a1nxn = b1

...
am1x1 + · · · + amnxn = bm

be a system of linear equations. A solution of a system of
equations is a set of numbers c1, . . . , cn such that

ai1c1 + · · · + aincn = bi

for i = 1, . . . , m. A linear system may behave in three
possible ways:

1. The system has a unique solution.

2. The system has infinitely many solutions.

3. The system has no solution.

Definition 4. Two systems of equations are equivalent if
they have the same solutions.

Matrices
Definition 5 (Matrix). A matrix A with coefficients in
R is a table of real numbers arranged in rows and columns.
That is, A is of the form:

A = (aij) =

 a11 · · · a1n

... . . . ...
am1 · · · amn


for some values aij ∈ R, i = 1, . . . , m and j = 1, . . . , n.
The set of m × n matrices with real coefficients is denoted
by Mm×n(R)1.

Definition 6. Let A, B ∈ Mm×n(R) and α ∈ R. If
A = (aij) and B = (bij), we define the sum A + B as:

A + B = (aij + bij)

We define the product αA as:

αA = (αaij)

Proposition 7 (Properties of addition and scalar
multiplication of matrices). The following properties
are satisfied:

1. Commutativity:

A + B = B + A

for all A, B ∈ Mm×n(R).

2. Associativity:

(A + B) + C = A + (B + C)

for all A, B, C ∈ Mm×n(R).

3. Additive identity element: ∃0 ∈ Mm×n(R) such
that

A + 0 = A

for all A ∈ Mm×n(R).

4. Additive inverse element: ∀A ∈ Mm×n(R) ∃(−A) ∈
Mm×n(R) such that

A + (−A) = 0

5. Distributivity:

(α + β)A = αA + βA

for all A ∈ Mm×n(R) and all α, β ∈ R.

Definition 8. Let A ∈ Mm×n(R) and B ∈ Mn×p(R).
We define the product AB as

AB = (cij) where cij =
n∑

k=1
aikbkj

Proposition 9 (Properties of matrix product). The
following properties are satisfied:

1. Associativity:

(AB)C = A(BC)

for all A ∈ Mm×n(R), B ∈ Mn×p(R) and C ∈
Mp×q(R).

2. Multiplicative identity element: ∃In ∈ Mn(R) such
that

AIn = A ∀A ∈ Mm×n(R) and
InA = A ∀A ∈ Mn×p(R)

3. Distributivity:

(A + B)C = AC + BC

for all A, B ∈ Mm×n(R) and C ∈ Mn×p(R).
1In the case when m = n we will denote Mn×n(R) by Mn(R).
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Definition 10. We say that a matrix A ∈ Mn(R) is in-
vertible if there is a matrix B ∈ Mn(R) satisfying

AB = BA = In

The set of invertible matrices of size n over R is denoted
by GLn(R)2.

Lemma 11. The product of invertible matrices is invert-
ible.

Definition 12. We say that a matrix A ∈ Mn(R) is
idempotent if A2 = A.

Definition 13. We say that a matrix A ∈ Mn(R) is
nilpotent if Ak = 0n for some k ∈ N. The value k is
usually called index of A.

Lemma 14. Let A ∈ GLn(R) such that A is idempotent.
Then, A = In.

Lemma 15. Let A ∈ GLn(R) such that A is nilpotent of
index k ∈ N. Then, A = 0n.

Echelon form of a matrix

Definition 16. Let A ∈ Mm×n(R) be a matrix. The i-th
pivot of A is the first nonzero element in the i-th row of
A.

Definition 17 (Row echelon form). A matrix A ∈
Mm×n(R) is in row echelon form if:

• All rows consisting of only zeros are at the bottom.

• The pivot of a nonzero row is always strictly to the
right of the pivot of the row above it.

Definition 18 (Reduced row echelon form). A ma-
trix A ∈ Mm×n(R) is in reduced row echelon form if:

• It is in row echelon form.

• Pivots are equal to 1.

• Each column containing a pivot has zeros in all its
other entries.

Theorem 19 (Gauß’ theorem). Let A ∈ Mm×n(R) be
a matrix. Then, there is a matrix P ∈ GLm(R) such that
PA = A′ is in reduced row echelon form. Moreover, A′

is uniquely determined by A.

Theorem 20 (PAQ reduction theorem). Let A ∈
Mm×n(R) be a matrix. Then, there exist matrices P ∈
GLm(R) and Q ∈ GLn(R) such that:

PAQ =
(

Ir 0
0 0

)
The number r is uniquely determined by A.

Rank of a matrix
Definition 21 (Rank). Let A ∈ Mm×n(R) be a matrix
and suppose

PAQ =
(

Ir 0
0 0

)
for some matrices P ∈ Mm(R) and Q ∈ Mn(R). We
define the rank of A, denoted by rank A, as the number
ones in the matrix PAQ, that is, rank A := r.

Proposition 22. Let A, A′ ∈ Mm×n(R), B, B′ ∈
M1×n(R) and P ∈ GLm(R) be matrices. Suppose we
have a system of linear equations Ax = B. If P(A | B) =
(A′ | B′)3, then the systems Ax = B and A′x = B′ are
equivalent.

Corollary 23. The reduced row echelon form of an in-
vertible matrix is the identity matrix.

Definition 24 (Transposition). Let A ∈ Mm×n(R) be
a matrix. If A = (aij), we define the transpose AT of A
as the matrix AT = (bij), where bij = aji for i = 1, . . . , m
and j = 1, . . . , n.

Proposition 25. Let A ∈ Mm×n(R) be a matrix. Then,
rank A = rank AT.

Theorem 26 (Rouché-Frobenius theorem). Let
Ax = B be a system of equations with n variables. The
system is:

• determined and consistent if and only if

rank A = rank(A | B) = n

• indeterminate with s free variables if and only if

rank A = rank(A | B) = n − s

• inconsistent if and only if

rank A ̸= rank(A | B)

Determinant of a matrix
Definition 27 (Determinant). A determinant is a func-
tion det : Mn(R) → R satisfying the following properties:

1. If A = (a1 | · · · | an), where ai are column vectors
in Rn for i = 1, . . . , n and aj = λu + µv for some
other column vectors u and v, then:

det A = det(a1 | · · · | aj | · · · | an) =
= det(a1 | · · · | aj−1 | λu + µv | aj+1 | · · · | an) =

= λ det(a1 | · · · | aj−1 | u | aj+1 | · · · | an)+
+ µ det(a1 | · · · | aj−1 | v | aj+1 | · · · | an)

2. The determinant changes its sign whenever two
columns are swapped.

3. det In = 1 for all n ∈ N.

Lemma 28. Whenever two columns of a matrix are iden-
tical, the determinant is 0.

2Or more generally, the set of invertible matrices of size n over a field (see ??) K is denoted by GLn(K).
3Here (A | B) denotes the augmented matrix obtained by appending the columns of B to the columns of A.
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Proposition 29. Let A ∈ Mn(R) be a matrix in its row
echelon form. If A = (aij), then:

det A =
n∏

i=1
aii

Proposition 30. Let A ∈ Mn(R) be a matrix. The fol-
lowing are equivalent:

1. A is not invertible.

2. rank A < n.

3. det A = 0.

Theorem 31. Let det : Mn(R) → R be a determinant.
Then, for all matrices A, B ∈ Mn(R):

det(AB) = det A det B

Corollary 32. Let det, det′ : Mn(R) → R be two deter-
minants. Then, for all matrix A ∈ Mn(R):

det A = det′A

Proposition 33. Let A = (aij) ∈ Mn(R). Then:

det A =
∑

σ∈Sn

sgn(σ)
n∏

i=1
aiσ(i)

Proposition 34. For all matrix A ∈ Mn(R):

det A = det AT

Proposition 35. Let A = (aij) ∈ Mn(R). We denote by
Aij the square matrix obtained from A by removing the
i-th row and j-th column. Then, for every i ∈ {1, . . . , n}:

det A =
n∑

j=1
(−1)i+jaij det Aij

Definition 36. Let A = (aij) ∈ Mn(R). We define the
cofactor matrix C of A as:

C = (bij), where bij = (−1)i+j det Aij
4

We define the adjugate matrix adj A of A as:

adj A = CT

Theorem 37. Let A ∈ Mn(R). Then:

A adj A = (det A)In

Moreover if det A ̸= 0, then:

A−1 = 1
det A adj A

Block matrices
Definition 38. Let A ∈ Mm×n(R) and r, s ∈ N such
that r ≤ m and s ≤ n. We define a block matrix as a
matrix of the form A11 · · · A1s

... . . . ...
Ar1 · · · Ars


where Aij , i = 1, . . . , r and j = 1, . . . , s are submatrices
of A created from partitioning the A with s − 1 vertical
lines and r − 1 horizontal lines.
Proposition 39. Let A, B ∈ Mm·n(R) be a block matrix
of the form:

A =
(

X 0
Z Y

)
B =

(
X W
0 Y

)
where X ∈ Mm(R), Y ∈ Mn(R), Z ∈ Mn×m(R) and
W ∈ Mm×n(R). Then,

det A = det(X) det(Y) = det B

2. | Vector spaces
Introduction and basic definitions

Definition 40. A vector space over a field5 K is a set V
together with two operations

+ : V × V −→ V
(v1, v2) 7−→ v1 + v2

· : K × V −→ V
(λ, v2) 7−→ λ · v2

that satisfy the following properties:
1. v1 + (v2 + v3) = (v1 + v2) + v3 ∀v1, v2, v3 ∈ V .

2. v1 + v2 = v2 + v1 ∀v1, v2 ∈ V .

3. ∃0 ∈ V such that v + 0 = v ∀v ∈ V .

4. ∀v ∈ V there exists −v ∈ V such that v+(−v) = 0.

5. λ · (µ · v) = (λµ) · v ∀v ∈ V and ∀λ, µ ∈ K.

6. 1 · v = v ∀v ∈ V , where 1 denotes the multiplica-
tive identity element in K.

7. λ · (v1 + v2) = λ · v1 + λ · v2 ∀v1, v2 ∈ V and
∀λ ∈ K.

8. (λ + µ) · v = λ · v + µ · v ∀v ∈ V and ∀λ, µ ∈ K.
In these conditions, we say that (V, +, ·) is a vector space6.
The elements of V are called vectors and the elements of
K, scalars.
Definition 41. Let V be a vector space over a field K
and U ⊆ V be a subset of V . Then, U is a vector space
over K if the following property is satisfied:

λu1 + µu2 ∈ U ∀u1, u2 ∈ U and ∀λ, µ ∈ K

Definition 42. Let V be a vector space and U ⊆ V . U
is a vector subspace of V if it’s itself a vector space with
the operations defined in V .

4C is usually denoted as cof A.
5See ??.
6For simplicity we will denote the vector space only by V and if the context is clear we won’t refer to its associated field. Moreover

sometimes we will also omit the product · between a scalar and a vector.
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Definition 43. Let V be a vector space over a field K.
A linear combination of the vectors v1, . . . , vn ∈ V is a
vector of the form

a1v1 + · · · + anvn

where ai ∈ K, i = 1, . . . , n.

Definition 44. Let V be a vector space over a field K
and U ⊆ V . The set

⟨U⟩ = {a1u1 + · · · + anun : ai ∈ K, ui ∈ U, i = 1, . . . , n}

is called linear span by U .

Lemma 45. Let V be a vector space and U ⊆ V . Then,
⟨U⟩ is a vector subspace of V . Moreover, ⟨U⟩ is the small-
est subspace containing U .

Definition 46. Let V be a vector space and U ⊆ V . We
say that U is a generating set of V if ⟨U⟩ = V .

Linear independence
Definition 47. Let V be a vector space over a field K.
The vectors v1, . . . , vn ∈ V are linearly independent if the
unique solution of the equation

a1v1 + · · · + anvn = 0

for ai ∈ K, i = 1, . . . , n, is a1 = · · · = an = 0. Otherwise
we say that the vectors v1, . . . , vn are linearly dependent.

Lemma 48. Let V be a vector space. The vectors
v1, . . . , vn are linearly dependent if and only if one of them
is a linear combination of the others.

Definition 49. Let V be a vector space. A basis of V is
an ordered set B = (v1, . . . , vn) of vectors of V such that:

1. ⟨v1, . . . , vn⟩ = V .

2. v1, . . . , vn are linearly independent.

Lemma 50 (Steinitz exchange lemma). Let V be a
vector space, B be bases of V be and v1, . . . , vk ∈ V be
linearly independent vectors of V . Then, we can exchange
k appropriate vectors of B by v1, . . . , vk to define a new
basis.

Corollary 51. Let V be a vector space that has a finite
basis B = (v1, . . . , vn). Then, all basis of V be are finite
and they have the same number (n) of vectors.

Lemma 52. Let V be a vector space. Suppose we have a
generating set S = {v1, . . . , vn} of V . Then, V be admits
a basis formed with a subset of S.

Definition 53. Let V be a finite vector space over a field
K. The dimension of V , denoted by dimK V (or dim V if
K can be inferred from context), is the number of vectors
in any basis of V .

Definition 54. Let V be a finite vector space over a field
K, B = (v1, . . . , vn) be a basis of V be and v ∈ V . Sup-
pose

v = a1v1 + · · · + anvn

for some ai ∈ K, i = 1, . . . , n. We call (a1, . . . , an) ∈ Kn

coordinates of v on the basis B and we denote it by [v]B.

Proposition 55. Let V be a vector space. If dim V < ∞,
the maximum number of linearly independent vectors is
equal to dim V . If dim V = ∞, there is no such maxi-
mum.

Proposition 56. Let V be a vector space of dimension
n. Then, n is the minimum size of a generating set of V .

Proposition 57. Let V be a finite vector space and U be
a vector subspace of V . Then, dim U ≤ dim V and

dim U = dim V ⇐⇒ U = V

Sum of subspaces

Lemma 58. Let V be a vector space and U, W ⊆ V be
two vector subspaces of V . Then, the intersection U ∩ W
is a vector subspace of V .

Definition 59. Let V be a vector space and U, W ⊆ V
be two vector subspaces of V . The sum of U and W is:

U + W = ⟨U ∪ W ⟩ = {u + w : u ∈ U, w ∈ W}

Proposition 60 (Graßmann formula). Let V be a fi-
nite vector space and U, W ⊆ V be two vector subspace
of V . Then:

dim(U + W ) + dim(U ∩ W ) = dim U + dim W

Lemma 61. Let V be a vector space and U, W ⊆ V be
two vector subspaces of V . Then, U ∩ W = {0} if and
only if all vectors v ∈ U + W can be written uniquely as
v = u + w, with u ∈ U and w ∈ W .

Definition 62 (Direct sum). Let V be a vector space
and U, W ⊆ V be two vector subspaces of V . Then, the
sum U + W is direct if U ∩ W = {0}. In this case we de-
note the sum as U ⊕W . More generally, if U1, . . . , Un ⊆ V
are vector subspaces of V , the sum U = U1 + · · · + Un

is direct if all vector u ∈ U can be written uniquely as
u = u1 + · · · + un, where ui ∈ Ui for i = 1, . . . , n. In this
case we denote the sum by U1 ⊕ · · · ⊕ Un.

Rank of a matrix

Definition 63. Let A ∈ Mn×m(R). The row rank of A
is the dimension of the linear span of the rows of A in Rm.
Analogously, the column rank of A is the dimension of the
linear span of the columns of A in Rn.

Proposition 64. Let A ∈ Mn×m(R). Then, the row
rank of A is equal to the column rank of A. Therefore,
we refer to it simply as rank of A or rank A.

Definition 65. Let A ∈ Mn(R). A minor of order k of
A is a submatrix A′ ∈ Mk(R) obtained from A selecting
k rows and k columns of A.

Proposition 66. Let A ∈ Mn×m(R). Then:

rank A = max{k : A has an invertible minor of order k}
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Quotient vector space
Definition 67. Let V be a vector space and U ⊆ V be a
vector subspace. We say that W ⊆ V is a complementary
subspace of U if U ⊕ W = V .

Definition 68. Let V be a finite vector space of dimen-
sion n and U ⊆ V be a vector subspace of dimension m.
Then, there exists a complementary subspace of U and its
dimension is n − m.

Definition 69. Let V be a vector space and U ⊆ V be
a vector subspace. We say the vectors v1, v2 ∈ V are
equivalent modulo U , v1 ∼U v2, if v1 − v2 ∈ U .

Lemma 70. Let V be a vector space and U ⊆ V be a
vector subspace. Then, ∼U is an equivalence relation and,
moreover, if v ∈ V the equivalence class [v] of v is:

[v] = v + U := {v + u : u ∈ U}

Definition 71. Let V be a vector space over a field K
and U ⊆ V be a vector subspace. We define the quotient
space V/U under ∼U as the set of equivalence classes with
the operations defined as:

[v1] + [v2] = [v1 + v2] λ[v1] = [λv1]

for all v1, v2 ∈ V and all λ ∈ K.

Proposition 72. Let V be a vector space over a field K
and U ⊆ V be a vector subspace. The set V/U together
with the two operations defined above is a vector space
over K.

Proposition 73. Let V be a finite vector space of dimen-
sion n and U ⊆ V be a vector subspace. Then:

dim
(

V
/

U

)
= dim V − dim U

3. | Linear maps
Definition 74. Let U , V be two vector spaces over a field
K. A function f : U → V is a linear map if ∀u1, u2 ∈ U
and ∀λ ∈ K the following two conditions are satisfied:

1. f(u1 + u2) = f(u1) + f(u2).

2. f(λu1) = λf(u1).

Proposition 75. Let U , V be two vector spaces over a
field K. Then, if f : U → V is a linear map, ∀u1, u2 ∈ U
and ∀λ, µ ∈ K we have:

1. f(0) = 0.

2. f(−u1) = −f(u1).

3. f(λu1 + µu2) = λf(u1) + µf(u2).

Proposition 76. Let U , V , W be three vector spaces.
If f : U → V and g : V → W are linear maps, then
g ◦ f : U → W is a linear map.

Proposition 77. Let U , V be two vector spaces. If
f : U → V is a bijective linear map, then f−1 : U → V is
a linear map.

Proposition 78. Let U , V be two vector spaces, f : U →
V be a linear map and W ⊆ U and Z ⊆ V be vector sub-
spaces. Then:

1. f(W ) = {f(w) : w ∈ W} ⊆ V is a vector subspace.

2. f−1(Z) = {u ∈ U : f(u) ∈ Z} ⊆ U is a vector
subspace.

In particular, f(V ) is denoted by im f and f−1({0}) is
denoted by ker f and these subspaces are called image of
f and kernel of f , respectively. More precisely, their defi-
nitions are:

im f = {f(u) : u ∈ U} ker f = {u ∈ U : f(u) = 0}

Proposition 79. Let U , V be two vector spaces and
f : U → V be a linear map. Then:

1. f is injective ⇐⇒ ker f = {0}

2. f is surjective ⇐⇒ im f = V .
Corollary 80. Let U , V be two finite vector spaces and
f : U → V be a linear map. Then:

1. f is injective ⇐⇒ dim(ker f) = 0

2. f is surjective ⇐⇒ dim(im f) = dim V .
Definition 81.

• A monomorphism is an injective linear map.

• An epimorphism is a surjective linear map.

• An isomorphism is a bijective linear map.

• An endomorphism is a linear map from a vector
space to itself.

• An automorphism is a bijective endomorphism.
Definition 82. We say that two vector spaces U and V
are isomorphic, V ∼= U , if there exists an isomorphism
between them.
Proposition 83. Let U , V be two vector spaces and
f : U → V be a monomorphism. If u1, . . . , un ∈ U are lin-
early independent vectors, then f(u1), . . . , f(un) are lin-
early independent.
Lemma 84. Let U , V be two vector spaces and f : U →
V be a linear map. If u1, . . . , un ∈ U , then:

⟨f(u1), . . . , f(un)⟩ = f(⟨u1, . . . , un⟩)
Corollary 85. Let U , V be two vector spaces and f :
U → V be an epimorphism. If ⟨u1, . . . , un⟩ = U , then
⟨f(u1), . . . , f(un)⟩ = V .
Corollary 86. Let U , V be two vector spaces and f :
U → V be an isomorphism. If (u1, . . . , un) is a basis of
U , then (f(u1), . . . , f(un)) is a basis of V .
Theorem 87 (Coordination theorem). Let V be a
finite vector space over a field K of dimension n and
B = (v1, . . . , vn) be a basis of V . Then, the function
f : Kn → V defined by

f(a1, . . . , an) = a1v1 + · · · anvn

is an isomorphism.
Corollary 88. Two finite vector spaces are isomorphic if
and only if they have the same dimension.

5



Isomorphism theorems
Theorem 89 (First isomorphism theorem). Let U ,
V be two vector spaces and f : U → V be a linear map.
Then, there exists an isomorphism f̃ : U/ ker f → im f
satisfying f = f̃ ◦ π, where π : U → U/ ker f , π(u) = [u].

U im f

U
/
ker f

f

f̃π

Figure 1

Corollary 90. Let U , V be two vector spaces such that
dim U = n and let f : U → V be a linear map. Then:

dim(ker f) + dim(im f) = n

Corollary 91. Let U , V be two finite vector spaces of
dimensions n and f : U → V be a linear map. Then:

f is injective ⇐⇒ f is surjective ⇐⇒ f is bijective

Theorem 92 (Second isomorphism theorem). Let V
be a vector space and U, W ⊆ V be two vector subspaces.
Then, there exists an isomorphism

U
/

U ∩ W
∼= U + W

/
W

Theorem 93 (Third isomorphism theorem). Let U ,
V , W be three vector spaces such that W ⊆ U ⊆ V . Then,
there exists an isomorphism

(V/W )/
(U/W )

∼= V
/

U

Theorem 94. Let U , V be two vector spaces over a field
K, B = (u1, . . . , un) be a basis of U and v1, . . . , vn ∈ V
be any vectors of V . Then, there exists a unique linear
map f : U → V such that f(ui) = vi, i = 1, . . . , n.

Matrix of a linear map
Proposition 95. Let U , V be two finite vector spaces
over a field K with dim U = n and dim V = m, B and B′

be bases of U be and V respectively and f : U → V be a
linear map. Then, there exists a matrix A ∈ Mm×n(K)
such that ∀u ∈ U :

[f(u)]B′ = A[u]B

The matrix A is called matrix of f in the basis B and B′

and it is denoted by [f ]B,B′ 7.

Corollary 96. Let V be a finite vector space, B and B′

be two basis of V respectively and id : V → V be the
identity linear map. Then, ∀u ∈ V we have:

[u]B′ = [id]B,B′ [u]B

The matrix [id]B,B′ is called change-of-basis matrix.

Proposition 97. Let U , V , W be three vector spaces, B,
B′, B′′ be bases of U , V and W respectively and f : U → V
and g : V → W be linear maps. Then, g ◦ f : U → W has
the following matrix in the basis B and B′′:

[g ◦ f ]B,B′′ = [g]B′,B′′ [f ]B,B′

Corollary 98. Let V be a finite vector space, B and B′

be two basis of V . Then, the matrix [id]B,B′ is invertible
and

([id]B,B′)−1 = [id]B′,B

Corollary 99. Let U , V be two finite vector spaces, B
and B′ be bases of U and V respectively and f : U → V
be a linear map. Then:

1. f is injective ⇐⇒ rank[f ]B,B′ = dim U .

2. f is surjective ⇐⇒ rank[f ]B,B′ = dim V .

Corollary 100. Let U , V be two finite vector spaces. A
linear map f : U → V is an isomorphism if and only if
there exist basis B and B′ of U and V respectively such
that [f ]B,B′ is invertible.

Proposition 101 (Change of basis formula). Let U ,
V be two finite vector spaces, B1 and B2 be bases of U ,
B′

1 and B′
2 be bases of V and f : U → V be a linear map.

Then:
[f ]B2,B′

2
= [id]B′

1,B′
2
[f ]B1,B′

1
[id]B2,B1

Lemma 102. Let U , V be two finite vector spaces over
a field K with dim U = n and dim V = m and B and B′

be bases of U be and V respectively. Then, any matrix
A ∈ Mm×n(K) determines a linear map f : U → V with
[f ]B,B′ = A.

Theorem 103. Let U , V be two finite vector spaces and
f : U → V be a linear map. Then, there exist basis B of
U and B′ of V such that:

[f ]B,B′ =
(

Ir 0
0 0

)
where r = dim (im f).

Dual space

Lemma 104. Let U , V be two finite vector spaces over
a field K. Then, the set

L(U, V ) := {f : f is a linear map from U to V }8

is a vector space over K with the operations defined as:

1. (f + g)(u) = f(u) + f(u) ∀f, g ∈ L(U, V ) and
∀u ∈ U .

2. (fλ)(u) = λf(u) ∀f, g ∈ L(U, V ), ∀u ∈ U and
∀λ ∈ K.

7If U = V and B = B′, we denote [f ]B,B simply by [f ]B.
8If U = V , we denote L(V, V ) simply as L(V ).
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Proposition 105. Let U , V be two finite vector spaces
over a field K with dim U = n and dim V = m. Then, for
all basis B of U be and B′ of V , the function

L(U, V ) −→ Mm×n(K)
f 7−→ [f ]B,B′

is an isomorphism.

Corollary 106. Let U , V be two finite vector spaces with
dim U = n, dim V = m. Then, dim L(U, V ) = nm.

Definition 107. Let V be a vector space over a field K.
We define the dual space V ∗ of V as:

V ∗ := L(V, K)

Proposition 108. Let V be a finite vector space over a
field K with dim V = n and B be a basis of V . Then, the
function

V ∗ −→ M1×n(K)
ω 7−→ [ω]B,1

is an isomorphism. Therefore, dim V ∗ = dim V .

Definition 109. We define the Kronecker delta δij as the
function:

δij =
{

0 if i ̸= j

1 if i = j

Definition 110. Let V be a finite vector space and
B = (v1, . . . , vn) be a basis of V . We define the dual
basis B∗ of B as the basis of V ∗ formed by (η1, . . . , ηn)
where

ηi(vj) = δij

Lemma 111. Let V be a vector space over a field K, B
be a basis of V and (v∗

1, . . . , v∗
n) be the dual basis of B.

Then, ∀v ∈ V :

[v]B = (v∗
1(v), . . . , v∗

n(v)) ∈ Kn

Lemma 112. Let V be a vector space over a field K,
B = (v1, . . . , vn) be a basis of V and B∗ be the dual basis
of B. Then, ∀ω ∈ V ∗:

[ω]B∗ = (ω(v1), . . . , ω(vn)) ∈ Kn

Definition 113 (Dual map). Let U , V be two vector
spaces over a field K and f ∈ L(U, V ). The function f∗

defined by
f∗ : U∗ −→ V ∗

ω 7−→ ω ◦ f

is a linear map and it’s called dual map of f .

Theorem 114. Let U , V be two finite vector spaces, B
and B′ be bases of U and V respectively and f ∈ L(U, V ).
Then:

[f∗]B′∗,B∗ = ([f ]B,B′)T

Double dual space
Definition 115 (Double dual space). Let V be a vec-
tor space over a field K. The double dual space V ∗∗ of V
is defined as:

V ∗∗ := (V ∗)∗ = L(V ∗, K)

Proposition 116. Let V be a vector space over a field K
and v ∈ V . We define the function:

ϕv : V ∗ −→ K
ω 7−→ ω(v)

which is linear. This map induces an injective linear map
Φ defined by:

Φ : V −→ V ∗∗

v 7−→ ϕv

Moreover, if dim V < ∞, Φ is a natural isomorphism9.

Annihilator space
Definition 117. Let V be a vector space and U ⊆ V ∗ be
a vector subspace of V ∗. We define the annihilator of U
as:

U0 = {v ∈ V : ω(v) = 0 ∀ω ∈ U}

Lemma 118. Let V be a vector space and U ⊆ V ∗ be
a vector subspace of V ∗. If U = ⟨ω1, . . . , ωn⟩, then U0 is
the set of solutions of the system:

ω1(v) = 0
...

ωn(v) = 0

Lemma 119. Let V be a vector space and U ⊆ V ∗ be a
vector subspace of V ∗. Then, U0 is a vector subspace of
V ∗.

Theorem 120. Let V be a finite vector space and U ⊆ V ∗

be a vector subspace of V ∗. Then:

dim U0 + dim U = dim V

Definition 121. Let V be a vector space and U ⊆ V be
a vector subspace of V . We define the annihilator of U as:

U0 = {ω ∈ V ∗ : ω(v) = 0 ∀v ∈ U}

Lemma 122. Let V be a vector space and U ⊆ V be a
vector subspace of V . If U = ⟨v1, . . . , vn⟩, then:

U0 = {ω ∈ V ∗ : ω(v1) = · · · = ω(vn) = 0}

Proposition 123. Let V be a vector space. Then,
whether U ⊆ V or U ⊆ V ∗, we have:

(U0)0 = U

4. | Classification of endomorphisms
Definition 124. Let V be a vector space over a field
K and λ ∈ K. A homothety of ratio λ is a linear map
f : V → V such that f(v) = λv ∀v ∈ V .

9This means that the definition of Φ does not depend on a choice of basis.
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Similarity
Definition 125. Let V be a vector space and f, g ∈ L(V ).
We say that f and g are similar if there are basis B and
B′ of V such that [f ]B = [g]B′ .

Lemma 126. Let V be a vector space, B and B′ basis of
V and f ∈ L(V ). If M = [f ]B, N = [f ]B′ and P = [id]B,B′ ,
then:

M = P−1NP

Definition 127. Let K be a field. Two matrices M, N ∈
Mn(K) are similar if there exists a matrix P ∈ GLn(K)
such that M = P−1NP.

Proposition 128. Let V be a finite vector space and
f, g ∈ L(V ).

1. f and g are similar if and only if for all basis B of V
the matrices [f ]B and [g]B are similar.

2. f and g are similar if and only if there is an auto-
morphism h ∈ L(V ) such that g = h−1fh.

Diagonalization
Definition 129. Let K be a field. A matrix A = (aij) ∈
Mn(K) is diagonal if aij = 0 whenever i ̸= j. That is, A
is of the form:

A =


a11 0 · · · 0

0 a22
. . . ...

... . . . . . . 0
0 · · · 0 ann


In this case, we denote A := diag(a11, . . . , ann).

Definition 130. Let K be a field. A matrix A ∈ Mn(K)
is diagonalizable if it is similar to diagonal matrix.

Definition 131. An endomorphism is diagonalizable if its
associated matrix in some basis is diagonalizable.

Definition 132. Let V be a vector space over a field K
and f ∈ L(V ). We say that a nonzero vector v ∈ V is an
eigenvector of f with eigenvalue λ ∈ K if f(v) = λv.

Lemma 133. Let V be a vector space over a field K,
f ∈ L(V ) and λ ∈ K. The eigenvectors of f of eigenvalue
λ are the nonzero vectors of the subspace ker(f − λid),
called eigenspace corresponding to λ.

Lemma 134. Let V be a vector space over a field K
with dim V = n, B be a basis of V and f ∈ L(V ). Then,
det([f − xid]B) is a polynomial on the variable x of degree
n and with coefficients in K. Moreover, the dominant
coefficient is (−1)n and the constant term is det([f ]B).

Corollary 135. Let V be a vector space of dimension n
and f ∈ L(V ). Then, f has at most n distinct eigenvalues.

Corollary 136. Let V be a vector space over C and
f ∈ L(V ). Then, f has at least one eigenvalue.

Definition 137. Let K be a field and A ∈ Mn(K). The
polynomial pA(λ) = det(A − λIn) is called characteristic
polynomial of A.

Proposition 138. Let V be a vector space and f ∈ L(V ).
For all basis B of V , the characteristic polynomial of [f ]B
is the same. Therefore, we denote it pf (λ) and we refer to
it as characteristic polynomial of f .

Proposition 139. Let V be a vector space and f ∈ L(V ).
Then, eigenvectors of f of distinct eigenvalues are linearly
independent.

Corollary 140. Let V be a vector space and f ∈ L(V ).
Suppose λ1, . . . , λn are the distinct eigenvalues of f and
Vλ1 , . . . , Vλn

are their corresponded eigenspaces. Then,

Vλ1 + · · · + Vλn

is a direct sum.

Proposition 141. Let V be a finite vector space of di-
mension n, f ∈ L(V ) and λ be a root of multiplicity m of
the characteristic polynomial pf (x). Then:

1 ≤ dim(ker(f − λid)) ≤ m

The number m is called algebraic multiplicity of λ, whereas
the value dim(ker(f −λid)) is called geometric multiplicity
of λ.

Theorem 142 (Diagonalization theorem). Let V be
a finite vector space and f ∈ L(V ). f is diagonalizable if
and only if:

1. pf (x) = (−1)n(x−λ1)m1 · · · (x−λk)mk with distinct
λ1, . . . , λk ∈ K.

2. dim(ker(f − λiid)) = mi, i = 1, . . . , k.

Corollary 143. Let V be a finite vector space with
dim V = n and f ∈ L(V ). If f has n distinct eigenvalues,
f is diagonalizable.

Proposition 144. Let V be a finite vector space and
f, g ∈ L(V ) such that f and g are similar. Then:

f is diagonalizable ⇐⇒ g is diagonalizable

Lemma 145. Let K be a field and A, B ∈ Mn(K) be
similar matrices. Then, ∀k ∈ N, Ak and Bk are similar.

Lemma 146. Let V be a finite vector space over a field
K with dim V = n and f ∈ L(V ). Then, the function
ϕf : K[x] → L(V ) defined by

ϕf (a0 + a1x + · · · + anxn) = a0 + a1f + · · · + anfn

is linear and satisfies:

ϕf ((pq)(x)) = ϕf (p(x))ϕf (q(x)) ∀p(x), q(x) ∈ K[x]

Definition 147. Let V be a finite vector space with
dim V = n and f ∈ L(V ). The minimal polynomial
mf (x) ∈ K[x] of f is the unique a polynomial satisfying:

• mf (f) = 0.

• mf is monic.

• mf is of minimum degree.

Proposition 148. Let V be a vector space over a field K
and f ∈ L(V ). If p(x) ∈ K[x] is such that p(f) = 0, then
mf (x) | p(x).
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Cayley-Hamilton theorem
Theorem 149 (Cayley-Hamilton theorem). Let K
be a field, n ≥ 1 and A ∈ Mn(K). Then:

mA(x) | pA(x) | mA(x)n

Therefore pA(A) = 0 and mA(x) and pA(x) have the same
irreducible factors.

Corollary 150. Let K be a field and A ∈ GLn(K) be a
matrix with pA(x) = a0 + a1x + · · · + (−1)nxn. Then:

A−1 = − 1
a0

(
An−1 + an−1An−2 + · · · + a2A + a1In

)
Lemma 151. Let V be a finite vector space over a field
K, B be a basis of V and f ∈ L(V ). Then ∀λ, µ ∈ K and
∀r, s ∈ N:

1. [fr]B = ([f ]B)r.

2. [λf ]B = λ[f ]B.

3. [λfr + µfs]B = [λfr]B + [µfs]B.

Lemma 152. Let V be a finite vector space over a field
K, f ∈ L(V ) and v be an eigenvector of f of eigenvalue
λ. Then, ∀p(x) ∈ K[x] we have:

p(f)(v) = p(λ)v

Theorem 153 (Cayley-Hamilton theorem). Let V be
a finite vector space over a field K such that dim V = n
and f ∈ L(V ). Then:

mf (x) | pf (x) | mf (x)n

Definition 154. A field K satisfying that all polynomial
with coefficient in K of degree greater o equal to 1 factor-
izes as a product of linear factors is called an algebraically
closed field.

Definition 155. Let V be a vector space and f ∈ L(V ).
We say that U ⊆ V is an invariant subspace of V under f
if f(U) ⊆ U .

Lemma 156. Let V be a vector space and f ∈ L(V ).

1. If U ⊆ V is an invariant subspace of V under f ,
then:

pf |U
(x) | pf (x)10

2. If U1 and U2 are invariant subspaces of V under f
such that V = U1 ⊕ U2, then:

• pf (x) = pf |U1
(x) · pf |U2

(x).
• mf (x) = lcm(mf |U1

(x), mf |U2
(x)).

Lemma 157. Let V be a vector space, f ∈ L(V ) and
a(x), b(x) ∈ K[x]. Suppose m(x) = lcm(a(x), b(x)) and
d(x) = gcd(a(x), b(x)). Then:

1. ker(a(f)) + ker(b(f)) = ker(m(f)).

2. ker(a(f)) ∩ ker(b(f)) = ker(d(f)).

In particular, if a(x) and b(x) are coprime and a(f)b(f) =
0, then:

V = ker(a(x)) ⊕ ker(b(x))

Theorem 158. Let V be a finite vector space such that
dim V = n and f ∈ L(V ). If pf (x) = q1(x)n1 · · · qr(x)nr

and mf (x) = q1(x)m1 · · · qr(x)mr with qi(x) distinct irre-
ducible factors, then:

V = ker(q1(f)m1) ⊕ · · · ⊕ ker(qr(f)mr )

Moreover, dim (ker(qi(f)mi)) = ni deg(qi(x)).

Jordan form
Definition 159. Let K be a field and A ∈ Mn(K). A
Jordan block of A is a square submatrix composed by a
value λ ∈ K on the principal diagonal, ones on the diago-
nal just below the principal diagonal and zeros elsewhere.
That is, a Jordan block is a matrix of the form:

λ 0 0 · · · 0

1 λ 0 . . . ...

0 1 λ
. . . 0

... . . . . . . . . . 0
0 · · · 0 1 λ


A Jordan matrix is a block diagonal matrix whose blocks
are Jordan blocks.

Proposition 160. Let V be a finite vector space over
a field K with dim V = n and f ∈ L(V ). If pf (x) =
±(x−λ1)n1 · · · (x−λk)nk , there exists a basis B of V such
that

[f ]B =


J1 0 · · · 0

0 J2
. . . ...

... . . . . . . 0
0 · · · 0 Jr


where J1, . . . , Jr are Jordan blocks associated with eigen-
values λ1, . . . , λk satisfying:

1. For i = 1, . . . , k, the sum of the sizes of Jordan blocks
associated with the eigenvalue λi is ni.

2. The sizes of Jordan blocks are determined by
dim(ker((f − λiid)r)), r = 1, . . . , ni − 1.

Proposition 161. Let V be a finite vector space over
a field K with dim V = n and A ∈ Mn(K). If
pA(x) = ±(x − λ1)n1 · · · (x − λk)nk , there exist a matrix
P ∈ GLn(K) such that:

J := P−1AP =


J1 0 · · · 0

0 J2
. . . ...

... . . . . . . 0
0 · · · 0 Jr


where J1, . . . , Jr are Jordan blocks associated with eigen-
values λ1, . . . , λk satisfying Items 160-1 and 160-2 of The-
orem 160. In that case, we say that J is the Jordan form
of A.

10Here f |U is the function f restricted to the subspace U .
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Theorem 162. Let V be a vector space and f, g ∈ L(V )
be such that pf (x) = (x−λ1)n1 · · · (x−λk)nk . If g satisfies:

1. pf (x) = pg(x)

2. mf (x) = mg(x)

3. dim(ker((f − λid)r)) = dim(ker((g − λid)r)) ∀λ ∈ K
∀r ≥ 1

then f is similar to g.

5. | Symmetric bilinear forms
Basic definitions
Definition 163. Let U , V , W be three vector spaces over
a field K. We say that a function φ : U × V → W is bi-
linear if ∀u1, u2, u ∈ U , ∀v1, v2, v ∈ V and ∀λ ∈ K we
have:

1. φ(u1 + u2, v) = φ(u1, v) + φ(u2, v).

2. φ(λu, v) = λφ(u, v).

3. φ(u, v1 + v2) = φ(u, v1) + φ(u, v2).

4. φ(u, λv) = λφ(u, v).

Definition 164. Let V be a vector space over a field
K. A bilinear form from V onto K is a bilinear map
φ : V × V → K.

Definition 165. Let V be a vector space over a field K.
A bilinear form φ : V × V → K is symmetric if

φ(v1, v2) = φ(v2, v1) ∀v1, v2 ∈ V

Matrix associated with a bilinear form
Definition 166. Let V be a finite vector space over a field
K, B = (v1, . . . , vn) be a basis of V and φ : V × V → K
be a symmetric bilinear form. We define the matrix of the
bilinear form φ with respect to the basis B as the matrix
[φ]B ∈ Mn(K) defined as:

[φ]B =


φ(v1, v1) φ(v1, v2) · · · φ(v1, vn)
φ(v2, v1) φ(v2, v2) · · · φ(v2, vn)

...
... . . . ...

φ(vn, v1) φ(vn, v2) · · · φ(vn, vn)


Lemma 167. Let V be a finite vector space over a field
K, B be a basis of V and φ : V × V → K be a symmetric
bilinear form. Then:

φ(v1, v2) = ([v1]B)T[φ]B[v2]B ∀v1, v2 ∈ V

Proposition 168. Let V be a finite vector space over a
field K, B be a basis of V and φ : V × V → K be a
symmetric bilinear form. Then:

φ is symmetric ⇐⇒ [φ]B is symmetric

Proposition 169. Let V be a finite vector space over a
field K, B and B′ be bases of V and φ : V × V → K be a
symmetric bilinear form. Then:

[φ]B′ = ([id]B′,B)T[φ]B[id]B′,B

Orthogonal basis

Definition 170. Let V be a finite vector space over a
field K, φ : V × V → K be a symmetric bilinear form and
v1, v2 ∈ V .

• We say that v1 and v2 are orthogonal if φ(v1, v2) =
0.

• If v1 ̸= 0, we say that v1 is isotropic if φ(v1, v1) = 0.

Definition 171. Let V be a finite vector space over a field
K, B = (v1, . . . , vn) be a basis of V and φ : V × V → K
be a symmetric bilinear form.

• We say that B is orthogonal with respect to φ if
φ(vi, vj) = 0 ∀i ̸= j.

• We say that B is orthonormal with respect to φ if
φ(vi, vj) = δij .

Theorem 172. Let V be a finite vector space over a field
K, B be a basis of V and φ : V × V → K be a symmet-
ric bilinear form. Then, V has an orthogonal basis with
respect to φ and an orthonormal basis with respect to φ.

Corollary 173. Let K be a field with char K ̸= 2 and
A ∈ Mn(K) be a symmetric matrix. Then, there exists a
matrix P ∈ GLn(K) such that PTAP is diagonal.

Orthogonal decompositions

Definition 174. Let V be a finite vector space over a field
K, U ⊆ V be a vector subspace of V and φ : V × V → K
be a symmetric bilinear form. We define the orthogonal
complement of U as:

U⊥ = {v ∈ V : φ(v, u) = 0 ∀u ∈ U}

Definition 175. Let V be a finite vector space over a
field K and φ : V × V → K be a symmetric bilinear form.
We define the radical of φ as:

rad φ = V ⊥

We say that φ is nonsingular if rad φ = {0}.

Definition 176. Let V be a finite vector space over a
field K, φ : V × V → K be a nonsingular symmetric
bilinear form and v0 ∈ V . We define φv0 : V → K,
φv0(v) = φ(v0, v). Then, the function

V −→ V ∗

v0 7−→ φv0

is an isomorphism.

Definition 177. Let V be a finite vector space over a field
K, U ⊆ V be a vector subspace of V and φ : V × V → K
be a nonsingular symmetric bilinear form. Then:

1. dim V = dim U + dim U⊥.

2. (U⊥)⊥ = U .

3. If φ|U is nonsingular, then V = U ⊕ U⊥.
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Definition 178. Let V be a finite vector space over
a field K, U1, U2 ⊆ V be vector subspaces of V and
φ : V × V → K be a symmetric bilinear form. We say
that the sum U1 + U2 is orthogonal if it is direct and
φ(u1, u2) = 0 ∀u1 ∈ U1 and u2 ∈ U2. In this case, we
denote U1 + U2 by U1 ⊥ U2.

Proposition 179. Let V be a finite vector space over a
field K, U1, U2 ⊆ V be vector subspaces of V such that
V = U1 ⊥ U2 and φ : V × V → K be a symmetric bilin-
ear form. Then, ∀v ∈ V there exist unique u1 ∈ U1 and
u2 ∈ U2 such that v = u1 + u2.

Definition 180. Let V be a finite vector space over a
field K, U1, U2 ⊆ V be vector subspaces of V such that
V = U1 ⊥ U2 and φ : V × V → K be a symmetric bilinear
form. The function

π : U1 ⊥ U2 −→ Ui

u1 + u2 7−→ ui

for i = 1, 2 is called orthogonal projection of V onto Ui

according to the decomposition V = U1 ⊥ U2.

Proposition 181 (Gram-Schmidt process). Let V be
a finite vector space over a field K, B = (v1, . . . , vn) be a
basis of V and φ : V × V → K be a symmetric bilinear
form. ∀u, v ∈ V , we define

proju(v) = φ(u, v)
φ(u, u)u

We will create an orthogonal basis (u1, . . . , un) of V from
B. We define ui, i = 1, . . . , n, to be:

u1 = v1

u2 = v2 − proju1(v2)
u3 = v3 − proju1(v3) − proju2(v3)

...

un = vn −
n−1∑
i=1

projui
(vn)

To obtain an orthogonal basis (e1, . . . , en) of V from B,
define ei, i = 1, . . . , n, to be:

ei = ui√
φ(ui, ui)

Sylvester’s law of inertia
Definition 182. An orthogonal geometry over a field K
is a pair (V, φ), where V is a vector space over K and φ
is a symmetric bilinear form over V .

Definition 183. Let (V1, φ1), (V2, φ2) be two orthogonal
geometries over a field K. An isometry from (V1, φ1) to
(V2, φ2) is an isomorphism f : V1 → V2 such that

φ2(f(u), f(v)) = φ1(u, v) ∀u, v ∈ V1

We say that (V1, φ1) and (V2, φ2) are isometric if there
exists an isometry between them.

Definition 184. Let V be a vector space over a field K
and φ1, φ2 be symmetric bilinear forms. We say that φ1
and φ2 are equivalent if (V, φ1) and (V, φ2) are isometric.

Definition 185. Let A, B ∈ Mn(R). We say that A and
B are congruent if there exists a matrix P ∈ GLn(R) such
that

A = PTBP

Proposition 186. Let V be a finite vector space over a
field K, B1 be a basis of V and φ1, φ2 be symmetric bilin-
ear forms. Then the following statements are equivalent:

1. The orthogonal geometries (V, φ1) and (V, φ2) are
isometric.

2. There exists a basis B2 of V such that [φ1]B1 =
[φ2]B2 .

3. The matrices [φ1]B1 and [φ2]B2 are congruent.

Theorem 187 (Sylvester’s law of inertia). Let V be
a finite vector space over R and φ be a symmetric bilinear
form over V . Then, there exists a basis B of V such that:

[φ]B = diag
(

0, (r0). . . , 0, 1, (r+). . . , 1, −1, (r−). . . , −1
)

where in the diagonal there are r0 zeros, r+ ones and r−
minus ones and the triplet (r0, r+, r−) doesn’t depend on
the basis B.

Definition 188. Let V be a finite vector space over R
and φ be a symmetric bilinear form over V . Let B be an
orthogonal basis of V with respect to φ. We define the
rank of φ as:

rank φ = rank([φ]B)
We define the signature of φ as:

sig φ = (r+, r−)

where r+ is el number of positive real numbers on the diag-
onal of [φ]B and r− is el number of negative real numbers
on the diagonal of [φ]B.

Theorem 189. Let (V1, φ1), (V2, φ2) be two orthogonal
geometries over R of finite dimension. Then, (V1, φ1) and
(V2, φ2) are isometric if and only if dim V1 = dim V2 and
sig φ1 = sig φ2.

Inner products
Definition 190. Let V be a finite vector space over R
and φ be a symmetric bilinear form over V . We say that
φ is positive-definite if

φ(v, v) > 0 ∀v ∈ V \ {0}

We say that φ is negative-definite if

φ(v, v) < 0 ∀v ∈ V \ {0}11

Definition 191. Let V be a vector space over R. An in-
ner product over V is a positive-definite symmetric bilinear
form over V .

11The terms positive-semidefinite and negative-semidefinite are used when ∀v ∈ V \ {0}, φ(v, v) ≥ 0 or φ(v, v) ≤ 0, respectively.
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Definition 192. An Euclidean vector space is a pair
(V, φ), where V is a vector space over R and φ is an inner
product over V .

Theorem 193 (Cauchy-Schwarz inequality). Let
(V, φ) be an Euclidean vector space. Then:

φ(v1, v2)2 ≤ φ(v1, v1)φ(v2, v2) ∀v1, v2 ∈ V

Definition 194. Let V be a vector space over R. A norm
on V is a function

∥ · ∥ : V −→ R
v 7−→ ∥v∥

such that:

1. ∥v∥ = 0 ⇐⇒ v = 0 ∀v ∈ V .

2. ∥λv∥ = |λ|∥v∥, ∀v ∈ V , λ ∈ R.

3. ∥v1 + v2∥ ≤ ∥v1∥ + ∥v2∥, ∀v1, v2 ∈ V 12.

Proposition 195. Let (V, φ) be an Euclidean vector
space. Then, the function

∥ · ∥φ : V −→ R
v 7−→

√
φ(v, v)

is a norm called norm associated with the inner product φ.

Definition 196. Let (V, φ) be an Euclidean vector space
and v1, v2 ∈ V \ {0}. We define the angle with respect to
φ between v1 and v2 as the unique θ ∈ [0, π] such that:

cos θ = φ(v1, v2)
∥v1∥φ∥v2∥φ

Spectral theorem

Definition 197. Let (V, φ) be a finite Euclidean vec-
tor space and f ∈ L(V ). Then, there exists a unique
f ′ ∈ L(V ) such that

φ(f(v1), v2) = φ(v1, f ′(v2)) ∀v1, v2 ∈ V

This f ′ is called adjoint of f .

Definition 198. Let (V, φ) be a finite Euclidean vector
space and f ∈ L(V ). f is called auto-adjoint if f = f ′.

Lemma 199. Let (V, φ) be a finite Euclidean vector space
of dimension n and f ∈ L(V ) be auto-adjoint. Then, there
exist λ1, . . . , λn ∈ R such that

pf (x) = (x − λ1) · · · (x − λn)

Definition 200. Let K be a field and A ∈ GLn(K) be a
matrix. We say that A is orthogonal if

PPT = PTP = In

The set of orthogonal matrices of size n over K is denoted
by On(K).

Theorem 201 (Spectral theorem). Let (V, φ) be a fi-
nite Euclidean vector space and f ∈ L(V ) be auto-adjoint.
Then, V has an orthonormal basis of eigenvectors of f . In
particular, f diagonalizes.

Corollary 202. Let K be a field. All symmetric matri-
ces A ∈ Mn(K) are diagonalizable. More precisely, there
exists P ∈ On(K) such that PTAP is diagonal.

Definition 203. Let A = (aij) ∈ Mm×n(C). We define
the complex conjugate A of A as A = (aij).

Proposition 204. Let A, B ∈ Mm×n(C), C ∈ Mn×p(C)
and λ ∈ C. Then:

1. A + B = A + B.

2. AC = A · C.

3. λ · A = λ · A.

Corollary 205. Let A ∈ Mn(R) be a symmetric matrix.
Then, there exist λ1, . . . , λn ∈ R such that

pA(x) = (x − λ1) · · · (x − λn)

Theorem 206 (Descartes’ rule of signs). Let P (x) =
a0 + · · · + anxn ∈ R[x]:

1. The number of positive roots of P (x) is at most equal
to the number of sign variations in the sequence
[ad, ad−1, . . . , a1, a0].

2. If P (x) = an(x−α1)n1 · · · (x−αr)nr , then the num-
ber of positive roots of P (x) is equal to the number
of sign variations in the sequence (having in account
multiplicity).

12Note that ∀v ∈ V we have: 0 = ∥v + (−v)∥ ≤ ∥v∥ + ∥ − v∥ = 2∥v∥ =⇒ ∥v∥ ≥ 0.
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