Linear algebra

1. | Matrices Proposition 7 (Properties of addition and scalar
multiplication of matrices). The following properties
Linear systems are satisfied:

Definition 1. A linear equation is an equation of the form 1. Commutativity:

airy + -+ apt, = b A+B=B+A

where x4, ..., x, are the variables or unknowns and a;,b €

R, i =1,...,n, are the coefficients of the equation. The for all A, B € Myn(R).

term b is usually called constant term. 2. Associativity:

Definition 2. A system of linear equations is a collection (A+B)+C=A+(B+C)

of one or more linear equations involving the same set of

variables. for all A, B, C € M xn(R).

Definition 3. Let 3. Additive identity element: 30 € M, x,(R) such
aiwy + -+ a1y = by that

A+0=A
for all A € M, xn(R).

Am1T1 +  + Gy Tn = bm

4. Additive inverse element: VA € M, «,(R) I(—A) €

be a system of linear equations. A solution of a system of Mnxn(R) such that
equations is a set of numbers ¢y, ..., ¢, such that
A+(-A)=0
apcr+ -+ aincn =b;
for i = 1,...,m. A linear system may behave in three 5. Distributivity:
possible ways: (a+B)A = aA + BA

1. The system has a unique solution.
for all A € M« (R) and all a, 8 € R.

2. The system has infinitely many solutions.
Definition 8. Let A € M,,,x,(R) and B € M, ,(R).

3. The system has no solution. We define the product AB as
Definition 4. Two systems of equations are equivalent if n
they have the same solutions. AB = (¢;;) where ¢;; = Z a;ikbr;
k=1
Matrices

Proposition 9 (Properties of matrix product). The

Definition 5 (Matrix). A matriz A with coefficients in following properties are satisfied:
R is a table of real numbers arranged in rows and columns.

That is, A is of the form: 1. Associativity:

(AB)C = A(BC)

a11 A1n
A=(ay)=1| + . for all A € Myxn(R), B € My, (R) and C €
Am1 o Omn MPXQ(R)'
for some values ai; € R,i=1,....mand j = 1,...,n. 2. Multiplicative identity element: 3I,, € Mn(R) such
The set of m x n matrices with real coefficients is denoted that

by Mnsn(R)".
AL = A VA € My n(R) and

Definition 6. Let A7B € Man(R) and « € R. If ITLA:A VA EMnxp(R)
A = (a;j) and B = (b;;), we define the sum A + B as:

A + B = (a;; + bij) 3. Distributivity:
We define the product oA as: (A+B)C=AC+BC
aA = (aa;j) for all A,B € M;,xn(R) and C € M,,»,(R).

n the case when m = n we will denote My, xn(R) by My, (R).



Definition 10. We say that a matrix A € M, (R) is in-
vertible if there is a matrix B € M,,(R) satisfying

AB=BA =1,

The set of invertible matrices of size n over R is denoted
by GL, (R)?.

Lemma 11. The product of invertible matrices is invert-
ible.

Definition 12. We say that a matrix A € M,(R) is
idempotent if A2 = A.

Definition 13. We say that a matrix A € M, (R) is
nilpotent if A¥ = 0, for some k € N. The value k is
usually called index of A.

Lemma 14. Let A € GL,(R) such that A is idempotent.
Then, A =1,.

Lemma 15. Let A € GL,(R) such that A is nilpotent of
index k € N. Then, A =0,,.

Echelon form of a matrix

Definition 16. Let A € M., x,(R) be a matrix. The i-th
pivot of A is the first nonzero element in the i-th row of

A.

Definition 17 (Row echelon form). A matrix A €
Mpxn(R) is in row echelon form if:

e All rows consisting of only zeros are at the bottom.

e The pivot of a nonzero row is always strictly to the
right of the pivot of the row above it.

Definition 18 (Reduced row echelon form). A ma-
trix A € Myxn(R) is in reduced row echelon form if:

e It is in row echelon form.
e Pivots are equal to 1.

e Each column containing a pivot has zeros in all its
other entries.

Theorem 19 (Gauf3’ theorem). Let A € M, (R) be
a matrix. Then, there is a matrix P € GL,,(R) such that
PA = A’ is in reduced row echelon form. Moreover, A’
is uniquely determined by A.

Theorem 20 (PAQ reduction theorem). Let A €
Mpxn(R) be a matrix. Then, there exist matrices P €
GL,,(R) and Q € GL,,(R) such that:
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The number r is uniquely determined by A.

Rank of a matrix

Definition 21 (Rank). Let A € M,,x,(R) be a matrix

and suppose
I.|0
PAQ= ( 0 0)

for some matrices P € M,,(R) and Q € M,(R). We
define the rank of A, denoted by rank A, as the number
ones in the matrix PAQ, that is, rank A :=r.

Proposition 22. Let A;A’ € M«.(R), B,B' €
Mixn(R) and P € GL,,(R) be matrices. Suppose we
have a system of linear equations Ax = B. f P(A | B) =
(A" | B')?, then the systems Ax = B and A’x = B’ are
equivalent.

Corollary 23. The reduced row echelon form of an in-
vertible matrix is the identity matrix.

Definition 24 (Transposition). Let A € M,,x,(R) be
a matrix. If A = (a;;), we define the transpose AT of A
as the matrix A" = (b;;), where b;; = a;; fori=1,...,m
and j=1,...,n.

Proposition 25. Let A € My, »»(R) be a matrix. Then,
rank A = rank AT.

Theorem 26 (Rouché-Frobenius theorem). Let
Ax = B be a system of equations with n variables. The
system is:

o determined and consistent if and only if

rank A =rank(A | B) =n

e indeterminate with s free variables if and only if

rank A =rank(A | B) =n—s

o inconsistent if and only if

rank A # rank(A | B)

Determinant of a matrix

Definition 27 (Determinant). A determinant is a func-
tion det : M, (R) — R satisfying the following properties:

1. If A=(a; |- | a,), where a; are column vectors
in R* for ¢ = 1,...,n and a; = Au + pv for some
other column vectors u and v, then:

det A =det(a; |---|a; |- |a,) =
=det(ay |-+ aj_1 [Au+pv|aj |- |a,) =
=Adet(ag |-+ |aj_1 |ulajpr |- | ay)+
+pdet(ar |- |aj_1|v]aj]---|an)

2. The determinant changes its sign whenever two
columns are swapped.

3. detI,, =1 for all n € N.

Lemma 28. Whenever two columns of a matrix are iden-
tical, the determinant is 0.

20r more generally, the set of invertible matrices of size n over a field (see ??) K is denoted by GLy, (K).
3Here (A | B) denotes the augmented matrix obtained by appending the columns of B to the columns of A.



Proposition 29. Let A € M,,(R) be a matrix in its row
echelon form. If A = (a;;), then:

det A = ﬁ (077
i=1

Proposition 30. Let A € M,(R) be a matrix. The fol-
lowing are equivalent:

1. A is not invertible.
2. rank A < n.
3. det A =0.

Theorem 31. Let det : M, (R) = R be a determinant.
Then, for all matrices A, B € M, (R):

det(AB) = det A det B

Corollary 32. Let det,det’ : M, (R) — R be two deter-
minants. Then, for all matrix A € M, (R):

det A = det’ A
Proposition 33. Let A = (a;;) € M, (R). Then:

det A =) sgn(o) ]z[awm
i=1

oES,
Proposition 34. For all matrix A € M, (R):
det A = det AT
Proposition 35. Let A = (a;;) € M, (R). We denote by

A;; the square matrix obtained from A by removing the
i-th row and j-th column. Then, for every i € {1,...,n}:

det A = Z(*l)“rjaij det Aij
j=1

Definition 36. Let A = (a;;) € My,(R). We define the
cofactor matriz C of A as:
C = (b;;), where b;; = (—1)""7 det A;;"
We define the adjugate matriz adj A of A as:
adjA =CT
Theorem 37. Let A € M, (R). Then:
AadjA = (det A)I,

Moreover if det A # 0, then:

1

Al = adj A
det A *Y

4C is usually denoted as cof A.

5See 77.

Block matrices

Definition 38. Let A € M;,x»n(R) and 7, s € N such
that » < m and s < n. We define a block matriz as a
matrix of the form

A Ay
Arl Ars
where A;;, ¢ = 1,...,r and j = 1,...,s are submatrices

of A created from partitioning the A with s — 1 vertical
lines and r — 1 horizontal lines.

Proposition 39. Let A,B € M,,.,(R) be a block matrix
of the form:

X 0 X W
2 (y) 2 Y)
where X € M,,(R), Y € M,(R), Z € M,,xn(R) and
W € M, xn(R). Then,
det A = det(X) det(Y) = det B

2. | Vector spaces

Introduction and basic definitions

Definition 40. A vector space over a field® K is a set V
together with two operations

+: VxV — 1%
(Vi,va) — vy + vy

KXV — V
(A, va) —> A vy

that satisfy the following properties:
1. vi+ (va+vs3)=(vi+va)+vy Vv, va,vyeV.

vi+ve=va+vy Vv, vo V.

F0 €V suchthat v+ 0=v VYveV.

Vv € V there exists —v € V such that v+(—v) = 0.

A(p-v)=Qp)-v YWweVand VA pueK.

AR AN Sl S

1-v=v Vv eV, where 1 denotes the multiplica-
tive identity element in K.

7. )\'(V1+V2):)\'V1+>\'V2
VAe K.

Vvi,ve € V and

8 A+p) - v=XA-v4+p-v VYWweVandVA\peK.

In these conditions, we say that (V, +,-) is a vector space’.
The elements of V' are called vectors and the elements of
K, scalars.

Definition 41. Let V be a vector space over a field K
and U C V be a subset of V. Then, U is a vector space
over K if the following property is satisfied:

Aug +pug €U Vuj,ug €U and VA pe K

Definition 42. Let V be a vector space and U C V. U
is a wvector subspace of V if it’s itself a vector space with
the operations defined in V.

6For simplicity we will denote the vector space only by V and if the context is clear we won’t refer to its associated field. Moreover
sometimes we will also omit the product - between a scalar and a vector.



Definition 43. Let V be a vector space over a field K.
A linear combination of the vectors vq,...,v,, € V is a
vector of the form

a1vy + -+ anvn
where a; € K, i=1,...,n.

Definition 44. Let V be a vector space over a field K
and U C V. The set

(U)y={au1+---+apyu,:a0;, € K,u; €U,i=1,...,n}
is called linear span by U.

Lemma 45. Let V be a vector space and U C V. Then,
(U) is a vector subspace of V. Moreover, (U) is the small-
est subspace containing U.

Definition 46. Let V be a vector space and U C V. We
say that U is a generating set of V if (U) = V.

Linear independence

Definition 47. Let V be a vector space over a field K.
The vectors vy, ...,v, € V are linearly independent if the
unique solution of the equation

avi+ -+ apvy, =0

fora; e K,i=1,...,n,is a1 = --- = a, = 0. Otherwise
we say that the vectors vy,...,v, are linearly dependent.

Lemma 48. Let V be a vector space. The vectors
V1,...,Vy are linearly dependent if and only if one of them
is a linear combination of the others.

Definition 49. Let V be a vector space. A basis of V is
an ordered set B = (vy,...,vy,) of vectors of V such that:

1. vy, vy =V,

2. vi,...,Vv, are linearly independent.

Lemma 50 (Steinitz exchange lemma). Let V be a
vector space, B be bases of V be and vy,...,viy € V be
linearly independent vectors of V. Then, we can exchange
k appropriate vectors of B by vi,...,vy to define a new
basis.

Corollary 51. Let V be a vector space that has a finite
basis B = (v1,...,Vvy,). Then, all basis of V' be are finite
and they have the same number (n) of vectors.

Lemma 52. Let V be a vector space. Suppose we have a
generating set S = {vy,...,v,} of V. Then, V be admits
a basis formed with a subset of S.

Definition 53. Let V be a finite vector space over a field
K. The dimension of V, denoted by dimg V (or dim V' if
K can be inferred from context), is the number of vectors
in any basis of V.

Definition 54. Let V be a finite vector space over a field

K, B =(v1,...,vy,) be a basis of V be and v € V. Sup-
pose

V=a1Vy+---+apvy
for some a; € K,i=1,...,n. We call (a1,...,a,) € K"

coordinates of v on the basis B and we denote it by [v]g.

Proposition 55. Let V be a vector space. If dim V' < oo,
the maximum number of linearly independent vectors is
equal to dim V. If dimV = oo, there is no such maxi-
mum.

Proposition 56. Let V be a vector space of dimension
n. Then, n is the minimum size of a generating set of V.

Proposition 57. Let V be a finite vector space and U be
a vector subspace of V. Then, dimU < dim V' and

dimU =dimV < U=V

Sum of subspaces

Lemma 58. Let V be a vector space and U, W C V be
two vector subspaces of V. Then, the intersection U N W
is a vector subspace of V.

Definition 59. Let V be a vector space and U/W C V
be two vector subspaces of V. The sum of U and W is:

U+W=UUW)={u+w:uelUweW}

Proposition 60 (Gralmann formula). Let V be a fi-
nite vector space and U,W C V be two vector subspace
of V. Then:

dim(U + W) + dim(U N W) = dim U + dim W

Lemma 61. Let V be a vector space and U, W C V be
two vector subspaces of V. Then, U NW = {0} if and
only if all vectors v € U + W can be written uniquely as
v=u+w, withueU and weW.

Definition 62 (Direct sum). Let V be a vector space
and U, W C V be two vector subspaces of V. Then, the
sum U + W is direct if U N W = {0}. In this case we de-
note the sum as U ®W. More generally, if Uy,..., U, CV
are vector subspaces of V, the sum U = Uy + --- + U,
is direct if all vector u € U can be written uniquely as
u=u; +---+u,, where u; € U; for i = 1,...,n. In this
case we denote the sum by Uy & --- ® U,.

Rank of a matrix

Definition 63. Let A € My xm(R). The row rank of A
is the dimension of the linear span of the rows of A in R™.
Analogously, the column rank of A is the dimension of the
linear span of the columns of A in R™.

Proposition 64. Let A € M, x,,(R). Then, the row
rank of A is equal to the column rank of A. Therefore,
we refer to it simply as rank of A or rank A.

Definition 65. Let A € M, (R). A minor of order k of
A is a submatrix A’ € My (R) obtained from A selecting
k rows and k columns of A.

Proposition 66. Let A € M,,»,,(R). Then:

rank A = max{k : A has an invertible minor of order k}



Quotient vector space

Definition 67. Let V be a vector space and U C V be a
vector subspace. We say that W C V is a complementary
subspace of U if U W = V.

Definition 68. Let V be a finite vector space of dimen-
sion n and U C V be a vector subspace of dimension m.
Then, there exists a complementary subspace of U and its
dimension is n — m.

Definition 69. Let V be a vector space and U C V be
a vector subspace. We say the vectors vi,ve € V are
equivalent modulo U, vi ~y vo, if vi — vy € U.

Lemma 70. Let V be a vector space and U C V be a
vector subspace. Then, ~¢; is an equivalence relation and,
moreover, if v € V' the equivalence class [v] of v is:

[v]=v+U:={v+u:uelU}

Definition 71. Let V be a vector space over a field K
and U C V be a vector subspace. We define the quotient
space V/U under ~y; as the set of equivalence classes with
the operations defined as:

Vil + [ve] = [vi +v2]  Alvi] = [Avq]

for all vi,vo € V and all A € K.

Proposition 72. Let V be a vector space over a field K
and U C V be a vector subspace. The set V/U together
with the two operations defined above is a vector space
over K.

Proposition 73. Let V be a finite vector space of dimen-
sion n and U C V be a vector subspace. Then:

dim (V/U) — dimV — dim U

3. | Linear maps

Definition 74. Let U, V be two vector spaces over a field
K. A function f : U — V is a linear map if Va,uy € U
and VA € K the following two conditions are satisfied:

1. f(U1 + LIQ) = f(ul) + f(UQ).
2. f()\lll) = )\f(ul)

Proposition 75. Let U, V be two vector spaces over a
field K. Then, if f: U — V is a linear map, Yuy,uy € U
and VA, p € K we have:

1. £(0) = 0.
2. f(=wm) = —f(w).
3. f(Aur + pug) = Af(w) + pf(uz).

Proposition 76. Let U, V, W be three vector spaces.
If f:U — Vand g:V — W are linear maps, then
go f:U — W is a linear map.

Proposition 77. Let U, V be two vector spaces. If
f:U — V is a bijective linear map, then f~!: U — V is
a linear map.

Proposition 78. Let U, V be two vector spaces, f : U —
V be a linear map and W C U and Z C V be vector sub-
spaces. Then:

1. f(W)={f(w):we W} CV is a vector subspace.
2. f7Y2) = {ueU: f(u € Z} C U is a vector
subspace.
In particular, f(V) is denoted by im f and f~*({0}) is
denoted by ker f and these subspaces are called image of
f and kernel of f, respectively. More precisely, their defi-
nitions are:
imf={f(u):uelU} ker f ={ueU: f(u) =0}

Proposition 79. Let U, V be two vector spaces and
f:U — V be a linear map. Then:

1. f is injective <= ker f = {0}

2. f is surjective <= im f=1V.
Corollary 80. Let U, V be two finite vector spaces and
f:U — V be a linear map. Then:

1. f is injective <= dim(ker f) =0

2. f is surjective <= dim(im f) = dim V.
Definition 81.

e A monomorphism is an injective linear map.
e An epimorphism is a surjective linear map.
e An isomorphism is a bijective linear map.

e An endomorphism is a linear map from a vector
space to itself.

e An automorphism is a bijective endomorphism.

Definition 82. We say that two vector spaces U and V'
are isomorphic, V. = U, if there exists an isomorphism
between them.

Proposition 83. Let U, V be two vector spaces and
f:U — V be a monomorphism. If uy,...,u, € U are lin-
early independent vectors, then f(ui),..., f(u,) are lin-
early independent.

Lemma 84. Let U, V be two vector spaces and f: U —
V be a linear map. If uy,...,u, € U, then:

(flar), . flun)) = f((ur, o un))

Corollary 85. Let U, V be two vector spaces and f :
U — V be an epimorphism. If (uy,...,u,) = U, then

Corollary 86. Let U, V be two vector spaces and f :
U — V be an isomorphism. If (uy,...,u,) is a basis of
U, then (f(uy),..., f(u,)) is a basis of V.

Theorem 87 (Coordination theorem). Let V be a
finite vector space over a field K of dimension n and
B = (vi,...,vy) be a basis of V. Then, the function
f: K™ — V defined by

f(al,...

is an isomorphism.

7a/n) =a1vi+--ayVvp

Corollary 88. Two finite vector spaces are isomorphic if
and only if they have the same dimension.



Isomorphism theorems

Theorem 89 (First isomorphism theorem). Let U,
V be two vector spaces and f : U — V be a linear map.
Then, there exists an isomorphism f : U/ker f — im f
satisfying f = f o m, where 7 : U — U/ ker f, w(u) = [u].

U———imf

i f

U/ ker f

Figure 1

Corollary 90. Let U, V be two vector spaces such that
dimU =n and let f: U — V be a linear map. Then:

dim(ker f) + dim(im f) = n

Corollary 91. Let U, V be two finite vector spaces of
dimensions n and f : U — V be a linear map. Then:

f is injective <= f is surjective <= f is bijective

Theorem 92 (Second isomorphism theorem). Let V'
be a vector space and U, W C V be two vector subspaces.
Then, there exists an isomorphism

%@ﬂng+y&/

Theorem 93 (Third isomorphism theorem). Let U,
V', W be three vector spaces such that W C U C V. Then,
there exists an isomorphism

(WW% ~V

u/w)=— JU
Theorem 94. Let U, V be two vector spaces over a field
K, B=(uy,...,u,) be a basis of U and vy,...,v, € V

be any vectors of V. Then, there exists a unique linear
map f: U — V such that f(w;)) =v,;,i=1,...,n.

Matrix of a linear map

Proposition 95. Let U, V be two finite vector spaces
over a field K with dimU = n and dimV = m, B and B’
be bases of U be and V respectively and f: U — V be a
linear map. Then, there exists a matrix A € M, xn(K)
such that Yu € U:

[f ()]s = Aluls

The matrix A is called matriz of f in the basis B and B’
and it is denoted by [f]z.5 "

Corollary 96. Let V be a finite vector space, B and B’
be two basis of V respectively and id : V' — V be the
identity linear map. Then, Vu € V we have:

[uls = [id]s,5 [u]s

The matrix [id]g g is called change-of-basis matriz.

"If U =V and B = B, we denote [f]s, 5 simply by [f]s.
8If U = V, we denote L£(V, V) simply as £L(V).

Proposition 97. Let U, V, W be three vector spaces, B,
B, B” be bases of U, V and W respectively and f : U — V
and g : V — W be linear maps. Then, go f : U — W has
the following matrix in the basis B and B”:

90 fls.s" = 98,587 [flB.5

Corollary 98. Let V be a finite vector space, B and B’
be two basis of V. Then, the matrix [id]g g is invertible
and

(id]g,s) " = [id]s 5

Corollary 99. Let U, V be two finite vector spaces, B
and B’ be bases of U and V respectively and f : U — V
be a linear map. Then:

1. f is injective <= rank|f|gp = dimU.
2. f is surjective <= rank[f]zp = dimV.

Corollary 100. Let U, V be two finite vector spaces. A
linear map f : U — V is an isomorphism if and only if
there exist basis B and B’ of U and V respectively such
that [f]sp is invertible.

Proposition 101 (Change of basis formula). Let U,
V' be two finite vector spaces, By and By be bases of U,
B and B) be bases of V and f : U — V be a linear map.
Then:

[f18,.8, = [id]5; 5, [f]B,.5;[id] 5,5,

Lemma 102. Let U, V be two finite vector spaces over
a field K with dimU = n and dimV = m and B and B’
be bases of U be and V respectively. Then, any matrix
A € Myxn(K) determines a linear map f : U — V with

[flss = A.

Theorem 103. Let U, V be two finite vector spaces and
f:U — V be a linear map. Then, there exist basis B of
U and B’ of V such that:

I.|0

0|0

[fls5 = (

where r = dim (im f).

Dual space

Lemma 104. Let U, V be two finite vector spaces over
a field K. Then, the set

L(U,V):={f: fis a linear map from U to V}*

is a vector space over K with the operations defined as:

L (f+9)(u) = fu) + f(u) Vfg € LU,V) and
YueU.

2. (fAN)() = Af(n) Vf,g € LU, V), Yu € U and
VA e K.



Proposition 105. Let U, V be two finite vector spaces
over a field K with dimU = n and dim V = m. Then, for
all basis B of U be and B’ of V, the function

LU, V) — Mupsn(K)
f — [flssm

is an isomorphism.

Corollary 106. Let U, V be two finite vector spaces with
dimU = n, dim V = m. Then, dim L(U,V) = nm.

Definition 107. Let V be a vector space over a field K.
We define the dual space V* of V as:

V' i=L(V,K)

Proposition 108. Let V be a finite vector space over a
field K with dimV = n and B be a basis of V. Then, the
function

VvV — M1><n(K)

w — (w1

is an isomorphism. Therefore, dim V* = dim V.

Definition 109. We define the Kronecker delta d;; as the
function:
0
0; =
{0

Definition 110. Let V be a finite vector space and
B = (vi,...,v,) be a basis of V. We define the dual
basis B* of B as the basis of V* formed by (n1,...,7)
where

ifij
ifi=j

ni(vj) = 0i

Lemma 111. Let V be a vector space over a field K, B
be a basis of V and (v},...,v}) be the dual basis of B.
Then, Vv € V:

[Vls = (vi(v),...,vy(v)) € K"
Lemma 112. Let V be a vector space over a field K,
B=(vi,...,vy) be a basis of V and B* be the dual basis
of B. Then, YVw € V*:

[Wlgs = (W(vy),...,w(vy,)) € K"
Definition 113 (Dual map). Let U, V be two vector
spaces over a field K and f € £L(U,V). The function f*
defined by

U — v
w —wof

is a linear map and it’s called dual map of f.

Theorem 114. Let U, V be two finite vector spaces, B
and B’ be bases of U and V respectively and f € L(U, V).
Then:

g5 = ([flB.5r)"

Double dual space

Definition 115 (Double dual space). Let V be a vec-
tor space over a field K. The double dual space V** of V'
is defined as:

V= (V9" = L(V* K)
Proposition 116. Let V' be a vector space over a field K
and v € V. We define the function:

oy V¥ — K
w — w(v)

which is linear. This map induces an injective linear map
® defined by:

Moreover, if dim V' < oo, ® is a natural isomorphism”.

Annihilator space

Definition 117. Let V be a vector space and U C V* be
a vector subspace of V*. We define the annihilator of U
as:

U'={veV:wv)=0VweU}

Lemma 118. Let V be a vector space and U C V* be
a vector subspace of V*. If U = (w1, ...,w,), then U is
the set of solutions of the system:

wi(v) =0

wrp(v) =0

Lemma 119. Let V be a vector space and U C V* be a
vector subspace of V*. Then, U is a vector subspace of
V.

Theorem 120. Let V be a finite vector space and U C V*
be a vector subspace of V*. Then:

dimU° + dimU = dim V

Definition 121. Let V be a vector space and U C V be
a vector subspace of V. We define the annihilator of U as:

U ={weV*:wv)=0VeU}

Lemma 122. Let V be a vector space and U C V be a
vector subspace of V. If U = (vy,...,v,), then:

U ={weV*:iwvi)) = =wlv,) =0}

Proposition 123. Let V be a vector space.
whether U CV or U C V*, we have:

Then,

v’ =vu

4. | Classification of endomorphisms

Definition 124. Let V be a vector space over a field
K and A € K. A homothety of ratio A is a linear map
f:V — Vsuch that f(v) =AvVveV.

9This means that the definition of ® does not depend on a choice of basis.



Similarity

Definition 125. Let V be a vector space and f,g € L(V).
We say that f and g are similar if there are basis B and
B’ of V such that [f]g = [¢]s-

Lemma 126. Let V be a vector space, B and B’ basis of
V and f S E(V) IfM = [f]B, N = [f]B/ and P = [id]&g/,
then:

M =P 'NP

Definition 127. Let K be a field. Two matrices M,N €
M, (K) are similar if there exists a matrix P € GL,,(K)
such that M = P~'NP.

Proposition 128. Let V be a finite vector space and
frgeL(V).

1. f and g are similar if and only if for all basis B of V'
the matrices [f]s and [g]p are similar.

2. f and ¢ are similar if and only if there is an auto-
morphism h € £(V) such that g = h=Lfh.

Diagonalization

Definition 129. Let K be a field. A matrix A = (a;5) €
M, (K) is diagonal if a;; = 0 whenever ¢ # j. That is, A
is of the form:

all O O
A — 0 a2
0 N 0 Ann

s Q)

Definition 130. Let K be a field. A matrix A € M,,(K)
is diagonalizable if it is similar to diagonal matrix.

In this case, we denote A := diag(ai1, - -

Definition 131. An endomorphism is diagonalizable if its
associated matrix in some basis is diagonalizable.

Definition 132. Let V be a vector space over a field K
and f € £L(V). We say that a nonzero vector v € V' is an
eigenvector of f with eigenvalue A € K if f(v) = Av.

Lemma 133. Let V be a vector space over a field K,
f€L(V)and X € K. The eigenvectors of f of eigenvalue
A are the nonzero vectors of the subspace ker(f — Aid),
called eigenspace corresponding to A.

Lemma 134. Let V be a vector space over a field K
with dimV = n, B be a basis of V and f € £(V). Then,
det([f — zid]p) is a polynomial on the variable z of degree
n and with coefficients in K. Moreover, the dominant
coefficient is (—1)™ and the constant term is det([f]g).

Corollary 135. Let V be a vector space of dimension n
and f € L(V). Then, f has at most n distinct eigenvalues.

Corollary 136. Let V be a vector space over C and
f € L(V). Then, f has at least one eigenvalue.

Definition 137. Let K be a field and A € M, (K). The
polynomial pa (\) = det(A — AL,,) is called characteristic
polynomial of A.

Proposition 138. Let V be a vector space and f € L(V).
For all basis B of V, the characteristic polynomial of [f]g
is the same. Therefore, we denote it py(\) and we refer to
it as characteristic polynomial of f.

Proposition 139. Let V be a vector space and f € L(V).
Then, eigenvectors of f of distinct eigenvalues are linearly
independent.

Corollary 140. Let V' be a vector space and f € L(V).
Suppose A1,..., A, are the distinct eigenvalues of f and
Vi,s-.-, Va, are their corresponded eigenspaces. Then,

Va, 4+ W,
is a direct sum.

Proposition 141. Let V be a finite vector space of di-
mension n, f € L(V) and X be a root of multiplicity m of
the characteristic polynomial py(x). Then:

1 < dim(ker(f — Aid)) <m

The number m is called algebraic multiplicity of A, whereas
the value dim(ker(f — Aid)) is called geometric multiplicity
of \.

Theorem 142 (Diagonalization theorem). Let V be
a finite vector space and f € L(V). f is diagonalizable if
and only if:

1. pp(z) = (=1)"(x—A1)™ - - (& — )™ with distinct
AL, .., A € K.

2. dim(ker(f — Nid)) =my, i =1,... k.

Corollary 143. Let V be a finite vector space with
dimV =n and f € L(V). If f has n distinct eigenvalues,
f is diagonalizable.

Proposition 144. Let V be a finite vector space and
fyg € L(V) such that f and g are similar. Then:

f is diagonalizable <= g¢ is diagonalizable

Lemma 145. Let K be a field and A;B € M, (K) be
similar matrices. Then, Vk € N, A* and B* are similar.

Lemma 146. Let V be a finite vector space over a field
K with dimV = n and f € £(V). Then, the function
¢5 : K[z] = L(V) defined by

pplag + a1z + -+ apa™) =ao tarf +- - +anf"

is linear and satisfies:

o5 ((pg)(x)) = ¢r(p(x))9s(a(x))

Definition 147. Let V be a finite vector space with
dimV = n and f € L(V). The minimal polynomial
my(z) € K[z] of f is the unique a polynomial satisfying:

« my(f)=0.

e my is monic.

Vp(), q(x) € Kz]

e my is of minimum degree.

Proposition 148. Let V be a vector space over a field K
and f € L(V). If p(x) € K[x] is such that p(f) = 0, then
my(x) | p(z).



Cayley-Hamilton theorem
Theorem 149 (Cayley-Hamilton theorem). Let K
be a field, n > 1 and A € M,,(K). Then:

ma(z) | pa(z) | ma(z)"

Therefore pa (A) = 0 and ma (z) and pa () have the same
irreducible factors.

Corollary 150. Let K be a field and A € GL,(
matrix with pa(z) =ag + a1z +---+ (-1)"x

K) be a
™. Then:

1
A—l - _ = (An—l +an_1An—2 +

-+ a2A + ayl,,)
ao

Lemma 151. Let V be a finite vector space over a field
K, Bbe abasisof V and f € L(V). Then VA, u € K and
Vr,s € N:

L[5 = ([f]s)"
2. [Mfls = Alfls-
3. MM+ uftls =M+ [1f]s.

Lemma 152. Let V be a finite vector space over a field
K, f € L(V) and v be an eigenvector of f of eigenvalue
A. Then, Vp(x) € K[x] we have:

p(f)(v) =p(A)v

Theorem 153 (Cayley-Hamilton theorem). Let V be
a finite vector space over a field K such that dimV =n
and f € L(V). Then:

my(x) [ ps(e) | my(z)"

Definition 154. A field K satisfying that all polynomial
with coefficient in K of degree greater o equal to 1 factor-
izes as a product of linear factors is called an algebraically

closed field.

Definition 155. Let V be a vector space and f € L(V).
We say that U C V is an invariant subspace of V under f

iffU)cU
Lemma 156. Let V be a vector space and f € L(V).

1. If U C V is an invariant subspace of V under f,
then:

prly (@) [ py(x)"”

2. If U; and Uy are invariant subspaces of V' under f
such that V = U; @ Us, then:

o pr(x) =Py, () Pf|y, (@)
o my(x) =lem(my,, (z),myg,, (2)).

Lemma 157. Let V' be a vector space, f € L£(V) and
a(x),b(x) € Klx]. Suppose m(z) = lem(a(x),b(x)) and
d(xz) = ged(a(z), b(x)). Then:

(
1. ker(a(/)) + ker(b(f)) = ker(m(/)).
2. ker(a(f)) Nker(b(f)) = ker(d(f)).

0Here f|y is the function f restricted to the subspace U.

In particular, if a(x) and b(z) are coprime and a(f)b(f) =
0, then:

V = ker(a(z)) @ ker(b(z))
Theorem 158. Let V be a finite vector space such that
dimV =nand f € L(V). If pp(z) = q1(2)"" - g (x)""
and mys(z) = q1(z)™ - ¢, ()™ with ¢;(z) distinct irre-
ducible factors, then:

V =ker(q(f)™) @ - ® ker(q,(f)™)
Moreover, dim (ker(q;(f)™*)) = n; deg(q:(z)).

Jordan form

Definition 159. Let K be a field and A € M, (K). A
Jordan block of A is a square submatrix composed by a
value A\ € K on the principal diagonal, ones on the diago-
nal just below the principal diagonal and zeros elsewhere.
That is, a Jordan block is a matrix of the form:

A0 0 -0
1 A 0

0 1 X .0
: . - 0
o --- 0 1 A

A Jordan matriz is a block diagonal matrix whose blocks
are Jordan blocks.

Proposition 160. Let V be a finite vector space over
a field K with dimV = n and f € L(V). If ps(z) =

+(x—A)™ -+ (x — \g)™, there exists a basis B of V' such
that
J o -0
0 J :
fs=] 0
: . .0
o --- 0 J,
where Jq,...,J, are Jordan blocks associated with eigen-
values A1, ..., A\ satisfying:
1. Fori=1,...,k, the sum of the sizes of Jordan blocks

associated with the eigenvalue \; is n;.

2. The sizes of Jordan blocks are determined by
dim(ker((f — A\;id)")), r=1,...,n; — L.

Proposition 161. Let V be a finite vector space over
a field K with dimV = n and A € M,(K). If
pa(x) = £(z — A)™ -+ (& — A\p)™, there exist a matrix
P € GL,(K) such that:

J 0o - 0

J—plap= |9 I

: . .0
o -~ 0 J,
where Jq,...,J, are Jordan blocks associated with eigen-
values A1, ..., A\g satisfying Items 160-1 and 160-2 of The-

orem 160. In that case, we say that J is the Jordan form
of A.



Theorem 162. Let V be a vector space and f,g € L(V)
be such that py(x) = (x—A1)™ - - (x— ). If g satisfies:

L ps(x) = py(x)
2. my(x) = my(x)
3. dim(ker((f — Aid)")) = dim(ker((g — Aid)")) VA € K

Vr>1

then f is similar to g.

5. | Symmetric bilinear forms

Basic definitions

Definition 163. Let U, V., W be three vector spaces over
a field K. We say that a function ¢ : U x V. — W is bi-
linear if Yui,ug,u € U, Vvi,vy,v € V and VA € K we
have:

L p(ur +uz,v) = p(ug, v) + p(uz, v).
2. p(Au,v) = Ap(u,v).
3. p(u,vi+va) = p(u,v1) + ¢(u, va).
4. p(u, Av) = Ap(u, v).

Definition 164. Let V be a vector space over a field
K. A bilinear form from V onto K is a bilinear map
p:VxV =K.

Definition 165. Let V be a vector space over a field K.
A bilinear form ¢ : V x V — K is symmetric if

o(v1,v2) = o(ve,vi) Vvi,vo eV

Matrix associated with a bilinear form

Definition 166. Let V be a finite vector space over a field
K,B=(vy,...,vy) beabasisof Vand ¢ : VxV = K
be a symmetric bilinear form. We define the matriz of the
bilinear form ¢ with respect to the basis B as the matrix
[¢]ls € My (K) defined as:

©(vi,v1) @(V1,V2) W(Vlavn)

o(va,v1)  @(va,va) ©(va,Vn)
[l = : i )

©(Vn,vi)  @(vp, V) ©(Vin, Vi)

Lemma 167. Let V be a finite vector space over a field
K, B beabasisof Vand ¢ : V x V — K be a symmetric
bilinear form. Then:

e(vi,va) = ([vi]s) '[¢lslvals  W¥vi,va €V

Proposition 168. Let V be a finite vector space over a
field K, B be a basis of V and ¢ : V xV — K be a

symmetric bilinear form. Then:
@ is symmetric <= [p]g is symmetric

Proposition 169. Let V be a finite vector space over a
field K, B and B’ be bases of Vand ¢ : V xV — K be a
symmetric bilinear form. Then:

l¥ls = (lidls 5)" [¢]slid]s 5
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Orthogonal basis

Definition 170. Let V be a finite vector space over a
field K, ¢ : V XV — K be a symmetric bilinear form and
vy, v € V.

o We say that vy and vq are orthogonal if ¢(v1,va) =
0.

o If vy # 0, we say that vy is isotropicif ¢(vq,v1) = 0.

Definition 171. Let V be a finite vector space over a field
K,B=(vy,...,vy,) beabasisof Vand ¢ : VxV — K

be a symmetric bilinear form.

e We say that B is orthogonal with respect to ¢ if
e(vi,vj) =0Vi#j.
e We say that B is orthonormal with respect to ¢ if
p(vi, vj) = dij.
Theorem 172. Let V be a finite vector space over a field
K, B be a basis of V and ¢ : V x V — K be a symmet-

ric bilinear form. Then, V has an orthogonal basis with
respect to ¢ and an orthonormal basis with respect to .

Corollary 173. Let K be a field with char K # 2 and
A € M, (K) be a symmetric matrix. Then, there exists a
matrix P € GL, (K) such that P* AP is diagonal.

Orthogonal decompositions

Definition 174. Let V be a finite vector space over a field
K, U CV be a vector subspace of V and ¢ : V xV — K
be a symmetric bilinear form. We define the orthogonal
complement of U as:

Ut ={veV:p(v,u)=0vuecU}

Definition 175. Let V be a finite vector space over a
field K and ¢ : V x V — K be a symmetric bilinear form.
We define the radical of ¢ as:

radp = V+
We say that ¢ is nonsingular if rad ¢ = {0}.

Definition 176. Let V be a finite vector space over a
field K, ¢ : V xV — K be a nonsingular symmetric
bilinear form and vo € V. We define ¢, : V — K,
©Vvo (V) = ¢(vg, V). Then, the function

V — vV~
VO'—>()0V0

is an isomorphism.

Definition 177. Let V be a finite vector space over a field
K, U CV be a vector subspace of Vand o : V xV — K

be a nonsingular symmetric bilinear form. Then:
1. dimV = dimU + dimU~.
2. (UHY' =U.

3. If ¢|p is nonsingular, then V =U @ U+.



Definition 178. Let V be a finite vector space over
a field K, U;,U; C V be vector subspaces of V and
p: V xV — K be a symmetric bilinear form. We say
that the sum U; + Us is orthogonal if it is direct and
p(ug,uz) = 0 Vuy € Uy and uy € Uy. In this case, we
denote Uy + Us by Uy L Us.

Proposition 179. Let V be a finite vector space over a
field K, Uy,Us C V be vector subspaces of V' such that
V=U; LU and ¢ : V XV — K be a symmetric bilin-
ear form. Then, Vv € V there exist unique u; € U; and
us € Us such that v = u; + us.

Definition 180. Let V be a finite vector space over a
field K, Uy,Us C V be vector subspaces of V' such that
V=U; LUsand ¢ : V xV — K be a symmetric bilinear
form. The function

m:U; LUy — U;
u; +us — u;

for i = 1,2 is called orthogonal projection of V onto U;
according to the decomposition V = U; L Us.

Proposition 181 (Gram-Schmidt process). Let V be
a finite vector space over a field K, B = (vy,...,v,) be a
basis of V and ¢ : V x V' — K be a symmetric bilinear
form. Yu,v € V, we define

pluy)

proju(v) = Zs

We will create an orthogonal basis (uy,...,u,) of V from

B. We define u;, i =1,...,n, to be:

u; = Vp
V2 — projul (V2)

usz = Vv3 — projul (V3) - projug (V3)

ug

n—1

u, =v, — Z Projy, (V)

i=1

To obtain an orthogonal basis (ey, ...
define e;, i =1,...,n, to be:

,ep) of V from B,

u;

e = ——
W(ui’ui)

Sylvester’s law of inertia

Definition 182. An orthogonal geometry over a field K
is a pair (V, ), where V is a vector space over K and ¢
is a symmetric bilinear form over V.

Definition 183. Let (V1, 1), (Va, ¢2) be two orthogonal
geometries over a field K. An isometry from (V1,p1) to
(Va, ¢2) is an isomorphism f : V3 — V5 such that

@2<f(u)’ f(V)) = L)01(1*17")

We say that (Vi,p1) and (Va, @2) are isometric if there
exists an isometry between them.

Vu,veV;

Definition 184. Let V be a vector space over a field K
and 1, w2 be symmetric bilinear forms. We say that ¢
and @9 are equivalent if (V, 1) and (V| ¢2) are isometric.

Definition 185. Let A,B € M,,(R). We say that A and
B are congruent if there exists a matrix P € GL,(R) such
that

A =P'BP

Proposition 186. Let V be a finite vector space over a
field K, By be a basis of V' and ¢1, @2 be symmetric bilin-
ear forms. Then the following statements are equivalent:

1. The orthogonal geometries (V1) and (V,p2) are
isometric.

2. There exists a basis By of V such that [p1]s,
[902]82'

3. The matrices [p1]p, and [p2]p, are congruent.

Theorem 187 (Sylvester’s law of inertia). Let V be
a finite vector space over R and ¢ be a symmetric bilinear
form over V. Then, there exists a basis B of V' such that:

[o]s = diag (0, (r0),0,1, ), 1, -1, =), 71)

where in the diagonal there are rg zeros, r ones and r_
minus ones and the triplet (rg,r4,7_) doesn’t depend on
the basis B.

Definition 188. Let V be a finite vector space over R
and ¢ be a symmetric bilinear form over V. Let B be an
orthogonal basis of V' with respect to ¢. We define the
rank of ¢ as:

rank ¢ = rank([p]g)

We define the signature of ¢ as:

sigp = (ry,7-)

where 7 is el number of positive real numbers on the diag-
onal of [¢]p and r_ is el number of negative real numbers
on the diagonal of [¢]z.

Theorem 189. Let (Vi,¢1), (Va,¢2) be two orthogonal
geometries over R of finite dimension. Then, (V1, 1) and
(Va, @2) are isometric if and only if dim V7 = dim V5 and

sig g1 = sig pa.
Inner products

Definition 190. Let V be a finite vector space over R
and ¢ be a symmetric bilinear form over V. We say that
@ is positive-definite if

p(v,v) >0 VYveV\{0}
We say that ¢ is negative-definite if
o(v,v) <0 VYveV\{o}"

Definition 191. Let V be a vector space over R. An in-
ner product over V is a positive-definite symmetric bilinear
form over V.

M The terms positive-semidefinite and negative-semidefinite are used when Vv € V' \ {0}, ¢(v,v) > 0 or ¢(v, v) < 0, respectively.
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Definition 192. An FEuclidean vector space is a pair
(V, ), where V is a vector space over R and ¢ is an inner
product over V.

Theorem 193 (Cauchy-Schwarz inequality). Let
(V, ) be an Euclidean vector space. Then:

o(vi,v2)? < p(vi,v1)p(va, va) Yvi,ve €V

Definition 194. Let V be a vector space over R. A norm
on V is a function

|-]:V— R
v ||v]

such that:
L. |[v[[=0 < v=0VveV.
2. x| = |MIvll, Yv eV, A eR.
3. ||vi + vl < |[vill + [[val], Vvi,ve € V2.

Proposition 195. Let (V) be an Euclidean vector
space. Then, the function

[fe:V— R
v — (v, V)

is a norm called norm associated with the inner product .

Definition 196. Let (V,¢) be an Euclidean vector space
and vy, ve € V'\ {0}. We define the angle with respect to
¢ between vy and vo as the unique 6 € [0, 7] such that:

o(v1,va2)

cosf) = ——————
[vallellvalle

Spectral theorem

Definition 197. Let (V,¢) be a finite Euclidean vec-
tor space and f € L(V). Then, there exists a unique
'€ L(V) such that

e(f(v1),v2) = p(v1, f'(v2))
This f’ is called adjoint of f.

Vvi,vo €V

Definition 198. Let (V,¢) be a finite Euclidean vector
space and f € L(V). f is called auto-adjointif f = f'.

Lemma 199. Let (V, ¢) be a finite Euclidean vector space
of dimension n and f € £(V') be auto-adjoint. Then, there
exist Ai,..., A, € R such that

pi(@) = (z = A1) (= An)

Definition 200. Let K be a field and A € GL,(K) be a
matrix. We say that A is orthogonal if

PPt =PTP=1,

The set of orthogonal matrices of size n over K is denoted
by O, (K).

Theorem 201 (Spectral theorem). Let (V,¢) be a fi-
nite Euclidean vector space and f € L(V') be auto-adjoint.
Then, V has an orthonormal basis of eigenvectors of f. In
particular, f diagonalizes.

Corollary 202. Let K be a field. All symmetric matri-
ces A € M,,(K) are diagonalizable. More precisely, there
exists P € O, (K) such that PTAP is diagonal.

Definition 203. Let A = (a;j) € Myxn(C). We define
the complex conjugate A of A as A = (ag;).

Proposition 204. Let A, B € M5, (C), C € M,;,4,(C)
and A € C. Then:

1. A+B=A +B.

2. AC=A.C.
3AA=X-A.

Corollary 205. Let A € M, (R) be a symmetric matrix.
Then, there exist A,..., A, € R such that

pa(z) = (z =) (2= An)

Theorem 206 (Descartes’ rule of signs). Let P(z) =
ap + -+ apx™ € Rlz]:

1. The number of positive roots of P(z) is at most equal
to the number of sign variations in the sequence
lag; aa-1, ..., a1,a0].

If P(z) = an(x—a1)™ -+ (x — a,-)", then the num-
ber of positive roots of P(x) is equal to the number
of sign variations in the sequence (having in account
multiplicity).

12Note that Vv € V we have: 0 = ||v + (—v)|| < ||[v]| + || — v|| = 2||v]| = ||v|| >0.
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