Fundamentals of mathematics

1. | Introduction
Axiom 1 (Peano axioms).
1.1eN.
2. ¥n € N, exists a “successor” S(n) € N of n.
3. ¥neN, S(n) # 1.
4. VnymeN, n=m <= S(n)=5(m).
5. Induction aziom: If K C N is a set such that:
i) l1e K.
ii) Vk e K, S(k) € K.
Then, K = N.

Axiom 2 (Induction axiom). Peano’s 5th axiom can
be stated in the following way: Let ¢ be a predicate’ such
that:

1. ¢(1) is true.
2. ¥n € N, ¢(n) being true implies that ¢(S(n)) is true.
Then, ¢(n) is true for all n € N.

Proposition 3. All non-empty subsets of N have a first
element.

Proposition 4. If a set A satisfies the first four Peano’s
axioms and has the property that all non-empty subsets
of it have a first element, then A satisfies the induction
axiom.

2. | Set theory

Definitions and basic operations

Definition 5. A set is a collection of distinct elements.

Definition 6. Let A be a finite set. The cardinal of A,
|Al, is the number of elements in A.

Definition 7. Let A be a set. We say a set B is a subset
of A, denoted by B C A, if and only if all elements of B
are also elements of A

Axiom 8 (Axiom of extensionality). Let A, B be two
sets. We say that A and B are equal, A = B, if and only
if AC Band B C A.

Definition 9. Let A be set. The subset P(A), called
power set, is the set of all subsets of A.

Definition 10. We define the empty set @ as the unique
set having no elements.

Definition 11. Let A, B be two sets. The intersection of
A and B, AN B, is the set of all elements of both A and
B. That is,

ANB={z:z € Aand z € B}

Proposition 12. Let A, B, C be three sets. Then:
1. AnB=BnNA

ANn(BNC)=(AnB)NC
ANBCA
ANg =g
ACB < ANnB=B
IfCCAand CC B, then CC ANB.

Definition 13. Let A, B be two sets. The union of A
and B, AU B, is the set of all elements of either A or B.
That is,

AR T

AUB={xz:x€Aorzec B}
Proposition 14. Let A, B, C be three sets. Then:
1. AUB=BUA
AU(BUC)=(AUuB)UC
ACAUB
AUug=A4
ACB < AUB=8B
6. fACCand BCC, then AUBCC.
Proposition 15. Let A, B, C be three sets. Then:
1. AnN(BUC)=(ANB)U(ANC)
2. Au(BNC)=(AuB)N(AUCQC)

Definition 16. Let U be a set and A C U be a subset of
U. The complement of A in U is the set of elements not
in A. That is,

A T

A={xeU:zx ¢ A}

Proposition 17 (De Morgan’s laws). Let U be a set
and A, B be two subsets of U. Then:

1. (AUB)¢ = AN B¢
2. (AnB)¢=A°UDB®

Definition 18. Let U be a set and A, B be two subsets
of U. The set difference of A and B, A\ B, is the set of
elements in A but not in B. That is,

A\B={x€ A:zx ¢ B}
Proposition 19. Let A, B, C be three sets. Then:
1. AA\B=AnB*
2. C\(ANnB)=(C\A)U(C\B)

1A predicate is a formula that can be evaluated to true or false in function of the values of the variables that occur in it.



3. C\ (AUB) = (C\ A)N(C\ B)

Figure 1: Venn diagrams

Definition 20. Let A, B be two sets. The Cartesian

product, A x B, is the set
Ax B={(a,b):a€ Aand b e B}
Proposition 21. Let A, B, C be three sets. Then:
1. Ax@=0xA=0
2. Ax(BNnC)=(AxB)Nn(Ax ()
3. Ax (BUC)=(AxB)U((Ax ()

Functions between sets

Definition 22. Let A, B be two sets. A function from A
to B is a binary relation between A and B that associates
to each element of A exactly one element of B.

Definition 23. Let A, B, C be three sets and f: A — B,
g : B — C be two functions. The composition g o f is:

gof:A— B — C
a — f(a) — g(f(a))

Definition 24. Let A, B be two sets, f : A — B be a
function and U C A be a subset. The image of U is the
subset of B defined by f(U) ={f(u):ueU}. HU = A,
f(U) = f(A) =:im f is the image of f.

Definition 25. Let A, B be two sets, f : A — B be a
function and b € B. The preimage of b is the set of ele-
ments a € A such that f(a) = b. More generally, if V C B,
the preimage of V' is the subset of A defined by:

f'V)={a€A: fla)=veV}

Proposition 26. Let A, B be two sets, f : A — B be a
function, I be an index set and U; C A be subsets of A
Vi € I. Then,

L f (UieI Ui) = Uie] f(U:)

[\

- f (mieI Ui) < ﬂie] f(U)

3. J 7 Uier Ui) = User [T
4 7 (Mier Us) = Mier £7H(0H)
5. f(U°) C f(U)°

Definition 27. Let A, B be two sets and f : A — B be
a function. The following statements are equivalent:

1. Vb € B, f~1(b) has no more than one element.
2. Vaj,aq € A, if a1 # ag, then f(a1) # f(az).
3. Yay,as € A, if f(a1) = f(az2), then a1 = as.

If f satisfies one of these conditions, then it satisfies the
other two and we say that f is injective’.

Proposition 28. Let A, B, C be sets and f : A — B,
g : B — C be two functions.

1. If f and ¢ are injective, then g o f is injective.
2. If g o f is injective, then f is injective.

Definition 29. Let A, B be two sets and f : A — B be
a function. The following statements are equivalent:

1. The preimage of each element of B has at least one
element.

2. Vb € B, Ja € A such that f(a) =b.

3. imf=B5B.
If f satisfies one of these conditions, then it satisfies the
other two and we say that f is surjective’.

Proposition 30. Let A, B be two sets, f : A — B be a
function and U C A, V C B be subsets. Then:

1. f7Y(f(U)) 2 U and the equality holds if and only if
f is injective.

2. f(f~1(V)) C V and the equality holds if and only if
f is surjective.

Proposition 31. Let A, B be two sets and f : A — B,
g : B — C be two functions.

1. If f and ¢ are surjective, then g o f is surjective.
2. If g o f is surjective, then g is surjective.

Definition 32. Let A, B be two sets and f : A — B be
a function. We say that f is bijective if it is both injective
and surjective.

Proposition 33. Let A, B be two sets and f : A - B
be a bijective function. The f has an associated inverse
function f~': B — A* defined as:
f1:B— A
b — f7H(b)

In that case, f is said to be invertible.

Theorem 34. Let A, B be two sets and f: A — B be a
function. f is invertible if and only if f is bijective.

2Sometimes we will write f : A <+ B to denote an injective function between the sets A and B.
3Sometimes we will write f : A —+ B to denote a surjective function between the sets A and B.
4Note that, although the notation of inverse function and preimage are the same, the concepts are in general not the same. They only

coincide when the function is bijective.



3. | Logic and propositional calculus

Definition 35. Let P be a proposition. Then, - P ex-
presses the negation of P.

Definition 36. Let P, @) be propositions. Then, P A Q
expresses that P and Q are both true.

Definition 37. Let P, @ be propositions. Then, PV Q
expresses that either P or QQ are true.

Definition 38. Let P, @ be propositions. Then, P = @
expresses that @) is true whenever P is true. Note that
P=Q=QV~-P.

Definition 39. Let P, @ be propositions. Then, P < @
expresses that P and Q) have the same truth-value. Note
that P Q = (P = Q) AN (Q = P).

4. | Symmetric group

Definition 40. Let n € N. We denote by S,, the set of
all the bijections {1,2,...,n} to itself. An element of S,
is a permutation of {1,...,n}.

Proposition 41. The pair (S,, o), where

0:5, xS, — S,
(0,7) —>0oorT

is a group® called symmetric group.
Theorem 42. The cardinal of S,, is n!.

Definition 43. Let 0 € S,,. The set {m € N: ¢™ =id} is
non-empty. Hence, it contains a minimal element ord(o).
The integer ord(o) is called the order of o.

Definition 44. Let o € S,,. The support of o is:
supp(o) ={k €{1,...,n}:0(k) #k}
Lemma 45. Let 0 € S,,. Then:
1. p € supp(o) = o(p) € supp(o).
2. supp(o) = supp(c1).

Lemma 46. Let 0,7 € S,,. If supp(o) Nsupp(r) = @,
thencorT=rTo0.

Definition 47. Let 0 € S,, and k € {1,...,n}. The orbit
of k is the finite set {k,o(k),o?(k),...}.

Theorem 48 (Orbit structure). Let 0 € S, and
QO ={wi,...,w,} be the set of all the orbits of o. Then:

k
1. szle ={1,...,n}.
2. If wj,w; € Q and w; Nw; # 9, then w; = w;.
3. All orbits are non-empty.

Theorem 49 (Orbit linear structure). Let o € S,
w be one of its orbits and a € w. If k = |w|, then
w=1{a,0(a),...,0c¥1(a)} and o*(a) = a.

5See 77.
6See ?77.

Definition 50. If 0 € S,, has a unique orbit with & > 1
elements, then we say that o is a cycle of length k.

Definition 51. A transposition 7 € S,, is a cycle of length
2.

Theorem 52. Let o € S,,, then o can be written uniquely
(except for the order) as a product of cycles with pairwise
disjoint supports.

Corollary 53. Let ¢ € S,, and 0 = o1 ---0y be its de-
composition as product of disjoint cycles. Then, ord(c) =
lem(oy,...,00).

Corollary 54. Let o0 € S,,. Then, o is a product of trans-
positions.

Definition 55. Let o € S,,. The sign of o is sgn(o) =
(=1)™", where r is the number of orbits of o.

Theorem 56. Let o € S,, be a permutation and 7 € S,
be a transposition. Then, sgn(o7) = sgn(o)sgn(r) =
—sgn(o).

Corollary 57. Let o € S, be such that ¢ = 71 --- 7y,
where 7; € S,, are transpositions for 4 = 1,...,¢. Then,

sgn(o) = (—1)%

Corollary 58. The parity of the number of transpositions
in which o € S,, can be written is invariant.

Corollary 59. The function

sgn: S, — {-1,+1}
o — sgn(o)

is a group morphism®.

5. | Equivalence relations and order re-
lations

Equivalence relations

Definition 60. Let A be a set and ~ be a binary relation
on A. We say that ~ is an equivalence relation if and only
if the following properties are satisfied:

1. Reflexivity:
Va € A

a~ a,
2. Symmetry:

Ifa~b, thenb~a, Va,be A

3. Transitivity:

Ifa~band b~c, thena~c, Va,bce A

Definition 61. Let ~ be an equivalence relation on a set
A and a € A. The equivalence class of a under ~ is the
subset of A:

[a] =@a:={beA:a~b}



Theorem 62. Let ~ be an equivalence relation on a set
A. The equivalence classes ~ form a partition of A. That
is, if {w;} are the equivalence classes, then:

1. Uielwi:A'
2. If4,j € I and w; Nwj # &, then w; = wj.

Definition 63. Let ~ be an equivalence relation on a set
A. We define the quotient set, A/ ~, as the set of all
equivalence classes of ~.

Order relations

Definition 64. Let A be a set and < be a binary relation
on A. We say < is a partial order relation if and only if
the following properties are satisfied:

1. Reflexivity:

a<a, Va€eA

2. Antisymmetry:

Ifa<band b<a, thena=0b, Va,be A
3. Transitivity:
Ifa<band b<c¢, thena<e, Va,b,ce A

The pair (A, <) is called a partially ordered set (poset).

Definition 65. Let (A, <) be a partially ordered set.
We say that a € A is a minimal element if and only if
b<a = b=a, Vb € A. Futhermore, a is a least ele-
mentif and only if a < b, Vb € A. Analogously, we say that
a € Aisa mazimal elementif and only if b > a = b= q,
Vb € A. We say that a € A is a greatest element if and
only if a > b, Vb € A.

Lemma 66. Let (A,<) be a partially ordered set. If
(4, <) admits a minimum, this is unique.

Definition 67. Let A be a set. A total order relation on
A is a partial order relation in which any two elements of
A are comparable. That is, a total order is a binary rela-
tion < satisfying the properties of a partial order relation
and such that Va,b € A, we have a < b or b < a.

Definition 68. Let A be a set. A well-order relation on
A is a total order on A with the property that every non-
empty subset of A has a least element. A set A together
with a well-order relation is a well-ordered set.

Theorem 69. All sets can be well-ordered.

6. | Cardinality and combinatorics

Definition 70. Let A, B be two sets. We say that A
and B have the same cardinal if and only if there exists a
bijection A — B.

Definition 71. Let A, B be two sets. We say that
|A| < |B| if and only if there exists an injection function
A= B.

Theorem 72 (Cantor-Bernstein theorem). Let A, B
be two sets. If there is an injection A < B and an injec-
tion B < A, then there is a bijection A — B. Compara-
tive of cardinals is an order relation.

Proposition 73. Let A, B be two subsets of a set U.
Then,

1. Inclusion-exclusion principle:

|AUB| =|A|+|B| - |AN B

2. |A x B| = |A||B|
3. |A°| +|A| = |U]
4. [P(A)| = 214l

Theorem 74 (Cantor’s theorem). Let A un set, then
[P(A)] > |A].

Corollary 75. There is no set containing all sets.

Corollary 76. There are infinitely many sets with infinite
cardinal:

IN| <|P(N)| < [P(P(N))| <---
We denote this cardinals by:
Ny = |P(N)]|

No = |N| Ry = [P(P(N))|

Proposition 77. Let A, B be two finite sets. The set of
functions f : A — B has cardinal |B|4l.

Definition 78. Let U be a set and A € P(U). We define
the characteristic function 14 (or indicator function) of A
as:

14:U —  {0,1}
1 ifred
ro—
0 ifr¢gA

Proposition 79. Let U be a set and A, B € P(U). Then:
L 1y=1
2 Tge=1-1y4
3. 1anp =14lp
4. Laop =14+ 15— 14lp

Proposition 80 (Binomial coefficient formulas).
L () = ot

(o) = (") + (5)

3. Yoo () =27

4 k() =n(0)

(a+0)" =375 (p)a"b" "

Proposition 81. Let f : A — B be a function between
two sets of the same finite cardinal. The following state-
ments are equivalent:

N

o

1. f is injective.

2. f is surjective.



3. f is bijective.

Corollary 82. Let f : A — B be a function between
finite sets. Then:

1. If f is injective, then |A| < |B].
2. If f is surjective, then |A| > |B|.

Theorem 83 (Pigeonhole principle). Let A, B be two
sets such that |A] = n and |B| = m and f: A — B be
a function. If n > m, then Jda,b € A such that a # b

fla) = f(b).

Proposition 84 (Combinations without repetition).
A combination without repetition is an unordered list with
m elements of a set with n elements. The number of such
combinations is (:@)

Proposition 85 (Combinations with repetition). A
combination with repetition is an unordered list with m
elements (allowing repetitions) of a set with n elements.
The number of such combinations is ("*7").

Proposition 86 (Variations without repetition). A
variation without repetition is an ordered list of length m
elements (without repeating them) taken from a set with

. . . !
n elements. The number of such variations is (nf;n),.

Proposition 87 (Variacions with repetition). A vari-
ation with repetition is an ordered list of length m ele-
ments (allowing repetitions) taken from a set with n ele-
ments. The number of such variations is n™.

7. | Arithmetic

Integer numbers

For some basic definitions in group and ring theory you
might need to refer to 77 77 and 77 ?7.

Definition 88. Let a,b € Z. We say that a is a multiple
of b if there exists ¢ € Z such that a = cb.

Theorem 89. Let D,d € Z, d # 0. Then, there are
unique g, € Z such that D = gd+r and 0 < r < |d|.

Proposition 90. Let a,b € Z. aZ CbZ < b|a.
Corollary 91. Let a,b € Z. aZ = bZ <= a = =£b.

Proposition 92. Let aZ, bZ be two ideals of Z. Then,
d!m € N such that aZNbZ = mZ. This integer m is called
the least common multiple of a and b and it is denoted as
m :=lem(a, b).

Proposition 93. Let aZ, bZ be two ideals of Z. Then,
dld € N* such that aZ + bZ = dZ. This integer d is called
the greatest common divisor of a and b and it is denoted

as d := ged(a, b)..
Proposition 94. Let a,b,m,d € Z.
1. If a | m and b | m, then lem(a,bd) | m.

2. If d | a and d | b, then d | gcd(a, b).

Definition 95. Let a,b € Z. We say that a and b are
coprime or relatively prime if and only if ged(a,b) = 1.

Definition 96. We say that p € Z is prime if and only
if pZ is a maximal ideal. The set of prime numbers is
denoted by P.

Proposition 97. Let a € Z. Then, a is prime if and only
if a has exactly 4 divisors: a, —a, 1 and —1.

Lemma 98. Let a,b,k € Z such that a > b > 0. Then,
common divisors of a and b are the same as common di-
visors of a + kb and b.

Theorem 99 (Bézout’s theorem). Let a,b € Z, then
there exists u,v € Z such that au + bv = ged(a, b). More-
over, ged(a,b) =1 <= Fu,v € Z such that au + bv = 1.

Theorem 100 (Gauf’ theorem). Let a,b € Z. If a | be
and gecd(a,b) =1 then a | c

Corollary 101. Let a,b,c € Z be integers such that a
and b are relatively prime. If a | c and b | ¢, then ab | c.

Theorem 102 (Prime number theorem). Let z € R.
If w(x) is the number of prime number less than or equal
to x, then 7(x) ~ R

Theorem 103. Let a,b € Z. Then:
ged(a, b) lem(a, b) = |ab

Lemma 104. Let p be a prime number and a € Z. Then,
p | aor ged(a,p) = 1.

Corollary 105. Let a,b € Z and p be a prime number.
If p | ab, then p |a or p | b.

Corollary 106. Let p,q be prime numbers. If p | ¢, then
p = %q.

Theorem 107 (Fundamental theorem of arith-
metic). Let n € N such that n > 1. Then, n can be
represented uniquely (except for the order) as the product
of prime numbers.

Theorem 108 (Euclid’s theorem). The set P is infi-
nite.

Theorem 109. Let a,b,c,z,y € Z. The equation ax +
by = c has at least a solution if and only if ged(a,d) | c.

In this case, if d = ged(a,b), a = a’d and b = b'd, the set
S of solutions of the equation azx + by = ¢ is

S = {(mo,yo) + )\(—b',a') A E Z}

where (2, yo) is a particular solution of the equation.



Modular arithmetic

Definition 110. Let n,z,y € Z. Wesay x ~ y <=
x —y € nZ. A commonly used notation for this is z = y
mod n. The set of equivalence classes under ~ is denoted
by Z/nZ and its elements are denoted by T.

Lemma 111. Z/nZ has n elements.

Proposition 112. Addition and multiplication are well-
defined in Z/nZ if we do it in the following way:

4 7 7
Tz X Iz 7 nz
(a,b) — a+b
.7 Z Z
Y ALY/ /nZ
(a,b) — a-b
Theorem 113. (Z/nZ,+,-) is a ring and the projection
fZ—Z/nZ
ar— a
is a ring morphism.
Lemma 114. Let n € Z. Then, a € Z/nZ has multiplica-
tive inverse if and only if ged(a,n) = 1.
Corollary 115. (Z/nZ,+,-) is a field if and only if n is

prime.

Theorem 116 (Chinese remainder theorem). Let
m,n € Z be relatively prime. Then, the function

L Z Z
/ mnZ / mZ > /nZ
a (@,a)
is ring isomorphism.

Corollary 117. Let m,n € Z be relatively prime and
a,b € Z. Then, the system of equations:

z=a modm
z=b modn

has a solution. Moreover any two solutions xy, zo of the
system satisfy 1 = zo mod mn.

Definition 118 (Euler’s totient function). Let n € N.
We define the function ¢ : N — N as:

p(n) =

H{a € Z/nZ : « is invertible}| =
=|{0<r <n:ged(r,n) =1}

Lemma 119. Let m,n € Z be relatively prime. Then,
p(m-n) =p(m) - e(n).

Theorem 120 (Euler’s theorem). Let a € Zandn € N
such that ged(a,n) = 1, then:

a?™ =1 modn
In particular, ¢! = a®™~1 mod n.

Theorem 121 (Fermat’s little theorem). Let p be a
prime number. Then, p(p) =p — 1 and

a’ =a mod p

In particular, if ged(a,p) =1, a?~! =1 mod p.

"To see properties relating degrees of polynomials see ?7?.

8. | Polynomials

Definition 122. Let R be a ring. A polynomial p with

coefficients in R is an expression of the form
p=p)=a+az+---+az"

where x is a wvariable or an indeterminate and a; € R are

the coefficients of p. The term aq is called constant term,

and the term a,, leading coefficient. Finally, the set of

all polynomials in the variable x and coefficients in R is
denoted by R|[z].

Definition 123. Let p(z) = Y7, a;z" € R[z] be a poly-
nomial such that a,, # 0. Then, we define the degree of
p(z) as degp(z) =

Definition 124. Let p(z),¢(z) € R[z] such that p(z) =
St paixt € Rlz] and g(z) = Y niz’ € Rlz]. We define
the sum of p(z) and ¢(z) as

n

= Z(az + bl).lﬁZ

=0

p(x) + q(z)

We define the product of p(x) and ¢(z) as

n

p(x) . L](l‘) = ZCZ‘:L'i Where C; = Zalb]—l
Proposition 125. Let K be a field. If p(z),
and p(x), ¢(x) # 0, then p(z) - ¢(x) # 0.

Theorem 126 (Euclidian division). Let K be a field.
Let p(x), s(z) € K[z] with s(z) # 0. Then, Jlq(z),r(x) €
K[z] such that p(z) = g¢(z) - s(z) + r(z) and 0 <
deg(r(x)) < deg(s(x)).

Theorem 127. Let K be a field. Then, K[z] is a princi-
pal ideal, that is, if I C K[x] is an ideal, then Ip(x) € K|[x]
such that I = p(x) - K|z].

q(x) € Klz]

Definition 128. Let K be a field. Let p(z),q(z) €
K[z]. Then, ged(p(x),q(x)) is a generator of the ideal
p(z) - Klz]+ q(z) - K[z] and lem(p(z), ¢(x)) is a generator
of the ideal p(z) - K[x] N q(x) - K[x].

Definition 129. We say that a polynomial p(z) =
g axt is monic if a, = 1.

Theorem 130 (Bézout’s theorem). Let K be a field
and p(z), ¢(x) € K[x]. Then, Ju(z),v(z) € K[z] such that
p(@) - u(z) +q(x) - v(x) = ged(p(x), ¢(x)).

Definition 131. Two polynomials p(x), g(x) are copmme
or relatively prime if and only if ged(p(z), ¢(x)) =

Theorem 132 (Gauf3’ theorem). Let K be a field
and p(z),a(z),b(z) € Klz]. If p(x) | a(z) - b(z) and
ged(a(z), p(x)) = 1, then p(x) | b(z).



Definition 133. Let K be a field. A polynomial p(z) €
K|[xz] is prime if and only if its ideal p(x) - K[z] is maxi-
mal, that is, for all ideals I C K[z] if p(z)- K[x] C I, then
I =K]Jz].
Definition 134. Let K be a field and a € K. The eval-
uation in a is a function ¢, defined as:
¢o: Kz — K

p(z) — pla)
Definition 135. Let K be a field and a € K. a is a root
of p(z) if and only if ¢4 (p(z)) = p(a) = 0.
Theorem 136 (Ruffini’s rule). Let K be a field, p(x) €
K[z] and @ € K. Then, z — a | p(x) < p(a) = 0.
Definition 137. Let K be a field and p(z) € K[x]. Then,
p(x) is irreducible if and only if p(x) - K[z] is maximal.

Theorem 138. Let K be a field and p(x) € K[z]. Then,
p(x) has at most deg(p(x)) roots.

Theorem 139 (D’Alembert theorem). All non-
constant polynomials p(z) € Clx] has exactly deg(p(x))
roots.

Corollary 140. Let p(x) € C[z] be such that deg(p(z)) >
1. Then, Fla, 7y, ..., 7, € C such that

p(x) = oz —r)---(z—rp)

where r; are the roots of p(z) and « is the leading coeffi-
cient of p(z).

Corollary 141. Let p(z) € Clz]. The roots of p(x) in
C\ R come in pairs (r,7), where 7 is the complex conju-
gate of r.

Theorem 142. In R[z] irreducible polynomials are of de-
gree 1 or degree 2.
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